21
This article was downloaded by: [Gamal Saleh] On: 09 April 2013, At: 01:33 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Liquid Chromatography & Related Technologies Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ljlc20 REVIEW ON RECENT SEPARATION METHODS FOR DETERMINATION OF SOME FLUOROQUINOLONES Gamal A. Saleh a , Hassan F. Askal a , Ibrahim H. Refaat a & Fatma A. M. Abdel-aal a a Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt Accepted author version posted online: 08 Aug 2012.Version of record first published: 04 Apr 2013. To cite this article: Gamal A. Saleh , Hassan F. Askal , Ibrahim H. Refaat & Fatma A. M. Abdel-aal (2013): REVIEW ON RECENT SEPARATION METHODS FOR DETERMINATION OF SOME FLUOROQUINOLONES, Journal of Liquid Chromatography & Related Technologies, 36:10, 1401-1420 To link to this article: http://dx.doi.org/10.1080/10826076.2012.691440 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REVIEW ON RECENT SEPARATION METHODS FOR DETERMINATION OF SOME FLUOROQUINOLONES

  • Upload
    assuit

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

This article was downloaded by: [Gamal Saleh]On: 09 April 2013, At: 01:33Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography &Related TechnologiesPublication details, including instructions for authors andsubscription information:http://www.tandfonline.com/loi/ljlc20

REVIEW ON RECENT SEPARATIONMETHODS FOR DETERMINATION OF SOMEFLUOROQUINOLONESGamal A. Saleh a , Hassan F. Askal a , Ibrahim H. Refaat a & Fatma A.M. Abdel-aal aa Department of Pharmaceutical Analytical Chemistry, Faculty ofPharmacy, Assiut University, Assiut, EgyptAccepted author version posted online: 08 Aug 2012.Version ofrecord first published: 04 Apr 2013.

To cite this article: Gamal A. Saleh , Hassan F. Askal , Ibrahim H. Refaat & Fatma A. M.Abdel-aal (2013): REVIEW ON RECENT SEPARATION METHODS FOR DETERMINATION OF SOMEFLUOROQUINOLONES, Journal of Liquid Chromatography & Related Technologies, 36:10, 1401-1420

To link to this article: http://dx.doi.org/10.1080/10826076.2012.691440

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representationthat the contents will be complete or accurate or up to date. The accuracy of anyinstructions, formulae, and drug doses should be independently verified with primarysources. The publisher shall not be liable for any loss, actions, claims, proceedings,demand, or costs or damages whatsoever or howsoever caused arising directly orindirectly in connection with or arising out of the use of this material.

REVIEW ON RECENT SEPARATION METHODS FORDETERMINATION OF SOME FLUOROQUINOLONES

Gamal A. Saleh, Hassan F. Askal, Ibrahim H. Refaat, andFatma A. M. Abdel-aal

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy,Assiut University, Assiut, Egypt

& Fluoroquinolones (FQs) are among the most important antibacterial agents (syntheticantibiotics) used in human and veterinary medicine. They are employed against all bacterialinfections, particularly against urinary tract infections and acute respiratory diseases. In the lastdecade, there was no review covering all different analytical methods used for the determination offluoroquinolone antibiotics. The present review presented recently published different electrophoreticand chromatographic methods for determination of seven fluoroquinolones (ciprofloxacin, gatiflox-acin, levofloxacin, lomefloxacin, norfloxacin, ofloxacin, and sparfloxacin). Presented applicationsconcern analysis of chosen fluoroquinolones in pure forms, different pharmaceutical formulations,biological fluids, and environmental samples.

Keywords biological fluids, HPLC methods, electrophoretic methods, fluoroquino-lones, pharmaceutical preparations, TLC methods

INTRODUCTION

Following the discovery of nalidixic acid in 1962 by Lesher et al.[1]

numerous structural modifications have been made in the quinolinenucleus to increase antimicrobial activity and improve pharmacokineticperformance. All of these newer agents have similar mechanisms of action,but numerous derivatives of the basic 4-quinolone structure have beensynthesized in an effort to enhance the antimicrobial spectrum and phar-macological properties of these antimicrobials. Many reviews were per-formed for these drugs[2–16] but in the last few years, there has been noreview published covering all the different separation methods used forthe determination of the chosen fluoroquinolones (FQs). The high impor-tance of this class of drugs prompted us to review the most important

Address correspondence to Fatma A. M. Abdel-aal, Department of Pharmaceutical AnalyticalChemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt. E-mail: [email protected]

Journal of Liquid Chromatography & Related Technologies, 36:1401–1420, 2013Copyright # Taylor & Francis Group, LLCISSN: 1082-6076 print/1520-572X onlineDOI: 10.1080/10826076.2012.691440

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

recent methods for their analysis in pure forms, in different pharmaceuti-cal dosage forms and in biological fluids. Because of the large number ofreferences that appeared as individual methods or as a part of clinicaland pharmacological studies, it is preferable to make reference only tothe most important papers.

The presented review provided a summary of important reportedmethods for seven fluoroquinolones (FQs), namely: ciprofloxacin (Cip.),gatifloxacin (Gat.), levofloxacin (Lev.), lomefloxacin (Lom.), norfloxacin(Nor.), ofloxacin (Ofl.), and sparfloxacin (Spr.).

SEPARATION METHODS

Chromatographic Methods

Thin-Layer Chromatographic Methods (TLC)TLC is one of the most widespread analytical methods used in the sep-

aration and identification of drugs. It is an inexpensive method that con-sumes only small amounts of samples and solvents. There are almost norestrictions on the solvents used and a variety of stationary phases is commer-cially available.[17] Several papers were published regarding different meth-ods for determination of FQs. Table 1 summarizes these methods.[18–31]

High Performance Liquid Chromatographic Methods (HPLC)HPLC is the most frequently applied technique for the determination

of the 4-quinolones, whether in formulations, biological fluids, animaltissues, fish feed, environmental samples, and so forth. Table 2 summarizessome of the reported methods for the analysis of 4-quinolone antibacterialin their pharmaceutical formulations, biological fluids, environmentalsamples, and so forth.[32–113]

Electrophoretic Methods

In Bulk and Pharmaceutical Dosage FormCapillary Zone Electrophoresis (CZE). Capillary electrophoresis (CE) is a

technique designed to separate species based on their size to charge ratioin the interior of a small capillary filled with an electrolyte. In 2002, Lozanoand his co-workers[114] developed a CZE method comparing the values ofdissociation constants of quinolones from mobility and spectroscopic dataobtained by capillary electrophoresis and a diode array detector. Barbosaand his co-workers[115] studied the electrophoretic behavior of quinolonesin capillary electrophoresis with the effect of pH and evaluating the ioniza-tion constants. They also studied the influence of pH and pKa values on

1402 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

TABLE

1T

LC

Met

ho

ds

for

the

Det

erm

inat

ion

of

4-Q

uin

olo

nes

inD

iffe

ren

tM

atri

ces

FQ

sM

ob

ile

Ph

ase

Ap

pli

cati

on

Det

ecti

on

Ref

.

No

r.,

Ofl

.� M

eth

ano

l:ch

loro

form

:co

nc.

amm

on

ia(5

1:34

:15,

v=v=v)

for

No

r.� E

than

ol:

con

c.am

mo

nia

(4:1

,v=v)

for

Ofl

.R

esid

ues

on

stai

nle

ssst

eel

surf

aces

Flu

or.k e

x31

3n

man

dk e

m40

0n

m

[18

,19

]

Spr.

Eth

ano

l:et

hyl

acet

ate:

1,2-

dic

hlo

roet

han

e:10

%aq

ueo

us

amm

on

ia(4

0:30

:20:

10,v=v)

Seru

man

du

rin

eF

luo

r.k e

x28

5n

man

dk e

m40

0n

m

[20

]

Spr.

Dic

hlo

rom

eth

ane:

iso

pro

pyl

alco

ho

l:25

%N

H3

(4:5

:2,v=v)

Tab

lets

vid

eod

ensi

tom

etry

atk¼

254

nm

[21

]

Ofl

.D

ich

loro

met

han

e:m

eth

ano

l:25

%N

H3

(7:5

:1.5

,v=v=v)

Tab

lets

vid

eod

ensi

tom

etry

atk¼

254

nm

[22

]

Lev

.h

emih

ydra

tesi

mu

ltan

eou

sly

wit

ho

rnid

azo

le

N-b

uta

no

l:m

eth

ano

l:am

mo

nia

(5:1

:1.5

,v=v=v)

Tab

lets

UV

298

nm

[23

]

Lev

.W

ater

:met

han

ol:

n-b

uta

no

l:am

mo

nia

solu

tio

n(5

:5:5

:0.4

,v=v)

Ph

arm

aceu

tica

lfo

rmu

lati

on

sU

V29

8n

m[2

4]

Lev

.h

emih

ydra

tesi

mu

ltan

eou

sly

wit

ham

bro

xol

hyd

roch

lori

de

Ch

loro

form

:met

han

ol:

tolu

ene:

amm

on

ia(1

0:6:

3:0.

8,v=v=v=v)

Bu

lkfo

rms

and

tab

lets

UV

254

nm

[25

]

No

r.,

Ofl

.A

qu

eou

sm

icel

leso

luti

on

of

sod

ium

do

dec

ylsu

lfat

e(S

DS)

:E

DT

0.01

:0.1

(mo

l=L

:mo

l=L

)Se

rum

and

uri

ne

Flu

or.k e

x27

8an

d28

0n

man

dk e

m

400

nm

[26

,27

]

Gat

.si

mu

ltan

eou

sly

wit

ho

rnid

azo

leN

-bu

tan

ol:

met

han

ol:

amm

on

ia(6

M)

(8:1

:1.5

,v=v=v)

Tab

lets

UV

302

nm

[28

]

Cip

.,L

om

.H

Cl

Ch

loro

form

:met

han

ol:

25%

amm

on

ia(4

3:43

:14,

v=v=v)

for

Cip

.an

d(1

0:7:

3,v=

v=v)

for

Lo

m.

HC

lP

har

mac

euti

cal

form

ula

tio

ns

UV

330

for

Cip

.28

8n

mfo

rL

om

.H

Cl.

[29

,30

]

No

r.si

mu

ltan

eou

sly

wit

hm

etro

nid

azo

leC

hlo

rofo

rm:m

eth

ano

l:d

ieth

ylam

ine:

H2O

(9:2

:0.4

:0.2

)T

able

tsU

V25

4n

m[3

1]

1403

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

TABLE

2H

PL

CM

eth

od

sfo

rth

eD

eter

min

atio

no

fF

luo

roq

uin

olo

nes

inP

har

mac

euti

cal

Fo

rmu

lati

on

san

dO

ther

Dif

fere

nt

Mat

rice

s

Dru

gsM

atri

xM

ob

ile

Ph

ase

Det

ecti

on

Ref

.

Cip

.T

able

tsan

dh

um

anp

lasm

aA

ceto

nit

rile

:2%

acet

icac

idaq

ueo

us

solu

tio

n(1

6:84

,v=v)

UV

280

nm

[32

]

Cip

.T

able

tsM

eth

ano

l:b

uff

er(0

.025

MO

rth

op

ho

sph

ori

cac

idw

ith

the

pH

adju

sted

to3.

