88
Manotick Subdivision Stormwater Management Report Type of Document Plan of Subdivision Submission Project Name Manotick Subdivision Project Number OTT00215355A0 Prepared By: J. Fitzpatrick, P.Eng. Reviewed By: B. Thomas, P.Eng. exp Services Inc. 1002650 Queensview Drive Ottawa, ON K2B 8H6 Canada Date Submitted October 2014 (Submission #1) August 2015 (Submission #2)

Manotick Subdivision - City of Ottawa

Embed Size (px)

Citation preview

Manotick Subdivision

Stormwater Management Report

Type of Document

Plan of Subdivision Submission

Project Name Manotick Subdivision

Project Number OTT�00215355�A0

Prepared By: J. Fitzpatrick, P.Eng.

Reviewed By: B. Thomas, P.Eng.

exp Services Inc. 100�2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

Date Submitted October 2014 (Submission #1) August 2015 (Submission #2)

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

EX�i

Legal Notification This report was prepared by exp Services Inc. for the account of 2099116 Ontario Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Exp Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

i

Table of Contents Page

1 Introduction ............................................................................................................ 1

1.1 Overview .................................................................................................................. 1

1.2 Previous Studies ....................................................................................................... 1

1.3 Design Criteria .......................................................................................................... 2

2 Stormwater Management Approach ..................................................................... 2

3 Pre0Development Conditions ................................................................................ 3

4 Proposed Stormwater Management Options ....................................................... 5

4.1 Overall Stormwater Management Approach ............................................................. 5

4.2 Source Controls ........................................................................................................ 6

4.3 Conveyance Controls ............................................................................................... 6

4.4 End�of�Pipe Facilities ................................................................................................ 6

5 Proposed Stormwater Management Plan ............................................................. 7

6 Stormwater Quality ................................................................................................ 8

6.1 Stormwater Quality Enhancement ............................................................................ 8

7 Infiltration Trench/Dry Swale Design .................................................................... 9

7.1 Infiltration Trench Quality Control Requirements ......................................................10

8 Post Development Conditions ............................................................................ 13

8.1 Summary of Post Development Modelling Parameters ............................................13

8.2 Summary of Modeling Results .................................................................................14

8.3 Infiltration Trench Modelling of Storage ....................................................................14

8.4 Swale Velocities ......................................................................................................15

8.5 Culvert Design. ........................................................................................................15

8.6 Temperature Considerations ...................................................................................16

8.7 100�year flood Considerations .................................................................................16

9 Erosion & Sediment Control During Construction ............................................ 17

10 Conclusions .......................................................................................................... 19

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

ii

List of Appendices

Appendix A – Figures

Appendix B – Stormwater Design Sheets

Appendix C – Hydrologic Model Input Files

Appendix D – Hydrologic Model Output Files

Appendix E – Reference Material

List of Tables Page or Appendix

Table 3�1: Pre�Development Stormwater Model Parameters ........................................................................ 4

Table 3�2: Summary of Pre�Development Model Results .............................................................................. 4

Table 7�1: Infiltration Trench Quality Control Design Requirements .............................................................. 9

Table 7�1: Infiltration Trench Requirements ..................................................................................................12

Table 8�1: Post�Development Stormwater Model Parameters ....................................................................13

Table 8�2: Summary of Post�Development Peak Flow Model Results ........................................................14

Table B1: Average Runoff Curve Number (CN) and Runoff Coefficient (C) for Pre�Development .............. B

Table B2: Calculation of Areas for Post�Development Conditions ............................................................... B

Table B3: Average Runoff Curve Number (CN) and Runoff Coefficient (C) for Post�Development ............. B

Table B4: Determination of Storage Volume requirements For Quality Control ........................................... B

Table B5: Infiltration Trench Area & Width Requirements ............................................................................ B

Table B6: Proposed Infiltration Trench – Dry Swale Dimensions ................................................................. B

Table B7: Summary of Catchment Modelling Parameters for Pre�Development Conditions ....................... B

Table B8: Summary of Catchment Modelling Parameters for Post�Development Conditions (1) ................ B

Table B9: Summary of Catchment Modelling Parameters for Post�Development Conditions (2) ................ B

Table B10: SWMHYMO Modelling Parameters for Proposed Swales ........................................................... B

Table B11: Infiltration Trench Rating Curve (Area B1) .................................................................................. B

Table B12: Infiltration Trench Rating Curve (Areas B2A – B2E) ................................................................... B

Table B13: Infiltration Trench Rating Curve (Area B3) .................................................................................. B

Table B14: Infiltration Trench Rating Curve (Area B4) .................................................................................. B

List of Figures

Figure A1: Site Location Plan ........................................................................................................ Appendix A

Figure A2: Proposed Layout Plan ................................................................................................. Appendix A

Figure A3: Pre�Development Stormwater Drainage Plan ............................................................. Appendix A

Figure A4: Post�Development Stormwater Drainage Plan ............................................................ Appendix A

Figure A5: Typical Dry Swale Infiltration Trench Detail ................................................................. Appendix A

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

1

1 Introduction

1.1 Overview

Exp Services Inc. was retained by 2099116 Ontario Inc. to provide civil engineering design services for a rural subdivision referred to as Manotick Subdivision, located in the northern half of Lot, Concession “A”, in the former Township of North Gower, now in the City of Ottawa. This report documents the means by which stormwater management will be provided for the proposed development and should be read in conjunction with the latest engineering drawings. The purpose of this report is to design, assess and document the technical effectiveness of this proposed drainage/stormwater management plan. This report will be included as part of the application for an Environment Compliance Approval (ECA) for the stormwater management works of this proposed subdivision. The location of the proposed development is shown in Figure A1 in Appendix A, whereas Figure A2 shows the proposed layout of the 16 estate�lot subdivision. The site is bounded by existing Phase 1 of Maple Creek Estates to the south, future Phase 2 of Maple Creek Estates to the north and west and Mud Creek to the east. At the current time, more than half of Phase 1 of Maple Creek Estates is established with rural homes, whereas all of Phase 2 still remains undeveloped. Mud Creek, located at the eastern edge of the subdivision and flows in a northerly direction.

1.2 Previous Studies

The site is located within the Mud Creek Watershed. Previous sub�watershed and engineering reports were reviewed and referenced, which include:

• Village of Manotick Environmental Management Plan, Special Design Area (SDA) Component, MMM, WESA, dated June 2005.

• Jock River Reach 2 & Mud Creek Subwatershed Study, Existing Conditions Report (ESR), Volume 1 and Volume 2, May 2005

• Geotechnical Investigation, Proposed Residential Subdivision, McManus Avenue, Manotick, Ontario, by Houle Chevrier Engineering, July 11, 2013.

• Drainage and Stormwater Management Report, Maple Creek Estates, dated February 4, 2009 by David McManus Engineering Ltd.

In addition, various design documents were referred to in preparing this report including:

• City of Ottawa Sewer Design Guidelines, October 2012

• SWMHYMO User’s Manual.

• Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003 (SMPDM).

• National Pollutant Discharge Elimination System (NPDES), United States Environmental Protection Agency, USEPA.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

2

• Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 (Credit Valley Conservation and Toronto and Region Conservation (LIDSMPDG)

• Performance Evaluation of Grass Swales and Perforated Pipe Drainage Systems, JFSA, dated 2006.

1.3 Design Criteria

The SDA Report was reviewed to ensure that any works for this proposed 16 lot subdivision will meet the objectives and requirements of the subwatershed study. The following summarizes the various requirements that were derived from the report that pertain to the stormwater management design:

• Quality Control: Provide Enhanced Level of Protection (80% long�term TSS removal) for treatment of storm water runoff. The specific volume (m3/ha) will depend on the imperviousness of the proposed development.

• Measures to avoid discharging water with an elevated temperature are required. Temperature discharge of stormwater should be less than 22 ºC. Implementing end of pipe, stormwater detention facilities, if selected, should be shaded as open bodies of water tend to heat the stored water to above the desired 22 ºC temperature. Underground infiltration devices may be suitable for areas near the creek that have silty sand.

• Quantity / Flood Control: Stormwater management for quantity control of major storms (1 in 2 year to 1 in 100 year) is not required. It was noted that implementing post to pre�development flow attenuation would result in increased peak flow levels at key downstream locations.

• Erosion control storage should not be implemented. It was noted in the report that erosion control would not be effective in reducing downstream erosion, as delaying flows in the Manotick SDA basin would cause flows to coincide with those from the upstream watersheds. A percent imperviousness of 10% should be targeted for Draft Plan within the Manotick SDA.

• The preferred design alternative, as noted in Section 5.2.4, was to use either enhanced grassed swales with multiple outlets, or an end of pipe extended detention wet pond.

2 Stormwater Management Approach Stormwater design will include the use of Best Management Practices (BMPs). Rather than using typical roadside ditches, roadside swales with subsurface storage trenches will be used. These dry swales, which include a perforated underdrain, will be designed to provide removal of suspended solids and promote infiltration in order to target 80% TSS removal. Although post�development peak flows from the site are not required to be controlled to pre�development levels, the use of an infiltration conveyance system will reduce peak flows. A SWMHMYO hydrologic computer model was developed for the study area to examine the pre�development and post�development runoff rates based on the new plan of subdivision. Stormwater

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

3

Management Practices (SWMPs) are proposed in accordance with the guidelines of MOE’s “Stormwater Management Planning and Design Manual”, Low Impact Development Stormwater Management Planning and Design Manual, and City of Ottawa “Sewer Design Guidelines. Additional information on the proposed stormwater design is provided in the preceding sections.

3 Pre0Development Conditions

Currently the 6.82 hectare site consists of pasture land, and a small amount of treed areas around the perimeter. Storm water runoff from the property currently drains easterly towards Mud Creek. A review of the topographic contours of the site reveals that drainage flows to Mud Creek at two outlet locations. The two outlets subdivide the site drainage boundary in half. The pre�development drainage boundaries are shown in Figure A3 in Appendix A.

From a review of the topography of the surrounding lands, the proposed 6.82 hectare site is relatively self�contained. Runoffs from surrounding developments have their own outlets to Mud Creek both upstream and downstream of the subdivision along Mud Creek. Therefore, no external flows from other lands were accounted for in the stormwater management (SWM) analysis.

A SWMHMYO computer model was developed for the study area to examine the pre�development (and post�development) runoff rates of the area. Calculations for runoff were determined using the CALIB NASHHYD command within the SWMHYMO hydrologic model. This hydrograph command is used to simulate runoff from rural areas for areas with a percent imperviousness of less than 20%. The command is based on the Nash’s synthetic instantaneous unit hydrograph which views the watershed as a series of linear reservoirs. The rainfall losses were simulated based on the Soil Conservation Service (SCS) runoff curve method.

The runoff curve number is a procedure for hydrologic abstraction developed by the USDA Soil Conservation Service. For this method, the effective rainfall depth is a function of the total rainfall depth and an abstraction parameter referred to as the runoff curve number or CN. The CN varies in range of 1 to 100 and is a function of the following properties: (1) hydrologic soil type, (2) land use, (3) ground surface condition and (4) antecedent moisture condition.

A review of the geotechnical and SDA reports was completed in order to determine the actual onsite hydrologic soil type. The soil just below the topsoil layer indicates the majority of the site consists of silty sand and silt clay. From Chapter 7 – Hydrologic Soil Groups, from the National Engineering Handbook, of the Natural Resources Conservation Service (formerly the Soil Conservation Service), soils of this type are described as Group C soils. The following parameters were used in the SWMHYMO model to calculate pre�development runoff rates:

• Hydrologic Soil Group Soil Group C

• Antecedent Moisture Condition AMCII (normal)

• Runoff Curve Numbers (CN)

Land Use Hydrologic Condition Curve Number Meadow�Continuous Grass good condition CN = 71 Protected from grazing and Generally mowed for hay

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

4

The CN value used in the SDA report for pre�development conditions was 73 under normal AMC conditions. The CN value in the SDA report was raised to 78 for model calibration, however this was for an overall larger area. Using a runoff curve number of CN=71 is consistent with the overall Subwatershed Report, as minor differences in soil type, land use and cover is expected. The slope of each drainage area was determined using the 85/10 Average Slope Method per Equation B2.2 of the MTO Drainage Manual while Time of Concentration (Tc) was determined using the Airport Formula. The Time to Peak (Tp) was estimated to be 0.6 x Tc.

The parameters used to define each pre�development sub catchments in the SWMHYMO model are provided in Table 3�1 below.

Table 301: Pre0Development Stormwater Model Parameters

Area Area (ha)

CN IA

(mm)

Average Length

(m)

Slope %

Runoff Coefficient

(C)

Tc (hrs)

Tp (hrs)

A1 3.196 71 6.5 335 0.78 0.20 0.97 0.58

A2 3.619 71 6.5 375 0.92 0.20 0.97 0.58

Total = 6.815

As noted, all catchments were modelled using the CALIB NASHYD command. This command is used to simulate the runoff from a rural area and allows for user input of initial abstraction (IA) and uses the Soil Conservation Service (SCS) runoff curve number method.

Table 3�2 below summarizes the results of the pre�development conditions for the 12 hour and 24 hour SCS Type II storm hyetographs. Initial abstraction (IA) values for pervious surfaces were taken as 6.5mm, which is similar to the value (4.67mm) used in the City of Ottawa for grassed areas, but matches the value of 6.5 mm used in the SDA watershed report.

Table 302: Summary of Pre0Development Model Results

Period Storm Duration

and Type

Peak Flow (m3/sec)

Area A1 (North Outlet) 3.196 hectares

Area A2 (South Outlet) 3.619 hectares

Total To Mud Creek 6.815 hectares

5 year 12�hour SCS, Type II 0.068 0.077 0.144

5 year 24�hour SCS, Type II 0.070 0.079 0.149

100 year 12�hour SCS, Type II 0.172 0.195 0.368

100 year 24�hour SCS, Type II 0.173 0.196 0.369

From the results the most critical storm is the 24�hour SCS Type II storm distribution which predicts the highest peak flows. Therefore post�development flows were modelled using the 24�hour SCS storm under various return periods (25mm, 2�year, 5�year, 10�year, 25�year and 100�year). For comparison purposes

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

5

the proposed 6.82 hectare site is located within catchment # 107A from the SDA Report. The estimated 100�year peak flow from the 71 hectare catchment 107A was 3.01 m

3/sec. As the proposed 6.82 hectare

subdivision is approximately 10% of the overall catchment, the corresponding proportion of the 100�year peak flow would be 300 L/sec. The slightly higher peak flow is the result of the small variation in the time to peak used. The actual time to peak estimate of 0.58 hours is more appropriate, as actual slopes were used. The time to peak used in the SDA was an overall value for the larger catchment.

4 Proposed Stormwater Management Options

4.1 Overall Stormwater Management Approach

Stormwater drainage will be provided through a dry swale system that consists of a filter media, gravel storage layer and underdrain which runs parallel to the roadway in the right�of�way. The water quality objectives (80% TSS removal) will be achieved through storage and infiltration. The primary function of infiltration controls is to mitigate the impacts that urbanization normally has on the water balance (i.e. increase runoff, reduced soil moisture replenishment, and groundwater recharge). Lot level and conveyance infiltration measures result in a post�development water balance that more closely resembles the pre�development condition when compared to end�of�pipe infiltration measures. Infiltration facilities are known to have reduced infiltration rates during cold seasons. However, during cold seasons there is also reduced runoff, additional surface storage in the snow pack, and the temperature of discharges has less of an impact on downstream receivers. Reduced infiltration in cold seasons also more closely matches the pre�development water balance. Therefore, measures will be taken to help reduce the temperature of the stormwater prior to discharge to the receiving stream. Attenuation of temperature in the site discharge will be accomplished by:

• Promotion of infiltration where possible.

• Minimization of surface ponding unless used for infiltration.

• Promotion of exfiltration from the trench into the surrounding native soil.

• Conveyance of runoff from larger events while minimizing ponding and increases in temperature above ground.

• Conveyance through the granular storage media to transfer heat to the stone.

In general, a stormwater management approach should follow the hierarchy of Stormwater Management Practices (SWMPs) outlined in the MOE “Stormwater Management Planning and Design Manual”. This manual recommends that SWMPs be considered in order of preference as follows:

• Source Controls

• Conveyance Controls

• End�of�Pipe controls

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

6

4.2 Source Controls

Various forms of source control will be used to control stormwater runoff in this development area. These controls will include reduced lot grading, sump pump outlets to roadside ditches, and infiltration trenches. Other applicable source controls which were considered but not used include rooftop storage, backyard storage, soak away pits and vegetated buffer strips.

4.3 Conveyance Controls

Conveyance controls will also be utilized in the development area. Geotechnical studies conducted for the development area have reported the native soil in the area to be mainly silty sand and silty clay.

The particular infiltration system that will be utilized for this development area is a dry swale. The swale will act to promote infiltration of the surface runoff and help to reduce runoff. The dry swale will also provide treatment of the surface runoff, thus minimizing the overall TSS loading.

4.4 End0of0Pipe Facilities

Applicable end�of�pipe facilities include wet or dry ponds, constructed wetlands, or construct wetland/wet pond hybrids. The SWMP manual suggests that end�of�pipe facilities should only be considered for areas larger than 5 ha although an area of 10 ha or greater is recommended. The City of Ottawa discourages the use of end�of�pipe facilities for estate type developments that by their nature have only a limited impact on peak flows and generally have little impact on water quality. Typical estate lot developments with extensive roadside swales/ditches and perimeter swales can provide both quality treatment and minimize post�development peak flow increases. The following is a summary of the key drainage and site features proposed for the subdivision and their design criteria:

Drainage / Site Feature Design Criterion

Lot Level Features Percent Imperviousness • The percent imperviousness of the site is calculated

at 17%. The site design is, therefore, consistent with what was assumed in the post�development modelling in the SDA report of 25%.

Roof Leaders • Discharge to grass areas to promote infiltration Sump Pumps • Discharge to grass areas with backflow prevention. Lot Grading • Minimize proposed lot slopes (2.0% minimum)

where possible to maximize infiltration.

• Free�flow of rear yards and roof drainage directly to Mud Creek via a dry swale and vegetated buffer.

• Driveway and road drainage directed to grassed�lined roadside swales for pre�treatment of runoff.

All impervious areas are directed to pervious areas

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

7

before discharge to Mud Creek. Surface Ponding Minimize surface ponding (unless used to promote

infiltration) to minimize temperature increases in runoff.

Conveyance and Storage Features Roadside Dry�swales • Cross section, longitudinal slope and flow velocities

as per MOE SWM Planning and Design Manual (section 4.5.9), and Low Impact Development Stormwater Management Planning and Design Manual. Maximum flow velocities of 0.5 m/sec for the 4�hour 25mm storm.

• Roadside swales with a bottom width of 0.90 metres.

Perforated Pipe Underdrain System • A perforated storm drain will be used at the bottom of the dry swale.

Infiltration Trench • An infiltration trench (dry swale) was used in conjunction with the perforated pipe and grassed swales to promote reduction in runoff and treatment of stormwater.

End�of�Pipe Features • Multiple outlets are proposed as recommended in the SDA Report.

Provision of Major System Flow Paths • Provision of major system flow paths via the road and rear yard swale networks with overflow points that have at least 0.3 m freeboard to ground elevation at the house.

5 Proposed Stormwater Management Plan

For this proposed development two lot level and conveyance features will be used. The following summarizes the methods and locations used:

� Source Control: The use of minimum lot grading works well for soils with percolation rates >15mm/hr. For this site, the soil percolation rate for the silty sand ranges from 30 – 75 mm/hr and 12 � 50 mm/hr for the clayey sand.

� Conveyance Control: infiltration trenches within roadside swales will be used. This is an acceptable quality control method when soil percolation rates are > 15mm/hr. The area of the trench bottom is calculated to allow for a minimum of 24 hours of retention. Please refer to Section 7 for additional information.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

8

6 Stormwater Quality

6.1 Stormwater Quality Enhancement

Stormwater treatment of 80% TSS removal will be provided by the using a combination of roadside swales and an infiltration trench which includes a perforated underdrain. The swales will be constructed at 1.0 % grades along the roadway and 0.50 % in the rear yards to control storm water runoff and promote infiltration.

The storage trenches are designed with a filter media layer that will provide filtration for stormwater flows prior to percolation through the trench. The grass in the swales should be allowed to grow higher than 75 mm to enhance the filtration of suspended solids.

The U.S. EPA document (attached in Appendix) recommends grass swales for a development density of less than four units per acre. This subdivision has a density of only 0.95 units per acre or an average of 0.43 hectares per lot. The velocities will be reduced as the slope within the swales will be set at a maximum of 1.0%, consistent with the roadway profile.

The following summarizes the methodology used for sizing and modelling of the stormwater system:

• For post development conditions, percent imperviousness, runoff curve number (CNII) and runoff coefficients for each catchment were calculated.

• Determined the Quality Control Volume requirements based on MOE Table 3.2 for the level of imperviousness and areas noted above.

• Determined the Quality Control Volume requirements based on the 4�hour 25mm storm. Compared this to the quality volume calculated.

• Determined the required infiltration trench area and width requirements based on MOE Equation 4.3. This equation uses the quality control volume requirement as noted above, a minimum detention time of 24 hours, an soil percolation rate of the native soil, to determine the required bottom trench area. Total length of trench required was calculated based on a selected trench width.

• Determined the required filter media depth and footprint area required as per Low Impact Development Stormwater Management Planning and Design Guide (LIDSMPDG).

