13
Problem Session (5) 2017.10.28. Hiroaki Matoba O OBoc O Me 1. BF 3 ·OEt 2 ,CH 2 Cl 2 ,-78°C; allylTMS, -78 to -20 °C 2. MsCl, Et 3 N,CH 2 Cl 2 ,0°Ctort 81% (2 steps) 3. BDSB, MeNO 2 ,-25°Ctort,72% 4. DIBAL, toluene, -78 °C to rt, 46% O Br O H Me HO OBn O O 1. NaN(TMS) 2 ,THF,-80°C; A,-80to-15°C; B, NaN(TMS) 2 , 18-crown-6 -80to-70°C,64% 2. Pb(OAc) 4 , MeOH, benzene 0 °C, 95% TBSO PhMe 2 Si CHO MeO 2 C OBn O OH O SH O 1. C,BF 3 ·OEt 2 ,CH 2 Cl 2 ,-78°C quant., dr = 15:1 2. MeONHMe·HCl, i-PrMgCl, THF, -20 °C 3. Ac 2 O, DMAP, CH 2 Cl 2 , 67% (2 steps) 4. DIBAL, THF, -78 °C, 92% 5. D, DBU (cat.), IBX, DMSO, 73% 6. Cu(hfacac) 2 (10 mol%), CH 2 Cl 2 reflux, 60% O Me AcO OTBDPS O CO 2 Et S Et S Et Br SbBrCl 5 BDSB SiMe 2 t-Bu O PhMe 2 Si A O N Ph SO 2 Ph B MeO OMe OTBDPS C N 2 OEt O D O O F 3 C F 3 C Cu II O O CF 3 CF 3 Cu(hfacac) 2 Please provide each reaction mechanisms and explain the stereoselectivities. 1-1 2-1 3-1 1-2 2-2 3-2

Problem Session (5)

Embed Size (px)

Citation preview

Problem Session (5) 2017.10.28. Hiroaki Matoba

O

OBoc

OMe

1. BF3·OEt2, CH2Cl2, -78 °C;allylTMS, -78 to -20 °C

2. MsCl, Et3N, CH2Cl2, 0 °C to rt81% (2 steps)

3. BDSB, MeNO2, -25 °C to rt, 72%4. DIBAL, toluene, -78 °C to rt, 46%

OBr

O

H

Me

HO

OBn

O

O

1. NaN(TMS)2, THF, -80 °C;A, -80 to -15 °C;B, NaN(TMS)2, 18-crown-6

-80 to -70 °C, 64%

2. Pb(OAc)4, MeOH, benzene

0 °C, 95%

TBSO

PhMe2Si CHO

MeO2C

OBn

O

OH

O

SH

O

1. C, BF3·OEt2, CH2Cl2, -78 °C

quant., dr = 15:1

2. MeONHMe·HCl, i-PrMgCl, THF, -20 °C

3. Ac2O, DMAP, CH2Cl2, 67% (2 steps)

4. DIBAL, THF, -78 °C, 92%

5. D, DBU (cat.), IBX, DMSO, 73%

6. Cu(hfacac)2 (10 mol%), CH2Cl2reflux, 60%

O

Me

AcOOTBDPS

O

CO2Et

S

EtSEt

Br

SbBrCl5

BDSB

SiMe2t-Bu

O

PhMe2Si

A

O

NPh SO2Ph

B

MeO

OMe

OTBDPS

C

N2

OEt

O

D

O

O

F3C

F3C

CuIIO

O

CF3

CF3Cu(hfacac)2

Please provide each reaction mechanisms and explain the stereoselectivities.

1-1

2-1

3-1

1-2

2-2

3-2

Topics: Synthetic studies of Lauroxocanes

Introduction

Laurencia C15 acetogenins

Isolated from Laurencia sp. (red algae)

cyclic bromoether core (4-12 membered ring)

Laroxocanes

8-membered ring ether

the largest subset of the Laurencia C15 acetogenins family

Laurencin

Isolation

Laurencia glandulifera (Irie et al. TL, 1965, 16, 1091.) etc...