0�

0.1

wit

htr

ieth

ylam

ine)

(40:

60,v=v)

UV

278

nm

[33

]

Cip

.,L

ev.

Ph

arm

aceu

tica

lfo

rmu

lati

on

sM

eth

ano

lan

d25

mM

ph

osp

hat

eb

uff

er(2

8:72

,v=v)

atp

H3

UV

278

nm

[34

]

Cip

.,N

or.

,O

fl.

Ph

arm

aceu

tica

lfo

rmu

lati

on

san

dh

um

anse

rum

Aw

ater

:ace

ton

itri

le(5

0:50

,v=v)

of

pH

2.9

adju

sted

wit

hp

ho

sph

ori

cac

idU

V26

0,26

5,27

0,27

5,an

d28

0n

m

[35

]

Cip

.,N

or.

,O

fl.

Sew

age

Mix

ture

of

met

han

ol,

acet

on

itri

le,

and

form

icac

idF

luo

r.27

8an

d44

5n

m,

(ESI

-MS)

[36

]

Cip

.C

atfi

shm

usc

leL

CB

uff

er(0

.1M

mal

on

ate,

50m

Mm

agn

esiu

mch

lori

de,

pH

6.5

wit

hN

H4O

H),

and

met

han

ol

Flu

or.

275

and

425

nm

[37

]

Cip

.,N

or.

Surf

ace

wat

ers

0.02

5M

ph

osp

ho

ric

acid

solu

tio

nat

pH

3.0

wit

hte

trab

uty

lam

mo

niu

mb

rom

ide

(TB

AB

)an

dm

eth

ano

l(96

0:40

,v=v)

Flu

or.

278

and

450

nm

[38

]

Cip

.,L

ev.,

Lo

m.,

No

r.P

ork

sam

ple

Ace

ton

itri

le(A

CN

)(co

nta

inin

g0.

1%o

fp

ho

sph

atic

acid

)U

V,

281

nm

[39

]

Cip

.,N

or.

Ch

icke

nm

usc

leG

rad

ien

tel

uti

on

fro

m(A

)w

ater=fo

rmic

acid

(99.

8=0.

2)an

d(B

)A

CN

(ESI

-TO

FM

S)[4

0]

Cip

.T

able

eggs

Co

mb

inin

gso

lven

tA

(25

mM

ort

ho

ph

osp

ho

ric

acid

adju

sted

top

H3.

0w

ith

NaO

H)

and

solv

ent

B(a

ceto

nit

rile

)F

luo

r.28

0an

d44

0n

m[4

1]

Cip

.C

hic

ken

mu

scle

Solv

ent

A(0

.1M

mal

on

ate,

50m

MM

gþ2,

adju

sted

top

H6.

5w

ith

con

cen

trat

edN

H4O

H)

and

solv

ent

B(m

eth

ano

l)F

luo

r.27

5an

d42

5n

m[4

2]

Cip

.,N

or.

,O

fl.

Ch

icke

nm

usc

lean

deg

gyo

lkM

ixtu

reo

f0.

1%tr

iflu

oro

acet

icac

id(T

FA)–

(AC

N)–

CH

3O

HD

AD

,27

5an

d25

5n

m[4

3]

Cip

.H

um

anh

um

or

Ace

ton

itri

le85

%:a

qu

eou

sp

ho

sph

ori

cac

id(1

5:85

,v=v)

UV

at27

8n

m[4

4]

Cip

.,G

at.,

Lev

.,L

om

.,N

or.

,Sp

r.A

qu

atic

envi

ron

men

t0.

1%A

qu

eou

sT

FAan

dac

eto

nit

rile

ESI

-MS

[45

]

Cip

.G

ilth

ead

seab

ream

Mix

ture

of

0.2%

(v=v)

form

icac

id,

met

han

ol,

and

acet

on

itri

leM

S=M

S[4

6]

Cip

.,L

ev.,

Lo

m.,

No

r.C

hic

ken

Aac

eto

nit

rile

and

wat

er(c

on

tain

ing

0.05

%fo

rmic

acid

)E

SI-M

S[4

7]

Cip

.M

ilk

CH

3O

CH

3C

0.2%

HC

OO

H(1

5:15

:70,

v=v)

.F

luo

r.at

275

and

[48

]

1404

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

445

nm

Cip

.W

ho

leb

loo

dC

H3O

CH

3C

0.2%

HC

OO

H(1

5:15

:70,

v=v=v)

.F

lou

r.at

275

and

445

nm

[49

]

Cip

.R

oas

tee

lM

eth

ano

l,ac

eto

nit

rile

and

dil

.fo

rmic

acid

(2:9

98)

(15:

15:7

0,v=v=v)

.F

lou

r.at

275

and

445

nm

[50

]

Cip

.,N

or.

,O

fl.

Mil

kM

eth

ano

l(0

.1%

form

icac

id)

and

wat

er(0

.1%

form

icac

id);

ESI

-MS

[51

]

Cip

.,N

or.

,O

fl.

Bo

vin

eli

ver

and

po

rcin

eki

dn

eyM

ixtu

reo

fT

FA0.

1%þ

CH

3C

CH

3O

HD

AD

at27

5an

d25

5n

m[5

2]

Cip

.,N

or.

,O

fl.,

Spr.

Ch

icke

nm

usc

leC

H3O

CH

3C

0.2%

HC

OO

H(1

5:15

:70,

v=v=v)

ESI

-MS

[53

]

Cip

.,N

or.

Ch

icke

neg

gsM

ixtu

reo

fac

eto

nit

rile

and

0.4%

ph

osp

ho

ric

acid

–0.4%

trie

thyl

amin

e(1

5:85

,v=v)

(pH¼

2)F

luo

r.27

8an

d44

5n

m[5

4]

Cip

.,L

om

.,N

or.

Mar

ine

Pro

du

cts

0.1%

Fo

rmic

acid

,p

H2.

5,an

dac

eto

nit

rile

Flu

or.

280

and

450

nm

[55

]

Cip

.,L

ev.,

No

r.Se

rum

Wat

erso

luti

on

(1.3

1g=

Lis

ole

uci

ne

and

0.80

g=L

Cu

SO4)

and

met

han

ol

(80:

20,v=v)

Flu

or.

280

and

504

nm

[56

]

Cip

.,G

at.,

No

r.,O

fl.

Uri

ne

Ace

ton

itri

le–0

.02

mm

olL

�1

TB

AB

solu

tio

n(8

:92,

v=v,

pH

2.9)

DA

D27

7an

d29

3n

m[5

7]

Cip

.,O

fl.,

Spr.

Ro

ast

eels

CH

3O

H=C

H3C

N=0.

2%H

CO

OH

(15=

15=70

,v=v=v)

ESI

-MS

[58

]

Cip

.,L

om

.W

ater

sam

ple

s5

mm

olL

�1

BM

Im-B

F4,

and

10m

mo

lL�

1am

mo

niu

mac

etat

eat

pH

3.0

wit

h13

%(v=v)

acet

on

itri

leF

luo

r.27

8an

d44

0n

m[5

9]

Cip

.P

ork

Ace

ton

itri

le-p

ho

sph

oro

us

acid=tr

i-eth

ylam

ine

Flu

or.

280

and

450

nm

[60

]

Cip

.,L

ev.,

Lo

m.,

No

r.C

hic

ken

Ace

ton

itri

lean

dw

ater

(co

nta

inin

g0.

05%

form

icac

id)

ESI

-MS

[61

]

Cip

.G

ilth

ead

seab

ream

Mix

ture

of

0.2%

(v=v)

form

icac

id,

met

han

ol

and

acet

on

itri

leM

S=M

S[6

2]

Cip

.F

ish=sh

ellf

ish

tiss

ues

CH

3C

N-0

.05%

CF

3C

OO

H(2

5:75

,v=v)

MS=

MS

[63

]

Cip

.,N

or.

Fee

ds

Ace

ton

itri

lean

do-

ph

osp

ho

ric

acid

25m

Mat

pH¼

3F

luo

r.27

8,46

6n

mD

AD

,27

8n

m.

[64

]

Cip

.,L

ev.,

Lo

m.,

Ofl

.U

rin

ea)

0.15

MSo

diu

md

od

ecyl

sulf

ate

(SD

S),

12.5%

pro

pan

ol

and

0.5%

trie

thyl

amin

eat

pH

3.0

b)

0.05

MSD

S,12

.5%

pro

pan

ol,

and

0.5%

trie

thyl

amin

eat

pH

3.0

a)F

luo

r.28

5an

d46

5n

mb

)F

lou

r.29

5an

d48

5n

m

[65

]

Cip

.P

igti

ssu

esM

ixtu

reo

fp

ho

sph

ate

bu

ffer

(pH

3.0)

and

acet

on

itri

le(8

2:18

,v=v)

Flu

or.

278

and

450

nm

[66

]

Cip

.,L

ev.,

No

r.W

ater

sam

ple

sM

eth

ano

l=w

ater

(ad

just

edat

pH¼

2.5

wit

hac

etic

acid

;(1

5:85

,v=v)

Flu

or.

280

and

450

nm

[67

]

Cip

.,L

ev.,

Lo

m.,

Spr.

En

viro

nm

enta

lw

ater

sam

ple

sM

ixtu

reo

faq

ueo

us

solu

tio

no

f0.

25%

form

icac

idan

d10

mm

ol=

Lam

m.

acet

ate

and

acet

on

itri

leE

SI-M

S=M

S[6

8]

Cip

.,N

or.

Po

ult

rym

usc

le0.

025

mo

lL�

1H

3P

O4

solu

tio

n,

adju

sted

top

H3.

0w

ith

Flu

or.

278

and

445

nm

[69

]

(Continued

)

1405

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

TABLE2

Co

nti

nu

ed

Dru

gsM

atri

xM

ob

ile

Ph

ase

Det

ecti

on

Ref

.

tetr

abu

tyla

mm

on

ium

hyd

roxi

de-

met

han

ol

(78:

22)

Cip

.,L

ev.

Seru

m1%

Tri

eth

ylam

ine

(pH

3.0)

:ace

ton

itri

le(8

6:14

,v=v)

Flu

or.

300

and

450

nm

[70

]

Cip

.M

ilk

25m

MP

ho

sph

ate

bu

ffer

(pH

2.5)=ac

eto

nit

rile=m

eth

ano

l(7

7:10

:13,

v=v=v)

Flu

or.

280

and

450

nm

[71

]

Cip

.,N

or.

En

viro

nm

enta

lsu

rfac

ew

ater

Ace

ton

itri

lean

d20

mM

KH

2P

O4

pH

3in

the

rati

oo

f17

%an

d83

%

(v=v)

,re

spec

tive

ly[p

Had

just

edw

ith

H3P

O4

(85%

)]D

AD

,27

0n

m[7

2]

Cip

.,N

or.

An

imal

sam

ple

sM

ixtu

reo

fac

eto

nit

rile

and

0.05

%H

3P

O4

(pH¼

2.4)

Flu

or.

278

and

445

nm

[73

]

Cip

.,L

om

.,N

or.

,O

fl.