• Determined the velocities in the swales to ensure the maximum velocity criteria of 0.50 m/sec during the 15mm 4�hour storm event is met.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

9

7 Infiltration Trench/Dry Swale Design

A dry swale, as stated in Section 4.9 of the LIDSMPDM, is an enhanced grass swale that incorporates an engineering soil (i.e. filter media or growing media) bed and optional perforated underdrain or a bio retention cell configured as a linear open channel, and are also known as an infiltration swale or bio�swale. Dry swales are open channel designs uses to treat and attenuate stormwater runoff.

As noted in the previous section, an enhanced level of quality treatment is required for this development. The quality design component will incorporate a dry swale vegetated infiltration facility and mechanical filter. The mechanical filter media will consist of a sand filter with organic content at the top (topsoil). Under the sand layer a gravel storage layer and underdrain will be used. Between these two layers and encasing the sand layer will be a geotextile filter fabric. Please refer to a typical trench detail included in Appendix A. Table 7.1 below summarizes the required and proposed design elements of the stormwater system used, taken from the LIDSMPDM. Please refer to Appendix C for reference material.

Table 701: Infiltration Trench Quality Control Design Requirements

Parameter Requirement as per Guidelines Provided

swale shape • Parabolic shape preferred.

• Trapezoidal shape acceptable.

• Trapezoidal shape

swale bottom width • 0.75m to 3.0m. • 0.75m and 0.9m wide used.

swale side slopes • No steeper than 3H:1V • 3:1 front & 2.5:1 side slopes.

swale longitudinal slope • 0.5% to 4.0%

• Slopes > 3% use check dams.

• 1.0% used

Velocity requirements • Max 0.5 m/sec during 4 hour 25mm storm

• 0.46m/sec calculated velocity

Filter media composition • 85% – 88% sand

• 8%�12% soil fines

• 3 – 5% organic material

• 150mm topsoil and grass

• 1.0m deep filter media (sand used)

Filter media depth • 0.5m minimum depth.

• 1.0m to 1.25m depth recommended

• 75mm mulch for top layer or 150mm topsoil and grass

• Depth computed based on native soil infiltration rates, drawdown, ponding depth.

• Area requirements computed based on quality volume and depth.

• Calculated 1.0m depth required.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

10

Gravel storage area • 50mm diameter clear stone

• Volume based on void ratio of 0.40

• 300mm deep 50mm dia. clear stone with void ratio of 0.40

Underdrain • Perforated HDPE

100mm diameter minimum.

200mm diameter recommended.

• Required when native soil infiltration rate is less than 15mm/hr

• 200mm perforated HDPE underdrain proposed.

geotextile • Meet OPSS 1860 Class II

• Sized based on soil apparent opening size, percent open area, hydraulic conductivity, permeability.

• 75 micron geotextile filter fabric for fine�grained soils.

• Armtec 150 Non�woven or equivalent.

Pre�treatment Grass filter strip along filter beds and gravel diaphragm along hard surfaces to promote settling

• 1.5m Gravel shoulder along roadway helps to dissipate energy.

• Front yards to be grassed.

7.1 Infiltration Trench Quality Control Requirements

Treatment of stormwater for this rural subdivision will be achieved within the infiltration trenches located in the roadside swales. From MOE Table 3.2, the quality control volume requirements are as shown below, with detailed calculations provided in Table B4 in Appendix B.

• Level of Protection Required = Enhanced

• TSS Removal Efficiency Required = 80%

• % Imperviousness = 16.8% (calculated)

• Storage Requirement = 19.1 m3/ha (extrapolated)

For the 6.815 hectare site the quality volume requirement is 19.1 m

3/ha x 6.815 ha = 130 m

3

To determine the physical trench requirements an estimate of the filter media bed depth of the dry swale was completed using LIDSMPDG equation (page 4�160) as shown below. A depth of 78mm was determined from the SWMHYMO model output for the maximum depth in the swale during the 25 mm 4�hour quality storm. db = i * (ts – dp / i) / Vr where: db = maximum filter media bed depth (mm)

i = infiltration rate for native soils (mm/hr) [20 mm/hr used]

Vr = Void space ratio for filter bed and gravel layer [assume 0.40]

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

11

dp = maximum surface ponding depth (mm) [78mm used]

ts = Time to drain (drawdown time) (24 hours – 48 hours )

therefore:

db = 20mm/hr * (24 – 78mm /20) / 0.40 db = 1005 mm

A trench depth of 1.0 metres was selected for the areas discharging to the main outlet (front yards and roadways). As noted in the LIDSMPDM it is important to understand the source of the runoff as rear�yards and roadways are not the same with respect to contamination. For the rear yards very little contaminants will be found at the outlet as runoff is treated in the rear yard grassed areas. Therefore a minimum 500mm depth of sand filter will be used as recommended in the LIDSMPDM. Typical trench details are provided in Appendix A for reference. An estimate of the required swale bottom area for 24 hour retention was calculated using Equation 4.3 from the MOE Stormwater Design Guidelines to confirm if the bottom trench area provided met the requirement:

A=1000V

PN∆tMOEEquation4.3

where: A bottom area of trench (m

2)

V runoff volume to be infiltrated at 19.1m3/ha (from MOE Table 3.2) m

3

P percolation rate of surrounding soil [20 mm/hr average used] N porosity of the storage media [0.40 for clear stone] ∆t retention time in hours [24 hours]

A =1000 x 19.1 x 6.815

20 x 0.40 x 24ThereforeA = 678m�

The calculated bottom surface area required, as per MOE’s SMPDM, is 678 m

2. The bottom width

requirement as noted in the LIDSMPDG (page 4�155) is a minimum of 0.75 metres. The following summarizes the dry swales proposed:

• 660 metres at 0.90m wide along the roadway,

• 430 metres at 0.75 wide along the rear of lots

The required total area of infiltration trench is 678 square metres, with an estimated 1,090 square metres provided. Detailed calculations are provided in Table B5 and B6 in Appendix B for reference. Table 7.1 below summarizes the infiltration trench requirements for all areas.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

12

Table 702: Infiltration Trench Requirements

Area No

Area (ha)

Percent IMP

Storage Volume Required

Area of Trench

Required A1 (m

2)

Proposed Dry Swale Infiltration Trench

Area Met (A2 > A1)

(m3/ha) V (m

3)

Length (m)

Trench Width (m)

Area, A2

(m2)

B1 1.72 5.6 15.7 27.1 141.0 200 0.75 150 Yes

B2A 1.34 32.1 23.7 31.8 165.8 200 0.90 180 Yes

B2B 0.97 32.3 23.8 23.1 120.2 200 0.90 180 Yes

B2C 0.14 31.1 23.4 3.3 17.3 80 0.90 72 Yes

B2D 0.45 26.4 22.0 10.0 52.0 80 0.90 72 Yes

B2E 0.17 0.0 14.0 2.4 12.4 100 0.90 90 Yes

B3 0.97 11.4 17.5 16.9 88.1 120 0.75 90 Yes

B4 1.05 2.6 14.8 15.5 81.0 110 0.75 82.5 Yes

Total 6.82 16.8%

130.2 677.9 1090

917

The total trench area required based on a percolation rate of 20 mm/hour was estimated at 678 square metres. It is proposed to provide 917 square metres of infiltration trench / dry swale within the subdivision. Although this exceeds the requirements, the trench areas were depended on the length of swales and the minimum width requirements as per LIDSMPDM. There were other factors in the sizing of the infiltration trench to maximize storage which will be discussed in the proceeding sections.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

13

8 Post Development Conditions

8.1 Summary of Post Development Modelling Parameters

The following parameters were used in the SWMHYMO model to calculate the post�development runoff rates:

• Hydrologic Soil Group Soil Group C

• Antecedent Moisture Condition AMCII (normal)

• Runoff Curve Numbers (CN) Land Use Hydrologic Condition Curve Number

Asphalt Roadways, Driveways good condition CN = 98

Gravel Shoulders, Pathways good condition CN = 89

Buildings Roofs good condition CN = 98

Open Spaces, Grass good condition CN = 71

For each drainage area, a composite (or average) CN value was established based on the actual land use and measured areas. Refer to Tables B2 and B3 in Appendix B for a detailed breakdown for each drainage area. CN values under post development conditions for the all drainage areas ranged from 72 to 80, with an average CN of 75.

CALIB STANDHYD command was used in the hydrologic model, consistent with the SDA Report under post development conditions, to estimate peak runoff. This command is used for simulate runoff from urban watershed with imperviousness ratios larger than 20%. For the rear yards the CALIB NASHHYD command was used as the percent imperviousness was less than 20%. Refer to Table B8 in Appendix B for detailed calculations of modelling parameters. The parameters used to define each sub catchments in the SWMHYMO model are provided in Table 8�1 below.

Table 801: Post0Development Stormwater Model Parameters

Area

No.

IMP (%)

CN

Pervious Surfaces Impervious Surfaces

IAper (mm)

Slope, SLPP (%)

Length, LGP (m)

Rough, MNP (N)

IAimp (mm)

Slope, SLPI (%)

Catch Length

(m)

Rough, MNI (N)

B1 6% 73 NASHHYD, Tp = 0.58 hrs

B2A 32% 79 6.5 2.0 40 0.25 1.57 1.0 200 50

B2B 32% 79 6.5 2.0 40 0.25 1.57 1.0 200 50

B2C 31% 79 6.5 2.0 40 0.25 1.57 1.0 85 20

B2D 26% 78 6.5 2.0 40 0.25 1.57 1.0 85 50

B2E 0% 71 NASHHYD, Tp = 0.31 hrs

B3 11% 74 NASHHYD, Tp = 0.41 hrs

B4 3% 72 NASHHYD, Tp = 0.29 hrs

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

14

8.2 Summary of Modeling Results

Although there is no requirement to control post development flows, a hydrologic model was prepared to estimate the peak flows under various storm events. The model was used to confirm driveway culvert sizes, water quality volumes and swale velocities. The table below summarizes the modeling results.

Table 802: Summary of Post0Development Peak Flow Model Results

Period Storm

Duration and Type

Peak Flows (m3/s)

Not Accounting for Infiltration Storage in Dry Swales at

Peak Flows (m3/s) at

Total Storage to Infiltration

Trench (m

3)

Outlet 1 (north)

Outlet 2 (main)

Outlet 3 (south)

Outlet 1 (north)

Outlet 2 (main)

Outlet 3 (south)

15mm 4 hr CHIC 0.002 0.042 0.002 0.000 0.000 0.000 136.0

25mm 4 hr CHIC 0.008 0.086 0.009 0.008 0.071 0.009 148.7

2 yr 24 hr SCS 0.022 0.138 0.023 0.021 0.133 0.023 148.7

5 yr 24 hr SCS 0.036 0.186 0.036 0.036 0.181 0.036 148.7

10 yr 24 hr SCS 0.048 0.239 0.047 0.048 0.232 0.047 148.7

25 yr 24 hr SCS 0.064 0.310 0.062 0.063 0.307 0.062 148.7

100 yr 24 hr SCS 0.091 0.426 0.089 0.091 0.423 0.089 148.7

Post development runoff from the proposed development is estimated at 0.181 m

3/sec, and

0.423 m3/sec, for the 5�year and 100�year storm events at the main outlet. The 100�year peak flow to

Mud Creek from all areas taking into account different time to peaks for catchment and the storage within the dry swales is 0.503 m

3/sec.

For comparison the total uncontrolled peak flows determined from the SDA report was 4.3 m

3/sec for the

sub catchment area 107A of 71 hectares. This represents an average 100�year unit rate 60.6 L/ha/sec in comparison to the estimated rate of 73.8 L/ha/sec (503 / 6.815) from the proposed 16 lot subdivision.

8.3 Infiltration Trench Modelling of Storage

Reduction of runoff volume is achieved through the storage of runoff within the infiltration trench. In order to determine the amount of reduction of runoff the MOE’s soakway pit rate curve equation (Equation 4.17) was then used to route the exfiltrated flow through the storage volume using the ROUTE RESERVOIR command. Equation 4.17 is shown below with additional detailed calculations provided in Table B9 in Appendix B.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

15

Q = F * (P/3,600,000) * (2LD + 2WD +LW)*n MOE Equation 4.17 V = L*W*D* n * f

where Q = Flow Rate (m3/s) for a given storage volume (V) L = Length of soakway/infiltration trench (m) W = Width of soakway/infiltration trench (m) D = depth of water in soakway/infiltration trench (m) V = volume of water in soakway/infiltration trench (m

3)

P = native soil percolation rate in mm/hr (30mm/hr used) n = void space in soakway/infiltration pit (0.40 used) f = Longevity factor, 0.5 � 1.0 (0.75 used) Tables B11 through B14 in Appendix B provide infiltration rating curves for various catchments based on the proposed dry swale dimensions. These rating curves were added to the SWMHYMO model using the ROUTE RESERVOIR command to calculate the amount of flow reduction. Table 8�2 above indicates that some flow reduction occurs and represents a larger percentage of peak flows for smaller storms. This result is expected as the amount of storage provided in the dry swales is specifically for the smaller “first flush” storms.

8.4 Groundwater Considerations

The groundwater table as identified in the Geotechnical Report prepared by Houle Chevrier for this project provides an estimated depth to the groundwater of 0.4 m to 1.5 m below original ground. A review of the EMP Report (SDA) for the Village of Manotick, by MMM, indicates a groundwater table in the adjacent subdivision at 1.0 m to 2.5 m below ground. The water table elevation decreases as you move easterly towards Mud Creek.

The perforated underdrains within the roadside ditches are currently set at 1.1 to 1.3 m below the ditch inverts.

8.5 Swale Velocities

There is a requirement to ensure that flow velocities in the swales are less than 0.50 m/sec for the 4 hour 25mm storm. As a result of this requirement the 25mm storm was modelled in SWMHYMO and the ROUTE CHANNEL command was used to determine maximum velocities from each catchment along the roadway and rear yards based on the proposed cross sections and slopes for each. The calculated velocities during the 25mm storm ranged between 0.18 m/sec to 0.46 m/sec, therefore meeting the maximum permitted velocity of 0.5 m/sec.

8.6 Culvert Design

The private driveway culverts were designed in accordance with Section 6.4.2 of the City of Ottawa’s Design Guidelines, which states culverts shall be a minimum diameter of 500mm. In addition a culvert less than 6m in length and on a local rural road shall be designed for the 10�year storm. Peak flows results in the dry swales under a 10�year storm were taken from the SWMM model output. Peak 10�year flows were 0.102 m

3/sec, and therefore a 500m diameter CSP at 1.0%, having a full flow capacity of

approximately 375 L/sec, is suitable for all culverts.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

16

8.7 Temperature Considerations

As the design requirements are to avoid discharging water with an elevated temperature, and that the temperature discharge of stormwater should be less than 22 ºC, an estimate of the resultant temperature in the receiving watercourse was completed using MOE Temperature Mass Balance Equation H.2 as follows:

∆���� !"=QT$q%Turb$∆��'"()

%Q$q)− TMOEEquationH. 2

Where Q = average monthly summer flow rate in stream (m

3/s)

T = average monthly summer temperature in stream (oC)

Turb = average urban runoff summer temperature (oC)

q = average flow from SWMP during 15mm storm (m3/s)

∆TSWMP = average increase in temperature by SWM type (oC)

A review of the “Jock River Reach 2 & Mud Creek Subwatershed Study” provided average summer flow rates of 0.118 m

3/s for the months of June to August in Mud Creek at a gauge station located at Bankfield

Road and Mud Creek. Temperature readings in Mud Creek were indicated at less than 18oC (Figure

3.5.4.7). The average increase in temperature by SWM type was taken as 1.4 oC as per MOE Table 4.3

for infiltration basins. Therefore:

∆���� !"=0.11x18$0.04%17.2$1.4)

%0.11$0.04)− 17.2therefore∆T = 0.9degrees

The estimated rise in temperature due to development is estimated at 0.9

oC, based on the existing

stream having an average summer temperature of 18 oC.

8.8 1000year flood Considerations

Within the SDA Report, 100�year flood elevations were estimated based on hydrologic modelling and HEC�RAS hydraulic modelling along Mud Creek. 100�year flood limits and 100�year flood elevation and reach sections were provided in the report.

For the report the 100�year flood elevations adjacent to the proposed development ranges between 85.47m and 85.55m, or an average of 85.51m. A minimum freeboard of 0.3m will be given above the average elevation for the lowest invert elevation of 85.81m at the proposed outlets.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

17

9 Erosion & Sediment Control During Construction

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

� Limiting the extent of exposed soils at any given time.

� Re�vegetation of exposed areas as soon as possible.

� Minimization of area to be cleared and disruption to adjacent areas.

� Sediment control barriers are to be installed in the locations as shown on drawings.

� A visual inspection shall be completed of the sediment control barriers and outlets and any damage repaired immediately. Care will be taken to prevent damage during construction operations.

� In some cases barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed.

� The sediment control devices, ditches, swales, culverts and perforated pipes will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract.

� During the course of construction if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer.

� Construction and maintenance requirements for erosion and sediment controls to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805, and City of Ottawa specifications.

� The contractor shall seed the swale channel and side slopes as soon as possible, regularly monitor and provide erosion control measures as required, to allow for the establishment of the grass.

� Rip�rap protection shall be installed at the swale outlet locations, as noted on the drawings.

� Builders on individual lots will be required to install sediment barriers along the frontage of the lot to ensure sediment does not enter the front swale/perforated pipe system.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

18

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

19

10 Conclusions

The proposed 16 lot rural subdivision referred to as Manotick Subdivision, is located in the northern half of Lot, Concession “A”, in the former Township of North Gower, now in the City of Ottawa. The following summarizes the stormwater management design for this development:

• Stormwater quality control for the development is provided through source and conveyance controls. Source controls such as reduced lot grading and rear yard swales are proposed. Conveyance measures such as grass lined roadside swales with infiltration trenches and perforated underdrains are proposed to promote infiltration. The dry swale system will consist of a swale with a maximum width of 0.90metres, 1.0m deep sand filter and filter fabric, underlain with a gravel storage layer and 200mm perforated pipe.

• No quantity control requirements for stormwater are required. Due to the nature of the infiltration method used, some attenuation will result. Pre�development 100�year peak flows are estimated at 0.369 m

3/sec, whereas post�development peak flows were estimated at 0.503 m

3/sec.

• Quality Control requirements are to provide Enhanced Level of Protection (80% long�term TSS removal) for treatment of storm water runoff. The treatment of storm runoff will occur within the infiltration enhanced grassed swales and infiltration trenches located along the roadway and rear yards. An estimated trench area requirement of 678 square metres based on MOE guidelines will provide minimum 24 hour detention of runoff. Approximately 917 square metres of infiltration trenches/dry swales is provided.

• The total quality storage required was estimated at 130 m3, with approximately 164 m

3 provided

based on infiltration trenches of 1.0m x 0.90m and 0.50 x 0.75m for the roadway and rear�yard dry swales respectively.

• Channel velocities during the 25mm 4�hour storm were under the maximum allowable of 0.50 m/sec.

• Measures to avoid discharging water with an elevated temperature is required. The estimated raise in temperature due to development is 0.9

oC, based on the existing stream having an

average summer temperature of 18 oC.

• An overall percent imperviousness of 16.8% was estimated, that falls within the limits used in the SDA Report of maximum of 25% under post development conditions.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

20

Appendix A – Figures

Figure A1: Site Location Plan

Figure A2: Proposed Layout Plan

Figure A3: Pre0Development Stormwater Drainage Plan

Figure A4: Post0Development Stormwater Drainage Plan

Figure A5: Typical Dry Swale Infiltration Trench Detail

t: +1.613.688.1899 | f: +1.613.225.7330

2650 Queensview Drive, Unit 100

Ottawa, ON K2B 8H6

Canada

www.exp.com

BUILDINGS EARTH & ENVIRONMENT ENERGY

INDUSTRIAL INFRASTRUCTURE SUSTAINABILITY

exp Services Inc.

p:\projects\civil engineering services\215000\ott-00215355-a0 - m

anotick subdivision - thom

as cavanagh\d - draw

ings\sketches and figures\03-sw

m report sept 2014\215355-figa2.dw

g

10/2/2014 10:25:00 A

MLast P

lotted:

Filenam

e:

Plotted by:

fitzpatrickj

References: 215355 LG

L.dw

g; 215355 S

ER

.dw

g

t: +1.613.688.1899 | f: +1.613.225.7337

2650 Queensview Drive, Suite 100

Ottawa, ON K2B 8H6

Canada

www.exp.com

BUILDINGS EARTH & ENVIRONMENT ENERGY

INDUSTRIAL INFRASTRUCTURE SUSTAINABILITY

exp Services Inc.

A1

3.2ha

A2

3.6ha

p:\projects\civil engineering services\215000\ott-00215355-a0 - m

anotick subdivision - thom

as cavanagh\d - draw

ings\sketches and figures\03-sw

m report sept 2014\215355-fig3.dw

g

10/2/2014 9:22:36 A

MLast P

lotted:

Filenam

e:

Plotted by:

fitzpatrickj

References:

t: +1.613.688.1899 | f: +1.613.225.7337

2650 Queensview Drive, Suite 100

Ottawa, ON K2B 8H6

Canada

www.exp.com

BUILDINGS EARTH & ENVIRONMENT ENERGY

INDUSTRIAL INFRASTRUCTURE SUSTAINABILITY

exp Services Inc.

