20
ACADEMIA ROMÂNĂ Revue Roumaine de Chimie http://web.icf.ro/rrch/ Rev. Roum. Chim., 2015, 60(5-6), 427-445 MINI-REVIEW RECENT ANALYTICAL APPLICATIONS ON ANTIHYPERTENSIVE DRUGS Cansu YAKAR, Burcin BOZAL-PALABIYIK, Burcu DOGAN-TOPAL, Sibel A. OZKAN and Bengi USLU * Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100 Tandogan, Ankara, Turkey Received November 17, 2014 Antihypertensive drugs primarily affect systemic vascular resistance through producing vasodilation. This vasodilatory effect is achieved either by interference with sympathetic adrenergic vascular tone or by the blocking of the formation of angiotensin II or its vascular receptors. There are other antihypertensive drugs which have direct arterial dilatory or mixed arterial and venous dilatory effect. A survey of the literature published in analytical chemistry journals has been conducted and analytical methods which were developed and used for the determination of the antihypertensive drugs in their dosage forms and in biological samples have been reviewed in this paper. This review covers the time period from 2011 to present, during which over 125 recent analytical procedures including liquid chromatographic, spectrophotometric and voltammetric techniques were reported. The available information such as supporting electrolyte, pH, column, mobile phase, measuring or detection potential, sensitivity, selectivity etc. is given in the Tables. INTRODUCTION * The choice of an appropriate technique for the determination of a drug or a mixture of drug compounds mainly depends on the sample matrix complexity, the analyte concentration and the sample treatment time. The ultimate selection of an analytical technique is related to the intrinsic structure and physicochemical properties of the studied analyte. The extensive development of the pharmaceutical field requires more rigorous analytical methods for the control of antihypertensive drugs. Nowadays, these compounds are extensively used in clinical practice and therapy. Therefore, there is need for simple, sensitive, accurate, time saving and stability indicating methods for the determination of drugs in pure solutions, body fluids, and pharmaceutical dosage forms. The aim of this review is to give some examples and information about the use of recent analytical applications on antihypertensive drugs in their dosage forms and in biological samples. The selected pharmaceutical active compounds, which have been determined using different electroanalyti- cal, LC, spectrophotometric techniques, are reported in tables between 1 and 3 together in detail. The available information on supporting electrolyte, pH, measuring or detection potential, column, mobile phase, extraction procedure, internal standard, sensitivity, selectivity, precision, accuracy etc. is presented in the tables shown below. Chemical names or structural formulae are given to help identification of electroactive moieties. * Corresponding author: [email protected], tel:+903122033178, fax: +90 312 2031081

RECENT ANALYTICAL APPLICATIONS ON ANTIHYPERTENSIVE DRUGS

Embed Size (px)

Citation preview

ACADEMIA ROMÂNĂ

Revue Roumaine de Chimie

http://web.icf.ro/rrch/

Rev. Roum. Chim.,

2015, 60(5-6), 427-445

MINI-REVIEW

RECENT ANALYTICAL APPLICATIONS ON ANTIHYPERTENSIVE DRUGS

Cansu YAKAR, Burcin BOZAL-PALABIYIK, Burcu DOGAN-TOPAL, Sibel A. OZKAN and Bengi USLU*

Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100 Tandogan, Ankara, Turkey

Received November 17, 2014

Antihypertensive drugs primarily affect systemic vascular resistance through producing vasodilation. This vasodilatory effect is achieved either by interference with sympathetic adrenergic vascular tone or by the blocking of the formation of angiotensin II or its vascular receptors. There are other antihypertensive drugs which have direct arterial dilatory or mixed arterial and venous dilatory effect. A survey of the literature published in analytical chemistry journals has been conducted and analytical methods which were developed and used for the determination of the antihypertensive drugs in their dosage forms and in biological samples have been reviewed in this paper. This review covers the time period from 2011 to present, during which over 125 recent analytical procedures including liquid chromatographic, spectrophotometric and voltammetric techniques were reported. The available information such as supporting electrolyte, pH, column, mobile phase, measuring or detection potential, sensitivity, selectivity etc. is given in the Tables.

INTRODUCTION*

The choice of an appropriate technique for the determination of a drug or a mixture of drug compounds mainly depends on the sample matrix complexity, the analyte concentration and the sample treatment time. The ultimate selection of an analytical technique is related to the intrinsic structure and physicochemical properties of the studied analyte. The extensive development of the pharmaceutical field requires more rigorous analytical methods for the control of antihypertensive drugs. Nowadays, these compounds are extensively used in clinical practice and therapy. Therefore, there is need for simple, sensitive, accurate, time saving and stability indicating methods for the *

determination of drugs in pure solutions, body fluids, and pharmaceutical dosage forms.

The aim of this review is to give some examples and information about the use of recent analytical applications on antihypertensive drugs in their dosage forms and in biological samples. The selected pharmaceutical active compounds, which have been determined using different electroanalyti-cal, LC, spectrophotometric techniques, are reported in tables between 1 and 3 together in detail. The available information on supporting electrolyte, pH, measuring or detection potential, column, mobile phase, extraction procedure, internal standard, sensitivity, selectivity, precision, accuracy etc. is presented in the tables shown below. Chemical names or structural formulae are given to help identification of electroactive moieties.

* Corresponding author: [email protected], tel:+903122033178, fax: +90 312 2031081

428 Cansu Yakar et al.

Antihypertensive drugs and classifications Antihypertensives are used to treat high blood

pressure, namely hypertension. The main goal of antihypertensive therapy is to prevent the complications of high blood pressure, including stroke or myocardial infarction. The reduction of the blood pressure is known to decrease the risk of stroke and ischaemic heart disease; moreover it reduces the probability of dementia, heart failure, and mortality from cardiovascular disease as well. Among different groups of antihypertensives, the most important and most widely used are the thiazide diuretics, the ACE inhibitors, the calcium channel blockers, the beta blockers, and the angiotensin II receptor antagonists or ARBs.1,2 In the treatment of hypertension, diuretics are essential for getting rid of unneeded water and salt through the urine, which lead to lower blood pressure and facilitate the circulation of blood in veins. Diuretics are widely used to treat a number of heart-related conditions, including high blood pressure, heart failure, kidney and liver problems, and glaucoma.1,2 The diuretic drugs are listed below:

Loop diuretics: bumetanide, ethacrynic acid, furosemide, torsemide

Thiazide diuretics: epitizide, hydrochlorothiazide, chlorothiazide, bendroflumethiazide Thiazide-like diuretics: indapamide, chlorthalidone, metolazone Potassium-sparing diuretics: amiloride, triamterene, spironolactone Among these different groups of diuretics, the thiazide and thiazide-like diuretics have a significant effect for lowering hypertension, and therefore, they are generally chosen as the first choice for hypertension treatment because of their vasodilating properties. Hypertension is mainly a condition caused by the sympathetic nervous system and it is mediated by α and β receptors. There are two types of α receptor, α1 and α2; this distinction is based on the response given to epinephrine and norepinephrine. Through selective blockade of the α1-adrenergic receptors, drugs such as prazosin, doxazosin, and terazosin act to reduce blood pressure. These agents contribute to the correction of elevated total peripheral resistance, which is the fundamental hemodynamic abnormality causing essential hypertension. α1-adrenergic blockers also have positive implications on plasma lipoproteins,

which facilitate the decrease in the levels of triglycerides and cholesterol and the increase in the levels of high-density lipoprotein (HDL) cholesterol and the HDL cholesterol/total cholesterol ratio. β-adrenergic blockers, such as propranolol and atenolol, tend to increase levels of triglycerides and decrease HDL cholesterol. Adrenergic modulation of lipoprotein lipase and the triglyceride secretion rate also contribute to these effects.3 The beta and alpha blockers are listed below: Beta blockers: atenolol, metoprolol, nadolol, nebivolol, oxprenolol, pindolol, propranolol, timolol Alpha blockers: doxazosin, phentolamine, indoramin, phenoxybenzamine, prazosin, terazosin, tolazoline Mixed alpha and beta blockers: bucindolol, carvedilol, labetalol Another hypertensive drug group is the benzodiazepines. These drugs are effective on the central nervous system through their selective action on gamma-aminobutyric acid-A (GABA-A) receptors in the brain. They strengthen the response to the inhibitory neurotransmitter GABA. This enhancement is achieved by opening GABA-activated chloride channels and allowing chloride ions to penetrate into the neuron. With this penetration the neuron is negatively charged and becomes resistant to excitation. In addition to their antihypertensive use, benzodiazepines are also used as sedatives, hypnotics, anxiolytics, anticonvulsants and muscle relaxants.1,2 Calcium channel blockers (CCBs) are attached to the L-type calcium channels on the vascular smooth muscle, cardiac myocytes, and cardiac nodal tissue. Since these channels regulate the influx of calcium into muscle cells and stimulate smooth muscle as well as cardiac myocyte contraction, by blocking calcium entry into the cell, CCBs contribute to vasodilation, lower myocardial force generation, decrease heart rate as well as conduction velocity particularly at the atrioventricular node.1,2 The calcium channel blockers are listed below: dihydropyridines: amlodipine, cilnidipine, felodipine, isradipine, lercanidipine, levamlodipine, nicardipine, nifedipine, nimodipine, nitrendipine non-dihydropyridines: diltiazem, verapamil Another hypertensive drug group, direct renin inhibitors, hampers the renin enzyme from triggering a process regulating the blood pressure. By this intervention, blood vessels relax and widen, facilitating the flow of blood and thus

Analytical applications on antihypertensive drugs 429

lowering blood pressure. Renin inhibitors are a new class of agents, and there are not sufficient clinical data regarding their ability. Aliskiren (Scheme 1) is the only renin inhibitor in the market, which has been approved by the U.S. FDA for the treatment of hypertension. In comparison with earlier renin inhibitors, aliskiren has favorable physiochemical properties with high aqueous solubility and lower lipophilicity, making it more resistant to degradation. This leads to improved bioavailability after oral administration.4

Scheme 1 – Chemical structure of Aliskiren.

ACE inhibitors slow down the activity of the

ACE enzyme, which decreases the production of angiotensin II, and thereby results in the enlargement or dilation of the blood vessels and reduction in the blood pressure. Angiotensin II is an efficient chemical produced by the body that causes the muscles surrounding blood vessels to contract. This contraction narrows the vessels and increases the blood pressure. Angiotensin II is formed from angiotensin I in the blood through an enzyme called angiotensin converting enzyme (ACE).1,2 The ACE inhibitors are listed below: captopril, enalapril, fosinopril, lisinopril, perindopril, quinapril, ramipril, trandolapril, benazepril. Angiotensin II receptor blockers have a similar impact and they inhibit a substance that causes blood vessels to narrow. As a result, blood vessels relax and widen which facilitates the flow of blood and reduces blood pressure. These medicines also increase the release of water and salt (sodium) to the urine, which in turn lowers blood pressure as well. Angiotensin II receptor blockers also act directly on the hormones that regulate sodium and water balance.1,2

The Angiotensin II receptor blockers are: candesartan, eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan. Aldosterone receptor antagonists are a group of diuretics that help the body get rid of extra water.

By doing so, these medicines help retaining potassium by inhibiting the action of the hormone aldosterone.1,2 The molecules of that group are given as eplerenone and spironolactone. Vazodilator medicines lower high blood pressure by opening up the bloodvessels. This allows blood to flow more easily, which lowers blood pressure. Sodium nitroprusside, a very effective, short-acting vasodilator, is most commonly used for the quick, temporary reduction of blood pressure in emergencies (such as malignant hypertension or aortic dissection). Unlike this drug, hydralazine and its derivatives are generally avoided in emergencies due to severe side effects and safety concerns; still, hydralazine remains a drug of choice in gestational hypertension.1,2 The adrenoceptors (or adrenergic receptors) are rhodopsin-like G protein-coupled receptors that are targets of the catecholamines, such as norepinephrine (noradrenaline) and epinephrine (adrenaline). The clinical uses of adrenergic compounds are vast, particularly in the treatment of various diseases, such as hypertension, angina pectoris, congestive heart failure, asthma, depression, benign prostatic hypertrophy, and glaucoma. These drugs are also useful in several other therapeutic situations including shock, premature labour and opioid withdrawal, and as adjuncts to general anaesthetics.1,2 That group are listed below: clonidine, guanabenz, guanfacine, methyldopa, moxonidine. Bosentan (Scheme 2) belongs to a new class of drug and works by blocking the receptors of the hormone endothelin. Endothelin-1 (ET-1) is a 21 amino acid peptide that is produced by the vascular endothelium. As an extremely potent vasoconstrictor, it binds to smooth muscle endothelin receptors, being the ETA and ETB

receptors. These receptors are coupled to a Gq-protein and receptor activation leads to the formation of IP3. This formation causes the release of calcium by the sarcoplasmic reticulum (SR) and increases smooth muscle contraction and vasoconstriction. ET-1 receptors in the heart are also linked to the Gq-protein and IP3 signal transduction pathway. Therefore, ET-1 in the heart causes SR release of calcium, which increases contractility. ET-1 also increases heart rate. Bosentan is specifically indicated only for the treatment of pulmonary artery hypertension in patients with moderate to severe heart failure.5

430 Cansu Yakar et al.

Scheme 2 – Chemical structure of Bosentan.