Sed

imen

tso

fth

eP

earl

Riv

ers

Ace

ton

itri

lean

d5

mM

oxa

lic

acid

ESI

-MS

[74

]

Cip

.H

Cl

Ho

ney

25m

MP

BS

(pH

2.1)

(elu

ent

A),

met

han

ol

(elu

ent

B)

and

acet

on

itri

le(e

luen

tC

)E

SI-M

S[7

5]

Cip

.,L

om

.,N

or.

,O

fl.

Sed

imen

tso

fth

eP

earl

Riv

ers

Ace

ton

itri

lean

d5

mM

oxa

lic

acid

ESI

-MS

[76

]

Cip

.,G

at.,

No

r.B

ovi

ne

uri

ne

and

En

viro

nm

enta

lw

ater

0.1%

Fo

rmic

acid

(pH

2.6)

and

acet

on

itri

leD

AD

274–

315

nm

,F

lou

r.27

8–33

0,an

d36

8–51

5n

m

[77

]

Cip

.,O

fl.

Hu

man

seru

mA

ceto

nit

rile

–0.0

2m

olL

�1

tetr

abu

tyl

amm

on

ium

bro

mid

e(T

BA

B)

aqu

eou

sso

luti

on

(9:9

1,v=v;

pH

:2.

50)

DA

D27

7an

d29

3n

m,

resp

ecti

vely

[78

]

Cip

.,N

or.

,O

fl.

Sed

imen

tso

fth

eH

aiR

iver

,L

iao

Riv

eran

dYe

llo

wR

iver

.

Ace

ton

itri

lean

d5

mM

oxa

lic

acid

ESI

-MS

[79

]

Gat

.P

har

mac

euti

cal

form

ula

tio

ns

Ace

ton

itri

lean

d0.

05M

ph

osp

hat

eb

uff

erin

the

rati

oo

f(2

5:75

,v=v)

UV

293

nm

[80

]

Gat

.H

um

anse

rum

and

uri

ne

10m

MSD

S,10

mM

TB

AA

,an

d25

mM

citr

icac

idw

ith

50%

acet

on

itri

lein

dei

on

ized

wat

erU

V29

3n

m[8

1]

Gat

.A

qu

eou

sh

um

or

0.1

mo

l=L

Fo

rmic

acid

aqu

eou

sso

luti

on

and

acet

on

itri

lein

ara

tio

of

80:2

0(v=v)

MS

[82

]

Gat

.O

cula

rsa

mp

les

20%

Ace

ton

itri

le,

in0.

1%tr

iflu

oro

acet

icac

id(p

H3.

0)w

ith

30m

Mte

trab

uty

lam

mo

niu

mch

lori

de

UV

295

nm

,F

lou

r.34

5,an

d47

0n

m

[83

]

Gat

.,Sp

r.P

har

mac

euti

cal

form

ula

tio

ns

Met

han

ol:

0.02

5M

KH

2P

O4

adju

sted

top

H3

usi

ng

ort

ho

-ph

osp

ho

ric

acid

UV

290

nm

[84

]

Lev

.P

har

mac

euti

cal

Am

ixtu

reo

f0.

5%(v=v)

trie

thyl

amin

ein

sod

ium

dih

ydro

gen

UV

294

nm

[85

]

1406

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

form

ula

tio

ns

ort

ho

ph

osp

hat

ed

ehyd

rate

(25

mM

;p

H6.

0)an

dm

eth

ano

lL

ev.

Uri

ne

25m

MP

ota

ssiu

md

ihyd

roge

np

ho

sph

ate

(pH

adju

sted

to3.

1w

ith

ph

osp

ho

ric

acid

):ac

eto

nit

rile

(70:

30,v=v)

UV

293

nm

.[8

6]

Lev

.,L

om

.,Sp

r.E

nvi

ron

men

tal

wat

ersa

mp

les

Mix

ture

of

aqu

eou

sso

luti

on

incl

ud

ing

0.25

%fo

rmic

acid

and

10m

mo

lL�

1am

mo

niu

mac

etat

e,an

dac

eto

nit

rile

.E

SI-M

S[8

7]

Lev

.R

atp

lasm

aan

dsa

liva

Mix

ture

of

Ace

ton

itri

le:

wat

er(8

0:20

,v=v)

adju

sted

top

H3.

5b

yo

rth

op

ho

sph

ori

cac

idU

V29

6n

m[8

8]

Lo

m.,

Ofl

.P

orc

ine

tiss

ue

Solv

ent

A(0

.003

mo

l=l

H3P

O4)

and

solv

ent

B(a

ceto

nit

rile

)D

AD

280

nm

[89

]

Lo

m.,

No

r.,

Ofl

.P

har

mac

euti

cal

was

tew

ater

Mix

ture

of

met

han

ol:

wat

er:T

FA(7

0:30

:0.0

5,v=

v=v)

UV

280

nm

[90

]

No

r.C

apsu

les

Ace

ton

itri

lean

d0.

1%fo

rmic

acid

ESI

-MS

[91

]

No

r.R

awm

ater

ials

and

ph

arm

aceu

tica

lfo

rmu

lati

on

s

0.05

MN

aH2P

O4

(pH

2.5)

–ac

eto

nit

rile

(87:

13,v=v)

for

16m

in(5

8:42

,v=v)

for

9m

inD

AD

275

nm

[92

]

No

r.H

um

anp

lasm

aA

ceto

nit

rile

:met

han

ol:

aqu

eou

sco

mp

on

ent

(70:

15:1

5,v=v=v)

Flu

or.

268

and

445

nm

[93

]

No

r.H

um

anp

lasm

aM

ixtu

reo

fp

ho

sph

ate

bu

ffer

:ace

ton

itri

le(8

5:15

,v=v)

Flu

or.

300

and

450

nm

[94

]

No

r.R

iver

cru

cian

carp

0.05

mo

l=L

Fo

rmic

acid

:tr

ieth

ylam

ine

bu

ffer

:ace

ton

itri

le(8

0:20

,v=v)

Flu

or.

280

and

450

nm

[95

]

No

r.H

um

anp

lasm

a14

%A

ceto

nit

rile

inb

uff

erso

luti

on

;aq

ueo

us

ph

ase

was

pre

par

edb

ym

ixin

g2

go

fci

tric

acid

,2

gso

diu

mac

etat

e,an

d1

mL

of

trie

thyl

amin

ein

1L

of

Mil

li-Q

wat

er

Flu

or.

330

and

440

nm

[96

]

No

r.gl

uta

mat

eP

har

mac

euti

cal

form

ula

tio

ns

0.02

5m

ol=

Lp

ho

sph

ori

cac

id(p

H3.

0,ad

just

edw

ith

trie

thyl

amin

e):a

ceto

nit

rile

(84:

16,v=v)

UV

278

nm

[97

]

Ofl

.T

able

tsM

eth

ano

lan

d25

mM

ph

osp

hat

eb

uff

er40

:60%

(v=v)

pH

adju

sted

to5.

5u

sin

go

rth

op

ho

sph

ori

cac

idD

AD

290

nm

[98

]

Ofl

.H

on

eyC

H3C

N(2

5%)

and

0.05

%(T

FA)

(75%

)E

SI-M

S[9

9]

Ofl

.M

ilk

10m

Mac

etic

acid

:so

diu

mac

etat

eb

uff

er(p

H5.

4)=ac

eto

nit

rile

(75:

25,v=v)

Ele

ctro

gen

erat

edC

hem

ilu

min

esce

nce

det

ecto

r(E

CL

)

[10

0]

Flu

oro

qu

ino

lon

esP

har

mac

euti

cal

form

ula

tio

ns

Ace

ton

itri

le:m

eth

ano

l:1%

TFA

(4:7

:89,

v=v=v)

Flu

or.

280

and

450

nm

[10

1]

Flu

oro

qu

ino

lon

esH

um

anu

rin

eM

ixtu

reo

fac

eto

nit

rile

:0.

02m

ol=

LT

BA

B(9

:91,

v=v

adju

stin

gp

H2.

87b

yT

FAb

uff

er)

DA

D28

2n

m[1

02

]

Flu

oro

qu

ino

lon

esF

ish

mu

scle

Mix

ture

of

met

han

ol-m

agn

esiu

mch

lori

de

and

mal

on

icac

idb

uff

erU

V28

2n

m[1

03

]

Flu

oro

qu

ino

lon

esB

ovi

ne

mil

kM

ob

ile

ph

ase

com

po

nen

tA

was

am

eth

ano

l:ac

eto

nit

rile

(70:

30,v=v)

ESI

-MS

[10

4]

(Continued

)

1407

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

TABLE2

Co

nti

nu

ed

Dru

gsM

atri

xM

ob

ile

Ph

ase

Det

ecti

on

Ref

.

mix

ture

,w

hil

eco

mp

on

ent

Bw

asw

ater

Flu

oro

qu

ino

lon

esE

ggs

A:

(aq

ueo

us

form

icac

idso

luti

on

,0.

1%),

B:

(org

anic

form

icac

idso

luti

on

,0.

1%),

and

C:

(met

han

ol)

ESI

-MS

[10

5]

Flu

oro

qu

ino

lon

esIn

fan

tfo

od

sA

CN=o

:ph

osp

ho

ric

acid

50m

Mp

H3.

0(8

0:20

,v=v)

MS=

MS

[10

6]

Flu

oro

qu

ino

lon

esSe

dim

ents

of

Hai

he

Riv

erA

ceto

nit

rile

-0.3%

form

icac

idM

S=M

S[1

07

]

Flu

oro

qu

ino

lon

esB

aby

foo

ds

A:

(H2O

wit

h0.

1%T

FA),

B:

(ace

ton

itri

lew

ith

0.1%

TFA

),an

dC

:(m

eth

ano

l)F

luo

r.28

0,44

0,an

d51

5n

m

[10

8]

Flu

oro

qu

ino

lon

esE

ggs

An

aqu

eou

sso

luti

on

of

0.01

mo

lL�

1o

xali

cac

idþ

acet

on

itri

leF

lou

r.26

3–29

7an

d36

–507

nm

[10

9]

Flu

oro

qu

ino

lon

esM

ilk

10m

Mac

etic

acid

:so

diu

mac

etat

eb

uff

er(p

H5.

4)=ac

eto

nit

rile

(75:

25,v=v)

Ele

ctro

gen

erat

edC

hem

ilu

min

esce

nce

det

ecto

r(E

CL

)

[11

0]

Flu

oro

qu

ino

lon

esR

awb

ovi

ne

and

skim

med

mil

kG

rad

ien

tel

uti

on

wit

h(A

)u

ltra

-pu

rew

ater

and

(B)

acet

on

itri

leb

oth

acid

ifie

dw

ith

0.2%

form

icac

idM

S=M

S(t

and

emm

ass

spec

tro

met

ry)

[11

1]

Flu

oro

qu

ino

lon

esM

usc

le,

live

r,ki

dn

eyo

fsw

ine,

bo

vin

e,ch

icke

n,

and

fish

Ath

ree

grad

ien

tsy

stem

wit

hm

eth

ano

l=ac

eto

nit

rile=0.

02M

citr

icac

idan

d0.

03M

amm

on

ium

acet

at.

UV

278

nm

,M

S=M

S(t

and

emm

ass

spec

tro

met

ry)

[11

2]

Flu

oro

qu

ino

lon

esE

nvi

ron

men

tal

wat

ersa

mp

les

Ace

ton

itri

le(A

)an

d0.