A6

0.46 0.87

A7

0.45 0.75

A16

0.45 0.61

A20

0.42 0.48

A17

0.33 2.16

A11

0.51 0.41

A13

0.30 1.96

A19

0.47 0.41

0.51

A34

0.30 6.60

A21a

0.39 0.06

//

//

/

//

//

/

//

//

/

t: +1.613.688.1899 | f: +1.613.225.7330

2650 Queensview Drive, Unit 100

Ottawa, ON K2B 8H6

Canada

www.exp.com

BUILDINGS EARTH & ENVIRONMENT ENERGY

INDUSTRIAL INFRASTRUCTURE SUSTAINABILITY

exp Services Inc.

p:\projects\civil engineering services\215000\ott-00215355-a0 - m

anotick subdivision - thom

as cavanagh\d - draw

ings\sketches and figures\03-sw

m report sept 2014\215355-figa5.dw

g

10/3/2014 1:59:35 P

MLast P

lotted:

Filenam

e:

Plotted by:

fitzpatrickj

References:

t: +1.613.688.1899 | f: +1.613.225.7337

2650 Queensview Drive, Suite 100

Ottawa, ON K2B 8H6

Canada

www.exp.com

BUILDINGS EARTH & ENVIRONMENT ENERGY

INDUSTRIAL INFRASTRUCTURE SUSTAINABILITY

exp Services Inc.

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

Appendix B – Stormwater Design Sheets

Table B1: Average Runoff Curve Number (CN) and Runoff Coefficient (C) for Pre0Development

Table B2: Calculation of Areas for Post0Development Conditions

Table B3: Average Runoff Curve Number (CN) and Runoff Coefficient (C) for Post0Development

Table B4: Determination of Storage Volume requirements For Quality Control

Table B5: Infiltration Trench Area & Width Requirements

Table B6: Proposed Infiltration Trench – Dry Swale Dimensions

Table B7: Summary of Catchment Modelling Parameters for Pre0Development Conditions

Table B8: Summary of Catchment Modelling Parameters for Post0Development Conditions (1)

Table B9: Summary of Catchment Modelling Parameters for Post0Development Conditions (2)

Table B10: SWMHYMO Modelling Parameters for Proposed Swales

Table B11: Infiltration Trench Rating Curve (Area B1)

Table B12: Infiltration Trench Rating Curve (Areas B2A – B2E)

Table B13: Infiltration Trench Rating Curve (Area B3)

Table B14: Infiltration Trench Rating Curve (Area B4)

TABLE B1: AVERAGE RUNOFF CURVE NUBMER (CN) AND RUNOFF COEFFICIENT (C) FOR PRE-DEVELOPMENT

Me

ad

ow

Are

as

Mo

we

d f

or

Ha

y

Go

od

Co

nd

ito

n

CN=71

C=0.20 SUMMARY A1 3.1955 3.1955 227 71 0.64 0.20 SOIL GROUP = Group C

A2 3.6195 3.6195 257 71 0.72 0.20 AMC Conditon = AMC II (Normal)

Totals = 6.815 6.815 484 71 1.36 0.20

TABLE B2: CALCUALTION OF AREAS FOR POST-DEVELOPMENT CONDITONS

Total

Hard

Surfaces

Percent

Imperv

(%IMP)

Total Soft

Surfaces,

Grass

Percent

Pervious

(%PERV)

Length

(m)

Width

(m)

Area

(s.m.)

Length

(m)

Width

(m)

Area

(s.m.) No. Bldgs

Length

(m)

Width

(m)

Indiv

Area

(s.m)

Tot

Area

(s.m.) No.

Length

(m)

Width

(m)

Area

(s.m.)

Area

(ha) (%)

Area

(ha)

Area

(ha)

B1 17213 3.5 23 12 276 966 966 5.6% 16247 94% 17213 25.2%

B2A 13433 228.8 3.5 801 228.8 1.5 343 4.5 23 12 276 1242 8 40 6.0 1920 4306 32.1% 9127 68% 13433 19.7%

B2B 9710 228.8 3.5 801 228.8 1.5 343 2.0 23 12 276 552 6 40 6.0 1440 3136 32.3% 6574 68% 9710 14.2%

B2C 1421 88.3 3.5 309 88.3 1.5 132 442 31.1% 980 69% 1421 2.1%

B2D 4542 88.3 3.5 309 88.3 1.5 132 1.0 23 12 276 276 2 40 6.0 480 1198 26.4% 3345 74% 4542 6.7%

B2E 1700 1700 100% 1700 2.5%

B3 9671 4.0 23 12 276 1104 1104 11.4% 8567 89% 9671 14.2%

B4 10480 1.0 23 12 276 276 276 2.6% 10204 97% 10480 15.4%

Totals = 68170 2220 634 951 16 4416 16 3840 11427 16.8% 56743 83% 68170 100%

CA

VG =

Ca

tch

me

nt

No

.

To

tal A

rea

(s.

m)

IMPERVIOUS SURFACES PERVIOUS SURFACES

Ca

tch

me

nt

No

.

To

tal A

rea

(h

a)

% I

mp

erv

iou

s

CN

X A

rea

CN

AV

G =

C X

Are

a

% o

f T

ota

l Are

a

Asphalt Roadways Gravel ShouldersBuilding Roofs

(Avg Building Footprint = 2,969ft2 or 276m

2)

Asphalt Driveways

To

tal A

rea

(s.

m)

TABLE B3: CALCULATION OF AVERAGE RUNOFF CURVE NUBMER (CN) & RUNOFF COEFFICENT (C) FOR POST-DEVELOPMENT

Ha

rd S

urf

ace

s, A

sph

alt

Ro

ad

wa

ys

Ha

rd S

urf

ace

s, G

rave

l

Sho

uld

ers

Ha

rd S

urf

ace

s, B

uil

din

gs

Ha

rd S

urf

ace

s A

sph

alt

Dri

vew

ays

Op

en

Sp

ace

s, G

rass

Co

ver

> 7

5%

, G

oo

d

Co

nd

itio

n

CN=98 CN=89 CN=98 CN=98 CN=71

C=0.90 C=0.75 C=0.90 C=0.90 C=0.20

B1 1.7213 0.0966 1.625 0.097 1.625 1.721 5.6% 124.817 73 0.412 0.24

B2A 1.3433 0.0801 0.0343 0.1242 0.1920 0.913 0.431 0.913 1.343 32.1% 106.690 79 0.565 0.42

B2B 0.9710 0.0801 0.0343 0.0552 0.1440 0.657 0.314 0.657 0.971 32.3% 77.096 79 0.409 0.42

B2C 0.1421 0.0309 0.0132 0.098 0.044 0.098 0.142 31.1% 11.165 79 0.057 0.40

B2D 0.4542 0.0309 0.0132 0.0276 0.0480 0.334 0.120 0.334 0.454 26.4% 35.362 78 0.173 0.38

B2E 0.1700 0.170 0.170 0.170 12.071 71 0.034 0.20

B3 0.9671 0.1104 0.857 0.110 0.857 0.967 11.4% 71.646 74 0.271 0.28

B4 1.0480 0.0276 1.020 0.028 1.020 1.048 2.6% 75.156 72 0.229 0.22

Totals = 6.8170 0.2220 0.0951 0.4416 0.3840 5.674 1.143 5.674 6.817 16.8% 514.003 75 2.149 0.32

SUMMARY SOIL GROUP = Group C Total No. of Lots = 16

AMC Conditon = AMC II (Normal) Total Area (ha) = 6.817

Total Area(ha) = 6.82 or (acres) = 16.845

Overall % IMP = 16.8%

hectares per lot = 0.43

AREAS DRAINING TO RIGHT-OF-WAY (Area B2A - B2E & B3) AND TO MAIN OUTLET Units per acre = 0.9498

Total Area = 4.05

CAVG = 0.37

CNAVG = 78

% IMP = 25.2%

AREAS DRAINING DIRECTLY TO MUD CREEK (B1 & B4)

Total Area = 2.77

CAVG = 0.23

CNAVG = 72

% IMP = 4%

Ca

tch

me

nt

Are

a (

ha

)

Ca

tch

me

nt

No

.

CA

VG =

% I

mp

erv

iou

sne

ss

To

tal

Imp

erv

iou

s A

rea

s (h

a)

To

tal

Pe

rvio

us

Are

as

(ha

)

To

tal

Are

a =

CN

X A

rea

CN

AV

G =

C X

Are

a

TABLE B4: DETERMINIATION OF STORAGE VOLUME REQURIEMENTS FOR QUALITY CONTROL

FROM MOE TABLE 3.2

Drainage Area

%IMP

Storage

Required

(m3/ha)

35 25

55 30 %IMP(Overall for Site) = 16.8

70 35 Avg Storage Required (m3/ha) = 19.09

85 40

TABLE B5 - INFILTRATION TRENCH AREA & WIDTH REQURIEMENTS

A1 = 1000 * V Af = WQV

P * N * ∆t db * Vr

where: A1 = Bottom area of trench (m2) where: Af = footprint surface area(m

2)

V = Runoff volume to be infiltrated (m3) QWV = Water Quality Volume (m

3)

P = Percolation rate of soil, (mm/hr) = 20 = Runoff Vol during 4hr 15mm Storm = 171.4

N = Porosity of storage media = 0.4 db = filter media bed depth (m) front = 1.0

∆t = Retention time of soil (24-48 hrs) = 24 db = filter media bed depth (m) rearyards= 0.5

N = Porosity of storage media (sand) = 0.25

1(m

3/ha) V, (m

3)

B1 1.721 5.6 15.7 27.1 141 B1 0.71 12.2 0.50 98

B2A 1.343 32.1 23.7 31.8 166 B2A 4.95 66.5 1.00 266

B2B 0.971 32.3 23.8 23.1 120 B2B 4.95 48.1 1.00 192

B2C 0.142 31.1 23.4 3.3 17 B2C 4.95 7.0 1.00 28

B2D 0.454 26.4 22.0 10.0 52 B2D 4.91 22.3 1.00 89

B2E 0.170 0.0 14.0 2.4 12 B2E 0.64 1.1 1.00 4

B3 0.967 11.4 17.5 16.9 88 B3 0.74 7.2 0.50 57

B4 1.048 2.6 14.8 15.5 81 B4 0.67 7.0 0.50 56

6.817 16.8% 130.2 678 171.4 7911From Table 3.2 of MOE Stormwater Management Planning and Design Manual. % IMP Below 35% extrapolated.

2Based on Average Soil Percolation Rate

TABLE B6 - PROPOSED INFILTRATION TRENCH - DRY SWALE DIMENSIONS

Length (m)

Underdrain

Pipe Dia

(mm)

Proposed

Trench Width

(m) Area, A2 (m2)

*Trench

Storage

Volume (m3) Total Length of Dry Swale

B1 1.721 200 150 0.75 150 14 Yes 0.75m wide = 430 (rearyard)

B2A 1.343 200 150 0.90 180 41 Yes 0.90m wide = 660 (roadway)

B2B 0.971 200 150 0.90 180 41 Yes 1090

B2C 0.142 80 150 0.90 72 16 Yes

B2D 0.454 80 150 0.90 72 16 Yes

B2E 0.170 100 150 0.90 90 20 Yes

B3 0.967 120 150 0.75 90 8 Yes

B4 1.048 110 150 0.75 83 8 Yes

6.817 1090 917 164

Equation 4.3 ( MOE's SWPDM) Equation 4.3 ( LIDSMPDM, Pg 4-161)

Area No

Filter Media

Bed depth, db

(m)

Water Quality

Volume (m3)

Storage Volume Required

Percent

IMP

2Area of

Trench

Required, A1

(m2)

Footprint

Surface Area of

Trench , Af (m2)

3Runoff

Volume

During

Quality Storm

(mm)

Proposed Dry Swale Infiltration Trench

*Trench Volume based on void ratio for sand

of 0.25

Area No

Area

(ha)

Area Met

(A2 > A1)

Area

(ha)Area No

Protection

Level

TSS Removal

Target (%)

Enhanced 80%

Stormwater Management

Plan Type

Infiltration

y = 0.3014x + 14.0411

R² = 0.9945

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

Sto

rga

ge

Re

qu

ire

d (

m3

/ha

)

Area % Imperviousness

Water Quality Storage Requirments (MOE Table 3.2) for Infiltation Type SWMP

TABLE B7: SUMMARY OF CATCHMENT MODELLING PARAMETERS FOR PRE-DEVELOPMENT CONDTIONS

Area No. Area (ha) NASHID Command UsedElev at

10% (m)

Elev at

85% (m)

Flow

Path

Length

(m)

Avg %

Slope

(85/10

Method)

Avg.

Runoff

Coeff, C

Time of

Conc, Tc

Airport

Formula

(hrs)

Time to

Peak , Tp

(hrs)

IMP

(%)CN IA (mm)

A1 3.1955 1000 CALIB NASHYD 89.30 91.25 335.0 0.78 0.20 0.97 0.58 0% 71 *6.5

A2 3.6195 1001 CALIB NASHYD 88.40 91.00 375.0 0.92 0.20 0.97 0.58 0% 71 *6.5

TABLE B8: SUMMARY OF CATCHMENT MODELLING PARAMETERS FOR POST-DEVELOPMENT CONDTIONS (1)

*IAper

(mm)

Slope,

SLPP (%)

Length,

LGP (m)

Rough,

MNP (N)

IAimp

(mm)

Slope,

SLPI (%)

**Length,

LGI (m)

Rough,

MNI (N)

B1 1.721 "B1" CALIB NASHHYD 6% 6% 73 300 0.60 0.24 0.96 0.58

B2A 1.343 "B2A" CALIB STANHYD 32% 32% 79 6.5 2.00 40 0.25 1.57 1.00 232 0.013

B2B 0.971 "B2B" CALIB STANHYD 32% 32% 79 6.5 2.00 40 0.25 1.57 1.00 197 0.013

B2C 0.142 "B2C" CALIB STANHYD 31% 31% 79 6.5 2.00 40 0.25 1.57 1.00 78 0.013

B2D 0.454 "B2D" CALIB STANHYD 26% 26% 78 6.5 2.00 40 0.25 1.57 1.00 88 0.013

B2E 0.170 "B2E" CALIB NASHHYD 0% 0% 71 110 1.00 0.20 0.51 0.31

B3 0.967 "B3" CALIB NASHHYD 11% 11% 74 175 0.65 0.28 0.68 0.41

B4 1.048 "B4" CALIB NASHHYD 3% 3% 72 100 1.00 0.22 0.48 0.29

6.817

* Initial Abstraction (Depression Storage) of 6.5mm used, consistent with Village of Manotick, Environmental Management Plan.

**LGI Parameter = (Area /CLI)0.5

, where CLI = width/Length ratio

TABLE B9: SUMMARY OF CATCHMENT MODELLING PARAMETERS FOR POST-DEVELOPMENT CONDTIONS (2)

*IAper

(mm)

Slope,

SLPP (%)

Length,

LGP (m)

Rough,

MNP (N)

IAimp

(mm)

Slope,

SLPI (%)

Catch

Length

(m)

Rough,

MNI (N)

B1 1.721 6% 73

B2A 1.343 32% 79 6.5 2.0 40 0.25 1.57 1.0 200 50

B2B 0.971 32% 79 6.5 2.0 40 0.25 1.57 1.0 200 50

B2C 0.142 31% 79 6.5 2.0 40 0.25 1.57 1.0 85 20

B2D 0.454 26% 78 6.5 2.0 40 0.25 1.57 1.0 85 50

B2E 0.170 0% 71

B3 0.967 11% 74

B4 1.048 3% 72

Area No. Area (ha)IMP

(%)

Impervious SurfacesPervious Surfaces

CNTIMP

(%)

CN

Pervious Surfaces

FOR STANHYD COMMAND

Area No. Area (ha) NASHID Command UsedXIMP

(%)

FOR CALIB NASHHYD COMMAND

Flow Path

Length

(m)

Avg %

Slope

Avg.

Runoff

Coeff, C

Time of

Conc, Tc

Airport

Formula

Time to

Peak , Tp

(hrs)

Impervious Surfaces

NASHHYD, Tp = 0.58 hrs

NASHHYD, Tp = 0.31 hrs

NASHHYD, Tp = 0.41 hrs

NASHHYD, Tp = 0.29 hrs

Tables B10 - SWMHYMO Modeling Parameters For Proposed Dry Swales

TABLE B10.A - Roadside Dry Swale Parameters

Slope: 1.0%

Bottom Width = 0.90m

Depth = 0.83m

Dist Elev(m)

0 0.83

2.49 0.0

3.39 0.0

5.47 0.83

TABLE B10.B - Rearyard Dry Swale Parameters

Slope: 0.60%

Bottom Width = 0.75m

Depth = 0.50m

Dist Elev(m)

0 0.50

1.5 0.00

2.25 0.00

3.75 0.50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Ele

v (

m)

Dist (m)

2.5:1

1.00m

0.00

0.20

0.40

0.60

0 0.5 1 1.5 2 2.5 3 3.5 4

Ele

v (

m)

Dist (m)

3:13:1

3:1

0.8m

TABLE B11 - INFILTRATION TRENCH RATING CURVE

B1

0.60

0.60

Q = F * (P/3,600,000) * (2LD + 2WD +LW)*n Eq'n 4.17 (MOE SMM Manual)

V = L*W*D* n * f Eq'n 4.17 (MOE SMM Manual)

where:

Q = Flow Rate (m3/s) for a given storage volume (V)

L = Total Length of soakway/infiltration trench (m) 200

W = Width of soakway/infiltration trench (m) 0.75

D = depth of water in soakway/infiltration trench (m)

V = volume of water in soakway/infiltration trench (m3)

P = native soil percolation rate (mm/hr) = 20.0 silty sand

n = void space in soakway/infiltration pit = 0.25 Sand

f = Longevity factor (0.5 - 1.0) 0.75

Water

Depth (m)

*Water Depth

Used (m) Trench Length

(m)

Trench

Width (m)

Volume in

Trench, V (m3)

Flow Rate, Q

(m3/s)

FLOW RATE

FROM BEDDING,

Q (m3/sec)

VOL (ha.m)

0.000 0.000 200.0 0.75 0.00 0.000156 0.00016 0.0000

0.100 0.100 200.0 0.75 2.81 0.000198 0.00020 0.0003

0.200 0.200 200.0 0.75 5.63 0.000240 0.00024 0.0006

0.300 0.300 200.0 0.75 8.44 0.000281 0.00028 0.0008

0.400 0.400 200.0 0.75 11.25 0.000323 0.00032 0.0011

0.500 0.500 200.0 0.75 14.06 0.000365 0.00036 0.0014

0.600 0.600 200.0 0.75 16.88 0.000406 0.00041 0.0017

0.700

0.800

0.900

1.000

**0.600 0.600 200.0 0.75 16.88 0.000406 0.00041 0.00169

Notes

* The effective depth of Storage in the Storage Bedding (Granuar) is from trench Bottom to Swale invert

Catchment No =

Swale Long Slope (%) =

Max Effective Depth for Storage (m) =

ROUTE RESERVOIR COMMAND

TABLE B12 - INFILTRATION TRENCH RATING CURVE

B2A - B2E

1.0

1.10

Q = F * (P/3,600,000) * (2LD + 2WD +LW)*n Eq'n 4.17 (MOE SMM Manual)

V = L*W*D* n * f Eq'n 4.17 (MOE SMM Manual)

where:

Q = Flow Rate (m3/s) for a given storage volume (V)

L = Total Length of soakway/infiltration trench (m) 660

W = Width of soakway/infiltration trench (m) 0.90

D = depth of water in soakway/infiltration trench (m)

V = volume of water in soakway/infiltration trench (m3)

P = native soil percolation rate (mm/hr) = 20.0 silty sand

n = void space in soakway/infiltration pit = 0.25 Sand

f = Longevity factor (0.5 - 1.0) 0.75

Water

Depth (m)

*Water Depth

Used (m) Trench Length

(m)

Trench

Width (m)

Volume in

Trench, V (m3)

Flow Rate, Q

(m3/s)

FLOW RATE

FROM BEDDING,

Q (m3/sec)

VOL (ha.m)

0.000 0.000 660.0 0.90 0.00 0.000619 0.00062 0.0000

0.100 0.100 660.0 0.90 11.14 0.000756 0.00076 0.0011

0.200 0.200 660.0 0.90 22.28 0.000894 0.00089 0.0022

0.300 0.300 660.0 0.90 33.41 0.001031 0.00103 0.0033

0.400 0.400 660.0 0.90 44.55 0.001169 0.00117 0.0045

0.500 0.500 660.0 0.90 55.69 0.001306 0.00131 0.0056

0.600 0.600 660.0 0.90 66.83 0.001444 0.00144 0.0067

0.700 0.700 660.0 0.90 77.96 0.001581 0.00158 0.0078

0.800 0.800 660.0 0.90 89.10 0.001719 0.00172 0.0089

0.900 0.900 660.0 0.90 100.24 0.001856 0.00186 0.0100

1.000 1.000 660.0 0.90 111.38 0.001994 0.00199 0.0111

**1.100 1.100 660.0 0.90 122.51 0.002131 0.00213 0.01225

Notes

* The effective depth of Storage in the Storage Bedding (Granuar) is from trench Bottom to Swale invert

Swale Long Slope (%) =

Catchment No =

ROUTE RESERVOIR COMMAND

Max Effective Depth for Storage (m) =

TABLE B13 - INFILTRATION TRENCH RATING CURVE

B3

0.65

0.60

Q = F * (P/3,600,000) * (2LD + 2WD +LW)*n Eq'n 4.17 (MOE SMM Manual)

V = L*W*D* n * f Eq'n 4.17 (MOE SMM Manual)

where:

Q = Flow Rate (m3/s) for a given storage volume (V)

L = Total Length of soakway/infiltration trench (m) 120

W = Width of soakway/infiltration trench (m) 0.75

D = depth of water in soakway/infiltration trench (m)

V = volume of water in soakway/infiltration trench (m3)

P = native soil percolation rate (mm/hr) = 20.0 silty sand

n = void space in soakway/infiltration pit = 0.25 Sand

f = Longevity factor (0.5 - 1.0) 0.75

Water

Depth (m)