Assay of antihypertensive drugs

The analysis of pharmaceuticals is an integral and increasingly important part of an overall drug development process. Technological and scientific progress has led to the development of numerous synthetic drugs. It is therefore imperative to develop analytical methods to determine these drugs both in the quality control manufacturing phase of the pharmaceutical formulations their determination in the human body. Several techniques like liquid chromatography (LC), spectrophotometry, voltammetry, etc have been used for the analysis of antihypertensive drugs (Table 1-3). Requirement for such methods is often accompanied by an increasing number of biological samples needing fast quantitative analysis, together with a decrease in the desired quantitation levels, as the bioavailability of many drugs is at a low level and thus target concentrations are very low. Consequently, appropriately designed, fast, effective and sensitive bio-analytical methods are needed. In general, a reliable bio-analytical method, which is convenient for an intended purpose, should fulfill the requirements of validation guidelines, including accuracy, precision, selectivity, sensitivity, reproducibility and stability.6

LC methods

Currently the most extensively used techniques in pharmaceutical analysis are chromatographical methods. They enable separation, identification and determination of huge amount of biologically active compounds. Among chromatographical techniques the special focus should be given to liquid chromatography (LC), especially high-performance liquid chromatography (HPLC), the technique of choice in the analysis of drugs and emerging ultra performance liquid chromatography (UPLC).

HPLC still remains a method of choice, as it is able to separate quite complicated mixtures of low and high molecular weight compounds, as well as different polarities and acid–base properties in various matrices. HPLC is a well-known and widely used analytical technique which is prevalent through-out the pharmaceutical industry as a research tool for estimation of impurities in drug substances and drug products. Despite its prominence, HPLC possesses some disadvantages, most notably longer analysis time and large consumption of organic solvents. UPLC is a relatively new technique which offers better separation capabilities when compared to HPLC with added benefits of shorter run time and lower solvent consumption. One of the key developments which facilitate the new UPLC technology is sub 2-µm particles used as column packing material. These particles withstand higher operating pressures and decreased flow rates to drastically increase the resolution, sensitivity and speed of analysis. Owing to its speed and sensitivity, this technique is gaining considerable attention in recent years for the analysis of pharmaceutical and biomedical compounds of interest.7-11 Because of their complexity and protein content, samples derived from biological materials are generally not directly compatible with HPLC analyses. In other words, these samples are problematic due to the irreversible adsorption of proteins in the stationary phase, which resulted in a considerable loss of column efficiency and an increase in back-pressure. Sample preparation has conventionally been performed using protein precipitation (PPT), liquid–liquid extraction (LLE), or solid phase extraction (SPE). The manual operations associated with these processes are very labor-intensive and time-consuming, consisting of many steps. Besides wide-spread conventional and automatic SPE, LLE and PP technique, newly developed sample preparation techniques include solid phase microextraction (SPME), liquid–liquid microextraction (LLME), pressurized liquid extraction (PLE), extraction using restricted access material (RAM), microextraction by packed sorbent (MEPS), molecularly imprinted polymer (MIP), mono-lith spin extraction, turbulent chromatography (TFC), salting-out liquid–liquid extraction (SALLE), stir bar sorptive extraction (SBSE) and others. Recent investigations have focused on the development of methods to reduce the sample volume required, the analytical time,

Analytical applications on antihypertensive drugs 431

the cost and the solvent consumption and even the elimination of chlorinated solvents. Further, miniaturization and automation using on-line coupling of analytical methods is a very important development as well. A complete review of the current status and recent advances in sample preparation techniques was conducted by Chen et al.,12 in which the detailed classification of all sample preparation techniques is outlined and selected techniques are discussed in detail. It is worth to focus on different detection possibilities, types of columns and variety of mobile phases in chromatographic techniques. There are three types of detectors used: UV (ultra-violet) sometimes in form of DAD (diode array detector), MS (mass spectrometry) and fluorometric as seen in Table 1. UV detection is the most popular detection method for liquid chromatography in the pharmaceutical industry, due to its high sensitivity, broad linear range, ease of operation and other advantages, as well as its compatibility with most mobile phase solvents. However, it requires a tedious and time-consuming derivatization procedure unless pharmaceutical compounds possess a UV-absorbing chromophore. Techniques such as refractive index (RI) detection or mass spectrometry (MS) detection have been employed for the detection of UV-undetectable compounds. But RI detection has the disadvantages of low sensitivity and incompatibility with gradient elution; MS detection, moreover, is expensive for routine use, and its requirement of specially trained operators limits its applicability further. Evaporative light scattering detection (ELSD) and, charged aerosol detection (CAD), introduced more recently, are additional alternatives to UV detection. Consequently, the response generated by CAD and ELSD are independent of the chemical structures of the compounds.13

Spectrophotometry

UV–vis spectrophotometry represents a suitable method for the routine analysis of active ingredients in raw materials, since it is fast, easy to perform and does not require expensive instruments. These methods show very simple and accurate way for the analysis of this binary mixture without the need of sophisticated instruments, HPTLC expensive solvents or large number of samples. In the last decades, Derivative Spectrophotometry (DS) has rapidly gained application in the field of pharmaceutical analysis to overcome the problem

of interference, due to the substances other than analytes, commonly present in pharmaceutical formulations or for combination of two or more drug substances. DS has been successfully used as a quality control tool in pharmaceutical analysis for the simultaneous determination of drugs in multi-component formulations. This technique, accessible to most laboratories, offers an alternative means of enhancing the sensitivity and specificity in mixture analysis. The procedure is simple, rapid and does not require any preliminary separations or treatment of the samples. The analytical characteristics of DS methods for individual drugs determination are described in Table 2.

Electroanalytical techniques

Applications of electrochemical techniques to redox-active drug development studies are one of the current interests in drug discovery. Electrochemical mechanisms are important to all redox chemistry including biological systems relating to electron transport chains. The performance of the electroanalytical procedures is strongly influenced by the working electrode materials. Voltammetry represents a class of electroanalytical methods in which the current at the solid working electrode (polarized) is measured as a function of the potential applied to that electrode; the recording of current versus potential is termed a voltammogram. The choice of an electrode material depends on a great extent on the useful potential range of the electrode in the particular solvent employed and the qualities and purity of the material. The working electrode selection depends on mainly two factors: the redox behavior of the investigated analyte and the background current over the potential region required for the measurements. Various types of carbon can be used as working electrode materials. The best known carbon electrode materials are those involving carbon paste, glassy carbon, graphite, diamond, carbon fiber, carbon blacks, screen-printed carbon strips, pyrolytic graphite, carbon films, fullerenes, wax impregnated graphite, carbon nanotube, kelgraf, reticulated vitreous carbon, whiskers etc. These types of carbon based electrodes have more or less a graphite structure but differ in their agglomeration, particle size, size distribution, degree of graphitization, and therefore in their physical and chemical properties. All these type of carbon materials are the result of specific synthesis routes.

432 Cansu Yakar et al.

Currently, various solid electrodes are available and their bulk or surface modification to improve their sensitivity and selectivity constitutes a principal issue for the majority of electroanalysts worldwide. The application of nanomaterials in various fields of science and technology has been extensively developed due to the unique properties of these materials. Nanoparticles of a variety of shapes, sizes and compositions are changing the bioanalytical measurement nowadays as seen in Table 3. The recent literature includes many electroanalyti-cal methods using voltammetric and amperometric techniques with modified electrodes. Among them, cyclic voltammetry is generally used for characterization, while differential pulse voltammetry (DPV) or square-wave voltammetry (SWV) and amperometry (AMP) are usually used for quantification of the analytes as seen in Table 3.

Examples of Analytical Applications

LC methods for antihypertensive drugs Several papers have been published dealing with the determination by LC of the active ingredients of antihypertensive drugs formulations. For example; a simple, sensitive, and specific method for furosemide (FUR) analysis by reverse-phase-HPLC was developed by employing a Spherisorb C18 ODS 2 column by Youm and Youan.14 They carried out a chromatographic analysis based on a mobile phase consisting of acetonitrile and 10 mM potassium phosphate buffer solution: 70:30 (v/v) at pH 3.85, at a flow rate of 1 mL/min. The UV-detection method was carried out at 233 nm at room temperature. The LOD and LOQ were found to be 5.2 and 15.8 ng/mL, respectively. Their method was found to be accurate (RSD less than 2%), precise, and specific with an intraday and interday RSD range of 1.233–1.509 and 1.615 to 1.963% and it can be used for the quantitative analysis of FUR from nanocarriers, USP tablets and release media related to hearing research. Mass spectrometric detection is mainly used in the bioanalysis of antihypertensive drugs. By Qi et al., a sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was attempted to be developed for simultaneous determination of olmesartan and amlodipine levels in human plasma and urine.15 The Acquity UPLC BEH C18 column was used for chromatographic separation. Mass spectrometric analysis was carried out using a QTrap5500 mass spectrometer coupled with an

electro-spray ionization (ESI). The MRM transitions of m/z 447 → 207 and 409 → 238 were used to quantify olmesartan and amlodipine, respectively. The linearity of this method was found to be within the concentration range of 2–1000 ng/mL and 0.1–50 ng/mL for amlodipine in human urine and plasma and 4–5000 ng/mL and 0.2–500 ng/mL for olmesartan in human urine and plasma. The analysis was finished within only 2 min. Other selected examples of assays of dosage forms and biological samples are listed in Table 1.

Spectrophotometric methods

for antihypertensive drugs

Recent advances in pharmaceutical analysis with derivative spectrophotometry (DS) have rapidly gained application in the field of pharmaceutical analysis to overcome the problem of interference for combination of two or more drug substances. For example, Stolarczyk et al. attempted to develop a spectrophotometric method for determination of losartan potassium, quinapril hydrochloride and hydrochlorothiazide in pharmaceutical preparations.94 Spectrophotometric method involved derivative spectrophotometry and zero order spectrophotometry. The measurements were carried out at λ = 224.0 nm for quinapril, λ = 261.0 nm for hydrochlorothiazide and λ = 270.0 nm for losartan when the derivative spectrophotometry was applied and λ = 317.0 nm when zero order spectrophotometry was applied for the determination of hydrochlorothiazide. Sensitivity of developed method is high, for spectrophotometric method LOD was in the range from 0.68 to 2.01 µg/mL and LOQ from 2.06 to 6.08µg/mL.

By Gizawy et al., the first derivative of the ratio spectra method was developed for simultaneous determination of amlodipine besylate (AML) and Perindopril Erbumine (PER) without previous separation.95 This method was dependent on the by measuring the amplitudes at 348 nm for amlodipine using 50 µg/mL of perindopril as a divisor and at 227 nm for perindopril using 30 µg/mL of amlodipine as a divisor. The proposed method is applicable over a concentration range of 10–60 µg/mL and 20–80 µg/mL for AMLand PER, respectively. The validation of the proposed methods was made in accordance with the ICH guidelines and LOD and LOQ were accordingly calculated. These methods were successfully applied for the determination of the cited drugs in bulk powder and commercial tablets.

A

naly

tical

app

licat

ions

on

antih

yper

tens

ive

drug

s 43

3

Ta

ble

1

Som

e se

lect

ed L

iqui

d C

hrom

atog

raph

ic a

pplic

atio

ns o

n an

tihyp

erte

nsiv

e dr

ugs

Dru

g M

etho

d C

olum

n/m

obile

pha

se

Lin

ear

dyna

mic

ra

nge

LO

D/L

OQ

A

pplic

atio

n R

ef

Hyd

roch

loro

thia

zide

Ir

besa

rtan

Losa

rtan

pota

ssiu

m

Telm

isar

tan

Val

sarta

n

HPL

C-D

AD

C

18 c

olum

n (2

50 ×

4.6

mm

, 5µm

)/ 0.