1%fo

rmic

acid

solu

tio

nco

nta

inin

g0.

01m

olL

�1

TB

AB

(B)

UV

280

nm

[11

3]

Ab

bre

viat

ion

s:A

CN

,A

ceto

nit

rile

;D

AD

,D

iod

arra

yd

etec

tor;

ESI

-TO

FM

S,E

lect

rosp

ray

Ion

izat

ion

-Tim

eo

fF

ligh

tM

ass-

Spec

tro

met

ry;

Flu

or.

,F

luo

resc

ence

;G

C-M

S,G

asC

hro

mat

ogr

aph

y-M

ass

Spec

tro

met

ry;

HP

LC

,H

igh

Per

form

ance

Liq

uid

Ch

rom

ato

grap

hy;

LC

-MS,

Liq

uid

Ch

rom

ato

grap

hy-

Mas

sSp

ectr

om

etry

;P

BS,

Ph

osp

hat

eb

uff

ered

sali

ne;

TB

AB

,T

etra

bu

tyla

mm

on

ium

bro

mid

e;T

FAT

rifl

uo

roac

etic

acid

.

1408

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

electrophoretic behavior of quinolones in aqueous and hydro-organicmedia[116] and studied a model of electrophoretic behavior in order tooptimize the separation of zwitterionic substances by capillary electropho-resis. The model considers the effect of ionic strength and can be appliedto zwitterionic substances with very close pKa values. The model was testedto obtain the optimum pH values for the separation of a series of eightquinolones.[117] The same workers presented a paper in which dissociationconstants of quinolones in MeOH-water mixtures were obtained usingcapillary electrophoresis. The method is based on a model that relateselectrophoretic mobility of the solute with pH.[118]

There are several CZE methods were reported for determination of FQsin different dosage forms and are summarized in Table 3.[119–128]

Electrokinetic Capillary Chromatography (ECC). A separation techniquebased on a combination of electrophoresis and interactions of the analyteswith additives (e.g., surfactants), which form a dispersed phase moving at adifferent velocity. In order to achieve separation either the analytes or thissecondary phase should be charged.[129]

1. Micellar electrokinetic capillary chromatography (MEKC)A special case of electrokinetic chromatography, in which the secondaryphase is a micellar dispersed phase in the capillary.[129] MEKC hasenabled the separation of electrically neutral analytes. It can be perfor-med by adding an ionic micelle to the running solution of CE withoutmodifying the instrument. Its separation principle is based on the differ-ential migration of the ionic micelles and the bulk running buffer underelectrophoresis conditions and on the interaction between the analyteand the micelle. Hence, MEKC’s separation principle is similar to thatof chromatography. MEKC is a useful technique particularly for the sep-aration of small molecules, both neutral and charged, and yieldshigh-efficiency separation in a short time with minimum amounts ofsample and reagents.[130] Recently, in 2012, an MEKC method was devel-oped using [BMIM] PF6 (1-butyl-3-methylimidazolium hexafluoropho-sphate) as a modifier for separating 4 fluoroquinolone compounds(ciprofloxacin, gatifloxacin, ofloxacin, and norfloxacin). The effects ofseveral parameters on the separation selectivity, such as pH, concentra-tion of background electrolyte, concentration ratio and amount of[BMIM] PF6, and (sodium dodecyl sulfate) SDS were investigated.Under the optimal conditions of 10 mmol L�1 sodium borate, pH 7.1,1.7% (w=w) SDS, and 1.5% (w=w) [BMIM] PF6 with 18 kV as the runningvoltage, the 4 investigated quinolone compounds were baseline separa-ted within 15 min. The selectivity of the developed method differed fromthat of the simple SDS micelles system containing no ionic liquid.[131]

Fluoroquinolone Separation Method Review 1409

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

2. Microemulsion Electrokinetic Capillary Chromatography (MEEKC)MEEKC is a special case of electrokinetic chromatography, where amicroemulsion is employed as the dispersed phase.[129] In 2008,Shou-Lian et al.[132] developed a method using sodium dodecylsulfate(SDS) as the surfactant, and an exhaustive study of the influence ofbuffer pH, phosphate concentration, SDS concentration, co-surfactantconcentration, oil concentration, and temperature was carried out.Baseline separation of seven FQs was achieved in a carrier electrolytecontaining 1% (v=v) heptane, 100 mmol=L SDS, 10% (v=v) 1-butanoland 8-mmol=L phosphate-sodium tetraborate buffer at pH 7.30, andOfl. was used as an internal standard.

TABLE 3 Capillary Electrophoresis Methods for the Determination of 4-Quinolones in DifferentDosage Forms

FQs Conditions Detection Ref.

Cip., Nor., Ofl. 50 mM carbonate buffer at pH 9.2 with anapplied voltage of 20 kV at 30�C

UV 280 nm, Fluor.kex 325 nm,and kem at 420 nm

[119]

Cip. Phosphate buffer pH 6.0 that is supplementedwith 0.075 M pentane-1-sulfonic acid sodiumsalt, applied voltage of 15 kV

UV 280 nm [120]

Cip., Lom., Nor.,Ofl., Spr.

65 mM Sodium borate=35 mM sodiumdihydrogen phosphate=60 mM sodiumcholate of pH 7.3 in acetonitrile (72:28) asrunning buffer, applied voltage of þ27 Kv

UV 275 nm [121]

Cip., Gat., Lev., Spr. 25 mmol=L Tris=hydrochloride and 15 mmol=Lsodium tetraborate buffer mixture resulting inpH 8.87 with an applied voltage of þ25 kV

UV 282 nm [13]

Ofl. 50 mM sodium phosphate buffer, pH 2.8containing 4.0% methyl b-cyclodextrin as achiral selector, applied voltage 20 kV,temperature 25�C

UV 280 nm [122]

Cip. 60 mmol=L sodium phosphate plus 20 mmol=Lsodium tetraborate, pH 8.5; voltage 24 kV andtemperature, 26�C

UV 270 nm [123]

Spr. 25 mM H3PO4-NaOH running buffer (pH 8.5),25�C; applied voltage 12 kV

UV 254 nm [124]

Ofl. Simultaneouslywith ornidazole

25 mmol=L Phosphoric acid adjusted with 1 MTris buffer to pH 8.5, with 20 kV appliedvoltage

UV 230 nm [125]

Lom. 6.0 mmol=L Lactic acid and 5.0% C2H5OH atapplied voltage of 26.0 kV

High frequencyconductivitydetection

[126]

Cip., Nor., Ofl. Sodium phosphate buffer, pH 7.0, 125 mM, with22 kV applied voltage

UV 214 nm [127]

Nor. and its inactivedecarboxylateddegradant

10 mmol l�1 phosphate buffer at pH 2.5 withapplied voltage of 25 kV and at 25�C

DAD 301 and 285 nmfor the intact drugand the degradant,respectively

[128]

1410 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

In Biological FluidsCapillary Zone Electrophuresis (CZE). In 2000, Georg Hempel[133] pub-

lished a review discussing strategies to improve the sensitivity in capillary

TABLE 4 Capillary Electrophoresis Methods for the Determination of 4-Quinolones in DifferentBiological Fluids and Environmental Samples

FQs Matrix Conditions Detection Ref.

Cip., Lom.,Nor., Ofl.

Chicken, henand swinetissues

Buffer solution of 25 mM TRIS,40 mM boric acid, 2 mM sodiumphosphate, and 2.5 mM sodiumtetraborate decahydrate (pH 7.48)with applied voltage of 15 kV at22� 0.1�C

UV 280 nm [134]

Gat., Lom.,Nor., Ofl.Spr.

Human serum 12 mM Disodiumtetraborate-phosphate buffer (pH9.08) containing 5.2mg=L silicananoparticles as additive withþ10 kV applied voltage

UV 254 nm [135]

Lev. Human urine 60 mM hydroxylpropyl-b-cyclodextrin(HP-b-CD) in 50 mM phosphatebuffer at pH 2.30, with appliedvoltage of 15 kV

Fluor. kex 292 nmand kem at495 nm

[136]

Lom., Nor.,Ofl.

Pig plasma Buffer solution of 40 mM sodiumtetraborate at pH 8.1 containing10% (v=v) methanol, with appliedvoltage of 30 kV at 30�C

DAD 260 nm [137]

Cip. Chicken muscle Diethylmalonic buffer at pH 8.2,applied voltage of 20 kV

�UV 275 nm�LIF using HeCd

laser(kex¼ 325 nm)

[138,139]

Cip., Gat. Chicken tissue Buffer solution of 10 mM tartaric acid,14 mM sodium acetate and 15%(v=v) methanol at pH 3.8 withapplied voltage of 13 kV

Contactlessconductivitydetection

[140]

Cip., Lom.,Nor., Ofl.

Bovine rawmilk, pigkidney, andwater samples

125 mM Phosphoric acid solutionadjusted to pH 2.8 with 4 M sodiumhydroxide with 36% methanol withapplied voltage of 26 kV

LIF using aHeCd laser(kex¼ 325 nm)

[141,142]

Cip. Human urine Buffer solution of sodium tetraborate(50 mM) at pH 9.0 with appliedvoltage of 30 kV

UV 260 nm [143]

Lom., Nor.,Ofl.

Blood andsurface watersamples

50 mM H3PO4 adjusted to pH 7.55–acetonitrile (60:40, v=v) withapplied voltage of 20 kV

Fluor. kex 278 nmand kem at445 nm

[144]

Cip., Gat.,Lom., Ofl.

Porcine tissues Buffer solution of 25 mM NaH2PO4,25 mM Na2B4O7, and 25 mMH3BO3 (pH 9.0) with appliedvoltage of 20 kV

DAD 280 nm [145]

Fluoroquino-lones

Chicken liver Buffer solution of 40 mmol=LNa2HPO4 - 20 mmol=L citric acid atpH 8.47 with applied voltage of22 kV at 25�C

UV 262 nm [146]

Fluoroquinolone Separation Method Review 1411

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

electrophoresis for the analysis of drugs in biological fluids especially forblood or plasma samples. The sensitivity is not sufficient to quantify drugsand their metabolites as they often need to be quantified in the lower mg=Lrange. To overcome this limitation and to increase the sensitivity, two stra-tegies were applied: first, to increase the amount of analyte added to thecapillary and, second, to increase the sensitivity on the detector site. Toimprove the sensitivity on the detector site, alternative detection techniquesto UV detection, for example, laser-induced fluorescence detection (LIF)or mass spectroscopy (MS), can be applied.[133] Many subsequent papersutilizing this strategy to improve the sensitivity of the method were publi-shed. Several CE papers were developed for determination of fluoroquino-lones and summarized in Table 4.[134–146]

Electrokinetic Capillary Chromatography (ECC)Micellar Electrokinetic Capillary Chromatography (MEKC). Table 5 summari-

zes the different methods for determination of the studied FQs using micel-lar electrokinetic capillary chromatography in different biological fluids.