*Water Depth

Used (m) Trench Length

(m)

Trench

Width (m)

Volume in

Trench, V (m3)

Flow Rate, Q

(m3/s)

FLOW RATE

FROM BEDDING,

Q (m3/sec)

VOL (ha.m)

0.000 0.000 120.0 0.75 0.00 0.000094 0.00009 0.0000

0.100 0.100 120.0 0.75 1.69 0.000119 0.00012 0.0002

0.200 0.200 120.0 0.75 3.38 0.000144 0.00014 0.0003

0.300 0.300 120.0 0.75 5.06 0.000169 0.00017 0.0005

0.400 0.400 120.0 0.75 6.75 0.000194 0.00019 0.0007

0.500 0.500 120.0 0.75 8.44 0.000219 0.00022 0.0008

0.600 0.600 120.0 0.75 10.13 0.000244 0.00024 0.0010

0.700

0.800

0.900

1.000

**0.600 0.600 120.0 0.75 10.13 0.000244 0.00024 0.00101

Notes

* The effective depth of Storage in the Storage Bedding (Granuar) is from trench Bottom to Swale invert

Catchment No =

Swale Long Slope (%) =

Max Effective Depth for Storage (m) =

ROUTE RESERVOIR COMMAND

TABLE B14 - INFILTRATION TRENCH RATING CURVE

B4

1.00

0.60

Q = F * (P/3,600,000) * (2LD + 2WD +LW)*n Eq'n 4.17 (MOE SMM Manual)

V = L*W*D* n * f Eq'n 4.17 (MOE SMM Manual)

where:

Q = Flow Rate (m3/s) for a given storage volume (V)

L = Total Length of soakway/infiltration trench (m) 110

W = Width of soakway/infiltration trench (m) 0.75

D = depth of water in soakway/infiltration trench (m)

V = volume of water in soakway/infiltration trench (m3)

P = native soil percolation rate (mm/hr) = 20.0 silty sand

n = void space in soakway/infiltration pit = 0.25 Sand

f = Longevity factor (0.5 - 1.0) 0.75

Water

Depth (m)

*Water Depth

Used (m) Trench Length

(m)

Trench

Width (m)

Volume in

Trench, V (m3)

Flow Rate, Q

(m3/s)

FLOW RATE

FROM BEDDING,

Q (m3/sec)

VOL (ha.m)

0.000 0.000 110.0 0.75 0.00 0.000086 0.000086 0.0000

0.100 0.100 110.0 0.75 1.55 0.000109 0.000109 0.0002

0.200 0.200 110.0 0.75 3.09 0.000132 0.000132 0.0003

0.300 0.300 110.0 0.75 4.64 0.000155 0.000155 0.0005

0.400 0.400 110.0 0.75 6.19 0.000178 0.000178 0.0006

0.500 0.500 110.0 0.75 7.73 0.000201 0.000201 0.0008

0.600 0.600 110.0 0.75 9.28 0.000223 0.000223 0.0009

0.700

0.800

0.900

1.000

**0.600 0.600 110.0 0.75 9.28 0.000223 0.00022 0.00093

Notes

* The effective depth of Storage in the Storage Bedding (Granuar) is from trench Bottom to Swale invert

Catchment No =

Swale Long Slope (%) =

Max Effective Depth for Storage (m) =

ROUTE RESERVOIR COMMAND

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

Appendix C – Hydrologic Model Input Files

File C1: INPUT FILE FOR PRE0DEVELOPMENT CONDITONS (PRE0DEV.DAT)

File C2: INPUT FILE FOR POST0DEVELOPMENT CONDITONS (PST20DEV.DAT)

File C3: INPUT FILE FOR POST0DEVELOPMENT CONDITONS WITH STORAGE (PST30DEV.DAT)

(C:\...Pre-Dev.DAT) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> 2 Metric units00002> ********************************************************************************00003> * Project Name: Manotick Subdivison, Cavanaugh Subdivison 00004> * Project No : 20535500005> * Description : Stormwater Design for 16 Lot Rural Subdivison00006> * Date : 05-04-201400007> * Modeller : J Fitzpatrick00008> * Company : exp Services Inc. Formerly Trow Associates Inc.00009> * License # : 7518806 00010> * Storms Run : SC12H005.STM 5 YEAR 12-HOUR SCS TYPE II STORM00011> * : SC24H005.STM 5 YEAR 24-HOUR SCS TYPE II STORM00012> * : SC12H100.STM 100 YEAR 12-HOUR SCS TYPE II STORM00013> * : SC24H100.stm 100 YEAR 24-HOUR SCS TYPE II STORM00014> ********************************************************************************00015> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[1] 00016> ["SC12H005.STM"] 00017> *%-----------------|-----------------------------------------------------------|00018> READ STORM STORM_FILENAME=["STORM.001"]00019> *%-----------------|-----------------------------------------------------------|00020> * PRE-DEVELOPMENT CONDITONS00021> *%-----------------|-----------------------------------------------------------|00022> * AREA A1 - TO MUD CREEK (NORTH HALF OF SITE)00023> CALIB NASHYD ID=[1], NHYD=[1000], DT=[5]min, AREA=[3.1955](ha),00024> DWF=[0](cms), CN/C=[71], IA=[6.5](mm),00025> N=[3], TP=[0.58]hrs,00026> RAINFALL=[ , , , , ](mm/hr), END=-100027> *%-----------------|-----------------------------------------------------------|00028> * AREA A2 - TO MUD CREEK (SOUTH HALF OF SITE)00029> CALIB NASHYD ID=[2], NHYD=[1001], DT=[5]min, AREA=[3.6195](ha),00030> DWF=[0](cms), CN/C=[71], IA=[6.5](mm),00031> N=[3], TP=[0.58]hrs,00032> RAINFALL=[ , , , , ](mm/hr), END=-100033> *%-----------------|-----------------------------------------------------------|00034> ADD HYD IDsum=[3], NHYD=["TOCREEK"], IDs to add=[1+2]00035> *%-----------------|-----------------------------------------------------------|00036> *00037> SAVE HYD ID=[3], # OF PCYCLES=[-1], ICASEsh=[-1]00038> HYD_FILENAME=["PREHYD"]00039> HYD_COMMENT=["PRE-DEV HYDROGRAPH TO CREEK"]00040> *%-----------------|-----------------------------------------------------------|00041> 00042> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2] 00043> ["SC24H005.stm"]00044> *%-----------------|-----------------------------------------------------------|00045> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3] 00046> ["SC12H100.stm"]00047> *%-----------------|-----------------------------------------------------------|00048> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[4] 00049> ["SC24H100.stm"]00050> *%-----------------|-----------------------------------------------------------|00051> *00052> FINISH00053> 00054> 00055> 00056> 00057> 00058> 00059> 00060> 00061> 00062> 00063> 00064> 00065> 00066> 00067> 00068> 00069> 00070> 00071> 00072> 00073> 00074> 00075> 00076> 00077> 00078> 00079> 00080> 00081> 00082> 00083> 00084> 00085> 00086> 00087> 00088> 00089> 00090> 00091> 00092> 00093> 00094> 00095> 00096> 00097> 00098> 00099> 00100> 00101> 00102> 00103> 00104> 00105> 00106> 00107> 00108> 00109> 00110>

(C:\...Pst-Dev2.DAT) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> 2 Metric units00002> ********************************************************************************00003> * Project Name: Manotick Subdivison, Cavanaugh Subdivison 00004> * Project No : 20535500005> * Description : Stormwater Design for 16 Lot Rural Subdivison00006> * Date : 10-04-201400007> * Modeller : J Fitzpatrick00008> * Company : exp Services Inc. Formerly Trow Associates Inc.00009> * License # : 7518806 00010> * Storms Run : 4HR25MM.STM 15MM STORM00011> * : 4HR25MM.STM 25MM STORM00012> * : SC24H002.STM 2 YEAR 24-HOUR SCS TYPE II STORM00013> * : SC24H005.STM 5 YEAR 24-HOUR SCS TYPE II STORM00014> * : SC24H010.STM 10 YEAR 24-HOUR SCS TYPE II STORM00015> * : SC24H025.STM 25 YEAR 24-HOUR SCS TYPE II STORM00016> * : SC12H100.STM 100 YEAR 12-HOUR SCS TYPE II STORM00017> ********************************************************************************00018> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[1] 00019> ["4HR15MM.STM"] 00020> *%-----------------|-----------------------------------------------------------|00021> READ STORM STORM_FILENAME=["STORM.001"]00022> *%-----------------|-----------------------------------------------------------|00023> * POST-DEVELOPMENT CONDITONS00024> *%-----------------|-----------------------------------------------------------|00025> * PEAK FLOWS FROM CATCHMENT AREAS B2A00026> *00027> CALIB STANDHYD ID=[1], NHYD=["B2A"], DT=[1](min), AREA=[1.343](ha),00028> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00029> SCS curve number CN=[79],00030> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00031> LGP=[40](m), MNP=[0.25], SCP=[0](min),00032> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00033> LGI=[232](m), MNI=[0.013], SCI=[0](min)00034> RAINFALL=[ , , , , ](mm/hr) , END=-100035> *%-----------------|-----------------------------------------------------------|00036> * ESTIMATE PEAK FLOWS IN NORTHSIDE DRY SWALE00037> * ROUTE PEAK FlOWS FROM CATCHMENT B2A THROUGH DRY SWALE. 00038> * BOTTOM WIDTH 1.0m, AND MAX DEPTH = 0.83m 00039> *00040> ROUTE CHANNEL IDout=[2], NHYD=["SWALEB2A"], IDin=[1], 00041> RDT=[1](min),00042> CHLGTH=[228.8](m), CHSLOPE=[1.0](%), 00043> FPSLOPE=[1.0](%),00044> SECNUM=[1], NSEG=[1] 00045> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00046> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00047> [ 2.49 , 0.00 ]00048> [ 3.39 , 0.00 ]00049> [ 5.05 , 0.83 ]00050> *%-----------------|-----------------------------------------------------------|00051> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREA B2B00052> *00053> CALIB STANDHYD ID=[3], NHYD=["B2B"], DT=[1](min), AREA=[0.971](ha),00054> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00055> SCS curve number CN=[79],00056> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00057> LGP=[40](m), MNP=[0.25], SCP=[0](min),00058> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00059> LGI=[197](m), MNI=[0.013], SCI=[0](min)00060> RAINFALL=[ , , , , ](mm/hr) , END=-100061> *%-----------------|-----------------------------------------------------------|00062> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00063> * ROUTE PEAK FLOWS FROM CATCHMENT B2B THROUGH DRY SWALE. 00064> * BOTTOM WIDTH 1.0m, AND MAX DEPTH = 0.83m 00065> *00066> ROUTE CHANNEL IDout=[4], NHYD=["SWALEB2B"], IDin=[3], 00067> RDT=[1](min),00068> CHLGTH=[228.8](m), CHSLOPE=[1.0](%), 00069> FPSLOPE=[1.0](%),00070> SECNUM=[2], NSEG=[1] 00071> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00072> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00073> [ 2.49 , 0.00 ]00074> [ 3.39 , 0.00 ]00075> [ 5.05 , 0.83 ]00076> *%-----------------|-----------------------------------------------------------|00077> * PEAK FLOWS FROM REAR YARDS OF LOTS 1 - 6 (AREA B3)00078> *00079> CALIB NASHYD ID=[5], NHYD=["B3"], DT=[1]min, AREA=[0.967](ha),00080> DWF=[0](cms), CN/C=[74], IA=[6.5](mm),00081> N=[3], TP=[0.41]hrs,00082> RAINFALL=[ , , , , ](mm/hr), END=-100083> *%-----------------|-----------------------------------------------------------|00084> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 1 - 600085> * ROUTE PEAK FLOWS FROM CATCHMENT B23 THROUGH DRY SWALE. 00086> * BOTTOM WIDTH 0.8m, AND MAX DEPTH = 0.50m 00087> *00088> ROUTE CHANNEL IDout=[6], NHYD=["SWALEB3"], IDin=[5], 00089> RDT=[1](min),00090> CHLGTH=[175](m), CHSLOPE=[0.65](%), 00091> FPSLOPE=[0.65](%),00092> SECNUM=[3], NSEG=[1] 00093> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00094> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00095> [ 1.50 , 0.00 ]00096> [ 2.25 , 0.00 ]00097> [ 3.75 , 0.50 ]00098> *%-----------------|-----------------------------------------------------------|00099> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREA B2C00100> *00101> CALIB STANDHYD ID=[7], NHYD=["B2C"], DT=[1](min), AREA=[0.142](ha),00102> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00103> SCS curve number CN=[79],00104> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00105> LGP=[40](m), MNP=[0.25], SCP=[0](min),00106> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00107> LGI=[78](m), MNI=[0.013], SCI=[0](min),00108> RAINFALL=[ , , , , ](mm/hr) , END=-100109> *%-----------------|-----------------------------------------------------------|00110> ADD HYD IDsum=[8], NHYD=[1000], IDs to add=[6 7]00111> *%-----------------|-----------------------------------------------------------|00112> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00113> * BOTTOM WIDTH 1.0m, AND MAX DEPTH = 0.83m 00114> *00115> ROUTE CHANNEL IDout=[9], NHYD=["SWALEB2C"], IDin=[8], 00116> RDT=[1](min),00117> CHLGTH=[88.3](m), CHSLOPE=[1.0](%), 00118> FPSLOPE=[1.0](%),00119> SECNUM=[4], NSEG=[1] 00120> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00121> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00122> [ 2.49 , 0.00 ]00123> [ 3.39 , 0.00 ]00124> [ 5.05 , 0.83 ]00125> *%-----------------|-----------------------------------------------------------|00126> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREAS B2D00127> *00128> CALIB STANDHYD ID=[5], NHYD=["B2D"], DT=[1](min), AREA=[0.454](ha),00129> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00130> SCS curve number CN=[78],00131> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00132> LGP=[40](m), MNP=[0.25], SCP=[0](min),00133> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00134> LGI=[78](m), MNI=[0.013], SCI=[0](min),00135> RAINFALL=[ , , , , ](mm/hr) , END=-1

00136> *%-----------------|-----------------------------------------------------------|00137> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00138> * ROUTE PEAK FLOWS FROM CATCHMENT THROUGH DRY SWALE. 00139> * BOTTOM WIDTH 1.0m, AND MAX DEPTH = 0.83m 00140> *00141> ROUTE CHANNEL IDout=[6], NHYD=["SWALEB2D"], IDin=[5], 00142> RDT=[1](min),00143> CHLGTH=[88.3](m), CHSLOPE=[1.0](%), 00144> FPSLOPE=[1.0](%),00145> SECNUM=[5], NSEG=[1] 00146> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00147> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00148> [ 2.49 , 0.00 ]00149> [ 3.39 , 0.00 ]00150> [ 5.05 , 0.83 ]00151> *%-----------------|-----------------------------------------------------------|00152> * TOTAL PEAK FLOWS FROM CATCHMENTS B2A - B2D00153> *00154> ADD HYD IDsum=[7], NHYD=[1001], IDs to add=[2 4 6 9]00155> *00156> *%-----------------|-----------------------------------------------------------|00157> * ROUTE PEAK FLOWS FROM CATCHMENTS B2A - B2E, B3 THROUGH DRY SWALE. 00158> * LOCATED ALONG EASEMENT BETWEEN LOT 8 AND LOT 900159> * BOTTOM WIDTH 1.0m, AND MAX DEPTH = 0.83m 00160> *00161> ROUTE CHANNEL IDout=[8], NHYD=["SWALEB2E"], IDin=[7], 00162> RDT=[1](min),00163> CHLGTH=[111](m), CHSLOPE=[1.0](%), 00164> FPSLOPE=[1.0](%),00165> SECNUM=[6], NSEG=[1] 00166> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00167> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00168> [ 2.49 , 0.00 ]00169> [ 3.39 , 0.00 ]00170> [ 5.05 , 0.83 ]00171> *%-----------------|-----------------------------------------------------------|00172> * AREA B2E 00173> *00174> CALIB NASHYD ID=[9], NHYD=["B2E"], DT=[1]min, AREA=[0.170](ha),00175> DWF=[0](cms), CN/C=[71], IA=[6.5](mm),00176> N=[3], TP=[0.58]hrs,00177> RAINFALL=[ , , , , ](mm/hr), END=-100178> *%-----------------|-----------------------------------------------------------|00179> 00180> * TOTAL PEAK FLOWS AT MAIN OUTLET FROM CATCHMENTS B2A - B2E00181> *00182> ADD HYD IDsum=[10], NHYD=[1002], IDs to add=[8 9]00183> *00184> *%-----------------|-----------------------------------------------------------|00185> *%-----------------|-----------------------------------------------------------|00186> *%-----------------|-----------------------------------------------------------|00187> *%-----------------|-----------------------------------------------------------|00188> *00189> *00190> * PEAK FLOWS TO NORTHERN OUTLET FROM CATCHMENT B1 (REAR OF LOTS 9 - 16)00191> *00192> CALIB NASHYD ID=[1], NHYD=["B1"], DT=[1]min, AREA=[1.721](ha),00193> DWF=[0](cms), CN/C=[73], IA=[6.5](mm),00194> N=[3], TP=[0.58]hrs,00195> RAINFALL=[ , , , , ](mm/hr), END=-100196> *%-----------------|-----------------------------------------------------------|00197> *00198> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 9 - 1600199> * BOTTOM WIDTH 0.8m, AND MAX DEPTH = 0.50m 00200> *00201> ROUTE CHANNEL IDout=[2], NHYD=["SWALEB1"], IDin=[1], 00202> RDT=[1](min),00203> CHLGTH=[325](m), CHSLOPE=[0.60](%), 00204> FPSLOPE=[0.60](%),00205> SECNUM=[7], NSEG=[1] 00206> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00207> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00208> [ 1.50 , 0.00 ]00209> [ 2.25 , 0.00 ]00210> [ 3.75 , 0.50 ]00211> *%-----------------|-----------------------------------------------------------|00212> *00213> * PEAK FLOWS DIRECLTY TO MUD CREEK FROM CATCHMENT B4 (REAR LOTS 7 & 8)00214> *00215> CALIB NASHYD ID=[3], NHYD=["B4"], DT=[1]min, AREA=[1.048](ha),00216> DWF=[0](cms), CN/C=[72], IA=[6.5](mm),00217> N=[3], TP=[0.29]hrs,00218> RAINFALL=[ , , , , ](mm/hr), END=-100219> *%-----------------|-----------------------------------------------------------|00220> *00221> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 7 & 800222> * BOTTOM WIDTH 0.8m, AND MAX DEPTH = 0.50m 00223> *00224> ROUTE CHANNEL IDout=[4], NHYD=["SWALEB4"], IDin=[3], 00225> RDT=[1](min),00226> CHLGTH=[110](m), CHSLOPE=[1.00](%), 00227> FPSLOPE=[1.00](%),00228> SECNUM=[8], NSEG=[1] 00229> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00230> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00231> [ 1.50 , 0.00 ]00232> [ 2.25 , 0.00 ]00233> [ 3.75 , 0.50 ]00234> *%-----------------|-----------------------------------------------------------|00235> *00236> * TOTAL FLOWS TO MUD CREEK FROM ALL PROPOSED CATCHMENTS00237> *00238> ADD HYD IDsum=[5], NHYD=[1003], IDs to add=[2 4 10]00239> *00240> *00241> *%-----------------|-----------------------------------------------------------|00242> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2] 00243> ["4HR25MM.STM"]00244> *%-----------------|-----------------------------------------------------------|00245> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3] 00246> ["SC24H002.stm"]00247> *%-----------------|-----------------------------------------------------------|00248> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[4] 00249> ["SC24H005.stm"]00250> *%-----------------|-----------------------------------------------------------|00251> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[5] 00252> ["SC24H010.stm"]00253> *%-----------------|-----------------------------------------------------------|00254> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[6] 00255> ["SC24H025.stm"]00256> *%-----------------|-----------------------------------------------------------|00257> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[7] 00258> ["SC24H100.stm"]00259> *%-----------------|-----------------------------------------------------------|00260> *00261> FINISH00262> 00263> 00264> 00265> 00266> 00267> 00268> 00269> 00270>

(C:\...Pst-Dev2.DAT) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 1

00271> 00272> 00273> 00274> 00275> 00276> 00277> 00278> 00279> 00280> 00281> 00282> 00283> 00284> 00285> 00286> 00287> 00288> 00289> 00290> 00291> 00292> 00293> 00294> 00295> 00296> 00297> 00298> 00299> 00300> 00301> 00302> 00303> 00304> 00305> 00306> 00307> 00308> 00309> 00310> 00311> 00312> 00313> 00314> 00315> 00316> 00317> 00318> 00319> 00320> 00321> 00322> 00323> 00324> 00325> 00326> 00327> 00328> 00329> 00330> 00331> 00332> 00333> 00334> 00335> 00336> 00337> 00338> 00339> 00340> 00341> 00342> 00343> 00344> 00345> 00346> 00347> 00348> 00349> 00350> 00351> 00352> 00353> 00354> 00355> 00356> 00357> 00358> 00359> 00360> 00361> 00362> 00363> 00364> 00365> 00366> 00367> 00368> 00369> 00370> 00371> 00372> 00373> 00374> 00375> 00376> 00377> 00378> 00379> 00380> 00381> 00382> 00383> 00384>