025

M p

otas

sium

di

hydr

ogen

pho

spha

te (p

H 6

.0):

acet

onitr

ile (8

0:20

%,

v/v)

2.5–

15 µ

g/m

L 30

–180

µg/

mL

10–6

0 µg

/mL

16–9

6 µg

/mL

16–9

6 µg

/mL

LOD

: 0.0

4 µg

/mL

LOD

: 0.1

4 µg

/mL

LOD

: 0.0

8 µg

/mL

LOD

: 0.0

3 µg

/mL

LOD

: 0.0

4 µg

/mL

Phar

mac

eutic

al

form

ulat

ions

16

Cap

topr

il In

dapa

mid

e H

PLC

-DA

D

RP8

col

umn

(250

× 4

.6 m

m, 5

µm)/

30 m

M p

otas

sium

di

hydr

ogen

pho

spha

te (p

H 2

.8):

met

hano

l: ac

eton

itrile

(6

:2:2

, v/v

/v)

0.25

-150

µg/

mL

0.2-

100

µg/m

L LO

D: 0

.08

µg/m

L LO

D: 0

.07

µg/m

L Ta

blet

s 17

Lisi

nopr

il In

dapa

mid

e H

PLC

-UV

C

18 c

olum

n/m

etha

nol:w

ater

(50:

50, v

/v, p

H: 3

.1)

16-2

4 µg

/mL

8-12

µg/

mL

LOD

: 0.4

µg/

mL

LOD

: 0.5

µg/

mL

Har

d ge

latin

e ca

psul

e 18

Bis

opro

lol

Ram

ipril

at

Prop

rano

lol

Mid

azol

am

HPL

C-

MS/

MS

C18

colu

mn

(50

× 2.

1 m

m, 2

.6 µ

m)/

0.1%

form

ic a

cid

in

Mill

i-Q w

ater

(A) a

nd 1

00%

ace

toni

trile

(B) (

grad

ient

)

5-25

0 µg

/L

5-25

0 µg

/L

5-25

0 µg

/L

5-25

0 µg

/L

LOQ

: 5 µ

g/L

LOQ

: 5 µ

g/L

LOQ

: 5 µ

g/L

LOQ

: 5 µ

g/L

Rat

blo

od

19

Irbe

sarta

n H

ydro

chlo

roth

iazi

de

U-H

PLC

-M

S/M

S

C18

col

umn

(2.1

× 5

0 m

m, 1

.7 µ

m)/

solv

ent A

(0.1

%

form

ic a

cid

in w

ater

) and

solv

ent B

(ace

toni

trile

) (g

radi

ent)

5–30

00 n

g/m

L 0.

5–30

0 ng

/mL

LOQ

: 5.0

ng/

mL

LOQ

: 0.

5 ng

/mL

Hum

an p

lasm

a 20

S-(-

)-Pr

opan

olol

R

-(+)

- Pro

pano

lol

HPL

C-

Fluo

resc

ence

C

hira

lpak

IB c

olum

n (2

50 ×

4.6

mm

, 5 µ

m)/

n-he

xane

-et

hano

l-trie

thyl

amin

e (9

5:5:

0.4%

, v/v

/v)

10-4

00 n

g/m

L 10

-400

ng/

mL

LOD

: 3 n

g/m

L LO

D: 3

ng/

mL

Rat

seru

m

21

Cin

epaz

ide

mal

eate

H

PLC

-DA

D

C18

col

umn

(150

× 4

.6 m

m, 5

µm

)/ 10

mM

pot

assi

um

dihy

drog

en p

hosp

hate

(pH

4.5

): m

etha

nol (

40:6

0, v

/v)

0.12

-120

µg/

mL

LOD

: 0.0

6 µg

/mL

Rat

pla

sma

22

Ram

ipril

Te

lmis

arta

n A

mlo

dipi

ne b

esyl

ate

Ato

rvas

tatin

cal

cium

HPL

C-D

AD

C

18 c

olum

n (2

50 ×

4.6

mm

, 5 µ

m)/

0.02

5 M

pot

assi

um

dihy

drog

en p

hosp

hate

(pH

6.0

): ac

eton

itrile

(60:

40%

, v/

v)

10-6

0 µg

/mL

16-9

6 µg

/mL

10-6

0 µg

/mL

10-6

0 µg

/mL

LOD

: 0.5

8 µg

/mL

LOD

: 0.1

6 µg

/mL

LOD

: 0.7

2 µg

/mL

LOD

: 0.3

µg/

mL

Tabl

ets

23

Olm

esar

tan

Hyd

roch

loro

thia

zide

H

PLC

-ESI

-M

S/M

S

RP-

18A

col

umn

(4.6

× 1

50 m

m, 4

µm

)/ 0.

2% fo

rmic

ac

id: a

ceto

nitri

le (3

0:70

, v/v

)

4.05

1-25

00.9

12

ng/m

L 0.

506-

304.

109

ng/m

L

LOQ

: 4.0

51 n

g/m

L LO

Q: 0

.506

ng/

mL

Hum

an p

lasm

a 24

Telm

isar

tan

Hyd

roch

loro

thia

zide

U

PLC

-M

S/M

S

C18

col

umn

(50

× 2.

1 m

m, 1

.7 µ

m)/

acet

onitr

ile -

met

hano

l-10

mM

am

mon

ium

ace

tate

-for

mic

aci

d (5

0:30

:20:

0.1%

v/v

/v)

1-50

0 ng

/mL

1-50

0 ng

/mL

LOQ

: 1 n

g/m

L LO

Q: 1

ng/

mL

Hum

an p

lasm

a 25

Am

lodi

pine

B

enaz

epril

e B

enaz

epril

at

LC-

HES

I/MS/

MS

C18

col

umn

(100

× 4

.6 m

m, 5

µm

)/ m

etha

nol-

acet

onitr

ile

-5 m

M a

mm

oniu

m a

ceta

te-f

orm

ic a

cid

(30:

30:4

0:0.

1)

0.02

-6.0

0 ng

/mL

0.2-

1,50

0 ng

/mL

0.2-

1,50

0 ng

/mL

LOQ

: 0.0

2 ng

/mL

LOQ

: 0.2

ng/

mL

LOQ

: 0.2

ng/

mL

Hum

an p

lasm

a 26

434

Can

su Y

akar

et a

l. Ta

ble

1 (c

ontin

ued)

Met

olaz

one

Losa

rtan

pota

ssiu

m

HPL

C-

Fluo

resc

ence

C

18 c

olum

n (2

50×4

.6 m

m, 5

µm

)/ m

etha

nol:

0.02

M

phos

phat

e bu

ffer

(65:

35, v

/v, p

H 3

.0)

2.0–

40.0

ng/

mL

40.0

–800

.0 n

g/m

L LO

Q: 0

.22

ng/m

L LO

Q: 4

.52

ng/m

L

Com

bine

d ta

blet

s an

d hu

man

pl

asm

a 27

Car

vedi

lol

Hyd

roch

loro

thia

zide

H

PLC

-DA

D

SB-C

8 co

lum

n (4

.6 ×

250

mm

, 5 µ

m)/

0.02

5 M

ph

osph

oric

aci

d: a

ceto

nitri

le (g

radi

ent)

5-30

0 µg

/mL

5-20

0 µg

/mL

LOD

: 0.3

3 µg

/mL

LOD

: 0.3

0 µg

/mL

Com

bine

d ta

blet

s 28

Met

form

in

Lisi

nopr

il En

alap

ril

Cap

topr

il

HPL

C-U

V

RP1

8 co

lum

n (2

50 ×

4.6

mm

)/ m

etha

nol:w

ater

(50:

50,

v/v)

(pH

3.2

)

5.0-

50 µ

g/m

L 2.

5-25

0 µg

/mL

2.5-

250

µg/m

L

2.5-

250

µg/m

L

2.5-

250

µg/m

L

LOD

: 0.0

28 µ

g/m

L LO

D: 0

.044

µg/

mL

LOD

: 0.2

0 µg

/mL

LOD

: 0.1

45 µ

g/m

L

Hum

an se

rum

an

d ph

arm

aceu

tical

do

sage

form

s

29

Perin

dopr

il A

mlo

dipi

ne

HPL

C-D

AD

(I

on-P

air)

OD

S (4

.6 m

m

150

mm

, 5 µ

m) c

olum

n/ p

otas

sium

dih

ydro

gen

phos

phat

e bu

ffer

(0.0

5 M

, pH

3.0

±

0.02

): ac

eton

itrile

(30:

70, v

/v)

5-12

0 µg

/mL

5-20

0 µg

/mL

LOD

: 1.3

8 µg

/mL

LOD

: 4.6

2 µg

/mL

Bul

k fo

rm a

nd

tabl

ets

30

Qui

napr

il H

ydro

chlo

roth

iazi

de

HPL

C-U

V

C18

col

umn

(250

× 4

.6 m

m, 1

0 µm

)/ ac

eton

itrile

: po

tass

ium

dih

ydro

gen

phos

phat

e (p

H 2

.5; 0

.067

M,

40:6

0, v

/v)

2-30

µg/

mL

1.25

-18.

75 µ

g/m

L LO

D: 0

.019

5 µg

/mL

LOD

: 0.0

030

µg/m

L Ph

arm

aceu

tical

do

sage

form

s 31

Am

lodi

pine

bes

ylat

e V

alsa

rtan

Hyd

roch

loro

thia

zide

H

PLC

-DA

D

SB-C

8 co

lum

n (4

.6 ×

250

mm

, 5 µ

m) /

0.0

25 M

ph

osph

oric

aci

d an

d ac

eton

itrile

(gra

dien

t)

5-20

0 µg

/mL

5-20

0 µg

/mL

10-2

00 µ

g/m

L

LOD

: 0.2

6 µg

/mL

LOD

: 0.2

4 µg

/mL

LOD

: 0.1

2 µg

/mL

Tabl

ets

32

Am

lodi

pine

bes

ylat

e O

lmes

arta

n m

edox

omil

Val

sarta

n H

ydro

chlo

roth

iazi

de

HPL

C -U

V

RP-

CN

col

umn

(4.6

× 2

00 m

m, 5

µm

) / a

ceto

nitri

le:

met

hano

l: 10

mM

orth

opho

spho

ric a

cid

(pH

2.5

, 7: 1

3:

80, v

/v/v

)

0.1-

18.5

µg/

mL

0.4-

25.6

µg/

mL

0.3-

15.5

µg/

mL

0.3-

22 µ

g/m

L

LOQ

: 0.1

µg/

mL

LOQ

: 0.4

µg/

mL

LOQ

: 0.3

µg/

mL

LOQ

: 0.3

µg/

mL

Hum

an p

lasm

a 33

Olm

esar

tan

Am

lodi

pine

U

PLC

-M

S/M

S B

EH C

18 c

olum

n (2

.0 ×

50

mm

, 1.7

µm

)/ ac

eton

itrile

: w

ater

con

tain

ing

1% fo

rmic

aci

d (g

radi

ent)

Hum

an p

lasm

a;

0.2-

500

ng/m

L 0.

1-50

ng/

mL

Hum

an u

rine;

4-

5000

ng/

mL

2-10

00 n

g/m

L

Hum

an p

lasm

a;

TAS:

0.2

ng/

mL

TAS:

0.1

ng/

mL

Hum

an u

rine;

TA

S: 4

ng/

mL

TAS:

2 n

g/m

L

Hum

an p

lasm

a an

d ur

ine

15

Met

opro

lol

α-H

ydro

xym

etop

rolo

l O

-des

met

hylm

etop

rolo

l

HPL

C-

Fluo

resc

ence

X

DB

-C18

col

umn

(150

× 4

.6 m

m, 5

µm

)/ ac

eton

itrile

: H

2O: 0

.1%

Trif

luor

oace

tic a

cid

(gra

dien

t)

5–60

0 ng

/mL

2.5–

300

ng/m

L 2.

5–30

0 ng

/mL

LOQ

: 5 n

g/m

L LO

Q: 2

.5 n

g/m

L LO

Q: 2

.5 n

g/m

L

Hum

an p

lasm

a an

d ur

ine

34

Neb

ivol

ol

HPL

C-

MS/

MS

C18

col

umn

(4.6

× 1

50 m

m, 5

µm

)/ 0.

01%

form

ic a

cid:

ac

eton

itrile

(40:

60, v

/v)

50–5

000

pg/m

L LO

Q: 3

0 pg

/mL

Hum

an p

lasm

a 35

Am

lodi

pine

A

torv

asta

tin

Ato

rvas

tatin

met

abol

ites

HPL

C-E

SI-

MS/

MS

CR

1:4

col

umn

(150

× 2

.0 m

m, 5

µm

) / a

ceto

nitri

le:

amm

oniu

m a

ceta

te b

uffe

r (20

mM

, con

tain

ing

0.3%

fo

rmic

aci

d) (5

0:50

, v/v

)

35-1

0,00

0 pg

/mL

35-2

5,00

0 pg

/mL

20-1

0,00

0 pg

/mL

15-7

500

pg/m

L

LOQ

: 35

pg/m

L LO

Q: 3

5 pg

/mL

LOQ

: 20

pg/m

L LO

Q: 1

5 pg

/mL

Hum

an p

lasm

a 36

A

naly

tical

app

licat

ions

on

antih

yper

tens

ive

drug

s 43

5 Ta

ble

1 (c

ontin

ued)

Inda

pam

ide

HPL

C-

MS/

MS

C18

col

umn

(100

× 2

.1 m

m, 1

.7 µ

m)/

acet

onitr

ile:

amm

oniu

m fo

rmat

e (9

0:10

, v/v

) 1-

50 n

g/m

L LO

Q: 1

ng/

mL

Hum

an b

lood

37

Bis

opro

lol

Ram

ipril

Si

mva

stat

in

LC–H

RM

S C

18 H

D c

olum

n (1

00 ×

2.1

mm

, 1.8

µm)/w

ater

con

tain

ing

0.2%

form

ic a

cid

(A):

acet

onitr

ile c

onta

inin

g 0.

