アンテナの基礎と高効率平面アンテナの設計 Antenna …apmc-mwe.org/mwe2009/pdf/src/TL03-01.pdf · アンテナの基礎と高効率平面アンテナの設計 ―最新ミリ波・マイクロ波アンテナの基礎技術として―

Embed Size (px)

Citation preview

  • Antenna Basics and Design of High Efficiency Planar Antennas -Fundamentals of Recent Millimeter-Wave and Mircowave Antenna Technologies-

    Makoto ANDO and Jiro HIROKAWA

    152-8552 2-12-1 Dept. of Electrical and Electronic Eng., Tokyo Institute of Technology

    2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan

    E-mail: {mando, jiro}@antenna.ee.titech.ac.jp

    Abstract This seminar presents the basics for antenna technologies in millimeter-wave bands such as Friis transmission formula for line-of-sight free-space propagation and the loss of feed lines in array antennas. The design of series-fed reflection-canceling non-resonant slot arrays is discussed, where the amplitude and the phase are controlled easily by the slot length and the spacing. Technologies such as the post-wall waveguide and the diffusion bonding of laminated thin metal plates are demonstrated for realizing low-loss millimeter waveguides.

    1.

    IP

    2. 2.1.

    1 r

    tP

    tG

    ph rS

    rP

    24t

    r t p rPP G Sr

    hp

    = (1)

    : Gt

    : Gr

    : Pt : Pr: r

    tp rp

    : Sr

    1 G

    r p

    24t

    pGP rp

    = (2)

    r

    24t

    tP Grp

  • ph tp

    rp

    p t rh = p p (3)

    v =p x

    h =p y+z

    ( ) 2r j= -p x y

    ( ) 2l j= +p x y

    (a)

    G eS

    24

    eG Sp

    l= (4)

    l(4)(1)

    2 14r t t r p t t r p p

    P PG G PG Gr L

    lh hp

    = =

    (5)

    pL r 2

    60GHz l =5mm

    r=1m=1000mm pL 68dB 10

    pL 20dB

    2.2.

    tP iP

    mh rh

    r i m rP Ph h= (6)

    mh G

    21mh G= - (7)

    rh

    G D

    m rG Dh h= (8)

    D

    S ah

    24

    aD Sph

    l= (9)

    ah

    1ah =

    (9)(8)

    24

    m r aG Sph h h

    l= (10)

    SG

    mh rh ah

    1

    2.3. S G

  • d

    zq

    x

    y

    f

    2 ()

    2 z dN

    ( ) ( ) ( ), , expn

    nF g a jnuq f q f= (11)

    ( ),g q f na n

    u 0 cosu k d q=

    0k 2p l

    (k) ( ),g q f

    (k)

    N

    3dB

    11.3912 cos

    2 Ndp l

    p- -

    ( dp l ) 2 dN

    l

    N dp l [1]

    a

    bx

    y

    3 (4 )

    3 4 x n y m

    nma

    ( ),E q f

    ( ) ( ){ }, expnmn m

    E u v a j nu mv= + (12)

    0 sin cosu k a q f= 0 sin sinv k b q f=

    nma nm n ma a a=

    x() na y

    () ma

    (l) ( ) ( ) ( ), exp expn m

    n mE u v a jnu a jmv= (13)

    2

    2.4. 4

    3 4

    4

  • Loss

    [dB

    ]

    Thickness [mm]

    Dielectric Loss

    Radiation Loss

    Waveguide

    CondutorLoss

    MicrostripTriplate

    4

    tand

    ( )' " ' 1 tanr r r rj je e e e d= - = - (14)

    g tand 1

    0 0 01' ' tan2r r r

    j j k j k kg a b e e e d= + = @ + (15)

    da

    01 ' tan2d r

    ka e d@ (16)

    tand

    s

    sZ

    s we

    12s s s

    j jZ R jXj

    wm wms we s

    += + = @

    + (17)

    sR

    12s

    R wms ds

    @ = (18)

    d

    2dwms

    = (19)

    d 1/e(=-8.68dB)

    3d 5d

    75.76 10

    60GHz d=0.27mm

    P lP P

    ( )2 20 02 2z zl PP P e P e Pz z a aa a- -

    = - = - = =

    (20)

    a 2

    *

    21 12 2 2

    sl R dlPP d

    a = =

    H

    E H s (21)

    ()

    0.127mm 2.20 (50W) 90 T () Emsemble(ver.5) 0.09dB -30dB 0.127mm 2.20tand=0.006

    18mm 0.38mm 75.76 10s =

    60GHz 0.037dB/cm 0.209dB/cm [2] 85% 3.76mm

    1.88mm 75.76 10s =

    60GHz 0.015dB/cm [2] 6%

    2.5. 5

    2 1

  • l 1 (=) 4 (=6dB)

    6dB

    (a)

    (b)

    5

    3.

    [3] 1 2

    (i)

    (ii) (iii) (iv)

    3.1. 6

    22

    [3]

    2 1

    2#1

    #2 1l 2l d 2l

    1l d

    2

    31S 31S 21S

    l1

    l2d

    1

    2

    3

    6

  • 3.2. 2 N n

    na ( )E u

    ( ) ( )expn

    nE u a jnu= (22)

    u 0 cosu k d q= ( )E u up p-

    1na =

    ( )1n -

    1 u

    Woodward-Lawson [4](v)

    u nu n Np=

    nu u=

    3.3. n

    ( )231S n

    ( )2

    231

    2

    nN

    ii n

    aS n

    a=

    =

    (23)

    ( )231S n 3.1 ( )1l n

    ( )2l n ( )d n ( )31S n ()

    ( )21S n ()

    7 n n+1

    ( )s n

    ( ) ( ) ( ) ( )31 21 31360 360 1g

    s nS n S n S n

    l - = - + + (24)

    gl

    s(n)

    S21(n)

    S31(n) S31(n+1)

    7

    3.4.