(C:\...Pst-Dev3.DAT) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> 2 Metric units00002> ********************************************************************************00003> * Project Name: Manotick Subdivison, Cavanaugh Subdivison 00004> * Project No : 20535500005> * Description : Stormwater Design for 16 Lot Rural Subdivison00006> * Date : 10-04-201400007> * Modeller : J Fitzpatrick00008> * Company : exp Services Inc. Formerly Trow Associates Inc.00009> * License # : 7518806 00010> * Storms Run : 4HR25MM.STM 15MM STORM00011> * : 4HR25MM.STM 25MM STORM00012> * : SC24H002.STM 2 YEAR 24-HOUR SCS TYPE II STORM00013> * : SC24H005.STM 5 YEAR 24-HOUR SCS TYPE II STORM00014> * : SC24H010.STM 10 YEAR 24-HOUR SCS TYPE II STORM00015> * : SC24H025.STM 25 YEAR 24-HOUR SCS TYPE II STORM00016> * : SC12H100.STM 100 YEAR 12-HOUR SCS TYPE II STORM00017> ********************************************************************************00018> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[1] 00019> ["4HR15MM.STM"] 00020> *%-----------------|-----------------------------------------------------------|00021> READ STORM STORM_FILENAME=["STORM.001"]00022> *%-----------------|-----------------------------------------------------------|00023> * POST-DEVELOPMENT CONDITONS INCLUDING INFILTRATION TRENCH STORAGE00024> *%-----------------|-----------------------------------------------------------|00025> * PEAK FLOWS FROM CATCHMENT AREAS B2A00026> *00027> CALIB STANDHYD ID=[1], NHYD=["B2A"], DT=[1](min), AREA=[1.343](ha),00028> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00029> SCS curve number CN=[79],00030> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00031> LGP=[40](m), MNP=[0.25], SCP=[0](min),00032> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00033> LGI=[232](m), MNI=[0.013], SCI=[0](min)00034> RAINFALL=[ , , , , ](mm/hr) , END=-100035> *%-----------------|-----------------------------------------------------------|00036> * ESTIMATE PEAK FLOWS IN NORTHSIDE DRY SWALE00037> * ROUTE PEAK FLOWS FROM CATCHMENT B2A THROUGH DRY SWALE. 00038> *00039> ROUTE CHANNEL IDout=[2], NHYD=["SWALEB2A"], IDin=[1], 00040> RDT=[1](min),00041> CHLGTH=[228.8](m), CHSLOPE=[1.0](%), 00042> FPSLOPE=[1.0](%),00043> SECNUM=[1], NSEG=[1] 00044> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00045> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00046> [ 2.49 , 0.00 ]00047> [ 3.39 , 0.00 ]00048> [ 5.05 , 0.83 ]00049> *%-----------------|-----------------------------------------------------------|00050> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREA B2B00051> *00052> CALIB STANDHYD ID=[3], NHYD=["B2B"], DT=[1](min), AREA=[0.971](ha),00053> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00054> SCS curve number CN=[79],00055> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00056> LGP=[40](m), MNP=[0.25], SCP=[0](min),00057> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00058> LGI=[197](m), MNI=[0.013], SCI=[0](min)00059> RAINFALL=[ , , , , ](mm/hr) , END=-100060> *%-----------------|-----------------------------------------------------------|00061> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00062> * ROUTE PEAK FLOWS FROM CATCHMENT B2B THROUGH DRY SWALE. 00063> *00064> ROUTE CHANNEL IDout=[4], NHYD=["SWALEB2B"], IDin=[3], 00065> RDT=[1](min),00066> CHLGTH=[228.8](m), CHSLOPE=[1.0](%), 00067> FPSLOPE=[1.0](%),00068> SECNUM=[2], NSEG=[1] 00069> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00070> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00071> [ 2.49 , 0.00 ]00072> [ 3.39 , 0.00 ]00073> [ 5.05 , 0.83 ]00074> *%-----------------|-----------------------------------------------------------|00075> * PEAK FLOWS FROM REAR YARDS OF LOTS 1 - 6 (AREA B3)00076> *00077> CALIB NASHYD ID=[5], NHYD=["B3"], DT=[1]min, AREA=[0.967](ha),00078> DWF=[0](cms), CN/C=[74], IA=[6.5](mm),00079> N=[3], TP=[0.41]hrs,00080> RAINFALL=[ , , , , ](mm/hr), END=-100081> *%-----------------|-----------------------------------------------------------|00082> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 1 - 600083> * ROUTE PEAK FLOWS FROM CATCHMENT B23 THROUGH DRY SWALE. 00084> *00085> ROUTE CHANNEL IDout=[6], NHYD=["SWALEB3"], IDin=[5], 00086> RDT=[1](min),00087> CHLGTH=[175](m), CHSLOPE=[0.65](%), 00088> FPSLOPE=[0.65](%),00089> SECNUM=[3], NSEG=[1] 00090> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00091> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00092> [ 1.50 , 0.00 ]00093> [ 2.25 , 0.00 ]00094> [ 3.75 , 0.50 ]00095> *%-----------------|-----------------------------------------------------------|00096> *00097> * ROUTE PEAK FLOWS INTO THE INFILTRATION TRENCH BASED ON THE AVAILABLE STORAGE. 00098> * OVERFLOWS ARE ROUTED DOWNSTREAM TO OUTLET 1 FROM AREA B300099> *00100> ROUTE RESERVOIR IDout=[5], NHYD=[999], IDin=[6], 00101> RDT=[1](min), 00102> TABLE of ( OUTFLOW-STORAGE ) values 00103> (cms) - (ha-m)00104> [ 0.00000 , 0.00000 ]00105> [ 0.00009 , 0.00000 ]00106> [ 0.00012 , 0.00017 ]00107> [ 0.00014 , 0.00034 ]00108> [ 0.00017 , 0.00051 ]00109> [ 0.00019 , 0.00068 ]00110> [ 0.00022 , 0.00084 ]00111> [ 0.00024 , 0.00101 ]00112> [ 0.00024 , 0.00101 ]00113> [ -1 , -1 ] (max twenty pts)00114> IDovf=[1], NHYDovf=["OVRFWB3"]00115> *%-----------------|-----------------------------------------------------------|00116> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREA B2C00117> *00118> CALIB STANDHYD ID=[7], NHYD=["B2C"], DT=[1](min), AREA=[0.142](ha),00119> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00120> SCS curve number CN=[79],00121> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00122> LGP=[40](m), MNP=[0.25], SCP=[0](min),00123> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00124> LGI=[78](m), MNI=[0.013], SCI=[0](min),00125> RAINFALL=[ , , , , ](mm/hr) , END=-100126> *%-----------------|-----------------------------------------------------------|00127> ADD HYD IDsum=[8], NHYD=[1000], IDs to add=[1 7]00128> *%-----------------|-----------------------------------------------------------|00129> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00130> *00131> ROUTE CHANNEL IDout=[9], NHYD=["SWALEB2C"], IDin=[8], 00132> RDT=[1](min),00133> CHLGTH=[88.3](m), CHSLOPE=[1.0](%), 00134> FPSLOPE=[1.0](%),00135> SECNUM=[4], NSEG=[1]

00136> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00137> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00138> [ 2.49 , 0.00 ]00139> [ 3.39 , 0.00 ]00140> [ 5.05 , 0.83 ]00141> *%-----------------|-----------------------------------------------------------|00142> * PEAK FLOWS TO MAIN OUTLET FROM CATCHMENT AREAS B2D00143> *00144> CALIB STANDHYD ID=[5], NHYD=["B2D"], DT=[1](min), AREA=[0.454](ha),00145> XIMP=[0.32], TIMP=[0.32], DWF=[0](cms), LOSS=[2], 00146> SCS curve number CN=[78],00147> Pervious surfaces: IAper=[6.5](mm), SLPP=[2.0](%), 00148> LGP=[40](m), MNP=[0.25], SCP=[0](min),00149> Impervious surfaces: IAimp=[1.57](mm), SLPI=[1.0](%), 00150> LGI=[78](m), MNI=[0.013], SCI=[0](min),00151> RAINFALL=[ , , , , ](mm/hr) , END=-100152> *%-----------------|-----------------------------------------------------------|00153> * ESTIMATE PEAK FLOWS IN SOUTHSIDE DRY SWALE00154> * ROUTE PEAK FLOWS FROM CATCHMENT THROUGH DRY SWALE. 00155> *00156> ROUTE CHANNEL IDout=[6], NHYD=["SWALEB2D"], IDin=[5], 00157> RDT=[1](min),00158> CHLGTH=[88.3](m), CHSLOPE=[1.0](%), 00159> FPSLOPE=[1.0](%),00160> SECNUM=[5], NSEG=[1] 00161> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00162> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00163> [ 2.49 , 0.00 ]00164> [ 3.39 , 0.00 ]00165> [ 5.05 , 0.83 ]00166> *%-----------------|-----------------------------------------------------------|00167> * TOTAL PEAK FLOWS FROM CATCHMENTS B2A - B2D00168> *00169> ADD HYD IDsum=[7], NHYD=[1001], IDs to add=[2 4 6 9]00170> *00171> *%-----------------|-----------------------------------------------------------|00172> * ROUTE PEAK FLOWS FROM CATCHMENTS B2A - B2E, B3 THROUGH DRY SWALE. 00173> * LOCATED ALONG EASEMENT BETWEEN LOT 8 AND LOT 900174> *00175> ROUTE CHANNEL IDout=[8], NHYD=["SWALEB2E"], IDin=[7], 00176> RDT=[1](min),00177> CHLGTH=[111](m), CHSLOPE=[1.0](%), 00178> FPSLOPE=[1.0](%),00179> SECNUM=[6], NSEG=[1] 00180> ( SEGROUGH, SEGDIST (m))=[0.050, 5.05] NSEG times 00181> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.83 ] 00182> [ 2.49 , 0.00 ]00183> [ 3.39 , 0.00 ]00184> [ 5.05 , 0.83 ]00185> *%-----------------|-----------------------------------------------------------|00186> * AREA B2E 00187> *00188> CALIB NASHYD ID=[9], NHYD=["B2E"], DT=[1]min, AREA=[0.170](ha),00189> DWF=[0](cms), CN/C=[71], IA=[6.5](mm),00190> N=[3], TP=[0.58]hrs,00191> RAINFALL=[ , , , , ](mm/hr), END=-100192> *%-----------------|-----------------------------------------------------------|00193> 00194> * TOTAL PEAK FLOWS AT MAIN OUTLET FROM CATCHMENTS B2A - B2E00195> *00196> ADD HYD IDsum=[10], NHYD=[1002], IDs to add=[8 9]00197> *00198> *%-----------------|-----------------------------------------------------------|00199> *00200> * ROUTE PEAK FLOWS INTO THE INFILTRATION TRENCH BASED ON THE AVAILABLE STORAGE. 00201> * OVERFLOWS ARE ROUTED DOWNSTREAM TO OUTLET 1 FROM AREAS B2A - B2E00202> *00203> ROUTE RESERVOIR IDout=[7], NHYD=[1003], IDin=[10], 00204> RDT=[1](min), 00205> TABLE of ( OUTFLOW-STORAGE ) values 00206> (cms) - (ha-m)00207> [ 0.000000 , 0.00000 ]00208> [ 0.000619 , 0.00000 ]00209> [ 0.000756 , 0.00111 ]00210> [ 0.000894 , 0.00223 ]00211> [ 0.001031 , 0.00334 ]00212> [ 0.001169 , 0.00446 ]00213> [ 0.001306 , 0.00557 ]00214> [ 0.001444 , 0.00668 ]00215> [ 0.001581 , 0.00780 ]00216> [ 0.001719 , 0.00891 ]00217> [ 0.001856 , 0.01002 ]00218> [ 0.001994 , 0.01114 ]00219> [ 0.002131 , 0.01225 ]00220> [ -1 , -1 ] (max twenty pts)00221> IDovf=[5], NHYDovf=["OVRFLW1"]00222> *%-----------------|-----------------------------------------------------------|00223> *%-----------------|-----------------------------------------------------------|00224> *%-----------------|-----------------------------------------------------------|00225> *00226> *00227> * PEAK FLOWS TO NORTHERN OUTLET FROM CATCHMENT B1 (REAR OF LOTS 9 - 16)00228> *00229> CALIB NASHYD ID=[1], NHYD=["B1"], DT=[1]min, AREA=[1.721](ha),00230> DWF=[0](cms), CN/C=[73], IA=[6.5](mm),00231> N=[3], TP=[0.58]hrs,00232> RAINFALL=[ , , , , ](mm/hr), END=-100233> *%-----------------|-----------------------------------------------------------|00234> *00235> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 9 - 1600236> *00237> ROUTE CHANNEL IDout=[2], NHYD=["SWALEB1"], IDin=[1], 00238> RDT=[1](min),00239> CHLGTH=[325](m), CHSLOPE=[0.60](%), 00240> FPSLOPE=[0.60](%),00241> SECNUM=[7], NSEG=[1] 00242> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00243> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00244> [ 1.50 , 0.00 ]00245> [ 2.25 , 0.00 ]00246> [ 3.75 , 0.50 ]00247> *%-----------------|-----------------------------------------------------------|00248> * ROUTE PEAK FLOWS INTO THE INFILTRATION TRENCH BASED ON THE AVAILABLE STORAGE. 00249> * OVERFLOWS ARE ROUTED DOWNSTREAM TO OUTLET 2 FROM AREA B100250> *00251> ROUTE RESERVOIR IDout=[3], NHYD=[1004], IDin=[2], 00252> RDT=[1](min), 00253> TABLE of ( OUTFLOW-STORAGE ) values 00254> (cms) - (ha-m)00255> [ 0.00000 , 0.00000 ]00256> [ 0.00016 , 0.00000 ]00257> [ 0.00020 , 0.00028 ]00258> [ 0.00024 , 0.00056 ]00259> [ 0.00028 , 0.00084 ]00260> [ 0.00032 , 0.00113 ]00261> [ 0.00036 , 0.00141 ]00262> [ 0.00041 , 0.00169 ]00263> [ 0.00041 , 0.00169 ]00264> [ -1 , -1 ] (max twenty pts)00265> IDovf=[1], NHYDovf=["OVRFLW2"]00266> *%-----------------|-----------------------------------------------------------|00267> *00268> * PEAK FLOWS DIRECLTY TO MUD CREEK FROM CATCHMENT B4 (REAR LOTS 7 & 8)00269> *00270> CALIB NASHYD ID=[2], NHYD=["B4"], DT=[1]min, AREA=[1.048](ha),

(C:\...Pst-Dev3.DAT) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 1

00271> DWF=[0](cms), CN/C=[72], IA=[6.5](mm),00272> N=[3], TP=[0.29]hrs,00273> RAINFALL=[ , , , , ](mm/hr), END=-100274> *%-----------------|-----------------------------------------------------------|00275> *00276> * ESTIMATE PEAK FLOWS IN DRY SWALE ALONG REAR OF LOTS 7 & 800277> *00278> ROUTE CHANNEL IDout=[4], NHYD=["SWALEB4"], IDin=[2], 00279> RDT=[1](min),00280> CHLGTH=[110](m), CHSLOPE=[1.00](%), 00281> FPSLOPE=[1.00](%),00282> SECNUM=[8], NSEG=[1] 00283> ( SEGROUGH, SEGDIST (m))=[0.050, 3.75] NSEG times 00284> ( DISTANCE (m), ELEVATION (m))=[ 0.00 , 0.50 ] 00285> [ 1.50 , 0.00 ]00286> [ 2.25 , 0.00 ]00287> [ 3.75 , 0.50 ]00288> *%-----------------|-----------------------------------------------------------|00289> * ROUTE PEAK FLOWS INTO THE INFILTRATION TRENCH BASED ON THE AVAILABLE STORAGE. 00290> * OVERFLOWS ARE ROUTED DOWNSTREAM TO OUTLET 300291> *00292> ROUTE RESERVOIR IDout=[1], NHYD=[1004], IDin=[4], 00293> RDT=[1](min), 00294> TABLE of ( OUTFLOW-STORAGE ) values 00295> (cms) - (ha-m)00296> [ 0.000000 , 0.00000]00297> [ 0.000086 , 0.00000 ]00298> [ 0.000109 , 0.00015 ]00299> [ 0.000132 , 0.00031 ]00300> [ 0.000155 , 0.00046 ]00301> [ 0.000178 , 0.00062 ]00302> [ 0.000201 , 0.00077 ]00303> [ 0.000223 , 0.00093 ]00304> [ 0.000223 , 0.00093 ]00305> [ -1 , -1 ] (max twenty pts)00306> IDovf=[2], NHYDovf=["OVRFLW3"]00307> *%-----------------|-----------------------------------------------------------|00308> *00309> * TOTAL FLOWS TO MUD CREEK FROM ALL PROPOSED CATCHMENTS00310> *00311> ADD HYD IDsum=[5], NHYD=[1005], IDs to add=[5 1 2]00312> *00313> *00314> *%-----------------|-----------------------------------------------------------|00315> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[2] 00316> ["4HR25MM.STM"]00317> *%-----------------|-----------------------------------------------------------|00318> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[3] 00319> ["SC24H002.stm"]00320> *%-----------------|-----------------------------------------------------------|00321> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[4] 00322> ["SC24H005.stm"]00323> *%-----------------|-----------------------------------------------------------|00324> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[5] 00325> ["SC24H010.stm"]00326> *%-----------------|-----------------------------------------------------------|00327> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[6] 00328> ["SC24H025.stm"]00329> *%-----------------|-----------------------------------------------------------|00330> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[7] 00331> ["SC24H100.stm"]00332> *%-----------------|-----------------------------------------------------------|00333> *00334> FINISH00335> 00336> 00337> 00338> 00339> 00340> 00341> 00342> 00343> 00344> 00345> 00346> 00347> 00348> 00349> 00350> 00351> 00352> 00353> 00354> 00355> 00356> 00357> 00358> 00359> 00360> 00361> 00362> 00363> 00364> 00365> 00366> 00367> 00368> 00369> 00370> 00371> 00372> 00373> 00374> 00375> 00376> 00377> 00378> 00379> 00380> 00381> 00382> 00383> 00384> 00385> 00386> 00387> 00388> 00389> 00390> 00391> 00392> 00393> 00394> 00395> 00396> 00397> 00398> 00399> 00400> 00401> 00402> 00403> 00404> 00405>

00406> 00407> 00408> 00409> 00410> 00411> 00412> 00413> 00414> 00415> 00416> 00417> 00418> 00419> 00420> 00421> 00422> 00423> 00424> 00425> 00426> 00427> 00428> 00429> 00430> 00431> 00432> 00433> 00434> 00435> 00436> 00437> 00438> 00439> 00440> 00441> 00442> 00443> 00444> 00445> 00446> 00447> 00448> 00449> 00450> 00451> 00452> 00453> 00454> 00455> 00456> 00457> 00458> 00459> 00460> 00461> 00462> 00463> 00464> 00465>

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

Appendix D – Hydrologic Model Output Files

File D1: SUMMARY OUTPUT FILE PRE0DEVELOPMENT CONDITONS (PRE0DEV.SUM)

File D2: SUMMARY OUTPUT FILE FOR POST0DEVELOPMENT CONDITONS (PST20DEV.SUM)

File D3: SUMMARY OUTPUT FILE FOR POST0DEVELOPMENT CONDITONS WITH STORAGE (PST30DEV.SUM)