Total syntheses (method for constructionof oxecene core)

Masamune et al. TL, 1977, 18, 2507. (ring expansion: from bicyclo [3.3.1] nonane)

Murai and Tsushima TL, 1992, 33, 4345. (ring expansion: from bicyclo [4.2.0] octane)

Overman et al. JACS, 1995, 117, 5958. (acetal-vinylsulfide cyclizayion)

Holmes et al. JACS, 1997, 119, 7483. (Baeyer-Villiger oxidation: from cycloheptenone)

Crimmins and Emmitte OL, 1999, 1, 2029. (RCM)

Fujiwara et al. TL, 2005, 46, 6819. (RCM)

Kim et al. OL, 2005, 7, 75. (intramolecular amide enolate alkylation)

Formal syntheses

Palenzuela et al. Synlett, 1996, 983. (SN2 reaction of -sulfonyl anion to epoxide)

Hofmann and Krüger JACS, 1997, 119, 7499. (intramolecular allylboration)

Crimmins and Choy JACS, 1999, 121, 5653. (RCM)

Pansare and Adsool OBC, 2008, 6, 2011. (RCM)

Martin et al. JOC, 2010, 75, 6660. (RCM)

West et al. OL, 2017, 19, 552. (Stevens rearrangement: from bicyclo [4.3.0] nonane)

Laurefucin

Isolation

Laurencia subopposita (Wratten and Faulkner JOC, 1977, 42, 3343.) etc...

Total synthesis

Kim et al. JACS, 2008, 130, 16807. (intramolecular amide enolate alkylation)

Formal synthesis

Snyder et al. JACS, 2012, 134, 17714. (ring expansion: from bicyclo [3.3.0] octane)

Laurallene

Isolation

Laurencia nipponica (Fukuzawa and Kurosawa TL, 1979, 20, 2797.) etc...

Total syntheses

Crimmins and Tabet JACS, 2000, 122, 5473. (RCM)

Suzuki et al. TL, 2003, 44, 3175. (cyclization of hydroxy epoxide)

Kim et al. JACS, 2012, 134, 20178. (RCM)

Formal syntheses

Takeda et al. OL, 2008, 10, 1803. ([3+4] annulation)

Takeda et al. JOC, 2010, 75, 3941. ([3+4] annulation)

Problem Session (5) 2017.10.28. Hiroaki Matoba

O

Me

BrOAc

laurencin

OBr

O

H

Me

HO

laurefucin

Br

O

laurallene

O

Br

HH

HH 1

Answer

1. Formal synthesis of (±)-Laurefucin Snyder et al. JACS, 2012, 134, 17714key: Ring-expanding bromoetherification

H

O

O

OBoc

OMe

1. BF3·OEt2, CH2Cl2, -78 °C;allylTMS, -78 to -20 °C

2. MsCl, Et3N, CH2Cl2, 0 °C to rt81% (2 steps)

3. BDSB, MeNO2, -25 °C to rt, 72%4. DIBAL, toluene, -78 °C to rt, 46%

OBr

O

H

Me

HO

O

OBoc

MeO

BF3·OEt2

O

OBoc

MeOF3B

SiMe3

HOF3B

SiMe3

ClS

O O

H NEt3SO

O

EtS

Et

Br

SbBrCl5

BDSB

BDSB

O

OBoc

MeMsO

H

Br

discussion

O

O

HMsO

Br

Me

Ot-Bu

O

O HOMs

Me

Br

OO

Ot-Bu

H2O

O HOMs

Me

Br

OO

O

step 3

1-1 1-2

1-1 1-3

Felkin-Anh model

O

OBoc

MeOF3B

1-4

HH SiMe3

H2O

O

OBoc

MeHO

1-5

H

step 1

O

OBoc

MeMsO

H±H+

step 21-6

1-7 1-8

1-9 1-102

HOMs

Me

Br

OO

OAli-Bu2

DIBAL

1-11

1-12 1-13

O HOMs

Me

Br

Oi-Bu2AlO

Ali-Bu2

1-14

OBr

O

H

Me

i-Bu2AlO

1-15

H2O

OBr

O

H

Me

HO

1-2

OBr

O

H

Me

HO

laurefucin

2 steps

Kim et al

JACS, 2008, 130, 16807.