2% fo

rmic

ac

id (B

) (gr

adie

nt)

0.1-

100

ng/m

L 0.

5-10

0 ng

/mL

1-10

0 ng

/mL

- - - B

lood

38

Am

lodi

pine

A

torv

asta

tine

Ato

rvas

tatin

e m

etab

olite

s

HPL

C-

MS/

MS

RP8

0A c

olum

n (1

50 ×

4.6

mm

, 4 µ

m)/

wat

er: m

etha

nol

(pH

3.2

, 14:

86%

, v/v

)

0.2-

20 n

g/m

L 1.

5-15

0 ng

/mL

1.0-

100

ng/m

L 0.

2-20

ng/

mL

LOQ

: 0.2

ng/

mL

LOQ

: 1.5

ng/

mL

LOQ

: 1.0

ng/

mL

LOQ

: 0.2

ng/

mL

Hum

an p

lasm

a 39

Ura

pidi

l A

ripip

razo

le

HPL

C-

MS/

MS

C18

kol

onu

(4.6

× 5

0 m

m, 5

µm

)/ 0.

1% fo

rmic

aci

d:

acet

onitr

ile (1

0:90

, v/v

) 2.

0-25

03.9

5 ng

/mL

1.0-

500.

19 n

g/m

L LO

D: 2

.0 n

g/m

L LO

D: 1

.0 n

g/m

L H

uman

pla

sma

40

Nife

dipi

ne

Ate

nolo

l H

PLC

-M

S/M

S C

18 c

olum

n (4

.6 ×

50

mm

, 5 µ

m)/

5 m

M a

mm

oniu

m a

ceta

te: a

ceto

nitri

le (1

5:85

%, v

/v)

1.02

-101

ng/

mL

5.05

-503

ng/

mL

LOQ

: 1.0

2 ng

/mL

LOQ

: 5.0

5 ng

/mL

Hum

an p

lasm

a 41

Laci

dipi

ne

HPL

C-

MS/

MS

SB C

18 co

lum

n (5

0 ×

4.6

mm

, 5 µ

m)/

5 m

M a

mm

oniu

m

acet

ate

buff

er: a

ceto

nitri

le (1

5:85

, v/v

) 50

-15,

000

pg/m

L LO

Q: 5

0 pg

/mL

Hum

an p

lasm

a 42

Nic

ardi

pine

H

PLC

-ESI

-M

S SB

-C18

colu

mn

(2.1

× 1

50 m

m, 5

µm

)/ ac

eton

itrile

-0.1

%

form

ic a

cid

(gra

dien

t) 5-

1000

ng/

mL

LOQ

: 5 n

g/m

L R

at p

lasm

a 43

Laci

dipi

ne

HPL

C-D

AD

C

-18

colu

mn

(150

× 4

.6 m

m, 5

µm

)/ am

mon

ium

ace

tate

: ac

eton

itrile

(gra

dien

t) 50

- 25

0 µg

/mL

LOD

: 1.0

µg/

mL

Phar

mac

eutic

al

dosa

ge fo

rms

44

Cap

topr

il H

PLC

-UV

C

4 co

lum

n /s

odiu

m a

zide

solu

tion

(4%

, w/v

, pH

:5.8

): ac

eton

itrile

: wat

er (5

0:5:

45, v

/v/v

) 0.

06-2

.25

µmol

/mL

LOD

: 0.0

3 µm

ol/m

L U

rine

sam

ples

45

Lisi

nopr

il H

PLC

-M

S/M

S O

DS-

3 co

lum

n (2

.1 ×

50

mm

, 3 µ

m)/

met

hano

l: w

ater

(c

onta

inin

g 0.

2% fo

rmic

aci

d) (5

5:45

, v/v

) 1.

03-2

06 n

g/m

L LO

Q: 1

.03

ng/m

L H

uman

pla

sma

46

Cel

ipro

lol H

Cl

Chl

orth

alid

one

HPL

C-U

V

C8

colu

mn

(250

× 4

.6 m

m, 5

µm

)/ m

etha

nol:

0.04

M

phos

phat

e bu

ffer

(35:

65, v

/v, p

H 7

.0)

0.2-

20 µ

g/m

L 0.

2-10

µg/

mL

LOD

: 0.0

6 µg

/mL

LOD

: 0.0

4 µg

/mL

Tabl

ets a

nd

biol

ogic

al fl

uids

47

Ver

apam

il Tr

ando

lapr

il H

PLC

-DA

D

C18

col

umn

(250

× 4

.6 m

m, 5

µm

)/ 15

mM

met

hano

l-w

ater

(55:

45%

, v/v

, pH

2.7

) 0.

50-1

8.00

µg/

mL

0.05

-1.0

0 µg

/mL

LOD

: 0.0

08 µ

g/m

L LO

D: 0

.018

µg/

mL

Phar

mac

eutic

al

form

ulat

ions

48

Losa

rtan

Car

vedi

lol

HPL

C-U

V

C18

OD

S-3

colu

mn

(250

× 4

.6 m

m, 5

µm)/

15 m

M

sodi

um d

ihyd

roge

n ph

osph

ate

buff

er (p

H 4

.0):

acet

onitr

ile: 2

-pro

pano

l (70

/27.

5/2.

5, v

/v/v

)

For h

uman

pla

sma;

0.

1-1.

0 µg

/mL

0.05

-0.7

5 µg

/mL

For u

rine;

0.

05-1

.0 µ

g/m

L 0.

02-1

.0 µ

g/m

L

For h

uman

pla

sma;

TS

: 0.0

11 µ

g/m

L TS

: 0.0

14 µ

g/m

L Fo

r urin

e;

TS: 0

.007

µg/

mL

TS: 0

.004

µg/

mL

Hum

an p

lasm

a an

d ur

ine

sam

ples

49

436

Can

su Y

akar

et a

l. Ta

ble

1 (c

ontin

ued)

Ato

rvas

tatin

e ca

lciu

m

Losa

rtan

pota

ssiu

m

Ate

nolo

l A

spiri

n

HPL

C-U

V

C18

HS

colu

mn

(250

× 4

.6 m

m, 5

µm

)/ ac

eton

itrile

: 0.0

2 M

pot

assi

um d

ihyd

roge

n ph

osph

ate

buff

er (p

H 3

.4)

(70:

30%

, v/v

)

For t

able

t; 4–

24 µ

g/m

L 20

–120

µg/

mL

20–1

20 µ

g/m

L 30

–180

µg/

mL

For p

lasm

a;

25–1

50 n

g/m

L 50

–300

ng/

mL

50–3

00 n

g/m

L 10

0-60

0 ng

/mL

For t

able

t; LO

D: 0

.012

µg/

mL

LOD

: 0.0

21 µ

g/m

L LO

D: 0

.019

µg/

mL

LOD

: 0.0

32 µ

g/m

L Fo

r pla

sma;

LO

Q: 2

5 ng

/mL

LOQ

: 50

ng/m

L LO

Q: 5

0 ng

/mL

LOQ

: 100

ng/

mL

Tabl

et a

nd

plas

ma

50

Losa

rtan

HPL

C-U

V

CN

(250

× 4

.6 m

m) c

olum

n/

sodi

um d

ihyd

roge

n ph

osph

ate

buff

er: a

ceto

nitri

le:

tetra

hydr

ofur

ane:

met

hano

l: ph

osph

oric

aci

d (0

.1:5

:4:2

1:69

.9, v

/v%

, pH

9.9

)

2.5–

500

ng/m

L LO

Q: 5

ng/

mL

Hum

an p

lasm

a 51

Am

lodi

pine

bes

ylat

e V

alsa

rtan

Hyd

roch

loro

thia

zide

H

PLC

-DA

D

SB-C

8 (2

50 ×

4.6

mm

, 5 µ

m) c

olum

n/ 0

.025

M

phos

phor

ic a

cid:

ace

toni

trile

(gra

dien

t)

5–10

0 µg

/mL

2.5–

200

µg/m

L 2.

5–10

0 µg

/mL

LOD

: 0.5

9 µg

/mL

LOD

: 0.3

0 µg

/mL

LOD

: 0.1

7 µg

/mL

Tabl

ets

52

Irbe

sarta

n H

ydro

chlo

roth

iazi

de

HPL

C-U

V

C18

col

umn

(150

× 4

.6 m

m, 5

µm)/

met

hano

l: te

trahy

drof

uran

: ace

tate

buf

fer (

47:1

0:43

, v/v

/v, p

H 6

.5)

0.08

–0.4

mg/

mL

0.02

–0.1

mg/

mL

LOD

: 0.0

2 m

g/m

L LO

D: 0

.006

mg/

mL

Com

bine

d ph

arm

aceu

tical

do

sage

form

s 53

Am

lodi

pine

B

isop

rolo

l H

PLC

–M

S/M

S C

18 c

olum

n (5

0 ×

4.6

mm

, 5 µ

m)/

met

hano

l: w

ater

: fo

rmic

aci

d (7

5:25

:0.0

1, v

/v/v

) 0.

2–50

ng/

mL

0.2–

50 n

g/m

L LO

Q: 0

.2 n

g/m

L LO

Q: 0

.2 n

g/m

L R

at p

lasm

a 54

Bis

opro

lol

HPL

C-

Fluo

resc

ence

C

18 c

olum

n (1

50 ×

4.6

mm

, 5 µ

m)/

met

hano

l: w

ater

(7

0:30

%, v

/v)

10-2

000

ng/m

L LO

D: 3

.2 n

g/m

L H

uman

pla

sma

55

Cel

ipro

lol

HPL

C-

Fluo

resc

ence

C

18 c

olum

n (1

50 ×

3.0

mm

, 3.5

µm

)/ ac

eton

itrile

: 10

mM

am

mon

ium

ace

tate

buf

fer (

pH 1

0.5)

(34:

66, v

/v)

1.0-

1000

ng/

mL

LOQ

: 1.0

ng/

mL

Hum

an p

lasm

a 56

S-(-

)-O

xpre

nolo

l R

-(+)

-Oxp

reno

lol

HPL

C-U

V

Chi

ralp

ak IC

col

umn

(250

× 4

.6 m

m, 5

µm

)/ n-

heks

an:

isop

ropa

nol:

triet

hyla

min

e (7

0:30

:0.1

, v/v

) 0.

5-75

.0 µ

g /c

m3

0.5-

75.0

µg

/cm

3 LO

D: 0

.1 µ

g /c

m3

LOD

: 0.1

µg

/cm

3

Urin

e an

d ph

arm

aceu

tical

fo

rmul

atio

ns

57

Praz

osin

Te

razo

sin

Dox

azos

in

HPL

C-D

AD

C

18 c

olum

n (2

50 ×

4.6

mm

, 5.0

µm

)/ace

toni

trile

: di

ethy

lam

ine

(0.0

5 m

L) (A

), m

etha

nol (

B),

and

10 m

M

amm

oniu

m a

ceta

te (C

) (gr

adie

nt)

2-50

0 µg

/mL

2-50

0 µg

/mL

2-50

0 µg

/mL

LOD

: 0.0

33 µ

g/m

L LO

D: 0

.065

µg/

mL

LOD

: 0.1

09 µ

g/m

L

Phar

mac

eutic

al

form

ulat

ions

58

Ura

pidi

l H

PLC

-UV

O

DS

colu

mn

(4.6

× 2

50 m

m, 5

µm

)/ ac

eton

itrile

: 50

mM

am

mon

ium

dih

ydro

gen

phos

phat

e: tr

ieth

anol

amin

e (2

5:

75: 0

.5, v

/v, p

H 5

.5)

10-1

60 µ

g/m

L LO

Q: 1

0 µg

/mL

Bul

k fo

rm a

nd

phar

mac

eutic

al

form

ulat

ions

59

Tors

emid

e H

PLC

-ESI

-M

S

SB-C

18 c

olum

n (2

.1 ×

150

mm

, 5 µ

m)/

acet

onitr

ile: 0

.1 %

fo

rmic

aci

d (g

radi

ent)

5-10

00 n

g/m

L LO

Q: 5

ng/

mL

Rab

bit p

lasm

a 60

Bum

etan

ide

HPL

C-

MS/

MS

C18

col

umn

(100

× 4

.6 m

m, 3

µm

)/ et

hano

l: 5

mM

am

mon

ium

trifl

uoro

acet

ate

(pH

6.0

) (80

:20,

v/v

) 0.