    4. 4.1. 8

    2 1997 [5][6] laminated waveguide[7] substrate integrated waveguide[8]

  • ParallelPlates

    PostDielectric

    2.625mm

    0.762mm

    0.30mm

    0.60mm

    er=2.17

    s=5.76x107

    s=5.76x107 tand=0.00085

    8

    9 76.5GHz

    a 0.762mm

    re 00.286 rl e

    0l

    00.5 rl e

    0.17dB/cm 9 2/3

    -0.16-0.14-0.12-0.1

    -0.08-0.06-0.04-0.02

    0

    6 7 8 9 10 11Length(mm)

    Dielectric

    Plates

    Post

    9

    10

    [9]

    10

    Slot a rray4-way Butlermatrix

    HybridCross

    couplerPhaseshifter

    Hole

    #1#2#3#4

    10

    4.2.

    [5]61.25GHz 2080mm 2133dBi 6055%[10] PTFE

    11 [11] 3 (i) 12 0.6mm 2.6tand=0.0008 h

    h=0.3mm 75% 14% 38%(ii)

    12 h=0.3mm 1.5 30%(iii)

    11

  • 12

    PTFE 0.9mm 0.4mm 45mm LTCC

    LTCC RF LTCC 5

    4.3.

    [12] 13 [13][14] 94GHz

    3 WR10

    25GHz

    T 1.0mm

    T

    g0 .5lT-junction

    Input Port RadiatingWaveguide

    FeedWaveguid e

    Waveguide (1.0mm)Slotted Pla te (0.3mm)

    Base(5.0mm) 3.5mm ( WR10)1.5mm (feed aperture)

    (a) overall view

    (b) cross-section view 13

    18x18 6055mm 14 HFSS 2.12dB 0.34dB 93.7GHz 31.4dB 60%93.7GHz 14dB 69%

    0.8dB

    90 92 94 96 98

    26

    28

    30

    32

    34

    Fre quency (GHz)

    Gai

    n (d

    Bi)

    90%

    70%80%

    Gain (S US304) Gain (Copper)

    50%40%30%

    H FSS (PEC) H FSS (SU S304) H FSS (c opper)

    14

  • 4.4. CMOS CMOS

    CMOS () 10mm

    4 60GHz 15 HFSS lumped port()

    10mm 400mm 16 (10 mm)-13dB

    200 mm

    Si(e r=11.9 , tan d=0.005)

    coppe r(s=20106 or S/m )

    resin(er=3 , tan d= 0.01 or 0)

    dipole antennalumped port(50 W)

    5mm5mm

    1mm10 400 mm

    15

    100 200 300 400-25

    -20

    -15

    -10

    -5

    0

    Rad

    iatio

    n ef

    ficie

    ncy[

    dB]

    Thickness of the re sin layer [mm]

    dipoleloop

    cavity-backed slot

    slot

    16

    14

    5.

    RF

    [1] C.A.Balanis:Antenna Theory, 6 , Wiley, 2005 [2] R.E.Collin, Foundations for Mircrowave Engineering, 2

    , 3 Mc-Graw Hill, 1992 [3] J.Hirokawa, M.Ando and N.Goto, Waveguide-Fed Parallel

    Plate Slot Array Antenna, IEEE Trans. Antennas Propagat., vol.40, no.2, pp.218-223, Feb.1992.

    [4] P. M. Woodward and J. D. Lawson, The Theoretical Precision with which an Arbitrary Radiation Pattern may be Obtained from a Source with Finite Size, Proc. IEE, pt. 3, vol. 95, pp. 363370, 1948.

    [5] Single-Layer Feed Waveguide to Excite Plane TEM Wave for Parallel Plate Slot Array AntennasAP97-311997-5.

    [6] J. Hirokawa and M. Ando, Single-Layer Feed Waveguide consisting of Posts for Plane TEM Wave Excitation in Parallel Plates, IEEE Trans. Antennas Propagat., vol.46, no.5, pp.625-630, May 1998.

    [7] H.Uchimura, T.Takenoshita and M.Fujii, Development of a Laminated Waveguide, IEEE Trans. Microw. Theory Tech. vol.46, no.12, pp. 2438-2443, Dec. 1998.

    [8] D.Deslandes and K.Wu, Integrated Microstrip and Rectangular Waveguide in Planar Form, IEEE Microwave Wireless Compon. Lett., vol.11, no.2, pp.6870, Feb. 2001.

    [9] S.Yamamoto, J.Hirokawa and M.Ando, A Half-Sized Post-Wall Short-Slot Directional Coupler with Hollow Rectangular Holes in a Dielectric Substrate, IEICE Trans. Electron., vol.88, no.7, pp.1387-1394, Jul. 2005.

    [10] T.Kai, Doctoral Dissertation, Chap.4 Tokyo Institute of Technology, 2006.

    [11] M.Samardzija, J.Hirokawa and M.Ando, Dominant Quasi-TEM Mode Generator for Thin Oversized Dielectric-Coated Rectangular Waveguide, 2007 IEEE AP-S Intl. Symp., 327-8, Jun.2007.

    [12] 94GHz , AP2008-35, 2008-6.

    [13] AP88-39, 1988-7.

    [14] , AP89-3, 1989-4.