(C:\...Pre-Dev.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> ================================================================================00002> 00003> SSSSS W W M M H H Y Y M M OOO 999 999 =========00004> S W W W MM MM H H Y Y MM MM O O 9 9 9 9 00005> SSSSS W W W M M M HHHHH Y M M M O O ## 9 9 9 9 Ver 4.0500006> S W W M M H H Y M M O O 9999 9999 Sept 201100007> SSSSS W W M M H H Y M M OOO 9 9 =========00008> 9 9 9 9 # 751880600009> StormWater Management HYdrologic Model 999 999 =========00010> 00011> *******************************************************************************00012> ***************************** SWMHYMO Ver/4.05 ******************************00013> ********* A single event and continuous hydrologic simulation model *********00014> ********* based on the principles of HYMO and its successors *********00015> ********* OTTHYMO-83 and OTTHYMO-89. *********00016> *******************************************************************************00017> ********* Distributed by: J.F. Sabourin and Associates Inc. *********00018> ********* Ottawa, Ontario: (613) 836-3884 *********00019> ********* Gatineau, Quebec: (819) 243-6858 *********00020> ********* E-Mail: [email protected] *********00021> *******************************************************************************00022> 00023> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00024> +++++++++ Licensed user: Oliver, Mangione,Mccalla Ltd, Division of Tro+++++++++00025> +++++++++ Nepean SERIAL#:7518806 +++++++++00026> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00027> 00028> *******************************************************************************00029> ********* ++++++ PROGRAM ARRAY DIMENSIONS ++++++ *********00030> ********* Maximum value for ID numbers : 10 *********00031> ********* Max. number of rainfall points: 105408 *********00032> ********* Max. number of flow points : 105408 *********00033> *******************************************************************************00034> 00035> ***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in START) *****00036> *****---------------------------------------------------------------------*****00037> ***** ID: Hydrograph IDentification numbers, (1-10). *****00038> ***** NHYD: Hydrograph reference numbers, (6 digits or characters). *****00039> ***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.). *****00040> ***** QPEAK: Peak flow of simulated hydrograph, (ft^3/s) or (m^3/s). *****00041> ***** TpeakDate_hh:mm is the date and time of the peak flow. *****00042> ***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm). *****00043> ***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio). *****00044> ***** *: see WARNING or NOTE message printed at end of run. *****00045> ***** **: see ERROR message printed at end of run. *****00046> *******************************************************************************00047> *******************************************************************************00048> 00049> ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::00050> 00051> *******************************************************************************00052> 00053> *********************** S U M M A R Y O U T P U T ***********************00054> *******************************************************************************00055> * DATE: 2014-07-30 TIME: 18:49:21 RUN COUNTER: 000042 *00056> *******************************************************************************00057> * Input filename: C:\PROGRA~2\SWMHYM~1\215355\Pre-Dev.DAT *00058> * Output filename: C:\PROGRA~2\SWMHYM~1\215355\Pre-Dev.out *00059> * Summary filename: C:\PROGRA~2\SWMHYM~1\215355\Pre-Dev.sum *00060> * User comments: *00061> * 1:__________________________________________________________________________*00062> * 2:__________________________________________________________________________*00063> * 3:__________________________________________________________________________*00064> *******************************************************************************00065> 00066> 00067> RUN:COMMAND#00068> 001:0001-----------------------------------------------------------------------00069> START00070> [TZERO = .00 hrs on 0]00071> [METOUT= 2 (1=imperial, 2=metric output)]00072> [NSTORM= 1 ]00073> [NRUN = 1 ]00074> 001:0002-----------------------------------------------------------------------00075> READ STORM 00076> Filename = STORM.001 00077> Comment = 00078> [SDT=30.00:SDUR= 12.50:PTOT= 57.61]00079> 001:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00080> CALIB NASHYD 01: 1000 3.20 .068 No_date 7:05 16.87 00081> [CN= 71.0: N= 3.00]00082> [Tp= .58:DT= 5.00]00083> 001:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00084> CALIB NASHYD 02: 1001 3.62 .077 No_date 7:05 16.87 00085> [CN= 71.0: N= 3.00]00086> [Tp= .58:DT= 5.00]00087> 001:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00088> ADD HYD 01: 1000 3.20 .068 No_date 7:05 16.87 00089> + 02: 1001 3.62 .077 No_date 7:05 16.87 00090> [DT= 5.00] SUM= 03:TOCREEK 6.81 .144 No_date 7:05 16.87 00091> 001:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00092> SAVE HYD 03:TOCREEK 6.81 .144 No_date 7:05 16.87 00093> fname :C:\PROGRA~2\SWMHYM~1\215355\PREHYD.001 00094> remark:PRE-DEV HYDROGRAPH TO CREEK 00095> ** END OF RUN : 100096> 00097> *******************************************************************************00098> 00099> 00100> 00101> 00102> 00103> RUN:COMMAND#00104> 002:0001-----------------------------------------------------------------------00105> START00106> [TZERO = .00 hrs on 0]00107> [METOUT= 2 (1=imperial, 2=metric output)]00108> [NSTORM= 1 ]00109> [NRUN = 2 ]00110> 002:0002-----------------------------------------------------------------------00111> READ STORM 00112> Filename = STORM.001 00113> Comment = 00114> [SDT=30.00:SDUR= 24.50:PTOT= 62.40]00115> 002:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00116> CALIB NASHYD 01: 1000 3.20 .070 No_date 12:55 19.57 00117> [CN= 71.0: N= 3.00]00118> [Tp= .58:DT= 5.00]00119> 002:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00120> CALIB NASHYD 02: 1001 3.62 .079 No_date 12:55 19.57 00121> [CN= 71.0: N= 3.00]00122> [Tp= .58:DT= 5.00]00123> 002:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00124> ADD HYD 01: 1000 3.20 .070 No_date 12:55 19.57 00125> + 02: 1001 3.62 .079 No_date 12:55 19.57 00126> [DT= 5.00] SUM= 03:TOCREEK 6.81 .149 No_date 12:55 19.57 00127> 002:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00128> SAVE HYD 03:TOCREEK 6.81 .149 No_date 12:55 19.57 00129> fname :C:\PROGRA~2\SWMHYM~1\215355\PREHYD.002 00130> remark:PRE-DEV HYDROGRAPH TO CREEK 00131> ** END OF RUN : 200132> 00133> *******************************************************************************00134> 00135>

00136> 00137> 00138> 00139> RUN:COMMAND#00140> 003:0001-----------------------------------------------------------------------00141> START00142> [TZERO = .00 hrs on 0]00143> [METOUT= 2 (1=imperial, 2=metric output)]00144> [NSTORM= 1 ]00145> [NRUN = 3 ]00146> 003:0002-----------------------------------------------------------------------00147> READ STORM 00148> Filename = STORM.001 00149> Comment = 00150> [SDT=30.00:SDUR= 12.50:PTOT= 96.00]00151> 003:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00152> CALIB NASHYD 01: 1000 3.20 .172 No_date 7:00 41.45 00153> [CN= 71.0: N= 3.00]00154> [Tp= .58:DT= 5.00]00155> 003:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00156> CALIB NASHYD 02: 1001 3.62 .195 No_date 7:00 41.45 00157> [CN= 71.0: N= 3.00]00158> [Tp= .58:DT= 5.00]00159> 003:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00160> ADD HYD 01: 1000 3.20 .172 No_date 7:00 41.45 00161> + 02: 1001 3.62 .195 No_date 7:00 41.45 00162> [DT= 5.00] SUM= 03:TOCREEK 6.81 .368 No_date 7:00 41.45 00163> 003:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00164> SAVE HYD 03:TOCREEK 6.81 .368 No_date 7:00 41.45 00165> fname :C:\PROGRA~2\SWMHYM~1\215355\PREHYD.003 00166> remark:PRE-DEV HYDROGRAPH TO CREEK 00167> ** END OF RUN : 300168> 00169> *******************************************************************************00170> 00171> 00172> 00173> 00174> 00175> RUN:COMMAND#00176> 004:0001-----------------------------------------------------------------------00177> START00178> [TZERO = .00 hrs on 0]00179> [METOUT= 2 (1=imperial, 2=metric output)]00180> [NSTORM= 1 ]00181> [NRUN = 4 ]00182> 004:0002-----------------------------------------------------------------------00183> READ STORM 00184> Filename = STORM.001 00185> Comment = 00186> [SDT=30.00:SDUR= 24.50:PTOT= 103.21]00187> 004:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00188> CALIB NASHYD 01: 1000 3.20 .173 No_date 12:55 46.65 00189> [CN= 71.0: N= 3.00]00190> [Tp= .58:DT= 5.00]00191> 004:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00192> CALIB NASHYD 02: 1001 3.62 .196 No_date 12:55 46.65 00193> [CN= 71.0: N= 3.00]00194> [Tp= .58:DT= 5.00]00195> 004:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00196> ADD HYD 01: 1000 3.20 .173 No_date 12:55 46.65 00197> + 02: 1001 3.62 .196 No_date 12:55 46.65 00198> [DT= 5.00] SUM= 03:TOCREEK 6.81 .369 No_date 12:55 46.65 00199> 004:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00200> SAVE HYD 03:TOCREEK 6.81 .369 No_date 12:55 46.65 00201> fname :C:\PROGRA~2\SWMHYM~1\215355\PREHYD.004 00202> remark:PRE-DEV HYDROGRAPH TO CREEK 00203> 004:0002-----------------------------------------------------------------------00204> FINISH00205> --------------------------------------------------------------------------------00206> ********************************************************************************00207> WARNINGS / ERRORS / NOTES00208> -------------------------00209> Simulation ended on 2014-07-30 at 18:49:2200210> ================================================================================00211> 00212>

(C:\...Pst-Dev2.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> ================================================================================00002> 00003> SSSSS W W M M H H Y Y M M OOO 999 999 =========00004> S W W W MM MM H H Y Y MM MM O O 9 9 9 9 00005> SSSSS W W W M M M HHHHH Y M M M O O ## 9 9 9 9 Ver 4.0500006> S W W M M H H Y M M O O 9999 9999 Sept 201100007> SSSSS W W M M H H Y M M OOO 9 9 =========00008> 9 9 9 9 # 751880600009> StormWater Management HYdrologic Model 999 999 =========00010> 00011> *******************************************************************************00012> ***************************** SWMHYMO Ver/4.05 ******************************00013> ********* A single event and continuous hydrologic simulation model *********00014> ********* based on the principles of HYMO and its successors *********00015> ********* OTTHYMO-83 and OTTHYMO-89. *********00016> *******************************************************************************00017> ********* Distributed by: J.F. Sabourin and Associates Inc. *********00018> ********* Ottawa, Ontario: (613) 836-3884 *********00019> ********* Gatineau, Quebec: (819) 243-6858 *********00020> ********* E-Mail: [email protected] *********00021> *******************************************************************************00022> 00023> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00024> +++++++++ Licensed user: Oliver, Mangione,Mccalla Ltd, Division of Tro+++++++++00025> +++++++++ Nepean SERIAL#:7518806 +++++++++00026> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00027> 00028> *******************************************************************************00029> ********* ++++++ PROGRAM ARRAY DIMENSIONS ++++++ *********00030> ********* Maximum value for ID numbers : 10 *********00031> ********* Max. number of rainfall points: 105408 *********00032> ********* Max. number of flow points : 105408 *********00033> *******************************************************************************00034> 00035> ***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in START) *****00036> *****---------------------------------------------------------------------*****00037> ***** ID: Hydrograph IDentification numbers, (1-10). *****00038> ***** NHYD: Hydrograph reference numbers, (6 digits or characters). *****00039> ***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.). *****00040> ***** QPEAK: Peak flow of simulated hydrograph, (ft^3/s) or (m^3/s). *****00041> ***** TpeakDate_hh:mm is the date and time of the peak flow. *****00042> ***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm). *****00043> ***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio). *****00044> ***** *: see WARNING or NOTE message printed at end of run. *****00045> ***** **: see ERROR message printed at end of run. *****00046> *******************************************************************************00047> *******************************************************************************00048> 00049> ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::00050> 00051> *******************************************************************************00052> 00053> *********************** S U M M A R Y O U T P U T ***********************00054> *******************************************************************************00055> * DATE: 2014-09-05 TIME: 15:18:36 RUN COUNTER: 000069 *00056> *******************************************************************************00057> * Input filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev2.DAT *00058> * Output filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev2.out *00059> * Summary filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev2.sum *00060> * User comments: *00061> * 1:__________________________________________________________________________*00062> * 2:__________________________________________________________________________*00063> * 3:__________________________________________________________________________*00064> *******************************************************************************00065> 00066> 00067> RUN:COMMAND#00068> 001:0001-----------------------------------------------------------------------00069> START00070> [TZERO = .00 hrs on 0]00071> [METOUT= 2 (1=imperial, 2=metric output)]00072> [NSTORM= 1 ]00073> [NRUN = 1 ]00074> 001:0002-----------------------------------------------------------------------00075> READ STORM 00076> Filename = STORM.001 00077> Comment = 00078> [SDT=10.00:SDUR= 4.00:PTOT= 15.01]00079> 001:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00080> CALIB STANDHYD 01:B2A 1.34 .031 No_date 2:42 4.95 00081> [XIMP=.32:TIMP=.32]00082> [LOSS= 2 :CN= 79.0]00083> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00084> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00085> 001:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00086> ROUTE CHANNEL -> 01:B2A 1.34 .031 No_date 2:42 4.95 00087> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .020 No_date 2:47 4.95 00088> [L/S/n= 229./1.000/.050]00089> {Vmax= .312:Dmax= .078}00090> 001:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00091> CALIB STANDHYD 03:B2B .97 .024 No_date 2:42 4.95 00092> [XIMP=.32:TIMP=.32]00093> [LOSS= 2 :CN= 79.0]00094> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00095> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00096> 001:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00097> ROUTE CHANNEL -> 03:B2B .97 .024 No_date 2:42 4.95 00098> [RDT= 1.00] out<- 04:SWALEB2B .97 .014 No_date 2:47 4.95 00099> [L/S/n= 229./1.000/.050]00100> {Vmax= .275:Dmax= .065}00101> 001:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00102> CALIB NASHYD 05:B3 .97 .002 No_date 3:10 .74 00103> [CN= 74.0: N= 3.00]00104> [Tp= .41:DT= 1.00]00105> 001:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00106> ROUTE CHANNEL -> 05:B3 .97 .002 No_date 3:10 .74 00107> [RDT= 1.00] out<- 06:SWALEB3 .97 .001 No_date 3:31 .74 00108> [L/S/n= 175./ .650/.050]00109> {Vmax= .134:Dmax= .015}00110> 001:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00111> CALIB STANDHYD 07:B2C .14 .004 No_date 2:40 4.95 00112> [XIMP=.32:TIMP=.32]00113> [LOSS= 2 :CN= 79.0]00114> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00115> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00116> 001:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00117> ADD HYD 06:SWALEB3 .97 .001 No_date 3:31 .74 00118> + 07:B2C .14 .004 No_date 2:40 4.95 00119> [DT= 1.00] SUM= 08: 1000 1.11 .004 No_date 2:40 1.28 00120> 001:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00121> ROUTE CHANNEL -> 08: 1000 1.11 .004 No_date 2:40 1.28 00122> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .003 No_date 2:43 1.28 00123> [L/S/n= 88./1.000/.050]00124> {Vmax= .231:Dmax= .016}00125> 001:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00126> CALIB STANDHYD 05:B2D .45 .013 No_date 2:40 4.91 00127> [XIMP=.32:TIMP=.32]00128> [LOSS= 2 :CN= 78.0]00129> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00130> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00131> 001:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00132> ROUTE CHANNEL -> 05:B2D .45 .013 No_date 2:40 4.91 00133> [RDT= 1.00] out<- 06:SWALEB2D .45 .010 No_date 2:42 4.91 00134> [L/S/n= 88./1.000/.050]00135> {Vmax= .236:Dmax= .047}

00136> 001:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00137> ADD HYD 02:SWALEB2A 1.34 .020 No_date 2:47 4.95 00138> + 04:SWALEB2B .97 .014 No_date 2:47 4.95 00139> + 06:SWALEB2D .45 .010 No_date 2:42 4.91 00140> + 09:SWALEB2C 1.11 .003 No_date 2:43 1.28 00141> [DT= 1.00] SUM= 07: 1001 3.88 .045 No_date 2:46 3.89 00142> 001:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00143> ROUTE CHANNEL -> 07: 1001 3.88 .045 No_date 2:46 3.89 00144> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .042 No_date 2:50 3.89 00145> [L/S/n= 111./1.000/.050]00146> {Vmax= .363:Dmax= .097}00147> 001:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00148> CALIB NASHYD 09:B2E .17 .000 No_date 3:23 .64 00149> [CN= 71.0: N= 3.00]00150> [Tp= .58:DT= 1.00]00151> 001:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00152> ADD HYD 08:SWALEB2E 3.88 .042 No_date 2:50 3.89 00153> + 09:B2E .17 .000 No_date 3:23 .64 00154> [DT= 1.00] SUM= 10: 1002 4.05 .042 No_date 2:50 3.76 00155> 001:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00156> CALIB NASHYD 01:B1 1.72 .002 No_date 3:23 .71 00157> [CN= 73.0: N= 3.00]00158> [Tp= .58:DT= 1.00]00159> 001:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00160> ROUTE CHANNEL -> 01:B1 1.72 .002 No_date 3:23 .71 00161> [RDT= 1.00] out<- 02:SWALEB1 1.72 .002 No_date 3:59 .71 00162> [L/S/n= 325./ .600/.050]00163> {Vmax= .129:Dmax= .021}00164> 001:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00165> CALIB NASHYD 03:B4 1.05 .002 No_date 3:01 .67 00166> [CN= 72.0: N= 3.00]00167> [Tp= .29:DT= 1.00]00168> 001:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00169> ROUTE CHANNEL -> 03:B4 1.05 .002 No_date 3:01 .67 00170> [RDT= 1.00] out<- 04:SWALEB4 1.05 .002 No_date 3:12 .67 00171> [L/S/n= 110./1.000/.050]00172> {Vmax= .166:Dmax= .015}00173> 001:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00174> ADD HYD 02:SWALEB1 1.72 .002 No_date 3:59 .71 00175> + 04:SWALEB4 1.05 .002 No_date 3:12 .67 00176> + 10: 1002 4.05 .042 No_date 2:50 3.76 00177> [DT= 1.00] SUM= 05: 1003 6.82 .043 No_date 2:50 2.51 00178> ** END OF RUN : 100179> 00180> *******************************************************************************00181> 00182> 00183> 00184> 00185> 00186> RUN:COMMAND#00187> 002:0001-----------------------------------------------------------------------00188> START00189> [TZERO = .00 hrs on 0]00190> [METOUT= 2 (1=imperial, 2=metric output)]00191> [NSTORM= 1 ]00192> [NRUN = 2 ]00193> 002:0002-----------------------------------------------------------------------00194> READ STORM 00195> Filename = STORM.001 00196> Comment = 00197> [SDT=10.00:SDUR= 4.00:PTOT= 25.00]00198> 002:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00199> CALIB STANDHYD 01:B2A 1.34 .059 No_date 2:41 10.20 00200> [XIMP=.32:TIMP=.32]00201> [LOSS= 2 :CN= 79.0]00202> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00203> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00204> 002:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00205> ROUTE CHANNEL -> 01:B2A 1.34 .059 No_date 2:41 10.20 00206> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .042 No_date 2:45 10.20 00207> [L/S/n= 229./1.000/.050]00208> {Vmax= .392:Dmax= .112}00209> 002:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00210> CALIB STANDHYD 03:B2B .97 .044 No_date 2:41 10.20 00211> [XIMP=.32:TIMP=.32]00212> [LOSS= 2 :CN= 79.0]00213> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00214> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00215> 002:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00216> ROUTE CHANNEL -> 03:B2B .97 .044 No_date 2:41 10.20 00217> [RDT= 1.00] out<- 04:SWALEB2B .97 .029 No_date 2:45 10.20 00218> [L/S/n= 229./1.000/.050]00219> {Vmax= .360:Dmax= .095}00220> 002:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00221> CALIB NASHYD 05:B3 .97 .008 No_date 3:06 3.18 00222> [CN= 74.0: N= 3.00]00223> [Tp= .41:DT= 1.00]00224> 002:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00225> ROUTE CHANNEL -> 05:B3 .97 .008 No_date 3:06 3.18 00226> [RDT= 1.00] out<- 06:SWALEB3 .97 .007 No_date 3:20 3.18 00227> [L/S/n= 175./ .650/.050]00228> {Vmax= .177:Dmax= .045}00229> 002:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00230> CALIB STANDHYD 07:B2C .14 .007 No_date 2:40 10.20 00231> [XIMP=.32:TIMP=.32]00232> [LOSS= 2 :CN= 79.0]00233> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00234> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00235> 002:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00236> ADD HYD 06:SWALEB3 .97 .007 No_date 3:20 3.18 00237> + 07:B2C .14 .007 No_date 2:40 10.20 00238> [DT= 1.00] SUM= 08: 1000 1.11 .008 No_date 3:18 4.08 00239> 002:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00240> ROUTE CHANNEL -> 08: 1000 1.11 .008 No_date 3:18 4.08 00241> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .007 No_date 3:24 4.08 00242> [L/S/n= 88./1.000/.050]00243> {Vmax= .231:Dmax= .030}00244> 002:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00245> CALIB STANDHYD 05:B2D .45 .023 No_date 2:40 10.08 00246> [XIMP=.32:TIMP=.32]00247> [LOSS= 2 :CN= 78.0]00248> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00249> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00250> 002:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00251> ROUTE CHANNEL -> 05:B2D .45 .023 No_date 2:40 10.08 00252> [RDT= 1.00] out<- 06:SWALEB2D .45 .019 No_date 2:42 10.08 00253> [L/S/n= 88./1.000/.050]00254> {Vmax= .273:Dmax= .064}00255> 002:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00256> ADD HYD 02:SWALEB2A 1.34 .042 No_date 2:45 10.20 00257> + 04:SWALEB2B .97 .029 No_date 2:45 10.20 00258> + 06:SWALEB2D .45 .019 No_date 2:42 10.08 00259> + 09:SWALEB2C 1.11 .007 No_date 3:24 4.08 00260> [DT= 1.00] SUM= 07: 1001 3.88 .093 No_date 2:44 8.44 00261> 002:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00262> ROUTE CHANNEL -> 07: 1001 3.88 .093 No_date 2:44 8.44 00263> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .086 No_date 2:47 8.44 00264> [L/S/n= 111./1.000/.050]00265> {Vmax= .459:Dmax= .146}00266> 002:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00267> CALIB NASHYD 09:B2E .17 .001 No_date 3:18 2.79 00268> [CN= 71.0: N= 3.00]00269> [Tp= .58:DT= 1.00]00270> 002:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-