30-2

00.0

ng/

mL

LOD

: 0.0

3 ng

/mL

Hum

an p

lasm

a 61

A

naly

tical

app

licat

ions

on

antih

yper

tens

ive

drug

s 43

7 Ta

ble

1 (c

ontin

ued)

Am

ilorid

e H

ydro

chlo

roth

iazi

de

HPL

C-M

S-M

S H

ypur

ity A

dvan

ce c

olum

n (1

00×4

.6 m

m, 5

µm)/

2 m

M

amm

oniu

m a

ceta

te (p

H 3

.0):

acet

onitr

ile (3

0:70

, v/v

) 0.

1-10

ng/

mL

5.0-

500.

0 ng

/mL

LOQ

: 0.1

ng/

mL

LOQ

: 5.0

ng/

mL

Hum

an p

lasm

a 62

Land

iolo

l H

PLC

-M

S/M

S

TC-C

18 c

olum

n (1

50 ×

4.6

mm

, 5 µ

m)/

met

hano

l: 10

mM

am

mon

ium

ace

tate

con

tain

ing

1% fo

rmic

aci

d (6

5:35

, v/

v)

0.5-

500

ng/m

L LO

Q: 0

.5 n

g/m

L H

uman

pla

sma

63

Losa

rtan

Losa

rtan

carb

oxyl

ic a

cid

HPL

C-

MS/

MS

RP1

8 co

lum

n (2

50 ×

4.6

mm

, 5 µ

m)/

acet

onitr

ile: 1

0 m

M

aque

ous a

mm

oniu

m a

ceta

te (4

0:60

, v/v

) 1-

200

ng/m

L 5-

1000

ng/

mL

LOQ

: 1.0

ng/

mL

LOQ

: 5.0

ng/

mL

Blo

od

64

Can

desa

rtan

HPL

C-

MS/

MS

C18

col

umn

(2.1

× 1

00 m

m, 5

µm

)/ 0.

1% fo

rmic

aci

d (A

) an

d m

etha

nol (

B) (

grad

ient

) 2-

200

ng/m

L LO

Q: 2

ng/

mL

Hum

an p

lasm

a 65

Olm

esar

tan

Hyd

roch

loro

thia

zide

H

PLC

-M

S/M

S R

P18

colu

mn

(4.6

× 1

50 m

m, 5

µm

)/ 2

mM

am

mon

ium

fo

rmat

e bu

ffer

(pH

3.5

): ac

eton

itrile

(30:

70, v

/v)

1.1-

1060

ng/

mL

1.0-

320

ng/m

L LO

Q: 1

.1 ng

/mL

LOQ

: 1.0

ng/m

L H

uman

pla

sma

66

Nife

dipi

ne

UPL

C-

MS/

MS

UPL

C B

EH C

18 c

olum

n (5

0 ×

2.1

mm

, 1.7

µm

)/ 4

mM

am

mon

ium

ace

tate

: ace

toni

trile

(15:

85, v

/v)

0.05

0-15

0 ng

/mL

LOQ

: 0.0

5 ng

/mL

Hum

an p

lasm

a 67

Laci

dipi

ne

HPL

C-

MS/

MS

X

DB

-Phe

nyl c

olum

n (7

5 ×

4.6

mm

, 3.5

µm

)/ ac

eton

itrile

: 5m

M a

mm

oniu

m a

ceta

te b

uffe

r (80

:20,

v/v

) 0.

05-1

2.5

ng/m

L LO

Q: 0

.05

ng/m

L H

uman

pla

sma

68

Moe

xipr

il H

PLC

-M

S/M

S C

18 c

olum

n (5

0 ×

4.6

mm

, 3.5

µm

)/ m

etha

nol:

0.1%

fo

rmic

aci

d bu

ffer

(85:

15, v

/v)

0.2-

204

ng/m

L LO

Q: 0

.2 n

g/m

L H

uman

pla

sma

69

Lerc

anid

ipin

e B

enaz

epril

e B

enaz

epril

ate

HPL

C-

MS/

MS

C18

col

umn

(150

× 4

.6 m

m, 5

µm

)/ 0.

1% a

cetic

aci

d:

acet

onitr

ile (5

0:50

, v/v

)

1-20

00 n

g/m

L 1-

2000

ng/

mL

1-16

00 n

g/m

L

LOQ

: 1 n

g/m

L LO

Q: 1

ng/

mL

LOQ

: 1 n

g/m

L H

uman

pla

sma

70

Felo

dipi

n H

PLC

-M

S/M

S X

DB

-C18

col

umn

(3.0

× 7

5 m

m, 3

.5 µ

m)/

acet

onitr

ile:

0.1%

form

ic a

cid

(75:

25, v

/v)

0.1-

20

ng/m

L LO

Q: 0

.1 n

g/m

L H

uman

pla

sma

71

Cap

topr

il H

PLC

-EC

D

C18

col

umn

(15

cm ×

4.1

mm

, 5 µ

m)/

phos

phat

e bu

ffer

(p

H 3

.0):

acet

onitr

ile (7

0:30

, v/v

) 2–

70 µ

g/m

L LO

D: 0

.6 µ

g/m

L Ta

blet

s 72

Hyd

roch

loro

thia

zide

V

alsa

rtan

Am

ilorid

e C

apto

pril

HPL

C-U

V

Plat

inum

col

umn

(100

× 4

.6 m

m, 3

µm

) / m

etha

nol:

0.02

M

pho

spha

te b

uffe

r (p

H 3

.0) (

45:5

5, v

/v)

1.5–

100

µg/m

L 0.

5–50

µg/

mL

0.5–

50 µ

g/m

L 5–

100

µg/m

L

LOQ

: 0.4

5 µg

/mL

LOQ

: 0.2

1 µg

/mL

LOQ

: 0.1

3 µg

/mL

LOQ

: 1.2

µg/

mL

Bul

k fo

rm a

nd

phar

mac

eutic

al

dosa

ge fo

rms

73

Ben

azep

ril H

Cl

Enal

april

mal

eate

En

alap

rilat

e Fo

sino

pril

sodi

um

Lisi

nopr

il R

amip

ril

Cap

topr

il di

sulfi

de

Hyd

roch

loro

thia

zide

HPL

C-U

V

RP-

C18

col

umn

(4.6

× 2

50 m

m, 2

5 µm

)/ 25

mM

am

mon

ia b

uffe

r (pH

:9):

acet

onitr

ile (g

radi

ent)

0.09

-8.0

0 µg

/mL

0.14

-8.0

0 µg

/mL

0.12

-8.0

0 µg

/mL

0.15

-8.0

0 µg

/mL

0.12

-8.0

0 µg

/mL

0.16

-8.0

0 µg

/mL

0.25

-8.0

0 µg

/mL

0.60

-8.0

0 µg

/mL

LOD

: 25

ng/m

L LO

D: 4

2 ng

/mL

LOD

: 34

µg/m

L LO

D: 4

4 ng

/mL

LOD

: 36

ng/m

L LO

D: 4

8 ng

/mL

LOD

: 64

ng/m

L LO

D: 1

7 ng

/mL

Phar

mac

eutic

al

dosa

ge fo

rms,

hum

an p

lasm

a an

d ur

ine

74

438

Can

su Y

akar

et a

l. Ta

ble

1 (c

ontin

ued)

Car

vedi

lol

Losa

rtan

Dilt

iaze

m

Furo

sem

ide

Prop

rano

lol

HPL

C-U

V

MZ-

anal

ytic

al c

olum

n (1

5 ×

4.6

mm

, 5 µ

m)/

acet

onitr

ile:

2-pr

opan

ol: 1

5 m

M p

hosp

hate

buf

fer (

pH 2

) (32

.5: 2

.5:

65, v

/v/v

)

0.02

5-0.

800

µg/m

L 0.

050-

0.80

0 µg

/mL

0.05

0-0.

800

µg/m

L 0.

025-

0.80

0 µg

/mL

0.02

5-0.

800

µg/m

L

LOQ

: 0.0

25 µ

g/m

L LO

Q: 0

.050

µg/

mL

LOQ

: 0.0

50 µ

g/m

L LO

Q: 0

.025

µg/

mL

LOQ

: 0.0

25 µ

g/m

L

Hum

an p

lasm

a 75

Val

sarta

n A

mlo

dipi

ne

HPL

C-

Fluo

resc

ence

Phen

yl 1

20A

col

umn

(250

× 4

.6 m

m, 5

µm

)/ ph

osph

ate

buff

er (p

H4.

0±0.

1): a

ceto

nitri

le: m

etha

nol (

60:3

0:10

, v/

v/v)

1-10

0 ng

/mL

10-1

000

ng/m

L LO

D: 0

.3 n

g/m

L LO

D: 1

.6 n

g/m

L H

uman

pla

sma

76

Hyd

roch

loro

thia

zide

Ir

besa

rtan

HPL

C-D

AD

C

4 co

lum

n (1

50 m

m ×

4.6

mm

, 5 µ

m)/

acet

onitr

ile:

phos

phat

e bu

ffer

(pH

3.6

) (gr

adie

nt)

2.5-

500

ng/m

L 20

-4,0

00 n

g/m

L LO

Q: 2

.5 n

g/m

L LO

Q: 2

0 ng

/mL

Hum

an p

lasm

a 77

Val

sarta

n H

PLC

-UV

C

18 S

elec

t B c

olum

n (2

50 ×

4.0

mm

, 5 µ

m) 2

0 m

M

pota

ssiu

m d

ihyd

roge

n or

thop

hosp

hate

buf

fer (

pH 2

.7 ±

0.

05):

acet

onitr

ile (6

0:40

, v/v

) 21

7.7-

6118

.4 n

g/m

L LO

Q: 2

17.7

ng/

mL

Hum

an p

lasm

a 78

Car

vedi

lol

HPL

C-U

V

C18

colu

mn

(250

× 4

.6 m

m, 5

µm

) /10

mM

pot

assi

um

dihy

drog

en p

hosp

hate

buf

fer (

pH 3

.5):

acet

onitr

ile

(60:

40, v

/v)

4-60

ng/

mL

LOQ

: 4 n

g/m

L H

uman

pla

sma

79

Alp

reno

lol

HPL

C-

Fluo

resc

ence

Si60

col

umn

(250

× 4

mm

, 5 µ

m)/

acet

onitr

ile: w

ater

(9

0:10

, v/v

) (co

ntai

ning

0.0

2% tr

ieth

ylam

ine

and

0.02

%

acet

ic a

cid)

2.

00-3

00 n

g/m

L LO

D: 0

.74

ng/m

L R

at p

lasm

a 80

Tim

olol

mal

eat

Ros

uvas

tatin

cal

cium

D

iclo

fena

c so

dium

H

PLC

-UV

C

18 c

olum

n (2

50 ×

4.6

mm

, 5 µ

m)/

0.2%

trie

thyl

amin

e:

acet

onitr

ile (4

0:60

, v/v

) (pH

2.7

5)

0.05

–2 µ

g/m

L 0.

05–2

µg/

mL

0.05

–2 µ

g/m

L

LOD

: 0.8

00 n

g/m

L LO

D: 0

.500

ng/

mL

LOD

: 0.2

50 n

g/m

L

Hum

an p

lasm

a an

d bo

vine

aq

ueou

s hum

or

81

Ram

ipril

R

amip

rilat

e Te

lmis

arta

n

UPL

C-

MS/

MS

C18

col

umn

(50

× 4.

6 m

m, 5

µm

)/ 2

mM

am

mon

ium

ac

etat

e: a

ceto

nitri

le (2

0:80

, v/v

)

0.1-

25 n

g/m

L 0.

1-25

ng/

mL

2 -4

00 n

g/m

L

LOQ

: 0.1

ng/

mL

LOQ

: 0.1

ng/

mL

LOQ

: 2 n

g/m

L H

uman

pla

sma

82

Bum

etan

ide

UPL

C-

MS/

MS

C18

col

umn

(100

× 2

.1 m

m, 3

µm

)/ m

etha

nol:

wat

er

(gra

dien

t) 1.

0–12

50 n

g/m

L LO

Q: 1

.0 n

g/m

L H

uman

pla

sma

83

Ato

rvas

tatin

A

mlo

dipi

ne

Ram

ipril

B

enaz

epril

HPL

C/M

S/

MS

C18

col

umn

(50

× 4.

6 m

m, 5

µm

)/ 0.

1% fo

rmic

aci

d:

acet

onitr

ile (1

5:85

, v/v

)

0.26

- 210

ng/

mL

0.05

-20.

5 ng

/mL

0.25

-208

ng/

mL

0.74

-607

ng/

mL

LOQ

: 0.2

6 ng

/mL

LOQ

: 0.0

5 ng

/mL

LOQ

: 0.2

6 ng

/mL

LOQ

: 0.7

6 ng

/mL

Hum

an p

lasm

a 84

Zofe

nopr

il Zo

feno

prila

te

HPL

C–

MS/

MS

Phen

yl-h

exyl

col

umn

(250

× 4

.6 m

m, 5

µm

)/ m

etha

nol:

wat

er (9

5:5,

v/v

) con

tain

ing

0.1%

form

ic a

cid

0.10

52- 1

052

ng/m

L 0.