O HOMs

Me

Br

OO

OAl

i-Bu i-Bu

H

O HOMs

Me

Br

OO

OAl

i-Bu i-Bu

H

O HOMs

Me

Br

OO

OAl

H

1-10

O

3

Discussion: BDSB mediated cyclization

very effective reagent for cation- cyclization ineffective reagent for cation- cyclization

1. Properties and reactivity of BDSB (Snyder et al. ACIE, 2009, 48, 7899. JACS, 2010, 132, 14303.)

O

OBoc

MeMsO

H

O

OBoc

MeMsO

H

Br

O

OBoc

MeMsO

H

Br

O

O

HMsO

Br

Me

Ot-Bu

O

O

O

HMsO

Br

Me

Ot-Bu

O

O

HBr

OMs

H

O

H

Br

OMs

H H

2. Regio and stereoselectivity

1-6 1-7di-epi-1-7

1-8di-epi-1-8

disubstitutedmore electron rich olefin

di-epi-1-8 1-8

4

O HOMs

Me

Br

OO

O

di-epi-1-10

O

H

O

1-10

O

H

O

too far

OBr

Me

OO

HOMs

H

H

O

Br

R

BrO

Ot-Bu

R

5-exo 6-exo

1-16

O

Ot-Bu

discussion

t-BuMe2Si

PhMe2Si

O

O

OBnO

2-1 2-2

2-1

2. Formal synthesis of (+)-Laurallene Takeda et al. OL, 2008, 10, 1803.key: Brook rearrangement mediated [3+4] annulation

SiMe2t-Bu

O

PhMe2Si A

2-3

2-4 2-5

2-8step 1

Pb

OAc

OAc

OAcAcOIV

O

SiMe2Ph

O

TBSO

H H OBn

2-7

HOBn

OTBS

Si

O

O

H

Ph

O

N

Ph

SO2Ph

HOBn

OTBS

Si

O

O

H

Ph

OH

OBn

O

O

1. NaN(TMS)2, THF, -80 °C;A, -80 to -15 °C;B, NaN(TMS)2, 18-crown-6

-80 to -70 °C, 64%

2. Pb(OAc)4, MeOH, benzene

0 °C, 95%

TBSO

PhMe2Si CHO

MeO2C

OBn

O

HOBn

O

O

TMS TMSN

Na

OBn

O

O

SiMe2Ph

O

t-BuMe2Si OBn

O

O

O

O

TBSO

H H OBn

SiMe2Ph

too far

O

SiMe2Ph

O

TBSO

H H OBn

2-6

HOBn

OTBS

Si

O

O

H

Ph

ON

Ph

SO2Ph

2-5a 2-5b

2-6

HBrook rearr./

cyclopropanation

Cope rearr.

5

2-9 2-10

2-11

-Pb(OAc)2

2-2

TBSO

PhMe2Si CHO

MeO2C

OBn

O

2-2

Discussion: [3+4] annulation

1. 1,2-addition

Na

OBn

O

O

SiMe2t-Bu

O

PhMe2Si A

2-3

SiMe2Ph

O

t-BuMe2Si OBn

O

O

2-4 and 2-4a

O

H H

OBn

H

TBSO

O

SiMe2Ph

2-5-TS

SiMe2Ph

TBSO OBn

O

O

2-4a'

favoured 1,2-adduct

trans

2-5a-TS

O

H H

TBSO

OH

H

OBn

SiMe2Ph

SiMe2Ph

TBSO OBn

O

O

2-4'

disfavoured 1,2-adduct

cis

OBn

O

2-12

TBSO

TBSO

10 steps 11 steps

Crimmins and Tabet

JACS, 2000, 122, 5473.