Microemulsion Electrokinetic Capillary Chromatography (MEEKC). A simple,reliable microemulsion electrokinetic chromatography (MEEKC) methodwas developed for the simultaneous separation of some fluoroquinolones(FQs). The best separation was achieved in a carrier electrolyte containing1% (v=v) heptane, 100 mmol=L sodium dodecyl sulfate (SDS), 10% (v=v)1-butanol, and 8 mmol=L phosphate-sodium tetraborate buffer at pH7.30. The proposed method was directly applied to the determination ofCip. and Lom. in urine samples of subjects administered either with Cip.or Lom.[149]

REFERENCES

1. Lesher, G. Y.; Froelich, E. D.; Gruet, M. D.; Bailey, J. H.; Brudage, R. P. 1,8-Naphthyridine deriva-tives. A new class of chemotherapeutic agents. J. Med. Pharm. Chem. 1962, 5, 1068.

TABLE 5 Micellar Electrokinetic Capillary Chromatographic Methods for the Determination of4-Quinolones in Different Biological Fluids

FQs Matrix Conditions Detection Ref.

Cip., Lev.,Lom., Nor.

Human urine Buffer solution containing 25 mmol=L sodiumdihydrogen phosphate and 50 mmol=Lcetyltrimethylammonium bromide (CTAB),(pH4.5), at 12KV running voltage

UV 280 nm [147]

Cip. Plasma Background solution of 30 mmol=L borate and80 mmol=L SDS (pH 9.40) with appliedvoltage of 18 kV

UV 254 nm [148]

1412 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

2. Carlucci, G. Analysis of Fluoroquinolones in Biological Fluids by High-Performance LiquidChromatography. J. Chromatogr. A 1998, 812 (1–2), 343–367.

3. Leveque, D.; Gallion-Renault, C.; Monteil, H.; Jehl, F. Analysis of Recent Antimicrobial Agents inHuman Biological Fluids by High-Performance Liquid Chromatography. J. Chromatogr. A 1998, 815(2), 163–172.

4. Marzo, A.; Dal Bo, L. Chromatography as an Analytical Tool for Selected Antibiotic Classes: AReappraisal Addressed to Pharmacokinetic Applications. J. Chromatogr. A 1998, 812 (1–2), 17–34.

5. Schenck, F. J.; Callery, P. S. Chromatographic Methods of Analysis of Antibiotics in Milk.J. Chromatogr. A 1998, 812, 99–109.

6. Kennedy, D. G.; McCracken, R. J.; Cannavan, A.; Hewitt, S. A. Use of Liquid Chromatography–MassSpectrometry in the Analysis of Residues of Antibiotics in Meat and Milk. J. Chromatogr. A 1998, 812,77–98.

7. Belal, F.; Al-Majed, A. A.; Al-Obaid, A. M. Methods of Analysis of 4-Quinolone Antibacterials.Talanta 1999, 50, 765–786.

8. Hernandez-Arteseros, J. A.; Barbosa, J.; Compano, R.; Prat, M. D. Analysis of Quinolone Residuesin Edible Animal Products. J. Chromatogr. A 2002, 945, 1–24.

9. Joshi, S. HPLC Separation of Antibiotics Present in Formulated and Unformulated Samples.J. Pharm. Biomed. Anal. 2002, 28, 795–809.

10. Grellet, J.; Ba, B.; Saux, M. C. High-Performance Liquid Chromatographic Separation of Fluoro-quinolone Enantiomers: A Review. J. Biochem. Biophys. Methods 2002, 54 (1–3), 221–233.

11. Samanidou, V. F.; Christodoulou, E. A.; Papadoyannis, I. N. Recent Advances in AnalyticalTechniques Used for the Determination of Fluoroquinolones in Pharmaceuticals and Samplesof Biological Origin - A Review Article. Curr. Pharm. Anal. 2005, 1 (39), 155–193.

12. Samanidou, V. F.; Christodoulou, E. A.; Papadoyannis, I. N. Advances in ChromatographicAnalyses of Fluoroquinolones in Pharmaceuticals and Biological Samples – A Review Article. Curr.Pharm. Anal. 2005, 1 (26), 283–308.

13. Faria, A. F.; Souza, M. V. N.; Almeida, M. V.; Oliveira, M. A. L. Simultaneous Separation ofFive Fluoroquinolone Antibiotics by Capillary Zone Electrophoresis. Anal. Chim. Acta 2006, 579,185–192.

14. Samanidou, V. F.; Evaggelopoulou, E. N. Analytical Strategies to Determine Antibiotic Residues inFish. J. Sep. Sci. 2007, 30 (16), 2549–2569.

15. Andrea, S.; Michela, S.; Federica, M.; Antonella, P.; Angelo, A. Analytical Methods for the Determi-nation of Fluoroquinolones in Solid Environmental Matrices. TrAC 2011, 30 (8), 1337–1350.

16. Fernandez, V. P.; Vega, E. D.; Crego, A. L.; Garcıa, M. A.; Marina, M. L. Recent Advances in theAnalysis of Antibiotics by CE and CEC. Electrophoresis 2011, 33 (1), 127–146.

17. Touchstone, J. C. Practice of Thin Layer Chromatography, Marcel Dekker, Inc., New York, 1992.18. Simonovska, B.; Andrensek, S.; Vovk, I.; Prosek, M. High-Performance Thin-Layer Chromato-

graphy Method for Monitoring Norfloxacin Residues on Pharmaceutical Equipment Surfaces.J. Chromatogr. A 1999, 862 (2), 209–215.

19. Irena, V.; Simonovska, B. Development and Validation of a High-Performance Thin-Layer Chroma-tographic Method for Determination of Ofloxacin Residues on Pharmaceutical EquipmentSurfaces. J. AOAC Int. 2011, 94 (3), 735–742.

20. Feng, Y. L. Determination of Fleroxacin and Sparfloxacin Simultaneously by TLC-FluorescenceScanning Densitometry. Anal. Lett. 2001, 34 (15), 2693–2700.

21. Kowalczuk, D.; Hopkala, H. Videodensitometric HPTLC Determination of Fleroxacin, Sparfloxa-cin and Cinoxacin in Tablets. J. Planar Chromatogr. Mod. TLC 2001, 14 (2), 126–129.

22. Kowalczuk, D.; Hopkala, H. Application of Videodensitometric and Classical DensitometricHPTLC for Quantification of Fluoroquinolone Derivatives in Pure and Tablet Forms. J. PlanarChromatogr. Mod. TLC 2002, 15 (5), 345–348.

23. Chepurwar, S. B.; Shirkhedkar, A. A.; Bari, S. B.; Fursule, R. A.; Surana, S. J. Validated HPTLCMethod for Simultaneous Estimation of Levofloxacin Hemihydrate and Ornidazole in Pharmaceu-tical Dosage Form. J. Chromatogr. Sci. 2007, 45 (8), 531–536.

24. Meyyanathan, S. N.; Ramasarma, G. V.S.; Suresh, B. Analysis of Levofloxacin in PharmaceuticalPreparations by High Performance Thin Layer Chromatography. J. Separation Sci. 2003, 26 (18),1698–1700.

Fluoroquinolone Separation Method Review 1413

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

25. Agrawal, O. D.; Shirkhedkar, A. A.; Surana, S. J. Simultaneous Determination of LevofloxacinHemihydrate and Ambroxol Hydrochloride in Tablets by Thin Layer Chromatography Combinedwith Densitometry. Anal. Chem. 2010, 65 (4), 418–422.

26. Yuan, Z.; Yulin, F. Simultaneous Determination of Trace Norfloxacin and Fleroxacin by MicellarTLC-F Spectrodensitometry. J. Inst. Anal. 2004, 2, 23.

27. Zhen, L.; Yulin, F. Simultaneous Determination of Trace Perfloxacin and Ofloxacin by MicellarTLC-Spectrodensitometry. J. Shanxi Univ. 2005, 1, 17.

28. Suhagia, B. N.; Shah, S. A.; Rathod, I. S.; Patel, H. M.; Shah, D. R.; Marolia, B. P. Determination ofGatifloxacin and Ornidazole in Tablet Dosage Forms by High-Performance Thin-Layer Chromato-graphy. Anal. Sci. 2006, 22 (5), 743–745.

29. Krzek, J.; Hubicka, U.; Szczepaniczyk, J. High-Performance Thin-Layer Chromatography withDensitometry for the Determination of Ciprofloxacin and Impurities in Drugs. J. AOAC Int.2005, 88 (5), 1530–1536.

30. Chitlange, S. S.; Ranjane, M.; Wankhede, S. B.; Sakarkar, D. M. Stability-Indicating HPTLC Methodfor Estimation of Lomefloxacin Hydrochloride in Pharmaceutical Dosage Form. Int. J. PharmTech.Res. 2009, 1 (3), 844–851.

31. Zarapkar, S. S.; Kanyawar, N. S. Simultaneous Determination of Metronidazole and Norfloxacin inTablets by High-Performance Thin-Layer Chromatography. Indian Drugs 1999, 36, 293–295.

32. Wu, S. S.; Chein, C. Y.; Wen, Y. H. Analysis of Ciprofloxacin by a Simple High-Performance LiquidChromatography Method. J. Chromatogr. Sci. 2008, 46 (6), 490–495.

33. Ali, S. A.; Mmuo, C. C.; Abdulraheem, R. O.; Abdulkareem, S. S.; Alemika, E. T.; Sani, M. A.; Ilyas,M. High Performance Liquid Chromatography (HPLC) Method Development and ValidationIndicating Assay for Ciprofloxacin Hydrochloride. J. App. Pharm. Sci. 2011, 8 (1), 239–243.

34. Chamseddin, C.; H. J. T. Comparison of the Chromatographic Behavior of Levofloxacin,Ciprofloxacin and Moxifloxacin on Various HPLC Phases. Die Pharmazie – Int. J. Pharm. Sci.2011, 66 (4), 244–248.

35. Siddiqui, F. A.; Arayne, S. M.; Najma, S.; Faiza, Q.; Mirza, A. Z.; Hina, S. Quantitative Determi-nation of Fluoroquinolonic antibiotics; Pefloxacin, Norfloxacin, Ciprofloxacin and Ofloxacin inPharmaceutical Preparations and Human Serum by High Performance Liquid ChromatographyUsing Multi-Wavelength Calibration Technique. Chem. Anal. 2009, 54 (6), 1465–1485.

36. Lee, H. B.; Peart, T. E.; Svoboda, M. L. Determination of Ofloxacin, Norfloxacin, and Ciprofloxacinin Sewage by Selective Solid-Phase Extraction, Liquid Chromatography with Fluorescence Detection,and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2007, 1139 (1), 45–52.

37. Schneider, M. J.; Darwish, A. M.; Freeman, D. W. Simultaneous Multiresidue Determination ofTetracyclines and Fluoroquinolones in Catfish Muscle Using High Performance Liquid Chromato-graphy with Fluorescence Detection. Anal. Chim. Acta 2007, 586 (1–2), 269–274.

38. Pena, A.; Chmielova, D.; Lino, C. M.; Solich, P. Determination of Fluoroquinolone Antibiotics inSurface Waters from Mondego River by High Performance Liquid Chromatography Using aMonolithic Column. J. Sep. Sci. 2007, 30 (17), 2924–2928.