2508

- 250

8 ng

/mL

LOQ

: 0.1

052

ng/m

L LO

Q: 0

.250

8 ng

/mL

Hum

an p

lasm

a 85

Hyd

rala

zine

H

PLC

-MS-

MS

SB-C

18 c

olum

n (1

50 ×

2.1

mm

)/ m

etha

nol:

0.01

M

amm

oniu

m a

ceta

te (6

0:40

, v/v

) 10

-200

ng/

mL

10-2

00 n

g/m

L

LOD

: 0.4

9 ng

/mL

(rat

pl

asm

a)

LOD

: 1.0

5 ng

/mL

(rat

br

ain)

Mou

se p

lasm

a an

d br

ain

86

Ura

pidi

l H

PLC

-M

S/M

S

XD

B‐

C18

colu

mn

(4.6

× 7

5 m

m, 3

.5 µ

m)/

2 m

M

amm

oniu

m a

ceta

te b

uffe

r (pH

3.0

): ac

eton

itrile

(8:9

2%,

v/v)

0.

1-50

0 ng

/mL

LOQ

: 0.1

ng/

mL

Rat

pla

sma

87

A

naly

tical

app

licat

ions

on

antih

yper

tens

ive

drug

s 43

9 Ta

ble

1 (c

ontin

ued)

Ura

pidi

l hyd

roch

lorid

e H

PLC

-MS-

MS

SB-C

18 c

olum

n (2

.1 ×

50

mm

, 3.5

µm

)/ ac

eton

itrile

: w

ater

(gra

dien

t) 5-

1000

ng/

mL

LOQ

: 5 n

g/m

L R

abbi

t pla

sma

88

Vin

cris

tine

Ver

apam

il U

PLC

-M

S/M

S

BEH

C18

colu

mn

(50

× 2.

1 m

m, 1

.7 µ

m)/

met

hano

l (B

) an

d 10

mM

am

mon

ium

ace

tate

con

tain

ing

0.1%

ace

tic

acid

(A) (

grad

ient

)

0.5-

500

ng/m

L 0.

1-10

0.0

ng/m

L LO

Q: 0

.5 n

g/m

L LO

Q: 0

.1 n

g/m

L R

at p

lasm

a 89

Nitr

endi

pine

H

PLC

-ESI

-M

S3 G

B-C

18 c

olum

n (1

00 ×

2.1

mm

, 3 µ

m)/

0.05

% fo

rmic

ac

id in

ace

toni

trile

(v/v

) 0.

05–5

0.0

ng/m

L LO

Q: 0

.05

ng/m

L H

uman

pla

sma

90

Nis

oldi

pine

H

PLC

-M

S/M

S C

18 an

alyt

ical

col

umn

(50

× 2.

1 m

m, 5

µm

)/ ac

eton

itrile

: w

ater

(66:

34, v

/v)

0.1-

30 n

g/m

L LO

Q: 0

.1 n

g/m

L H

uman

pla

sma

91

Nife

dipi

ne

UPL

C-

MS/

MS

BEH

C18

col

umn

(50

mm

× 2

.1 m

m, 1

.7 µ

m /

acet

onitr

ile:

10 m

M a

mm

oniu

m a

ceta

te (7

5:25

, v/v

) 0.

104-

52.0

ng/

mL

LOQ

: 0.1

04 n

g/m

L H

uman

pla

sma

92

Neb

ivol

ol

HPL

C-

MS/

MS

C18

col

umn

(150

× 2

.0 m

m, 4

.6 µ

m)/

acet

onitr

ile: w

ater

(c

onta

inin

g 0.

05%

form

ic a

cid)

(45:

55, v

/v)

0.02

5-25

ng/

mL

LOD

: 0.0

08 n

g/m

L H

uman

pla

sma

93

Ta

ble

2

Som

e se

lect

ed sp

ectro

phot

omet

ric a

pplic

atio

ns o

n an

tihyp

erte

nsiv

e dr

ugs

D

rug

Wav

elen

gth

(nm

) M

ediu

m

Lin

ear

dyna

mic

ran

ge

LO

D/L

OQ

A

pplic

atio

n R

ef

Am

lodi

pine

bes

ylat

e H

ydro

chlo

roth

iazi

de

Val

sarta

n

237.

6 27

0.2

249.

2 M

etha

nol

2-20

µg/

mL

5-25

µg/

mL

10-5

0 µg

/mL

LOD

: 0.0

3 µg

/mL

LOD

: 0.0

2 µg

/mL

LOD

: 0.0

3 µg

/mL

Tabl

ets

96

Dox

azos

in m

esyl

ate

547

Dis

tille

d w

ater

2-

14 µ

g/m

L LO

D: 0

.393

µg/

mL

Tabl

ets

97

Am

lodi

pine

bes

ylat

e B

enaz

epril

e H

Cl

366

237

0.01

N H

Cl

2–24

µg/

mL

2–24

µg/

mL

LOD

: 0.2

91 µ

g/m

L LO

D: 0

.070

µg/

mL

Bul

k fo

rm

98

Enal

april

41

5 Tr

opeo

lin 0

0 an

d H

Cl

(pH

2.0

) 10

-100

µg/

mL

LOQ

: 6.1

6 µg

/mL

Tabl

ets

99

Lisi

nopr

il di

hydr

ate

567

0.1

M p

otas

sium

hy

drox

ide

10-3

0 µg

/mL

LOQ

: 3.5

2 µg

/mL

Bul

k fo

rm a

nd

phar

mac

eutic

al

form

ulat

ions

10

0

Olm

esar

tan

med

oxom

il A

mlo

dipi

ne b

esyl

ate

Hyd

roch

loro

thia

zide

- 359

315

Ace

toni

trile

A

ceto

nitri

le

Ace

toni

trile

2.5-

40 µ

g/m

L 5–

40 µ

g/m

L 5–

40 µ

g/m

L

LOD

: 0.7

29 µ

g/m

L LO

D: 1

.278

µg/

mL

LOD

: 0.8

19 µ

g/m

L Ta

blet

s 10

1

Losa

rtan

pota

ssiu

m

Qui

napr

il H

Cl

Hyd

roch

loro

thia

zide

270.

0 22

4.0

261.

0 M

etha

nol

4.83

-28.

95 µ

g/m

L 4.

90-2

9.40

µg/

mL

3.10

-18.

60 µ

g/m

L

LOD

: 1.4

8 µg

/mL

LOD

: 1.9

5 µg

/mL

LOD

: 0.6

8 µg

/mL

Tabl

ets

94

440

Can

su Y

akar

et a

l.

Tabl

e 2

(con

tinue

d)

Perin

dopr

il A

mlo

dipi

ne

227

348

Met

hano

l 20

-80

µg/m

L 10

-60

µg/m

L LO

D: 2

.20

µg/m

L LO

D: 1

.19

µg/m

L B

ulk

form

and

tabl

ets

95

Can

desa

rtan

cile

xetil

22

5 25

0 M

etha

nol

1-12

µg/

mL

2-12

µg/

mL

LOD

: 0.2

8 µg

/mL

LOD

: 0.4

2 µg

/mL

Tabl

ets

102

Cap

topr

il 43

6 5

M H

Cl

0.2-

4.50

µg/

mL

LOD

: 0.0

6 µg

/mL

Bul

k fo

rm

103

Hyd

roch

loro

thia

zide

Pi

ndol

ol

337.

2 29

4.4

Met

hano

l 5-

40 µ

g/m

L

2-32

µg/

mL

LOD

: 0.7

6 µg

/mL

LOD

: 0.2

1 µg

/mL

Phar

mac

eutic

al

form

ulat

ions

10

4

Lisi

nopr

il 63

5 pH

9.3

bor

ate

buff

er

0.8-

6.4

µg/m

L LO

D: 0

.158

µg/

mL

Tabl

ets

105

Epro

sarta

n m

esyl

ate

Hyd

roch

loro

thia

zide

24

6 27

9 M

etha

nol

3.0-

14.0

µg/

mL

1.0-

10.0

µg/

mL

LOD

: 0.3

45 µ

g/m

L LO

D: 0

.174

µg/

mL

Tabl

ets

106

Olm

esar

tan

med

oxom

il 49

0 M

etha

nol

1-20

0 µg

/mL

LOD

: 0.3

µg/

mL

Tabl

ets

107

Bis

opro

lol

427

Ace

tic a

cid

and

met

hyl

oran

ge

0.5-

16 µ

g/m

L LO

D: 0

.20

µg/m

L Ta

blet

s 10

8

Ver

apam

il H

Cl

515

and

546

Eosi

n Y

0.

6036

-4.0

µg/

mL

LOD

: 0.1

8 µg

/mL

Tabl

ets a

nd h

uman

pl

asm

a 10

9

Ta

ble

3

Som

e se

lect

ed e

lect

roan

alyt

ical

app

licat

ions

on

antih

yper

tens

ive

drug

s

Dru

g U

sing

tech

niqu

e E

lect

rode

Su

ppor

ting

elec

trol

yte

Lin

ear

dyna

mic

ran

ge

LO

D/L

OQ

A

pplic

atio

n R

ef

Cap

topr

il D

PV

CPE

pH

7.0

buf

fer

solu

tion

0.2-

200

µM

0.08

µM

H

uman

urin

e an

d ta

blet

s 11

2

Zofe

nopr

il SW

CA

SV

HM

DE

pH 5

.5 B

R b

uffe

r 0.

03-1

.05

µM

0.01

µM

Ta

blet

s and

hum

an

seru

m

113

Val

sarta

n A

mlo

dipi

n be

sila

t D

PV

GC

E pH

5.0

BR

buf

fer

1.5

µM-3

2.0

µM

1.0

µM- 3

5.0

µM

0.36

µM

0.

31 µ

M

Hum

an se

rum

and

ph

arm

aceu

tical

do

sage

form

s 11

4

Met

hyld

opa

DPV

Ti

O2N

P/FM

TNC

PE

pH 7

.0 p

hosp

hate

bu

ffer

2.

0×10

- 7-1

.0×1

0- 4 M

8.

0×10

- 8 M

Ta

blet

s 11

5

Cap

topr

il H

ydro

chlo

roth

iazi

de

DPV

G

R/F

c/C

PE

pH 7

.0 b

uffe

r so

lutio

n 1.

0-43

0 µM

0.

5-39

0 µM

0.

87 µ

M

0.38

µM

Ph

arm

aceu

tical

fo

rmul

atio

ns

110

A

naly

tical

app

licat

ions

on

antih

yper

tens

ive

drug

s 44

1 C

apto

pril

LSV

M

odifi

ed C

PE

pH 6

.0 p

hosp

hate

bu

ffer

3.

0×10

-7–3

00×1

0−4 M

9.

0×10

−8 M

Ta

blet

s and

urin

e 11

6

Hyd

roch

loro

thia

zide

Lo

sarta

n D

PV

BD

DE

pH 9

.5 B

R b

uffe

r 3.

0×10

-6-7

.4×1

0-5 M

1.

2×10

-6 M

9.

5×10

-7 M

Ph

arm

aceu

tical

fo

rmul

atio

ns

117

Met

opro

lol

CV

, AdS

DPV

N

AF/

CN

T/G

CE

pH 7

.0 p

hosp

hate

bu

ffer

7.

02×1

0-8-9

.0×1

0-6 M

3.

51×1

0-8 M

Ph

arm

aceu

tical

fo

rmul

atio

ns, h

uman

se

rum

and

urin

e 11

1

Val

sarta

n SW

AA

dSV

D

PAA

dSV

G

CE

pH 3

.0 B

R b

uffe

r 0.

5-5.

0 µM

0.

8-7.

0 µM

0.

2932

µM

0.

1824

µM

Ta

blet

s and

urin

e 11

8

442 Cansu Yakar et al.

Other selected examples of assays of dosage forms and biological samples are listed in Table 2.

Electroanalytical methods for antihypertensive drugs

The surface modification of various solid electrodes to improve their sensitivity and selectivity are available in the recent literature. A voltammetric method has been developed for the simultaneous determination of captopril (CPT) and hydrochlorothiazide (HCT) in pharmaceutical combinations and clinical samples using a graphene/ferrocene composite carbon paste (GR/Fc/CP) electrode by Gholivand and Khodadadian.110 By cyclic voltammetry, both CPT and HCT showed well-behaved oxidation peaks at the surface of Fc/GR/CP electrode with their main oxidation steps at about 375 and 1018 mV, respectively. The presence of Fc/Fc+ couple together with graphene in the matrix of composite electrode makes it possible to detect CPT and HCT simultaneously. In differential pulse voltammetric (DPV) mode and under optimized experimental conditions, CPT and HCT gave linear responses over the concentration ranges 1.0–430 mM and 0.5–390 mM, respectively. The prepared electrode could be used for simultaneous determination of CPT and HCT in some real samples. By Desai and Srivastava, an electrochemical method employing a Nafion-carbon nanotube-nano-composite film modified glassy carbon electrode (NAF-CNT-GCE) has been developed for the determination of metoprolol (MET).111 Cyclic voltammetry and adsorptive stripping differential pulse voltammetry were employed to study the electrochemical behavior of MET. Studies reveal that the irreversible oxidation of MET was extremely facile on NAF-CNT-GCE. The optimized linear working range and detection limit (S/N = 3) are 7.02 × 10-8 to 9.0 × 10-6 M and 3.51 × 10-8 M, respectively. The analytical application of the modified GCE is demonstrated by determining MET in pharmaceutical formulations and biological fluids (serum and urine). Other selected examples of assays of dosage forms and biological samples are listed in Table 3.