Br

O

laurallene

O

Br

HH

HH

HOBn

OTBS

Si

O

O

H

Ph

O Pb(OAc)2IV

OAc

OBn

OTBS

Si

O

O

H

Ph

O Pb(OAc)2IV

OBn

OTBS

PhMe2Si

OH

OBn

OTBS

PhMe2SiOHC

CO2Me

OH

H

SiMe2Ph

TBSO OBn

O

O

2-4' and 2-4a'

MeOH

MeO

OO

PbIv(OAc)2

6

2. Brook rearrangement -> 1,2-addition

SiMe2Ph

O

t-BuMe2Si OBn

O

O

2-4

OBnO

2-5

H

O

O

t-BuMe2Si

PhMe2Si

Experiments to trap the intermediate (Takeda et al. JACS, 1995, 117, 6400. JACS, 1998, 120, 4947.)

O

SiMe2t-Bu

Me3Si

OLi

OH

Me3Si

t-BuMe2SiO O

TBSO

SiMe3

-80 °C, 30 min

2-13

2-14

2-15

47%

2-17

30%

2-16

0%

OH

SiMe3

TBSO

LDA, -80 °C, 5 min2-17: 25%2-16: 0%2-15: 67%

O

SiMe2t-Bu

Me3Si

OLi

-80 to -30°C40%

2-13

2-18

OH

SiMe3

TBSO

2-19

Attempt to isolate divinylcyclopropane for vinyl silane

Isolation of related cyclopropane intermediate

O

SiMe2t-Bu

Bu3Sn

OLi

-80 to -45°C

2-20

2-21

OH

SnBu3

TBSO

2-22

24%

Br

Br O

TBSO

2-23

5%

TBSO

2-24

16%

O Br

Bu3Sn

+ 2-20 (32%)

Isolation of divinylcyclopropane for vinyl stannane

Internal O-Si coordinated structure invokes the stereoselectivity.

7

OH

O

SH

O 1. C, BF3·OEt2, CH2Cl2, -78 °C, quant.