(C:\...Pst-Dev2.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 1

00271> ADD HYD 08:SWALEB2E 3.88 .086 No_date 2:47 8.44 00272> + 09:B2E .17 .001 No_date 3:18 2.79 00273> [DT= 1.00] SUM= 10: 1002 4.05 .086 No_date 2:47 8.20 00274> 002:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00275> CALIB NASHYD 01:B1 1.72 .011 No_date 3:18 3.04 00276> [CN= 73.0: N= 3.00]00277> [Tp= .58:DT= 1.00]00278> 002:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00279> ROUTE CHANNEL -> 01:B1 1.72 .011 No_date 3:18 3.04 00280> [RDT= 1.00] out<- 02:SWALEB1 1.72 .008 No_date 3:39 3.04 00281> [L/S/n= 325./ .600/.050]00282> {Vmax= .198:Dmax= .055}00283> 002:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00284> CALIB NASHYD 03:B4 1.05 .010 No_date 2:58 2.92 00285> [CN= 72.0: N= 3.00]00286> [Tp= .29:DT= 1.00]00287> 002:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00288> ROUTE CHANNEL -> 03:B4 1.05 .010 No_date 2:58 2.92 00289> [RDT= 1.00] out<- 04:SWALEB4 1.05 .009 No_date 3:05 2.92 00290> [L/S/n= 110./1.000/.050]00291> {Vmax= .223:Dmax= .046}00292> 002:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00293> ADD HYD 02:SWALEB1 1.72 .008 No_date 3:39 3.04 00294> + 04:SWALEB4 1.05 .009 No_date 3:05 2.92 00295> + 10: 1002 4.05 .086 No_date 2:47 8.20 00296> [DT= 1.00] SUM= 05: 1003 6.82 .091 No_date 2:48 6.09 00297> ** END OF RUN : 200298> 00299> *******************************************************************************00300> 00301> 00302> 00303> 00304> 00305> RUN:COMMAND#00306> 003:0001-----------------------------------------------------------------------00307> START00308> [TZERO = .00 hrs on 0]00309> [METOUT= 2 (1=imperial, 2=metric output)]00310> [NSTORM= 1 ]00311> [NRUN = 3 ]00312> 003:0002-----------------------------------------------------------------------00313> READ STORM 00314> Filename = STORM.001 00315> Comment = 00316> [SDT=10.00:SDUR= 24.00:PTOT= 48.46]00317> 003:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00318> CALIB STANDHYD 01:B2A 1.34 .081 No_date 12:01 25.94 00319> [XIMP=.32:TIMP=.32]00320> [LOSS= 2 :CN= 79.0]00321> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00322> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00323> 003:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00324> ROUTE CHANNEL -> 01:B2A 1.34 .081 No_date 12:01 25.94 00325> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .064 No_date 12:04 25.94 00326> [L/S/n= 229./1.000/.050]00327> {Vmax= .442:Dmax= .135}00328> 003:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00329> CALIB STANDHYD 03:B2B .97 .059 No_date 12:01 25.94 00330> [XIMP=.32:TIMP=.32]00331> [LOSS= 2 :CN= 79.0]00332> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00333> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00334> 003:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00335> ROUTE CHANNEL -> 03:B2B .97 .059 No_date 12:01 25.94 00336> [RDT= 1.00] out<- 04:SWALEB2B .97 .045 No_date 12:04 25.94 00337> [L/S/n= 229./1.000/.050]00338> {Vmax= .393:Dmax= .112}00339> 003:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00340> CALIB NASHYD 05:B3 .97 .019 No_date 12:20 13.42 00341> [CN= 74.0: N= 3.00]00342> [Tp= .41:DT= 1.00]00343> 003:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00344> ROUTE CHANNEL -> 05:B3 .97 .019 No_date 12:20 13.42 00345> [RDT= 1.00] out<- 06:SWALEB3 .97 .017 No_date 12:31 13.42 00346> [L/S/n= 175./ .650/.050]00347> {Vmax= .245:Dmax= .075}00348> 003:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00349> CALIB STANDHYD 07:B2C .14 .010 No_date 12:00 25.94 00350> [XIMP=.32:TIMP=.32]00351> [LOSS= 2 :CN= 79.0]00352> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00353> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00354> 003:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00355> ADD HYD 06:SWALEB3 .97 .017 No_date 12:31 13.42 00356> + 07:B2C .14 .010 No_date 12:00 25.94 00357> [DT= 1.00] SUM= 08: 1000 1.11 .020 No_date 12:28 15.02 00358> 003:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00359> ROUTE CHANNEL -> 08: 1000 1.11 .020 No_date 12:28 15.02 00360> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .019 No_date 12:32 15.02 00361> [L/S/n= 88./1.000/.050]00362> {Vmax= .260:Dmax= .058}00363> 003:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00364> CALIB STANDHYD 05:B2D .45 .030 No_date 12:00 25.54 00365> [XIMP=.32:TIMP=.32]00366> [LOSS= 2 :CN= 78.0]00367> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00368> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00369> 003:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00370> ROUTE CHANNEL -> 05:B2D .45 .030 No_date 12:00 25.54 00371> [RDT= 1.00] out<- 06:SWALEB2D .45 .027 No_date 12:01 25.54 00372> [L/S/n= 88./1.000/.050]00373> {Vmax= .304:Dmax= .075}00374> 003:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00375> ADD HYD 02:SWALEB2A 1.34 .064 No_date 12:04 25.94 00376> + 04:SWALEB2B .97 .045 No_date 12:04 25.94 00377> + 06:SWALEB2D .45 .027 No_date 12:01 25.54 00378> + 09:SWALEB2C 1.11 .019 No_date 12:32 15.02 00379> [DT= 1.00] SUM= 07: 1001 3.88 .144 No_date 12:03 22.77 00380> 003:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00381> ROUTE CHANNEL -> 07: 1001 3.88 .144 No_date 12:03 22.77 00382> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .137 No_date 12:06 22.77 00383> [L/S/n= 111./1.000/.050]00384> {Vmax= .525:Dmax= .185}00385> 003:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00386> CALIB NASHYD 09:B2E .17 .002 No_date 12:33 12.07 00387> [CN= 71.0: N= 3.00]00388> [Tp= .58:DT= 1.00]00389> 003:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00390> ADD HYD 08:SWALEB2E 3.88 .137 No_date 12:06 22.77 00391> + 09:B2E .17 .002 No_date 12:33 12.07 00392> [DT= 1.00] SUM= 10: 1002 4.05 .138 No_date 12:06 22.32 00393> 003:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00394> CALIB NASHYD 01:B1 1.72 .026 No_date 12:33 12.95 00395> [CN= 73.0: N= 3.00]00396> [Tp= .58:DT= 1.00]00397> 003:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00398> ROUTE CHANNEL -> 01:B1 1.72 .026 No_date 12:33 12.95 00399> [RDT= 1.00] out<- 02:SWALEB1 1.72 .022 No_date 12:51 12.95 00400> [L/S/n= 325./ .600/.050]00401> {Vmax= .261:Dmax= .089}00402> 003:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00403> CALIB NASHYD 03:B4 1.05 .025 No_date 12:12 12.51 00404> [CN= 72.0: N= 3.00]00405> [Tp= .29:DT= 1.00]

00406> 003:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00407> ROUTE CHANNEL -> 03:B4 1.05 .025 No_date 12:12 12.51 00408> [RDT= 1.00] out<- 04:SWALEB4 1.05 .023 No_date 12:16 12.51 00409> [L/S/n= 110./1.000/.050]00410> {Vmax= .309:Dmax= .076}00411> 003:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00412> ADD HYD 02:SWALEB1 1.72 .022 No_date 12:51 12.95 00413> + 04:SWALEB4 1.05 .023 No_date 12:16 12.51 00414> + 10: 1002 4.05 .138 No_date 12:06 22.32 00415> [DT= 1.00] SUM= 05: 1003 6.82 .161 No_date 12:08 18.44 00416> ** END OF RUN : 300417> 00418> *******************************************************************************00419> 00420> 00421> 00422> 00423> 00424> RUN:COMMAND#00425> 004:0001-----------------------------------------------------------------------00426> START00427> [TZERO = .00 hrs on 0]00428> [METOUT= 2 (1=imperial, 2=metric output)]00429> [NSTORM= 1 ]00430> [NRUN = 4 ]00431> 004:0002-----------------------------------------------------------------------00432> READ STORM 00433> Filename = STORM.001 00434> Comment = 00435> [SDT=30.00:SDUR= 24.50:PTOT= 62.40]00436> 004:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00437> CALIB STANDHYD 01:B2A 1.34 .091 No_date 12:31 36.68 00438> [XIMP=.32:TIMP=.32]00439> [LOSS= 2 :CN= 79.0]00440> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00441> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00442> 004:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00443> ROUTE CHANNEL -> 01:B2A 1.34 .091 No_date 12:31 36.68 00444> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .082 No_date 12:34 36.68 00445> [L/S/n= 229./1.000/.050]00446> {Vmax= .455:Dmax= .143}00447> 004:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00448> CALIB STANDHYD 03:B2B .97 .066 No_date 12:31 36.68 00449> [XIMP=.32:TIMP=.32]00450> [LOSS= 2 :CN= 79.0]00451> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00452> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00453> 004:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00454> ROUTE CHANNEL -> 03:B2B .97 .066 No_date 12:31 36.68 00455> [RDT= 1.00] out<- 04:SWALEB2B .97 .058 No_date 12:33 36.68 00456> [L/S/n= 229./1.000/.050]00457> {Vmax= .409:Dmax= .120}00458> 004:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00459> CALIB NASHYD 05:B3 .97 .030 No_date 12:46 21.53 00460> [CN= 74.0: N= 3.00]00461> [Tp= .41:DT= 1.00]00462> 004:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00463> ROUTE CHANNEL -> 05:B3 .97 .030 No_date 12:46 21.53 00464> [RDT= 1.00] out<- 06:SWALEB3 .97 .027 No_date 12:55 21.53 00465> [L/S/n= 175./ .650/.050]00466> {Vmax= .281:Dmax= .095}00467> 004:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00468> CALIB STANDHYD 07:B2C .14 .010 No_date 12:30 36.68 00469> [XIMP=.32:TIMP=.32]00470> [LOSS= 2 :CN= 79.0]00471> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00472> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00473> 004:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00474> ADD HYD 06:SWALEB3 .97 .027 No_date 12:55 21.53 00475> + 07:B2C .14 .010 No_date 12:30 36.68 00476> [DT= 1.00] SUM= 08: 1000 1.11 .031 No_date 12:53 23.47 00477> 004:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00478> ROUTE CHANNEL -> 08: 1000 1.11 .031 No_date 12:53 23.47 00479> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .031 No_date 12:56 23.47 00480> [L/S/n= 88./1.000/.050]00481> {Vmax= .313:Dmax= .078}00482> 004:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00483> CALIB STANDHYD 05:B2D .45 .032 No_date 12:30 36.13 00484> [XIMP=.32:TIMP=.32]00485> [LOSS= 2 :CN= 78.0]00486> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00487> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00488> 004:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00489> ROUTE CHANNEL -> 05:B2D .45 .032 No_date 12:30 36.13 00490> [RDT= 1.00] out<- 06:SWALEB2D .45 .031 No_date 12:31 36.13 00491> [L/S/n= 88./1.000/.050]00492> {Vmax= .315:Dmax= .078}00493> 004:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00494> ADD HYD 02:SWALEB2A 1.34 .082 No_date 12:34 36.68 00495> + 04:SWALEB2B .97 .058 No_date 12:33 36.68 00496> + 06:SWALEB2D .45 .031 No_date 12:31 36.13 00497> + 09:SWALEB2C 1.11 .031 No_date 12:56 23.47 00498> [DT= 1.00] SUM= 07: 1001 3.88 .189 No_date 12:33 32.84 00499> 004:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00500> ROUTE CHANNEL -> 07: 1001 3.88 .189 No_date 12:33 32.84 00501> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .185 No_date 12:35 32.84 00502> [L/S/n= 111./1.000/.050]00503> {Vmax= .571:Dmax= .215}00504> 004:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00505> CALIB NASHYD 09:B2E .17 .004 No_date 12:59 19.57 00506> [CN= 71.0: N= 3.00]00507> [Tp= .58:DT= 1.00]00508> 004:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00509> ADD HYD 08:SWALEB2E 3.88 .185 No_date 12:35 32.84 00510> + 09:B2E .17 .004 No_date 12:59 19.57 00511> [DT= 1.00] SUM= 10: 1002 4.05 .188 No_date 12:35 32.28 00512> 004:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00513> CALIB NASHYD 01:B1 1.72 .041 No_date 12:59 20.85 00514> [CN= 73.0: N= 3.00]00515> [Tp= .58:DT= 1.00]00516> 004:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00517> ROUTE CHANNEL -> 01:B1 1.72 .041 No_date 12:59 20.85 00518> [RDT= 1.00] out<- 02:SWALEB1 1.72 .036 No_date 13:14 20.85 00519> [L/S/n= 325./ .600/.050]00520> {Vmax= .301:Dmax= .115}00521> 004:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00522> CALIB NASHYD 03:B4 1.05 .037 No_date 12:39 20.20 00523> [CN= 72.0: N= 3.00]00524> [Tp= .29:DT= 1.00]00525> 004:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00526> ROUTE CHANNEL -> 03:B4 1.05 .037 No_date 12:39 20.20 00527> [RDT= 1.00] out<- 04:SWALEB4 1.05 .036 No_date 12:43 20.20 00528> [L/S/n= 110./1.000/.050]00529> {Vmax= .350:Dmax= .096}00530> 004:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00531> ADD HYD 02:SWALEB1 1.72 .036 No_date 13:14 20.85 00532> + 04:SWALEB4 1.05 .036 No_date 12:43 20.20 00533> + 10: 1002 4.05 .188 No_date 12:35 32.28 00534> [DT= 1.00] SUM= 05: 1003 6.82 .234 No_date 12:38 27.54 00535> ** END OF RUN : 400536> 00537> *******************************************************************************00538> 00539> 00540>

(C:\...Pst-Dev2.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 2

00541> 00542> 00543> RUN:COMMAND#00544> 005:0001-----------------------------------------------------------------------00545> START00546> [TZERO = .00 hrs on 0]00547> [METOUT= 2 (1=imperial, 2=metric output)]00548> [NSTORM= 1 ]00549> [NRUN = 5 ]00550> 005:0002-----------------------------------------------------------------------00551> READ STORM 00552> Filename = STORM.001 00553> Comment = 00554> [SDT=30.00:SDUR= 24.50:PTOT= 71.99]00555> 005:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00556> CALIB STANDHYD 01:B2A 1.34 .112 No_date 12:31 44.46 00557> [XIMP=.32:TIMP=.32]00558> [LOSS= 2 :CN= 79.0]00559> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00560> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00561> 005:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00562> ROUTE CHANNEL -> 01:B2A 1.34 .112 No_date 12:31 44.46 00563> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .102 No_date 12:33 44.46 00564> [L/S/n= 229./1.000/.050]00565> {Vmax= .486:Dmax= .162}00566> 005:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00567> CALIB STANDHYD 03:B2B .97 .083 No_date 12:31 44.46 00568> [XIMP=.32:TIMP=.32]00569> [LOSS= 2 :CN= 79.0]00570> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00571> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00572> 005:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00573> ROUTE CHANNEL -> 03:B2B .97 .083 No_date 12:31 44.46 00574> [RDT= 1.00] out<- 04:SWALEB2B .97 .075 No_date 12:33 44.46 00575> [L/S/n= 229./1.000/.050]00576> {Vmax= .445:Dmax= .137}00577> 005:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00578> CALIB NASHYD 05:B3 .97 .039 No_date 12:46 27.72 00579> [CN= 74.0: N= 3.00]00580> [Tp= .41:DT= 1.00]00581> 005:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00582> ROUTE CHANNEL -> 05:B3 .97 .039 No_date 12:46 27.72 00583> [RDT= 1.00] out<- 06:SWALEB3 .97 .036 No_date 12:54 27.72 00584> [L/S/n= 175./ .650/.050]00585> {Vmax= .307:Dmax= .110}00586> 005:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00587> CALIB STANDHYD 07:B2C .14 .013 No_date 12:30 44.46 00588> [XIMP=.32:TIMP=.32]00589> [LOSS= 2 :CN= 79.0]00590> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00591> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00592> 005:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00593> ADD HYD 06:SWALEB3 .97 .036 No_date 12:54 27.72 00594> + 07:B2C .14 .013 No_date 12:30 44.46 00595> [DT= 1.00] SUM= 08: 1000 1.11 .041 No_date 12:52 29.86 00596> 005:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00597> ROUTE CHANNEL -> 08: 1000 1.11 .041 No_date 12:52 29.86 00598> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .041 No_date 12:55 29.86 00599> [L/S/n= 88./1.000/.050]00600> {Vmax= .355:Dmax= .092}00601> 005:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00602> CALIB STANDHYD 05:B2D .45 .040 No_date 12:30 43.80 00603> [XIMP=.32:TIMP=.32]00604> [LOSS= 2 :CN= 78.0]00605> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00606> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00607> 005:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00608> ROUTE CHANNEL -> 05:B2D .45 .040 No_date 12:30 43.80 00609> [RDT= 1.00] out<- 06:SWALEB2D .45 .038 No_date 12:31 43.80 00610> [L/S/n= 88./1.000/.050]00611> {Vmax= .352:Dmax= .090}00612> 005:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00613> ADD HYD 02:SWALEB2A 1.34 .102 No_date 12:33 44.46 00614> + 04:SWALEB2B .97 .075 No_date 12:33 44.46 00615> + 06:SWALEB2D .45 .038 No_date 12:31 43.80 00616> + 09:SWALEB2C 1.11 .041 No_date 12:55 29.86 00617> [DT= 1.00] SUM= 07: 1001 3.88 .242 No_date 12:33 40.21 00618> 005:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00619> ROUTE CHANNEL -> 07: 1001 3.88 .242 No_date 12:33 40.21 00620> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .236 No_date 12:35 40.21 00621> [L/S/n= 111./1.000/.050]00622> {Vmax= .610:Dmax= .244}00623> 005:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00624> CALIB NASHYD 09:B2E .17 .005 No_date 12:59 25.34 00625> [CN= 71.0: N= 3.00]00626> [Tp= .58:DT= 1.00]00627> 005:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00628> ADD HYD 08:SWALEB2E 3.88 .236 No_date 12:35 40.21 00629> + 09:B2E .17 .005 No_date 12:59 25.34 00630> [DT= 1.00] SUM= 10: 1002 4.05 .239 No_date 12:35 39.58 00631> 005:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00632> CALIB NASHYD 01:B1 1.72 .053 No_date 12:59 26.90 00633> [CN= 73.0: N= 3.00]00634> [Tp= .58:DT= 1.00]00635> 005:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00636> ROUTE CHANNEL -> 01:B1 1.72 .053 No_date 12:59 26.90 00637> [RDT= 1.00] out<- 02:SWALEB1 1.72 .048 No_date 13:12 26.90 00638> [L/S/n= 325./ .600/.050]00639> {Vmax= .328:Dmax= .134}00640> 005:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00641> CALIB NASHYD 03:B4 1.05 .049 No_date 12:39 26.11 00642> [CN= 72.0: N= 3.00]00643> [Tp= .29:DT= 1.00]00644> 005:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00645> ROUTE CHANNEL -> 03:B4 1.05 .049 No_date 12:39 26.11 00646> [RDT= 1.00] out<- 04:SWALEB4 1.05 .047 No_date 12:42 26.11 00647> [L/S/n= 110./1.000/.050]00648> {Vmax= .382:Dmax= .111}00649> 005:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00650> ADD HYD 02:SWALEB1 1.72 .048 No_date 13:12 26.90 00651> + 04:SWALEB4 1.05 .047 No_date 12:42 26.11 00652> + 10: 1002 4.05 .239 No_date 12:35 39.58 00653> [DT= 1.00] SUM= 05: 1003 6.82 .301 No_date 12:37 34.31 00654> ** END OF RUN : 500655> 00656> *******************************************************************************00657> 00658> 00659> 00660> 00661> 00662> RUN:COMMAND#00663> 006:0001-----------------------------------------------------------------------00664> START00665> [TZERO = .00 hrs on 0]00666> [METOUT= 2 (1=imperial, 2=metric output)]00667> [NSTORM= 1 ]00668> [NRUN = 6 ]00669> 006:0002-----------------------------------------------------------------------00670> READ STORM 00671> Filename = STORM.001 00672> Comment = 00673> [SDT=30.00:SDUR= 24.50:PTOT= 84.00]00674> 006:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00675> CALIB STANDHYD 01:B2A 1.34 .143 No_date 12:31 54.54