CONCLUSIONS

The improvement of quality of life has stimulated considerable research in drug design

bioavailability and safety. Thus, in order to achieve these targets, highly sensitive and specific methods of analysis are necessary. An analytical method dedicated to the analysis of a drug compound in a given matrix should be developed in a critical manner, considering different available instrumentations and by knowing their performances in terms of selectivity, sensitivity, ease of use, speed of analysis etc. Several applications on these drugs described in this review are of limited relatively scope, but they are all of some significance in their own particular field and contribute to the general importance of analytical assay in modern pharmaceutical analysis. This is a rapidly developing subject and it can be anticipated that many new applications of analytical methods on antihypertensive drugs may be offered in the near future.

Abbreviations: 5AEB: 5-amino-2’-ethyl biphenyl-2-ol AdSDPV: Adsorptive stripping differential pulse voltammetry ASV: Adsorptive stripping voltammetry AuE: Gold electrode AuNPs: Gold nanoparticles BDDE: Boron doped diamond electrode BFCNPE: Benzoyl ferrocene modified carbon nanotubr paste electrode BR: Britton-Robinson CA: Chronoamperometry CNPE: Carbon nanotube paste electrode CNT: Carbon nanotube CPE: Carbon paste electrode CV: Cyclic voltammetry DAD: Diode array detector DME: Dropping mercury electrode DPAAdSV: Differential pulse anodic adsorptive stripping voltammetry DPP: Differential pulse polarography DPV: Differential pulse voltammetry ECD: Electrochemical detection ESI: Electrospray ionisation Fc: Ferrocene FMTNCPE: TiO2 nanoparticles carbon paste electrode modified with ferrocene monocarboxylic acid GC: Gas chromatography GCE: Glassy carbon electrode GPE: Graphite paste electrode GR: Graphene HESI: Heated electrospray ionization

Analytical applications on antihypertensive drugs 443

HMDE: Hanging mercury drop electrode HPLC: High performance liquid chromatography HPTLC: High performance thin layer chromatogra-phy HRMS: High resolution mass spectrometry IL: Ionic liquid LOD: Limit of detection LOQ: Limit of quantification LSV: Linear sweep voltammetry MgONPs: Magnesium oxide nanoparticles MS: Mass spectrometry MSTFA: N-methyl-N-(triethylsilyl) trifluoroacetamide MWCNT: Multi-walled carbon nanotube MWCNTPE: Multi-walled carbon nanotube paste electrode NAF: Nafion NPs: Nanoparticles o-MWCNT: Oxidized multi-walled carbon nanotube OPPY: Oxidized polypyrrole p-CAMCNTPE: Carbon nanotubes paste electrode modified with p-chloranil SFC: Supercritical fluid chromatography SWAAdSV: Square wave anodic adsorptive stripping voltammetry SWAdSV: Square wave adsorptive stripping voltam-metry SWASV: Square wave anodic stripping voltammetry SWCASV: Square wave cathodic adsorptive stripping voltammetry SWV: Square wave voltammetry TY: Titan yellow UPLC: Ultra performance liquid chromatography VFMCNTPE: Vinylferrocene modified multiwalled carbon nanotubes paste electrode

REFERENCES

1. L.L. Brunton, Goodman and Gilman’s “The

pharmacological basis of therapeutics” 11th Ed. McGraw Hill Press, New York, 2006.

2. B.G. Katzung, S.B. Masters and A.J. Trevor (Eds.) “Basic and Clinical Pharmacology” 11th Ed, The McGraw-Hill Companies Inc, 2009.

3. D.T. Nash, Clin. Cardiol., 1990, 13, 764-772. 4. A.H. Gradman and R. Kad, J. Am. Coll. Cardiol., 2008,

51, 519-528. 5. http://www.cvpharmacology.com/vasodilator/ETblockers.ht

m 6. International Conference on Harmonization (ICH) Q2

(R1) “Text on Validation of Analytical Procedures” US FDA Federal Register, 2005.

7. R. Russo, D. Guillarme, T-TD. Nguyen, C. Bicchi, S. Rudaz and J.L. Veuthey, J. Chromatogr. Sci., 2008, 46, 199-208.

8. D.T. Nguyen, D. Guillarme, S. Rudaz and J.L. Veuthey, J. Sep. Sci., 2006, 29, 1836-1848.

9. J.R. Mazzeo, U.V. Neue, K. Marianna and R.S. Plumb, Anal. Chem., 2005, 77, 460A-467A.

10. A.D. Villiers, F. Lestremau, R. Szucs, S. Gelebart, F. David and P. Sandra, J. Chromatogr. A, 2006, 1127, 60-69.

11. S.A.C. Wren and P. Tchelitcheff, J. Chromatogr. A, 2006, 1119, 140-146.

12. Y. Chen, Z. Guo, X. Wang and C. Qiu, J. Chromatogr. A, 2008, 1184, 191-219.

13. N. Vervoort, D. Daemen and G. Török, J. Chromatogr. A, 2008, 1189, 92-100.

14. I. Youm and B-BC. Youan, J. Anal. Methods. Chem., 2013, Article ID 207028, 1-9.

15. W. Qi, Q. Zhao, J. Jiang and P. Hu, J. Chromatogr. B, 2013, 938, 27-34.

16. A.A. Elshanawane, L.M. Abdelaziz, M.M. Kamal and H.M. Hafez, J. Liq. Chromatogr. Related. Technol., 2014, 37, 171-186.

17. A. El-Gindy, M.W. Nassar, KA-S. Attia, H.H. Abu-Seada and M. El-Ghandour, J. Liq. Chromatogr. Related. Technol., 2014, 37, 696-712.

18. A. Fernández- Carballido, E. Barcia, D. Córdoba-Díaz, M. Córdoba-Díaz and S. Negro, Curr. Pharm. Anal., 2014, 10, 10-19.

19. K.C. Trobec, J. Trontel, J. Springer, M. Lainscak and M.K. Kos, J. Chromatogr. B., 2014, 958, 29-35.

20. X. Qiu, Z. Wang, B. Wang, H. Zhan, X. Pan and R-A. Xu, J. Chromatogr. B., 2014, 957, 110-115.

21. A.M. Alanazi, M.M. Hefnaw, A.A. Al-Majed, A.K. Al-Suwailem, M.G. Kassem, G.A. Mostafa, S.M. Attia and M.M. Khedr, Chirality, 2014, 26, 194-199.

22. J. Zhao, Y. Song, H. Wang, Y. Sun, M. Liu, C. Lu, Y. Li, S. Wang, X. Zhu, W. Hai, A. Wen and Y. Jia, J. Chromatogr. B, 2014, 957, 105-109.

23. A.A. Elshanawane, L.M. Abdelaziz, M.M. Kamal and H.M. Hafez, J. Liq. Chromatogr. Related Technol., 2014, 37, 195-206.

24. A. Kumar, P.R. Prasad Verma, T. Monif, A.H. Khuroo and S.S. Iyer, Clin. Res. Regul. Aff., 2014, 31, 6-23.

25. S. Zargar and T.A. Wani, Lat. Am. J. Pharm., 2014, 33, 432-440.

26. H.-L. Pan, L.-S. Lin, J.-F. Ding, X.-Y. Chen and D.-F. Zhong, Yaoxue Xuebao, 2014, 49, 95-100.

27. M.I. Walash, N.M. El-Enany, M.I. Eid and M.E. Fathy, Luminescence, 2013, DOI: 10.1002/bio.2570.

28. T.S. Belal, R.A. Shaalan, F.A. El Yazbi and S.M. Elonsy, Chromatographia, 2013, 76, 1707-1720.

29. M.S. Arayne, N. Sultana, M.H. Zuberi, F.A. Siddiqui and U. Haroon, Med. Chem. Res., 2013, 22, 5717-5722.

30. S.M. Gizawy, L.I. Bebawy, O.H. Abdelmageed, M.A. Omar, S.M. Deryea and A.M. Abdel-Megied, J. Liq. Chromatogr. Related Technol., 2013, 36, 1323-1339.

31. S. Altunsoy, B. Bozal-Palabıyık and B. Uslu, Turkish J. Pharm. Sci., 2013, 10, 255-262.

32. R.A. Shaalan, T.S. Belal, F.A. El Yazbi and S.M. Elonsy, Arabian J. Chem., 2013, DOI: 10.1016/j.arabjc.2013.04.012.

33. S.E. Kepekci Tekkeli, J. Anal. Methods Chem., 2013, Article ID 179627 (10 pages).

34. T. Xu, S. Bao, P. Geng, J. Luo, L. Yu, P. Pan, Y. Chen and G. Hu, J. Chromatogr. B., 2013, 937, 60-66.

35. J. Nandania, S.J. Rajput, P. Contractor, P. Vasava, B. Solanki and M. Vohra, J. Chromatogr. B., 2013, 923-924, 110-119.

444 Cansu Yakar et al.

36. Y. Zhou, J. Li, X. He, M. Jia, M. Liu, H. Li, Z. Xiong, Y. Fan and W. Li, J. Pharm. Biomed. Anal., 2013, 83, 101-107.

37. N. Nakov, K. Mladenovska, N. Labacevski, A. Dimovski, R. Petkovska, A. Dimitrovska and Z. Kavrakovski, Biomed. Chromatogr., 2013, 27, 1540-1546.

38. G. Lawson, E. Cocks and S. Tanna, J. Pharm. Biomed. Anal., 2013, 81-82, 99-107.

39. M. Yacoub, A.A. Awwad, M. Alawi and T. Arafat, J. Chromatogr. B., 2013, 917-918, 36-47.

40. V.B.R. Ambavaram, V. Nandigam, M. Vemula, G.R. Kalluru and M. Gajulapalle, Biomed. Chromatogr., 2013, 27, 916-923.

41. R.R. Kallem, J.K. Inamadugu, M. Ramesh and J.V.L.N. Seshagirirao, Biomed. Chromatogr., 2013, 27, 349-355.

42. P.K. Chatki, K.K. Hotka, P.R.R. Kolagatla, D.V. Bharathi and V. Venkateswarulu, Biomed. Chromatogr., 2013, 27, 838-845.

43. M. Deng, Q. Zhang and Y. Zheng, Latin Am. J. Pharm., 2013, 32, 774-778.

44. M. Vinodh, M. Vinayak, K. Rahul and P. Pankaj, Malays J. Anal. Sci., 2012, 16, 213-219.

45. A. Łuczak, R. Zakrzewski and M. Dobrogowski, Bioanalysis, 2012, 4, 1481-1489.

46. F. Qin, D. Wang, S. Yang, L. Jing, Z. Xong and F. Li, Biomed. Chromatogr., 2012, 26, 691-696.

47. F. Belal, A. El-Brashy, N. El-Enany and M. Tolba, Acta Chromatogr., 2012, 24, 185-206.

48. M. Gumustas, S. Sanlı, N. Sanlı and S.A. Ozkan, J. Food Drug Anal., 2012, 20, 588-596.

49. S. Soltani, A.M. Ramezani, N. Soltani and A. Jouyban, Bioanalysis, 2012, 4, 2805-2821.

50. N.M. Bhatia, S.B. Gurav, S.D. Jadhav and M.S. Bhatia, J. Liq. Chromatogr. Related Technol., 2012, 35, 428-443.

51. F. Shokraneh, A. Dabirsiaghi and N. Adib, Orient J. Chem., 2012, 28, 237-241.

52. R.A. Shaalan and T.S. Belal, J. Liq. Chromatogr. Related Technol., 2012, 35, 215-230.

53. Z. Vujić, N. Mulavdić, M. Smajić, J. Brborić and P. Stankovic, Molecules, 2012, 17, 3461-3474.

54. H. Chang, J. Li, J. Li, X. Guan, F. Sun, Z. Qian, K. Bi and G. Fan, J. Pharm. Biomed. Anal., 2012, 71, 104-110.

55. S.T. Ulu and Z. Aydoğmuş, J. Chromatogr. Sci., 2012, 50, 615-619.

56. A. Itohda, K. Tsutsumi, H. Imai, M. Iwao, T. Kotegawa and K. Ohashi, J. Chromatogr. B., 2012, 904, 88-92.

57. M.A. Abounassif, M.M. Hefnawy and G.A.E. Mostafa, Monatsh Chem., 2012, 143, 365-371.

58. A. Shrivastava and V.B. Gupta, Sci. Pharm., 2012, 80, 619-631.

59. D. Cai and Q. Zhang, Asian J. Chem., 2012, 24, 315-318. 60. Z. Wang, Z. Wang, J. Wang, C. Chen, X. Chen and L.

Hu, Latin Am. J. Pharm., 2012, 31, 162-166. 61. D.S. Patel, N. Sharma, M.C. Patel, B.N. Patel, P.S.