39. Xia, H.; Xuechang, D.; Guangyu, Y.; Qiufeng, H.; Yong, H. Study on Determination of SevenFluoroquinolones in Pork Sample by Rapid High Performance Liquid Chromatography. J. YunnanNationalities Univ. 2007, 3, 12.

40. Marchesini, G. R.; Haasnoot, W.; Delahaut, P.; Gercek, H.; Nielen, M. W. Dual BiosensorImmunoassay-Directed Identification of Fluoroquinolones in Chicken Muscle by Liquid Chro-matography Electrospray Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2007, 586 (1–2),259–268.

41. Herranz, S.; Moreno-Bondi, M. C.; Marazuela, M. D. Development of a New Sample PretreatmentProcedure Based on Pressurized Liquid Extraction for the Determination of FluoroquinoloneResidues in Table Eggs. J. Chromatogr. A 2007, 1140 (1–2), 63–70.

42. Schneider, M. J.; Braden, S. E.; Reyes-Herrera, I.; Donoghue, D. J. Simultaneous Determination ofFluoroquinolones and Tetracyclines in Chicken Muscle Using HPLC with Fluorescence Detection.J. Chromatogr. B 2007, 846 (1–2), 8–13.

43. Christodouloua, E. A.; Samanidou, V. F.; Papadoyannis, L. N. Validation of an HPLC-UV MethodAccording to the European Union Decision 2002=657=EC for the Simultaneous Determination of10 Quinolones in Chicken Muscle and Egg Yolk. J. Chromatogr. B 2007, 859 (2), 246–255.

1414 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

44. Pellegrino, R. M.; Segoloni, F.; Cagini, C. Simultaneous Determination of Ciprofloxacin andthe Active Metabolite of Prulifloxacin in Aqueous Human Humor by High-Performance LiquidChromatography. J. Pharm. Biomed. Anal. 2008, 47 (3), 567–574.

45. Nageswara Rao, R.; Venkateswarlu, N.; Narsimha, R. Determination of Antibiotics in AquaticEnvironment by Solid-Phase Extraction Followed by Liquid Chromatography-ElectrosprayIonization Mass Spectrometry. J. Chromatogr. A 2008, 1187 (1–2), 151–164.

46. Samanidoua, V.; Evaggelopouloua, E.; Trotzmullerb, M.; Guob, X.; Lankmayrb, E. Multi-residueDetermination of Seven Quinolones Antibiotics in Gilthead Seabream Using Liquid Chromato-graphy–Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1203, 115–123.

47. Liu, P.; Jiang, N.; Wang, Y.; Yan, L. [Simultaneous Determination of Sulfonamides and Fluoroqui-nolones Residues in Chicken by High Performance Liquid Chromatography-Electrospray TandemMass Spectrometry]. Se Pu 2008, 26 (3), 348–352.

48. Lu-ming, Y.; Dong-hua, X. Determination of 3 Fluoroquinolone Residues in Milk by HPLC-FLD.Chin. J. Health Lab. Technol. 2008, 5, 13.

49. Yun-ya, H.; Xiao-hong, C. Determination of Ciprofloxacin and Enrofloxacin in Whole Blood byHigh-Performance Liquid Chromatography Coupled with Fluorescence Detection. Chin. J. HealthLab. Technol. 2008, 7, 11.

50. Dong-hua, X.; Xue-jun, Y.; Ju-yi, Y.; Mei-lin, N. Determination of Ciprofloxacin in Roast Eel byHyphenation of High Performance Liquid Chromatography and Mass Spectrometry. Phys. TestingChem. Anal. B 2008, 5, 7.

51. Lei, S.; Xin-le, Z.; Li, Z.; Feng, Z.; Xia, W.; Shu-huai, W. Determination of FluoroquinolonesResidue in Milk by HPLC-MS=MS. Chin. J. Vet. Drug 2008, 11, 3.

52. Christodoulou, E. A.; Samanidou, V. F.; Papadoyannis, L. N. Development of an HPLC Multi-Residue Method for the Determination of Ten Quinolones in Bovine Liver and Porcine KidneyAccording to the European Union Decision 2002=657=EC. J. Sep. Sci. 2008, 31 (1), 119–127.

53. Xiao-hong, C.; Xun-ping, Y.; Xiao-ping, L. High-Performance Liquid Chromatography Coupledwith Tandem Mass Spectrometry for the Determination of Fluoroquinolones Residues in ChickenMuscle. Chin. J. Health Lab. Technol. 2008, 7, 4.

54. Cho, H. J.; Abd El-Aty, A. M.; Goudah, A.; Sung, G. M.; Yi, H.; Seo, D. C.; Kim, J. S.; Shim, J. H.; Jeong, J.Y.; Lee, S. H.; Shin, H. C. Monitoring of Fluoroquinolone Residual Levels in Chicken Eggs by Micro-biological Assay and Confirmation by Liquid Chromatography. Biomed. Chromatogr. 2008, 22 (1), 92–99.

55. Chang, C. S.; Wang, W. H.; Tsai, C. E. Simultaneous Determination of Eleven QuinolonesAntibacterial Residues in Marine Products and Animal Tissues by Liquid Chromatography withFluorescence Detection. J. Food and Drug Anal. 2008, 16 (6), 87–96.

56. Nai-yi, W.; Li-he, D.; Xiao-hong, B. Quick Separation and Determination of Four Fluoroquinolonesin Human Plasma by SPE and RP-HPLC. J. Shanxi Med. Univ. 2008, 11, 19.

57. Sun, H. W.; Qiao, F. X. Recognition Mechanism of Water-Compatible Molecularly ImprintedSolid-Phase Extraction and Determination of Nine Quinolones in Urine by High PerformanceLiquid Chromatography. J. Chromatogr. A 2008, 1212 (1–2), 1–9.

58. Dong-hua, X.; Xue-jun, Y.; Ju-yi, Y.; Mei-lin, N. Study on Multi-Residues Determination of Fluoro-quinolones in Roast Eels. Chin. J. Health Lab. Technol. 2008, 6, 2.

59. Herrera-Herrera, A. V.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Ionic Liquids as MobilePhase Additives for the High-Performance Liquid Chromatographic Analysis of FluoroquinoloneAntibiotics in Water Samples. Anal. Bioanal. Chem. 2008, 392 (7–8), 1439–1446.

60. Xiao-hang, Z.; Bi-qing, L.; Yu, H.; Qiu-jian, L. Simultaneous Determination of Three Fluoroquino-lone Residues in Pork by HPLC. China Measurement Testing Technol. 2008, 2, 9.

61. Pengyan, L.; Ning, J.; Yingfeng, W.; Lizhi, Y. Simultaneous Determination of Sulfonamidesand Fluoroquinolones Residues in Chicken by High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Chin. J. Chromatogr. 2008, 3, 21.

62. Samanidoua, V.; Evaggelopouloua, E.; Trotzmullerb, M.; Guob, X.; Lankmayr, E. Multi-ResidueDetermination of Seven Quinolones Antibiotics in Gilthead Seabream Using Liquid Chromato-graphy–Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1203 (2), 115–123.

63. Xiaohong, C.; Yufei, W.; Xunping, Y.; Micong, J. Determination of Ciprofloxacin Residue in Fish=Shellfish Tissues Using Liquid Chromatography-Tandem Mass Spectrometry with Isotope InternalStandard Dilution Technique. Chin. J. Chromatogr. 2009, 1, 6.

Fluoroquinolone Separation Method Review 1415

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

64. Galarini, R.; Fioroni, L.; Angelucci, F.; Tovo, G. R.; Cristofani, E. Simultaneous Determination ofEleven Quinolones in Animal Feed by Liquid Chromatography with Fluorescence and UltravioletAbsorbance Detection. J. Chromatogr. A 2009, 1216, 8158–8164.

65. Rambla-Alegre, M.; Esteve-Romero, J.; Carda-Broch, S. Validation of a MLC Method with Fluores-cence Detection for the Determination of Quinolones in Urine Samples by Direct Injection.J. Chromatogr. B 2009, 877 (31), 3975–3981.

66. Choi, J. H.; Mamun, M. I.; Abd El-Aty, A. M.; Kim, K. T.; Koh, H. B.; Shin, H. C.; Kim, J. S.; Lee, K.B.; Shim, J. H. Inert Matrix and Na 4 EDTA Improve the Supercritical Fluid Extraction Efficiencyof Fluoroquinolones for HPLC Determination in Pig Tissues. Talanta 2009, 78 (2), 348–357.

67. Montesdeoca Esponda, S.; Torres Padron, M. E.; Sosa Ferrera, Z.; Santana Rodriguez, J. J.Solid-Phase Microextraction with Micellar Desorption and HPLC-Fluorescence Detection for theAnalysis of Fluoroquinolones Residues in Water Samples. Anal. Bioanal. Chem. 2009, 394 (4),927–935.

68. Chena, L.; Zhanga, X.; Xua, Y.; Dub, X.; Sunb, X.; Suna, L.; Wanga, H.; Zhaoa, Q.; Yua, A.; Zhanga,H.; Dinga, L. Determination of Fluoroquinolone Antibiotics in Environmental Water SamplesBased on Magnetic Molecularly Imprinted Polymer Extraction Followed by Liquid Chromato-graphy–Tandem Mass Spectrometry. Anal. Chim. Acta 2010, 662, 31–38.

69. Pena, A.; Silva, L. J.; Pereira, A.; Meisel, L.; Lino, C. M. Determination of FluoroquinoloneResidues in Poultry Muscle in Portugal. Anal. Bioanal. Chem. 2010, 397 (6), 2615–2621.

70. Watabe, S.; Yokoyama, Y.; Nakazawa, K.; Shinozaki, K.; Hiraoka, R.; Takeshita, K.; Suzuki, Y. Simul-taneous Measurement of Pazufloxacin, Ciprofloxacin, and Levofloxacin in Human Serum byHigh-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B 2010,878 (19), 1555–1561.

71. Zheng, M. M.; Gong, R.; Zhao, X.; Feng, Y. Q. Selective Sample Pretreatment by MolecularlyImprinted Polymer Monolith for the Analysis of Fluoroquinolones from Milk Samples. J. Chroma-togr. A 2010, 1217 (14), 2075–2081.

72. Poliwoda, A.; Krzyzak, M.; Wieczorek, P. P. Supported Liquid Membrane Extraction with SingleHollow Fiber for the Analysis of Fluoroquinolones from Environmental Surface Water Samples.J. Chromatogr. A 2010, 1217 (22), 3590–3597.

73. Zhao, L.; Dong, Y. H.; Wang, H. Residues of Veterinary Antibiotics in Manures from FeedlotLivestock in Eight Provinces of China. Sci. Total Environ. 2010, 408 (5), 1069–1075.

74. Yang, J. F.; Ying, G. G.; Zhao, J. L.; Tao, R.; Su, H. C.; Chen, F. Simultaneous Determination of FourClasses of Antibiotics in Sediments of the Pearl Rivers Using RRLC-MS=MS. Sci. Total Environ. 2010,408 (16), 3424–3432.

75. Luo, Y. B.; Ma, Q.; Feng, Y. Q. Stir Rod Sorptive Extraction with Monolithic Polymer as Coating andIts Application to the Analysis of Fluoroquinolones in Honey Sample. J. Chromatogr. A 2010, 1217(22), 3583–3589.