2. MeONHMe·HCl, i-PrMgCl, THF, -20 °C

3. Ac2O, DMAP, CH2Cl2, 67% (2 steps)

4. DIBAL, THF, -78 °C, 92%5. D, DBU (cat.), IBX, DMSO, 73%

6. Cu(hfacac)2 (10 mol%), CH2Cl2reflux, 60%

O

Me

AcOOTBDPS

O

CO2Et

S

MeO

OMe

OTBDPSMeO

OMe

OTBDPS

MeOOTBDPS

OH

O

SH

O

OH

O

S

O

TBDPSO

OMe

OH

O

S

O

TBDPSO

OMe

OH

O

S

O

TBDPSO

O

O

S

O

TBDPSO

O SO

O

TBDPSO

O

O

S

O

TBDPSO

O SO

O

TBDPSO

OH

O

S

O

TBDPSO

3. Formal synthesis of (+)-Laurencin West et al. OL, 2017, 19, 552.key: Stevenes rearrangement of sulfonium ylide

3-1 3-2

3-8

favoured

3-9

disfavoured

C

F3B

BF3

BF3·OEt2

3-3

3-4 3-5

3-1BF3·OEt2

3-73-6

3-7step 1

8

O

O

S

O

TBDPSO

O S

TBDPSO

OH

O

NOMe

O S

TBDPSO

OAc

O

NOMe

O S

TBDPSO

OAc

O

NOMe

AlH

i-Bu i-Bu

Al

i-Bu i-Bu

N2

OEt

O

O S

TBDPSO

OAc

O

CO2Et

N2

HN

N

O S

TBDPSO

OAc

O

CO2Et

N2

3-8

NOMeClMg

3-9

O S

TBDPSO

OAc

O

N2

OEt

O

H

D

DBU

O S

TBDPSO

OAc

OH

CO2Et

N2

3-11

3-12 3-13

3-14 3-15OI

O

OOH

step 2

O

O ON

N

O

O S

TBDPSO

OAc

O

NOMe

3-10 step 3

Al

H

step 4

I

OHOH

O

O

H

O S

TBDPSO

OAc

O

CO2Et

N2

3-173-16 step 5

DBU

9

O S

TBDPSO

OAc

O

CO2Et

N

N

O S

TBDPSO

OAc

O

CO2Et

N

N

CuI

O S

TBDPSO

OAc

O

CO2Et

CuI

O S

OAc

O

CuICO2Et

O S

OAc

O

CO2Et

TBDPSO

TBDPSO

O S

OAc

O

CO2Et

TBDPSO

O S

OAc

O

CO2Et

TBDPSO

O

Me

AcOOTBDPS

O

CO2Et

S

3-17 3-21

3-22 3-23

3-24 3-25

3-2 3-2

O

O

F3C

F3C

CuIIO

O

CF3

CF3

3-17

SET

O

O

F3C

F3C

CuIR

O

CO2Et

N

N

3-18

F3C

O O

CF3

Cu(hfacac)2 3-19 3-20

CuI

3-18

Stevens rearr.

solvent cage

O

Me

HOOTBDPS

3-26

8 steps

Holmes et al.

JACS, 1997, 119, 7483.O

Me

BrOAc

laurencin

6 steps

CuI

3-18

10

Discussion:

1. Cu(I) mediated decomposition of diazo compound

1-1. Cu(II) catalyzed cyclopropanation (Kochi et al. JACS, 1973, 95, 3300)

N2

O

OEt

5

CO2EtCu(OTf)2 (0.68 mmol)

1-octene/MeOAc (5/1)

D (mmol)

D 3-27

3-27

(mmol)

0.5

1.0Figure 4 indicated...

After addition of 1 eq. of D to Cu(II), the yield of 3-27 was

less than 20%. (1)

As the addition of D was continued, the yield of 3-27

eventually approached quantitative (based on the

incremental ammount of D added.) (2)

The addition of more Cu(II) caused a sharp drop in the

relative yield of 3-27 (3)

Cu(II) reacts with diazo compound firstly and generateCu(I), which is true active spiecies in this reaction.

1

2

Cu(OTf)2 was added

3

1-2. Reaction of Cu(II) salt and diazo compound (Nozaki et al. Tetrahedron, 1971, 27, 5353.)

PhPh

N2

Ph

OAc

OAc

Ph

Ph

PhCu(OAc)2

DMF/H2O, 25 °C70%

3-28 3-29

11

1-3. UV-VIS spectroscopy of Cu(acac)2 catalyzed cyclopropanation

(Safiullin et al. Kinetics and Ctalysis, 2008, 49, 43.)

MeO2C

N2

OMe

O

Cu(acac)2

CH2Cl2

3-30 3-31

As reaction proceeding, absorbance at 630 nm (derivedfrom Cu(II)) of the reaction mixtures were decreasing.

If, after the reaction, the reaction mixture is exposed toair, the absorbance of the solution will increase nearlyto its initial value.This is evidence that Cu(I) is oxidizedwith oxygen to Cu(II).

2. Solvent effect of Stevens rearrangement (Ollis et al. J. Chem. Soc., Perkin Trans 1, 1983, 1009.)

Ph

NMe2CH2COPh

HMe

Br

Ph*

NMe2CH2COPh*

HMe

Br

Ph HMe

COPhMe2N

Ph* = C6D5

Ph HMe

COPh*Me2N

Ph* HMe

COPhMe2N

3-32 3-32-d10

3-33 3-33-d5-1 3-33-d5-2

3-32:3-32-d10 = 1:1

base, solvent

In more viscous solvent, the reaction exhibits lower intermolecularity and higher stereoselectivity.

Ph* HMe

COPh*Me2N

3-33-d10

Ph HMe

COPhMe2N

Ph HMe

COPh*Me2N

Ph* HMe

COPhMe2N

epi-3-33 epi-3-33-d5-1 epi-3-33-d5-2

Ph* HMe

COPh*Me2N

epi-3-33-d10

crossover (intermolecular) productintra- or intermolecular product

12