Shrivastav and M. Sanyal, J. Pharm. Biomed. Anal., 2012, 66, 365-370.

62. A.G. Jangid, R.H. Tale and V.V. Vaidya, Biomed. Chromatogr., 2012, 26, 95-100.

63. Q. He, M. Shi, X. Liu, Y. Sun, L. Hu, Y. Yang, J.P. Fawcett, J. Gu and L. Zhao, J. Chromatogr. B., 2012, 891-892, 7-11.

64. R.N. Rao, S.S. Raju, R.M. Vali and G.G. Sankar, J. Chromatogr. B., 2012, 902, 47-54.

65. H.-G. Lou, Z.-R. Ruan and B. Jiang, J. Liq. Chromatogr. Related Technol., 2012, 35, 1027-1037.

66. A. Kumar, P.R.P. Verma, T. Monif, A.H. Khuroo, S.S. Iyer and A.K. Singh, J. Liq. Chromatogr. Related Technol., 2012, 35, 59-78.

67. D.P. Patel, P. Sharma, M. Sanyal, P. Singhal and P.S. Shrivastas, Biomed. Chromatogr., 2012, 26, 1509-1518.

68. V.K. Karra, N.R. Pilli, S.R. Polagani, J.K. Inamadugu and J.V.L.N.S. Rao, J. Pharm. Biomed. Anal., 2012, 66, 211-217.

69. V.K. Karra, R. Mullangi, N.R. Pilli, J.K. Inamadugu, V.B. Ravi and J.V.L.N.S. Rao, Biomed. Chromatogr., 2012, 26, 1552-1558.

70. K. Chen, J. Zhang, S. Liu, D. Zhang, Y. Teng, C. Wei, B. Wang, X. Liu, G. Yuan, R. Zhang, W. Zhao and R. Guo, J. Chromatogr. B., 2012, 899, 1-7.

71. S.-H. Kim and H.J. Lee, J. Pharm. Invest., 2012, 42, 177-184.

72. S.M. Khamanga and R.B. Walker, Talanta, 2011, 83, 1037-1049.

73. S. Ahmed, N.N. Atia and N.A. Mohamed, Talanta, 2011, 84, 666-672.

74. F. Elsebaei and Y. Zhu, Talanta, 2011, 85, 123-129. 75. S. Soltani and A. Jouyban, Asian J. Chem., 2011, 23,

1728-1734. 76. N.Y. Khalil, T.A. Wani, M.A. Abunassif and I.A.

Darwish, J. Liq. Chromatogr. Related Technol., 2011, 34, 2583-2595.

77. F. Coudoré, L. Harvard, S. Lefeuvre, E.M. Billaud, P. Beaune, G. Bobrie, M. Azizi, P. Prognon and S. Laurent, Chromatographia, 2011, 74, 559-565.

78. M. Iqbal and K.A. Al-Rashood, Clin. Res. Regul. Aff., 2011, 28, 7-13.

79. B. Chatterjee, A. Das and T.K. Pal, Asian J. Chem., 2011, 23, 1334-1336.

80. N. Kishikawa, M. Ohkuma, M. Wada, K. Ohyama, R. Ikeda, K. Nakashima and N. Kuroda, J. Chromatogr. A, 2011, 1218, 3002-3006.

81. F. Nasir, Z. Iqbal, A. Khan, L. Ahmad, Y. Shah, A.Z. Khan, J.A. Khan and S. Khan, J. Chromatogr. B., 2011, 879, 3434-3443.

82. V.K. Gupta, R. Jain, O. Lukram, S. Agarwal and A. Dwivedi, Talanta, 2011, 83, 709-716.

83. Y. Li, R. Cleary, M. Kellogg, J.S. Soul, G.T. Berry and F.E. Jensen, J. Chromatogr. B., 2011, 879, 998-1002.

84. N.R. Pilli, J.K. Inamadugu, R. Mullangi, V.K. Karra, J.R. Vaidya and J.V.L.N.S. Rao, Biomed. Chromatogr., 2011, 25, 439-449.

85. Y. Jiang, F. Yan, B. Di, F. Feng, L. You, L. Huang and J. Lu, J. Pharm. Biomed. Anal., 2011, 55, 527-532.

86. Y. Liu, H. Li, H. Luo, Z. Lin and W. Luo, Chromatographia, 2011, 73, 1183-1188.

87. R. Nirogi, V. Kandikere, P. Komarneni, R. Aleti, R. Boggavarapu and P. Madala, Biomed. Chromatogr., 2011, 25, 1319-1326.

88. J. Ma, G. Lin, X. Wang, J. Li, X. Wang and L. Hu, J. Liq. Chromatogr. Related Technol., 2011, 34, 307-316.

89. G. Ling, P. Zhang, J. Sun, W. Zhang, Q. Fu, T. Zhang, Y. Deng and Z. He, Biomed. Chromatogr., 2011, 25, 963-969.

90. X. Shi, M. Liu, M. Sun, Q. Wang, W. Liu and D. Cao, J. Pharm. Biomed. Anal., 2011, 56, 1101-1105.

91. R. Liu, Z. Teng, C. Yuan, M. Huan, X. Liu and S. Zhou, J. Liq. Chromatogr. Related Technol., 2011, 34, 1800-1810.

92. D. Wang, K. Jiang, S. Yang, F. Qin, X. Lu and F. Li, J. Chromatogr. B., 2011, 879, 1827-1832.

Analytical applications on antihypertensive drugs 445

93. Q. Si, Y.-C. Chen, L.-H. Huang, Y. Cheng, H. He and X.-Q. Liu, J. China Pharm. Univ., 2011, 42, 136-140.

94. M. Stolarczyk, A. Maślanka and A. Apola, J. Krzek, Acta Pol. Pharm., 2013, 70, 967-976.

95. S.M. Gizawy, L.I. Bebawy, O.H. Abdelmageed, M.A. Omar, S.M. Deryea and A.M. Abdel-Megied, J. Liq. Chromatogr. Related Technol., 2013, 36, 1323-1339.

96. M. Sharma, C. Kothari, O. Sherikar and P. Mehta, J. Chromatogr. Sci., 2014, 52 (1), 27-35.

97. R.A. Ammar, A.M. El-Brashy and T.N. Al-Sahly, Asian J. Chem., 2014, 26, 57-62.

98. A. Kavathia and M. Misra, Arabian J. Chem., 2013, DOI: 10.1016/j.arabjc.2013.11.043.

99. S. Gherman, D. Zavastin, A. Spac and V. Dorneanu, Rev. Chim., 2013, 64, 1224-1228.

100. L. Sbarcea, L. Udrescu, L. Dragan, C. Trandafirescu, Z. Szabadai and M. Bojita, Farmacia, 2013, 62 , 107-118.

101. H.W. Darwish, Chem. Cent. J., 2013, 7, Article number 22.

102. N. Al-Arfaj, W. Al-Onazi and A. Al-Brashy, Asian J. Chem., 2013, 25, 719-725.

103. Z. Moldovan, Rev. Roum. Chim., 2012, 57, 721-727. 104. F. Belal, A.M. El-Brash, N. El-Enany and M.M. Tolba, J.

Liq. Chromatogr. Related Technol., 2012, 35, 1779-1797. 105. M. Čakar and G. Popović, J. Serb. Chem. Soc., 2012, 77,

1437-1442. 106. F. Hacioglu and A. Önal, J. Chromatogr. Sci., 2012, 50,

688-693. 107. I.A. Darwish, T.A. Wani, N.Y. Khalil, A.-A. Al-Shaikh

and N. Al-Morshadi, Chem. Cent. J., 2012, 6, Article number 1.

108. A.D. Gudruman, A. Murarąu and V. Dorneanu, Farmacia, 2012, 60, 634-641.

109. C. Li, S. Liu, Z. Liu and X. Hu, J. Fluoresc., 2011, 21, 723-732.

110. M.B. Gholivand and M. Khodadadian, Electroanalysis, 2013, 25, 1263-1270.

111. P.B. Desai and A.K. Srivastava, Sens. Actuators B., 2013, 176, 632-638.

112. H. Karimi-Maleh, S. Mehdipour-Ataei, M. Hatami and M.A. Khalilzadeh, J. Anal. Chem., 2014, 69, 162-168.

113. I.H. Taşdemir and E. Kılıç, Int. J. Electrochem. Sci., 2014, 9, 1758-1770.

114. P.E. Erden, I.H. Taşdemir, C. Kaçar and E. Kılıç, Int. J. Electrochem. Sci., 2014, 9, 2208-2220.

115. E. Molaakbari, A. Mostafavi and H. Beitollahi, Mater. Sci. Eng. C., 2014, 36, 168-172.

116. D. Habibi, A.R. Faraji and A. Gil, Sens. Actuators B., 2013, 182, 80-86.

117. M.C.G. Santos, C.R.T. Tarley, L.H. Dallantonia and E.R. Sartori, Sens. Actuators B., 2013, 188, 263-270.

118. N. Gürler, D.E. Bayraktepe, Z. Durmus and E. Dınç, Rev. Chim., 2013, 64, 1211-1217.

119. M Çelebier, I Süslü and S Altınöz, Anal. Methods, 2013, 5, 1301-1306.

120. N.A. Alarfaj, J. Anal. Chem., 2013, 68, 335-340. 121. G.G. Oliveira, D.C. Azzi, F.C. Vicentini, E.R. Sartori and O.

Fatibello-Filho, J. Electroanal. Chem., 2013, 708, 73-79. 122. H. Beitollahi and F. Ghorbani, Ionics, 2013, 19, 1673-

1679. 123. M.C.G. Santos, C.R.T. Tarley, L.H. Dallantonia and E.R.

Sartori, Sens. Actuators B., 2013, 188, 263-270. 124. S. Tajik, M.A. Taher and H. Beitollahi, J. Electroanal.

Chem., 2013, 704, 137-144. 125. J. Vahedi, H. Karimi-Maleh, M. Baghayeri, A.L. Sanati,

M.A. Khalilzadeh and M. Bahrami, Ionics, 2013, 19, 1907-1914.

126. B. Pérez-Mella and A. Álvarez-Lueje, Electroanalysis, 2013, 25, 2193-2199.

127. M. Fouladgar and H. Karimi-Maleh, Ionics, 2013, 19, 1163-1170.

128. M.B. Gholivand and M. Amiri, J. Electroanal. Chem., 2013, 694, 56-60.

129. A Mohammadi, AB Moghaddam, K Eilkhanizadeh, E Alikhani, S Mozaffari and T Yavari Micro Nano Lett., 2013, 8, 413-417.

130. A.A. Ensafi, M. Monsef, B. Rezaei and H. Karimi-Maleh, Anal. Methods, 2012, 4, 1332-1338.

131. I.H. Taşdemir, A. Ece and E. Kiliç, Curr. Pharm. Anal., 2012, 8, 339-348.

132. Z.Z. Stoiljković, M.L. Avramov Ivić, S.D. Petrović, D.Z. Mijin, S.I. Stevanović, U.C. Lačnjevac and A.D. Marinković, Int. J. Electrochem. Sci., 2012, 7, 2288-2303.

133. S.J. Malode, J.C. Abbar, N.P. Shetti and S.T. Nandibewoor, Electrochim. Acta, 2012, 60, 95-101.

134. A. Salmanipour, M.A. Taher and H. Beitollahi, Anal. Methods, 2012, 4, 2982-2988

135. H. Karimi-Maleh, M.A. Khalilzadeh, Z. Ranjbarha, H. Beitollahi, A.A. Ensafi and D. Zareyee, Anal. Methods, 2012, 4, 2088-2094.

136. J.B. Raoof, R. Ojani and M. Baghayeri, Chin. J. Catal., 2011, 32, 1685-1692.

137. M. Fouladgar, Int. J. Electrochem. Sci., 2011, 6, 705-716. 138. V.K. Gupta, R. Jain, S. Agarwal, R. Mishra and A.

Dwivedi, Anal. Biochem., 2011, 410, 266-271. 139. S. Shahrokhian and S. Rastgar, Electrochim. Acta, 2011,

58, 125-133. 140. M.B. Gholivand and M.H. Parvin, J. Electroanal. Chem.,

2011, 660, 163-168. 141. H.S. El-Desoky, M.M. Ghoneim and A.D. Habazy, J.

Braz. Chem. Soc., 2011, 22, 239-247.

446 Cansu Yakar et al.