76. Yanga, J. F.; Yinga, G. G.; Zhaoa, J. L.; Taoa, R.; Sua, H. C.; Chen, F. Simultaneous Determination ofFour Classes of Antibiotics in Sediments of the Pearl Rivers Using RRLC–MS=MS. Sci. Total Environ.2010, 408 (16), 3424–3432.

77. Payana, M. R.; Lopez, M. A. B.; Fernandez-Torresa, R.; Gonzaleza, J. A.O.; Mochon, M. C. HollowFiber-Based Liquid Phase Microextraction (HF-LPME) as a New Approach for the HPLC Determi-nation of Fluoroquinolones in Biological and Environmental Matrices. J. Pharm. Biomed. Anal.2011, 55 (2), 332–341.

78. Qiao, F.; Yan, H. Simultaneous Analysis of Fluoroquinolones and Xanthine Derivatives in Serum byMolecularly Imprinted Matrix Solid-Phase Dispersion Coupled with Liquid Chromatography.J. Chromatogr. B 2011, 879 (30), 3551–3555.

79. Zhoua, L. J.; Yinga, G. G.; Zhaoa, J. L.; Yanga, J. F.; Wanga, L.; Yanga, B.; Liua, S. Trends in theOccurrence of Human and Veterinary Antibiotics in the Sediments of the Yellow River, Hai Riverand Liao River in Northern China. Environ. Pollut. 2011, 159 (7), 1877–1885.

80. Rao, A. L.; Kumar, B. N. V. R.; Sankar, G. G. Estimation of Gatifloxacin in Pharmaceutical DosageForms by High Performance Liquid Chromatography. JPRHC 2011, 3 (3), 72–76.

81. Overholser, B. R.; Kays, M. B.; Sowinski, K. M. Determination of Gatifloxacin in Human Serum andUrine by High-Performance Liquid Chromatography with Ultraviolet Detection. J. Chromatogr. B2003, 798 (1), 167–173.

1416 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

82. Xuan, L.; Ning-li, W.; Yan-ling, W.; Chen, M.; Li, M.; Li-xin, G.; Ying-xiang, H.; Shi-hong, X.; Kang,W. Determination of Drug Concentration in Aqueous Humor of Cataract Patients AdministeredGatifloxacin Ophthalmic Gel. Chin. Med. J. 2010, 123 (15), 2105–2110.

83. Davis, L. T.; Kumar, N.; Nijm, L. M.; Ulanski, L. J.2nd; Tu, E. Y.; Fiscella, R. G.; Peterson, R. J.;Glickman, R. D. An Adaptable HPLC Method for the Analysis of Frequently Used Antibiotics inOcular Samples. J. Chromatogr. B 2010, 878 (26), 2421–2426.

84. Sebaiy, M. M.; El-Shanawany, A. A.; El-Adl, S. M.; Abdel-Aziz, L. M.; Hashem, H. A. Rapid RP-HPLCMethod for Simultaneous Estimation of Sparfloxacin, Gatifloxacin, Metronidazole and Tinidazole.Asian J. Pharm. Res. 2011, 1 (4), 119–125.

85. Devi, M. L.; Chandrasekhar, K. B. A Validated Stability-Indicating RP-HPLC for Levofloxacin in thePresence of Degradation Products, Its Process Related Impurities and Identification of OxidativeDegradants. J. Pharm. Biomed. Anal. 2009, 50 (5), 710–717.

86. El-Gindy, A.; Emara, S.; Mostafa, A. UV Partial Least-Squares Calibration and Liquid Chroma-tographic Methods for Direct Quantitation of Levofloxacin in Urine. J. AOAC Int. 2007, 90 (5),1258–1265.

87. Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; Ding, L.Determination of Fluoroquinolone Antibiotics in Environmental Water Samples Based onMagnetic Molecularly Imprinted Polymer Extraction Followed by Liquid Chromatography-TandemMass Spectrometry. Anal. Chim. Acta 2010, 662 (1), 31–38.

88. Sheikh, N. W.; Tripathi, A. S.; Chitra, V.; Choudhury, A.; Dewani, A. P. Development and Validationof RP-HPLC Assay for Levofloxacin in Rat Plasma and Saliva: Application to PharmacokineticStudies. African J. Pharm. Pharmacol. 2011, 5 (13), 1612–1618.

89. Wang, S.; Mu, H.; Bai, Y.; Zhang, Y.; Liu, H. Multiresidue Determination of Fluoroquinolones,Organophosphorus and N-methyl Carbamates Simultaneously in Porcine Tissue Using MSPDand HPLC-DAD. J. Chromatogr. B 2009, 877 (27), 2961–2966.

90. Yan, H.; Wang, H.; Qin, X.; Liu, B.; Du, J. Ultrasound-Assisted Dispersive Liquid–Liquid Microex-traction for Determination of Fluoroquinolones in Pharmaceutical Wastewater. J. Pharm. Biomed.Anal. 2011, 54 (1), 53–57.

91. Cui-ying, Z.; Xue-qin, W.; Hua-min, A. UPLC-MS in the Detection of Norfloxacin in LoperamideHydrochloride Capsules. China Pharm. 2008, 7, 30.

92. Miseljic, B.; Popovic, G.; Agbaba, D.; Markovic, S.; Simonovska, B.; Vovk, I. Column High-Performance Liquid Chromatographic Determination of Norfloxacin and Its Main Impurities inPharmaceuticals. J. AOAC Int. 2008, 91 (2), 332–338.

93. Galaon, T.; Udrescu, S.; Sora, I.; David, V.; Medvedovici, A. High-Throughput Liquid-Chromatography Method with Fluorescence Detection for Reciprocal Determination of Furose-mide or Norfloxacin in Human Plasma. J. Biomed. Chromatogr. 2007, 21 (1), 40–47.

94. Maia, M. B.; Martins, I. L.; do Nascimento, D. F.; Cunha, A. N.; de Lima, F. E.; Bezerra, F. A.;Moraes, M. O.; Moraes, M. E. Validation of a Reversed-Phase High-Performance Liquid Chroma-tography Method with Fluorescence Detection for the Bioequivalence Study of Norfloxacin inPlasma Samples. Ther Drug Monit. 2008, 30 (3), 341–346.

95. Jian-ming, M.; Wen-jie, G.; Chen-yang, W. Determination of Norfloxacin Residue in River CrucianCarp by High-Performance Liquid Chromatography with Fluorescence Detection. Chin. J. HealthLab. Tech. 2008, 5, 19.

96. Ahmad, M.; Murtaza, G.; Khiljee, S.; Madni, M. A. Validation and Application of a New OptimizedRP-HPLC-Fluorescent Detection Method for Norfloxacin. World Acad. Sci. Eng. Technol. 2010, 65,382–385.

97. Kehai, J.; Xiaoling, F. HPLC Determination of Norfloxacin Glutamate and Related Substances.Chin. Pharm. Affairs 2007, 6, 23.

98. Natesan, S.; Loganathan, R.; Krishnaswami, V.; Sugumaran, A. Simultaneous Estimation of Cefiximeand Ofloxacin in Tablet Dosage Forms by RP-HPLC. Int. J. Res. Pharm. Sci. 2011, 2 (2), 219–224.

99. Xiao-hong, C.; Xun-ping, Y. Simultaneous Determination of Four Fluoroquinolones in Honey byHigh Performance Liquid Chromatography with Mass Spectrometry. Chin. J. Health Lab. Tech.2007, 9, 16.

100. Li, Y.; Zhang, Z.; Li, J.; Li, H.; Chen, Y.; Liu, Z. Simple, Stable and Sensitive ElectrogeneratedChemiluminescence Detector for High-Performance Liquid Chromatography and Its Application

Fluoroquinolone Separation Method Review 1417

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

in Direct Determination of Multiple Fluoroquinolone Residues in Milk. Talanta 2011, 84 (3),690–695.

101. Hui-juan, Y.; B. S.-c. Research on Determination of Eleven Fluoroquinolones by RP-Ion Pair LiquidChromatography. Chin. J. Anal. Lab. 2007, 12, 6.

102. Han-wen, S.; Guang-yu, L.; Feng-xia, Q. Effective Separation and Simultaneous Determination ofSeven Quinolones by Reversed Phase High Performance Liquid Chromatography. Chin. J. Antibiot.2008, 2, 1.

103. Hui-hua, C.; Jun, D.; Hong-xin, W.; Shang-wei, C.; Song, Z.; Wei-min, N. Simultaneous MultiresidueDetermination of Tetracyclines and Fluoroquinolones in Fish Muscle Using High PerformanceLiquid Chromatography. J. Inst. Anal. 2008, 9, 9.

104. Bogialli, S.; D’Ascenzo, G.; Di Corcia, A.; Lagana, A.; Nicolardi, S. A Simple and Rapid Assay Basedon Hot Water Extraction and Liquid Chromatography–Tandem Mass Spectrometry for MonitoringQuinolone Residues in Bovine Milk. Food Chem. 2008, 108 (1), 354–360.

105. Shen, J.; Li, H.; Jiang, H.; Zhou, D.; Xu, F.; Li, J.; Ding, S. Simultaneous Determination of 13Quinolones in Eggs Using Column High-Performance Liquid Chromatography=ElectrosprayIonization-Tandem Mass Spectrometry and Depletion of Pefloxacin Methanesulfonate in Eggs.J. AOAC Int. 2008, 91 (6), 1499–1506.

106. Rodriguez, E.; Villoslada, F. N.; Moreno-Bondi, M. C.; Marazuela, M. D. Optimization of a Pressur-ized Liquid Extraction Method by Experimental Design Methodologies for the Determination ofFluoroquinolone Residues in Infant Foods by Liquid Chromatography. J. Chromatogr. A 2010, 1217(5), 605–613.

107. Lin, X.; Yi, L.; Bing-jie, X. Simultaneous Determination for 12 Antibiotics in Sediments of HaiheRiver by HPLC-MS=MS Method. J. Inst. Anal. 2010, 1, 5.

108. Rodriguez, E.; Moreno-Bondia, M. C.; Marazuela, M. D. Multiresidue Determination of Fluoro-quinolone Antimicrobials in Baby Foods by Liquid Chromatography. Food Chem. 2011, 127 (3),1354–1360.

109. Jimeneza, V.; Companyo, R.; Guiteras, J. Validation of a Method for the Analysis of Nine Quino-lones in Eggs by Pressurized Liquid Extraction and Liquid Chromatography with FluorescenceDetection. Talanta 2011, 85 (1), 596–606.

110. Lia, Y.; Zhanga, Z.; Lib, J.; Lib, H.; Chenb, Y.; Liu, Z. Simple, Stable and Sensitive ElectrogeneratedChemiluminescence Detector for High-Performance Liquid Chromatography and Its Applicationin Direct Determination of Multiple Fluoroquinolone Residues in Milk. Talanta 2011, 84 (3),690–695.

111. Kantiani, L.; Farre, M.; Barcelo, D. Rapid Residue Analysis of Fluoroquinolones in Raw Bovine Milkby Online Solid Phase Extraction Followed by Liquid Chromatography Coupled to Tandem MassSpectrometry. J. Chromatogr. A 2011, 1218 (50), 9019–9027.

112. Yu, H.; Tao, Y.; Chen, D.; Pan, Y.; Liu, Z.; Wang, Y.; Huang, L.; Dai, M.; Peng, D.; Wang, X.; Yuan, Z.Simultaneous Determination of Fluoroquinolones in Foods of Animal Origin by a High Perfor-mance Liquid Chromatography and a Liquid Chromatography Tandem Mass Spectrometry withAccelerated Solvent Extraction. J. Chromatogr. B 2012, 885–886, 150–159.

113. Chen, B.; Wang, W.; Huang, Y. Cigarette Filters as Adsorbents of Solid-Phase Extraction forDetermination of Fluoroquinolone Antibiotics in Environmental Water Samples Coupled withHigh-Performance Liquid Chromatography. Talanta 2012, 88, 237–243.

114. Jimenez-Lozano, E.; Marques, I.; Barron, D.; Beltran, J. L.; Barbosa, J. Determination of pKa Valuesof Quinolones from Mobility and Spectroscopic Data Obtained by Capillary Electrophoresis and aDiode Array Detector. Anal. Chim. Acta 2002, 464 (1), 37–45.

115. Barbosa, J.; Barron, D.; Jimenez-Lozano, E. Electrophoretic Behaviour of Quinolones in CapillaryElectrophoresis. Effect of pH and Evaluation of Ionization Constants. J. Chromatogr. A 1999, 839(1–2), 183–192.

116. Barron, D.; Jimenez-Lozano, E.; Irles, A.; Barbosa, J. Influence of pH and pKa Values on Electro-phoretic Behaviour of Quinolones in Aqueous and Hydro-Organic Media. J. Chromatogr. A 2000,871 (1–2), 381–389.

117. Barron, D.; Jimenez-Lozano, E.; Barbosa, J. Electrophoretic Behaviour of Zwitterionic Compoundsin Capillary Electrophoresis: Prediction of Mobility of Several Quinolones. Anal. Chim. Acta 2000,415 (1–2), 83–93.

1418 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

118. Barron, D.; Jimenez-Lozano, E.; Barbosa, J. Prediction of Electrophoretic Behaviour of a Series ofQuinolones in Aqueous Methanol. J. Chromatogr. A 2001, 919 (2), 395–406.

119. Schmitt-Kopplin, P.; Burhenne, J.; Freitag, D.; Spiteller, M.; Kettrup, A. Development of CapillaryElectrophoresis Methods for the Analysis of Fluoroquinolones and Application to the Study of theInfluence of Humic Substances on Their Photodegradation in Aqueous Phase. J. Chromatogr. A1999, 837 (1–2), 253–265.

120. Michalska, K.; Pajchel, G.; Tyski, S. Determination of Ciprofloxacin and Its Impurities by CapillaryZone Electrophoresis. J. Chromatogr. A 2004, 1051 (1–2), 267–272.

121. Sun, S. W.; Wu, A. C. Determination of Fluoroquinolone Antibacterials in PharmaceuticalFormulations by Capillary Electrophoresis. J. Liq. Chromatogr. Relat. Technol. 1999, 22 (2),281–296.

122. Awadallah, B.; Schmidt, P. C.; Wahl, M. A. Quantitation of the Enantiomers of Ofloxacin by Capil-lary Electrophoresis in the Parts per Billion Concentration Range for in Vitro Drug AbsorptionStudies. J. Chromatogr. A 2003, 988 (1), 135–143.

123. Mamani, M. C.V.; Farfan, J. A.; Reyes, F. G. R.; Silva, J. A.F.; Rath, S. Use of Experimental Designand Effective Mobility Calculations to Develop a Method for the Determination of Antimicrobialsby Capillary Electrophoresis. Talanta 2008, 76, 1006–1014.

124. Elbashir, A. A.; Saad, B.; Ali, A. S.M.; Saleh, M. I.; Aboul-Enein, H. Y. Optimization, Validation andApplication of a Capillary Zone Electrophoresis Method for the Assay of Sparfloxacin in Pharma-ceutical Formulation. Anal. Lett. 2008, 41 (14), 2608–2620.

125. See, K. L.; Elbashir, A. A.; Saad, B.; Ali, A. S.; Aboul-Enein, H. Y. Simultaneous Determination ofOfloxacin and Ornidazole in Pharmaceutical Preparations by Capillary Zone Electrophoresis.Biomed. Chromatogr. 2009, 23 (12), 1283–1290.

126. Hua-jun, F.; Hal-yun, Z.; Zuan-guang, C.; Bao-mei, H.; Jian-wei, W.; Pei-xiang, C. Rapid Determi-nation of Lomefloxacin by Capillary Electrophoresis. Acta Scientiarum Naturalium UniversitatisSunyatseni 2005, 5, 13.

127. Fierens, C.; Hillaert, S.; den Bossche, W. V. The Qualitative and Quantitative Determination ofQuinolones of First and Second Generation by Capillary Electrophoresis. J. Pharm. Biomed. Anal.2000, 22 (5), 763–772.

128. Alnajjar, A.; Idris, A. M.; AbuSeada, H. H. Development of a Stability-Indicating Capillary Electro-phoresis Method for Norfloxacin and Its Inactive Decarboxylated Degradant. Microchem. J. 2007, 87(1), 35–40.

129. Riekkola, M. L.; Jonsson, J. A.; Smith, R. M. Terminology for Analytical Capillary ElectromigrationTechniques. Pure Appl. Chem. 2004, 76 (2), 443–451.

130. Terabe, S. Capillary Separation: Micellar Electrokinetic Chromatography. Annual Review Anal.Chem. 2009, 2, 99–120.

131. Chen, Z.; Zhong, Z.; Xia, Z.; Yang, F.; Mu, X. Separation of Fluoroquinolones by MEKC Modifiedwith Hydrophobic Ionic Liquid as a Modifier. Chromatographia 2012, 75 (1–2), 65–70.

132. Shou-Lian, W.; Su-Bing, Z.; Zi-Jun, Y. Separation and Analysis of Fluoroquinolones Using Micro-emulsion Electrokinetic Capillary Chromatography. Chin. J. Anal. Chem. 2008, 4, 23.

133. Hempel, G. Strategies to Improve the Sensitivity in Capillary Electrophoresis for the Analysis ofDrugs in Biological Fluids. Electrophoresis 2000, 21 (4), 691–698.

134. Kowalski, P.; Pliens, A. Simultaneous Determination of Six Quinolone Antibiotics in Poultry andPorcine Samples by Capillary Electrophoresis. Bull. Vet. Inst. Pulawy 2008, 52, 81–85.

135. Wang, Y.; Baeyens, W. R.; Huang, C.; Fei, G.; He, L.; Ouyang, J. Enhanced Separation of SevenQuinolones by Capillary Electrophoresis with Silica Nanoparticles as Additive. Talanta 2009,77 (5), 1667–1674.

136. Tsai, Y. H. l.; Bair, M. J.; Hu, C. C. Determination of Levofloxacin in Human Urine with CapillaryElectrophoresis and Fluorescence Detector. J. Chin. Chem. Soc. 2007, 54, 991–995.

137. Hernandez, M.; Borrull, F.; Calull, M. Determination of Quinolones in Plasma Samplesby Capillary Electrophoresis Using Solid-Phase Extraction. J. Chromatogr. B 2000, 742 (2),255–265.

138. Barron, D.; Jimenez-Lozano, E.; Cano, J.; Barbosa, J. Determination of Residues of Enrofloxacinand Its Metabolite Ciprofloxacin in Biological Materials by Capillary Electrophoresis. J. Chromatogr.B 2001, 759 (1), 73–79.

Fluoroquinolone Separation Method Review 1419

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013

139. Horstkotter,, C.; Jimenez-Lozano, E.; Barron, D.; Barbosa, J.; Blaschke, G. Determination ofResidues of Enrofloxacin and Its Metabolite Ciprofloxacin in Chicken Muscle by Capillary Electro-phoresis Using Laser-Induced Fluorescence Detection. Electrophoresis 2002, 23 (17), 3078–3083.

140. Yang, Z.; Qin, W. Separation of Fluoroquinolones in Acidic Buffer by Capillary Electrophoresiswith Contactless Conductivity Detection. J. Chromatogr. A 2009, 1216 (27), 5327–5332.

141. Lombardo-Agui, M.; Garcia-Campana, A. M.; Gamiz-Gracia, L.; Cruces Blanco, C. Laser InducedFluorescence Coupled to Capillary Electrophoresis for the Determination of Fluoroquinolonesin Foods of Animal Origin Using Molecularly Imprinted Polymers. J. Chromatogr. A 2010, 1217(15), 2237–2242.

142. Lombardo-Agui, M.; Gamiz-Gracia, L.; Garcia-Campana, A. M.; Cruces-Blanco, C. Sensitive Deter-mination of Fluoroquinolone Residues in Waters by Capillary Electrophoresis with Laser-InducedFluorescence Detection. Anal. Bioanal. Chem. 2010, 396 (4), 1551–1557.

143. Solangi, A. R.; Memon, S. Q.; Mallah, A.; Memon, N.; Khuhawar, M. Y.; Bhanger, M. I. Developmentand Implication of a Capillary Electrophoresis Methodology for Ciprofloxacin, Paracetamol andDiclofenac Sodium in Pharmaceutical Formulations and Simultaneously in Human UrineSamples. Pak. J. Pharm. Sci. 2011, 24 (4), 539–544.

144. Ferdig, M.; Kaleta, A.; Vo, T. D.; Buchberger, W. Improved Capillary Electrophoretic Separation ofNine (Fluoro)quinolones with Fluorescence Detection for Biological and Environmental Samples.J. Chromatogr. A 2004, 1047 (2), 305–311.

145. Sun, H. W.; He, P.; Lv, Y. K.; Liang, S. X. Effective Separation and Simultaneous Determination ofSeven Fluoroquinolones by Capillary Electrophoresis with Diode-Array Detector. J. Chromatogr. B2007, 852 (1–2), 145–151.

146. Xue-yan, W.; Hua-rong, T.; Xiu-heng, X.; Ke-zong, Q. Simultaneous Determination of ResidualFluoroquinolones and Sulfonamides in Chicken Liver by High Performance Capillary Electro-phoresis. Heilongjiang Agricultur. Sci. 2011, 2, 42.

147. Yongchuan, C.; Songqing, L.; Hui, D. Separation and Determination of Five Quinolones byMicellar Electrokinetic Capillary Chromatography. Chin. J. Antibiot. 1999, 4, 12.

148. Zhao, Y. Y. Y. G. L.; Yan, H. Y.; Yue, Q.; Chen, Y. Determination of Ciprofloxacin in Plasma byMicelle Capillary Electrophoresis Online Sweeping Concentration Technique. Fenxi huaxue 2004,32 (4), 485–488.

149. Wei, S.; Lin, J.; Li, H.; Lin, J. M. Separation of Seven Fluoroquinolones by Microemulsion Electro-kinetic Chromatography and Application to Ciprofloxacin, Lomefloxacin Determination in Urine.J. Chromatogr. A 2007, 1163 (1–2), 333–336.

1420 G. A. Saleh et al.

Dow

nloa

ded

by [

Gam

al S

aleh

] at

01:

33 0

9 A

pril

2013