00676> [XIMP=.32:TIMP=.32]00677> [LOSS= 2 :CN= 79.0]00678> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00679> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00680> 006:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00681> ROUTE CHANNEL -> 01:B2A 1.34 .143 No_date 12:31 54.54 00682> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .132 No_date 12:33 54.54 00683> [L/S/n= 229./1.000/.050]00684> {Vmax= .524:Dmax= .184}00685> 006:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00686> CALIB STANDHYD 03:B2B .97 .104 No_date 12:31 54.54 00687> [XIMP=.32:TIMP=.32]00688> [LOSS= 2 :CN= 79.0]00689> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00690> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00691> 006:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00692> ROUTE CHANNEL -> 03:B2B .97 .104 No_date 12:31 54.54 00693> [RDT= 1.00] out<- 04:SWALEB2B .97 .095 No_date 12:33 54.54 00694> [L/S/n= 229./1.000/.050]00695> {Vmax= .474:Dmax= .155}00696> 006:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00697> CALIB NASHYD 05:B3 .97 .051 No_date 12:46 36.02 00698> [CN= 74.0: N= 3.00]00699> [Tp= .41:DT= 1.00]00700> 006:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00701> ROUTE CHANNEL -> 05:B3 .97 .051 No_date 12:46 36.02 00702> [RDT= 1.00] out<- 06:SWALEB3 .97 .048 No_date 12:53 36.02 00703> [L/S/n= 175./ .650/.050]00704> {Vmax= .333:Dmax= .128}00705> 006:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00706> CALIB STANDHYD 07:B2C .14 .016 No_date 12:30 54.54 00707> [XIMP=.32:TIMP=.32]00708> [LOSS= 2 :CN= 79.0]00709> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00710> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00711> 006:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00712> ADD HYD 06:SWALEB3 .97 .048 No_date 12:53 36.02 00713> + 07:B2C .14 .016 No_date 12:30 54.54 00714> [DT= 1.00] SUM= 08: 1000 1.11 .054 No_date 12:51 38.39 00715> 006:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00716> ROUTE CHANNEL -> 08: 1000 1.11 .054 No_date 12:51 38.39 00717> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .053 No_date 12:54 38.39 00718> [L/S/n= 88./1.000/.050]00719> {Vmax= .381:Dmax= .106}00720> 006:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00721> CALIB STANDHYD 05:B2D .45 .050 No_date 12:30 53.76 00722> [XIMP=.32:TIMP=.32]00723> [LOSS= 2 :CN= 78.0]00724> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00725> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00726> 006:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00727> ROUTE CHANNEL -> 05:B2D .45 .050 No_date 12:30 53.76 00728> [RDT= 1.00] out<- 06:SWALEB2D .45 .048 No_date 12:31 53.76 00729> [L/S/n= 88./1.000/.050]00730> {Vmax= .373:Dmax= .102}00731> 006:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00732> ADD HYD 02:SWALEB2A 1.34 .132 No_date 12:33 54.54 00733> + 04:SWALEB2B .97 .095 No_date 12:33 54.54 00734> + 06:SWALEB2D .45 .048 No_date 12:31 53.76 00735> + 09:SWALEB2C 1.11 .053 No_date 12:54 38.39 00736> [DT= 1.00] SUM= 07: 1001 3.88 .312 No_date 12:33 49.83 00737> 006:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00738> ROUTE CHANNEL -> 07: 1001 3.88 .312 No_date 12:33 49.83 00739> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .306 No_date 12:35 49.83 00740> [L/S/n= 111./1.000/.050]00741> {Vmax= .656:Dmax= .278}00742> 006:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00743> CALIB NASHYD 09:B2E .17 .006 No_date 12:58 33.13 00744> [CN= 71.0: N= 3.00]00745> [Tp= .58:DT= 1.00]00746> 006:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00747> ADD HYD 08:SWALEB2E 3.88 .306 No_date 12:35 49.83 00748> + 09:B2E .17 .006 No_date 12:58 33.13 00749> [DT= 1.00] SUM= 10: 1002 4.05 .310 No_date 12:35 49.13 00750> 006:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00751> CALIB NASHYD 01:B1 1.72 .070 No_date 12:58 35.03 00752> [CN= 73.0: N= 3.00]00753> [Tp= .58:DT= 1.00]00754> 006:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00755> ROUTE CHANNEL -> 01:B1 1.72 .070 No_date 12:58 35.03 00756> [RDT= 1.00] out<- 02:SWALEB1 1.72 .064 No_date 13:11 35.03 00757> [L/S/n= 325./ .600/.050]00758> {Vmax= .355:Dmax= .154}00759> 006:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00760> CALIB NASHYD 03:B4 1.05 .064 No_date 12:38 34.07 00761> [CN= 72.0: N= 3.00]00762> [Tp= .29:DT= 1.00]00763> 006:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00764> ROUTE CHANNEL -> 03:B4 1.05 .064 No_date 12:38 34.07 00765> [RDT= 1.00] out<- 04:SWALEB4 1.05 .062 No_date 12:42 34.07 00766> [L/S/n= 110./1.000/.050]00767> {Vmax= .415:Dmax= .129}00768> 006:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00769> ADD HYD 02:SWALEB1 1.72 .064 No_date 13:11 35.03 00770> + 04:SWALEB4 1.05 .062 No_date 12:42 34.07 00771> + 10: 1002 4.05 .310 No_date 12:35 49.13 00772> [DT= 1.00] SUM= 05: 1003 6.82 .394 No_date 12:37 43.25 00773> ** END OF RUN : 600774> 00775> *******************************************************************************00776> 00777> 00778> 00779> 00780> 00781> RUN:COMMAND#00782> 007:0001-----------------------------------------------------------------------00783> START00784> [TZERO = .00 hrs on 0]00785> [METOUT= 2 (1=imperial, 2=metric output)]00786> [NSTORM= 1 ]00787> [NRUN = 7 ]00788> 007:0002-----------------------------------------------------------------------00789> READ STORM 00790> Filename = STORM.001 00791> Comment = 00792> [SDT=30.00:SDUR= 24.50:PTOT= 103.21]00793> 007:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00794> CALIB STANDHYD 01:B2A 1.34 .193 No_date 12:31 71.25 00795> [XIMP=.32:TIMP=.32]00796> [LOSS= 2 :CN= 79.0]00797> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00798> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00799> 007:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00800> ROUTE CHANNEL -> 01:B2A 1.34 .193 No_date 12:31 71.25 00801> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .180 No_date 12:33 71.25 00802> [L/S/n= 229./1.000/.050]00803> {Vmax= .575:Dmax= .217}00804> 007:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00805> CALIB STANDHYD 03:B2B .97 .142 No_date 12:30 71.25 00806> [XIMP=.32:TIMP=.32]00807> [LOSS= 2 :CN= 79.0]00808> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00809> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00810> 007:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-

(C:\...Pst-Dev2.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 3

00811> ROUTE CHANNEL -> 03:B2B .97 .142 No_date 12:30 71.25 00812> [RDT= 1.00] out<- 04:SWALEB2B .97 .131 No_date 12:32 71.25 00813> [L/S/n= 229./1.000/.050]00814> {Vmax= .523:Dmax= .183}00815> 007:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00816> CALIB NASHYD 05:B3 .97 .072 No_date 12:45 50.29 00817> [CN= 74.0: N= 3.00]00818> [Tp= .41:DT= 1.00]00819> 007:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00820> ROUTE CHANNEL -> 05:B3 .97 .072 No_date 12:45 50.29 00821> [RDT= 1.00] out<- 06:SWALEB3 .97 .068 No_date 12:52 50.29 00822> [L/S/n= 175./ .650/.050]00823> {Vmax= .368:Dmax= .154}00824> 007:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00825> CALIB STANDHYD 07:B2C .14 .022 No_date 12:30 71.25 00826> [XIMP=.32:TIMP=.32]00827> [LOSS= 2 :CN= 79.0]00828> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00829> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00830> 007:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00831> ADD HYD 06:SWALEB3 .97 .068 No_date 12:52 50.29 00832> + 07:B2C .14 .022 No_date 12:30 71.25 00833> [DT= 1.00] SUM= 08: 1000 1.11 .076 No_date 12:50 52.98 00834> 007:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00835> ROUTE CHANNEL -> 08: 1000 1.11 .076 No_date 12:50 52.98 00836> [RDT= 1.00] out<- 09:SWALEB2C 1.11 .075 No_date 12:52 52.98 00837> [L/S/n= 88./1.000/.050]00838> {Vmax= .436:Dmax= .131}00839> 007:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00840> CALIB STANDHYD 05:B2D .45 .067 No_date 12:30 70.30 00841> [XIMP=.32:TIMP=.32]00842> [LOSS= 2 :CN= 78.0]00843> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00844> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00845> 007:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00846> ROUTE CHANNEL -> 05:B2D .45 .067 No_date 12:30 70.30 00847> [RDT= 1.00] out<- 06:SWALEB2D .45 .065 No_date 12:30 70.30 00848> [L/S/n= 88./1.000/.050]00849> {Vmax= .413:Dmax= .122}00850> 007:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00851> ADD HYD 02:SWALEB2A 1.34 .180 No_date 12:33 71.25 00852> + 04:SWALEB2B .97 .131 No_date 12:32 71.25 00853> + 06:SWALEB2D .45 .065 No_date 12:30 70.30 00854> + 09:SWALEB2C 1.11 .075 No_date 12:52 52.98 00855> [DT= 1.00] SUM= 07: 1001 3.88 .428 No_date 12:32 65.91 00856> 007:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00857> ROUTE CHANNEL -> 07: 1001 3.88 .428 No_date 12:32 65.91 00858> [RDT= 1.00] out<- 08:SWALEB2E 3.88 .420 No_date 12:34 65.91 00859> [L/S/n= 111./1.000/.050]00860> {Vmax= .716:Dmax= .327}00861> 007:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00862> CALIB NASHYD 09:B2E .17 .009 No_date 12:58 46.65 00863> [CN= 71.0: N= 3.00]00864> [Tp= .58:DT= 1.00]00865> 007:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00866> ADD HYD 08:SWALEB2E 3.88 .420 No_date 12:34 65.91 00867> + 09:B2E .17 .009 No_date 12:58 46.65 00868> [DT= 1.00] SUM= 10: 1002 4.05 .426 No_date 12:34 65.10 00869> 007:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00870> CALIB NASHYD 01:B1 1.72 .098 No_date 12:57 49.05 00871> [CN= 73.0: N= 3.00]00872> [Tp= .58:DT= 1.00]00873> 007:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00874> ROUTE CHANNEL -> 01:B1 1.72 .098 No_date 12:57 49.05 00875> [RDT= 1.00] out<- 02:SWALEB1 1.72 .091 No_date 13:09 49.05 00876> [L/S/n= 325./ .600/.050]00877> {Vmax= .392:Dmax= .185}00878> 007:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00879> CALIB NASHYD 03:B4 1.05 .091 No_date 12:38 47.84 00880> [CN= 72.0: N= 3.00]00881> [Tp= .29:DT= 1.00]00882> 007:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00883> ROUTE CHANNEL -> 03:B4 1.05 .091 No_date 12:38 47.84 00884> [RDT= 1.00] out<- 04:SWALEB4 1.05 .089 No_date 12:41 47.84 00885> [L/S/n= 110./1.000/.050]00886> {Vmax= .460:Dmax= .156}00887> 007:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00888> ADD HYD 02:SWALEB1 1.72 .091 No_date 13:09 49.05 00889> + 04:SWALEB4 1.05 .089 No_date 12:41 47.84 00890> + 10: 1002 4.05 .426 No_date 12:34 65.10 00891> [DT= 1.00] SUM= 05: 1003 6.82 .548 No_date 12:36 58.39 00892> 007:0002-----------------------------------------------------------------------00893> FINISH00894> --------------------------------------------------------------------------------00895> ********************************************************************************00896> WARNINGS / ERRORS / NOTES00897> -------------------------00898> Simulation ended on 2014-09-05 at 15:18:4000899> ================================================================================00900> 00901>

(C:\...Pst-Dev3.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 0

00001> ================================================================================00002> 00003> SSSSS W W M M H H Y Y M M OOO 999 999 =========00004> S W W W MM MM H H Y Y MM MM O O 9 9 9 9 00005> SSSSS W W W M M M HHHHH Y M M M O O ## 9 9 9 9 Ver 4.0500006> S W W M M H H Y M M O O 9999 9999 Sept 201100007> SSSSS W W M M H H Y M M OOO 9 9 =========00008> 9 9 9 9 # 751880600009> StormWater Management HYdrologic Model 999 999 =========00010> 00011> *******************************************************************************00012> ***************************** SWMHYMO Ver/4.05 ******************************00013> ********* A single event and continuous hydrologic simulation model *********00014> ********* based on the principles of HYMO and its successors *********00015> ********* OTTHYMO-83 and OTTHYMO-89. *********00016> *******************************************************************************00017> ********* Distributed by: J.F. Sabourin and Associates Inc. *********00018> ********* Ottawa, Ontario: (613) 836-3884 *********00019> ********* Gatineau, Quebec: (819) 243-6858 *********00020> ********* E-Mail: [email protected] *********00021> *******************************************************************************00022> 00023> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00024> +++++++++ Licensed user: Oliver, Mangione,Mccalla Ltd, Division of Tro+++++++++00025> +++++++++ Nepean SERIAL#:7518806 +++++++++00026> +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++00027> 00028> *******************************************************************************00029> ********* ++++++ PROGRAM ARRAY DIMENSIONS ++++++ *********00030> ********* Maximum value for ID numbers : 10 *********00031> ********* Max. number of rainfall points: 105408 *********00032> ********* Max. number of flow points : 105408 *********00033> *******************************************************************************00034> 00035> ***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in START) *****00036> *****---------------------------------------------------------------------*****00037> ***** ID: Hydrograph IDentification numbers, (1-10). *****00038> ***** NHYD: Hydrograph reference numbers, (6 digits or characters). *****00039> ***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.). *****00040> ***** QPEAK: Peak flow of simulated hydrograph, (ft^3/s) or (m^3/s). *****00041> ***** TpeakDate_hh:mm is the date and time of the peak flow. *****00042> ***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm). *****00043> ***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio). *****00044> ***** *: see WARNING or NOTE message printed at end of run. *****00045> ***** **: see ERROR message printed at end of run. *****00046> *******************************************************************************00047> *******************************************************************************00048> 00049> ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::00050> 00051> *******************************************************************************00052> 00053> *********************** S U M M A R Y O U T P U T ***********************00054> *******************************************************************************00055> * DATE: 2014-10-03 TIME: 14:34:38 RUN COUNTER: 000074 *00056> *******************************************************************************00057> * Input filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev3.DAT *00058> * Output filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev3.out *00059> * Summary filename: C:\PROGRA~2\SWMHYM~1\215355\Pst-Dev3.sum *00060> * User comments: *00061> * 1:__________________________________________________________________________*00062> * 2:__________________________________________________________________________*00063> * 3:__________________________________________________________________________*00064> *******************************************************************************00065> 00066> 00067> RUN:COMMAND#00068> 001:0001-----------------------------------------------------------------------00069> START00070> [TZERO = .00 hrs on 0]00071> [METOUT= 2 (1=imperial, 2=metric output)]00072> [NSTORM= 1 ]00073> [NRUN = 1 ]00074> 001:0002-----------------------------------------------------------------------00075> READ STORM 00076> Filename = STORM.001 00077> Comment = 00078> [SDT=10.00:SDUR= 4.00:PTOT= 15.01]00079> 001:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00080> CALIB STANDHYD 01:B2A 1.34 .031 No_date 2:42 4.95 00081> [XIMP=.32:TIMP=.32]00082> [LOSS= 2 :CN= 79.0]00083> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00084> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00085> 001:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00086> ROUTE CHANNEL -> 01:B2A 1.34 .031 No_date 2:42 4.95 00087> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .020 No_date 2:47 4.95 00088> [L/S/n= 229./1.000/.050]00089> {Vmax= .327:Dmax= .083}00090> 001:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00091> CALIB STANDHYD 03:B2B .97 .024 No_date 2:42 4.95 00092> [XIMP=.32:TIMP=.32]00093> [LOSS= 2 :CN= 79.0]00094> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00095> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00096> 001:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00097> ROUTE CHANNEL -> 03:B2B .97 .024 No_date 2:42 4.95 00098> [RDT= 1.00] out<- 04:SWALEB2B .97 .014 No_date 2:47 4.95 00099> [L/S/n= 229./1.000/.050]00100> {Vmax= .283:Dmax= .069}00101> 001:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00102> CALIB NASHYD 05:B3 .97 .002 No_date 3:10 .74 00103> [CN= 74.0: N= 3.00]00104> [Tp= .41:DT= 1.00]00105> 001:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00106> ROUTE CHANNEL -> 05:B3 .97 .002 No_date 3:10 .74 00107> [RDT= 1.00] out<- 06:SWALEB3 .97 .001 No_date 3:31 .74 00108> [L/S/n= 175./ .650/.050]00109> {Vmax= .133:Dmax= .016}00110> 001:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00111> ROUTE RESERVOIR -> 06:SWALEB3 .97 .001 No_date 3:31 .74 00112> [RDT= 1.00] out<- 05: 999 .97 .000 No_date 5:09 .74 00113> overflow <= 01:OVRFWB3 .00 .000 No_date 0:00 .00 00114> {MxStoUsed=.5661E-03, TotOvfVol=.0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs00115> 001:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00116> CALIB STANDHYD 07:B2C .14 .004 No_date 2:40 4.95 00117> [XIMP=.32:TIMP=.32]00118> [LOSS= 2 :CN= 79.0]00119> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00120> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00121> 001:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00122> ADD HYD 01:OVRFWB3 .00 .000 No_date 0:00 .00 00123> + 07:B2C .14 .004 No_date 2:40 4.95 00124> [DT= 1.00] SUM= 08: 1000 .14 .004 No_date 2:40 4.95 00125> 001:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00126> ROUTE CHANNEL -> 08: 1000 .14 .004 No_date 2:40 4.95 00127> [RDT= 1.00] out<- 09:SWALEB2C .14 .003 No_date 2:43 4.95 00128> [L/S/n= 88./1.000/.050]00129> {Vmax= .229:Dmax= .018}00130> 001:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00131> CALIB STANDHYD 05:B2D .45 .013 No_date 2:40 4.91 00132> [XIMP=.32:TIMP=.32]00133> [LOSS= 2 :CN= 78.0]00134> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00135> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]

00136> 001:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00137> ROUTE CHANNEL -> 05:B2D .45 .013 No_date 2:40 4.91 00138> [RDT= 1.00] out<- 06:SWALEB2D .45 .010 No_date 2:42 4.91 00139> [L/S/n= 88./1.000/.050]00140> {Vmax= .239:Dmax= .049}00141> 001:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00142> ADD HYD 02:SWALEB2A 1.34 .020 No_date 2:47 4.95 00143> + 04:SWALEB2B .97 .014 No_date 2:47 4.95 00144> + 06:SWALEB2D .45 .010 No_date 2:42 4.91 00145> + 09:SWALEB2C .14 .003 No_date 2:43 4.95 00146> [DT= 1.00] SUM= 07: 1001 2.91 .046 No_date 2:45 4.94 00147> 001:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00148> ROUTE CHANNEL -> 07: 1001 2.91 .046 No_date 2:45 4.94 00149> [RDT= 1.00] out<- 08:SWALEB2E 2.91 .042 No_date 2:49 4.94 00150> [L/S/n= 111./1.000/.050]00151> {Vmax= .369:Dmax= .102}00152> 001:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00153> CALIB NASHYD 09:B2E .17 .000 No_date 3:23 .64 00154> [CN= 71.0: N= 3.00]00155> [Tp= .58:DT= 1.00]00156> 001:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00157> ADD HYD 08:SWALEB2E 2.91 .042 No_date 2:49 4.94 00158> + 09:B2E .17 .000 No_date 3:23 .64 00159> [DT= 1.00] SUM= 10: 1002 3.08 .042 No_date 2:50 4.70 00160> 001:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00161> ROUTE RESERVOIR -> 10: 1002 3.08 .042 No_date 2:50 4.70 00162> [RDT= 1.00] out<- 07: 1003 3.08 .002 No_date 4:53 4.70 00163> overflow <= 05:OVRFLW1 .00 .000 No_date 0:00 .00 00164> {MxStoUsed=.1214E-01, TotOvfVol=.0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs00165> 001:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00166> CALIB NASHYD 01:B1 1.72 .002 No_date 3:23 .71 00167> [CN= 73.0: N= 3.00]00168> [Tp= .58:DT= 1.00]00169> 001:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00170> ROUTE CHANNEL -> 01:B1 1.72 .002 No_date 3:23 .71 00171> [RDT= 1.00] out<- 02:SWALEB1 1.72 .002 No_date 3:59 .71 00172> [L/S/n= 325./ .600/.050]00173> {Vmax= .128:Dmax= .022}00174> 001:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00175> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .002 No_date 3:59 .71 00176> [RDT= 1.00] out<- 03: 1004 1.72 .000 No_date 6:03 .71 00177> overflow <= 01:OVRFLW2 .00 .000 No_date 0:00 .00 00178> {MxStoUsed=.8727E-03, TotOvfVol=.0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs00179> 001:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00180> CALIB NASHYD 02:B4 1.05 .002 No_date 3:01 .67 00181> [CN= 72.0: N= 3.00]00182> [Tp= .29:DT= 1.00]00183> 001:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00184> ROUTE CHANNEL -> 02:B4 1.05 .002 No_date 3:01 .67 00185> [RDT= 1.00] out<- 04:SWALEB4 1.05 .002 No_date 3:12 .67 00186> [L/S/n= 110./1.000/.050]00187> {Vmax= .166:Dmax= .016}00188> 001:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00189> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .002 No_date 3:12 .67 00190> [RDT= 1.00] out<- 01: 1004 1.05 .000 No_date 4:38 .68 00191> overflow <= 02:OVRFLW3 .00 .000 No_date 0:00 .00 00192> {MxStoUsed=.5899E-03, TotOvfVol=.0000E+00, N-Ovf= 0, TotDurOvf= 0.hrs00193> 001:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00194> ADD HYD 05: 1005 .00 .000 No_date 0:00 .00 00195> + 01: 1004 1.05 .000 No_date 4:38 .68 00196> + 02:OVRFLW3 .00 .000 No_date 0:00 .00 00197> [DT= 1.00] SUM= 05: 1005 1.05 .000 No_date 4:38 .68 00198> ** END OF RUN : 100199> 00200> *******************************************************************************00201> 00202> 00203> 00204> 00205> 00206> RUN:COMMAND#00207> 002:0001-----------------------------------------------------------------------00208> START00209> [TZERO = .00 hrs on 0]00210> [METOUT= 2 (1=imperial, 2=metric output)]00211> [NSTORM= 1 ]00212> [NRUN = 2 ]00213> 002:0002-----------------------------------------------------------------------00214> READ STORM 00215> Filename = STORM.001 00216> Comment = 00217> [SDT=10.00:SDUR= 4.00:PTOT= 25.00]00218> 002:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00219> CALIB STANDHYD 01:B2A 1.34 .059 No_date 2:41 10.20 00220> [XIMP=.32:TIMP=.32]00221> [LOSS= 2 :CN= 79.0]00222> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00223> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00224> 002:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00225> ROUTE CHANNEL -> 01:B2A 1.34 .059 No_date 2:41 10.20 00226> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .042 No_date 2:45 10.20 00227> [L/S/n= 229./1.000/.050]00228> {Vmax= .401:Dmax= .118}00229> 002:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00230> CALIB STANDHYD 03:B2B .97 .044 No_date 2:41 10.20 00231> [XIMP=.32:TIMP=.32]00232> [LOSS= 2 :CN= 79.0]00233> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00234> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00235> 002:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00236> ROUTE CHANNEL -> 03:B2B .97 .044 No_date 2:41 10.20 00237> [RDT= 1.00] out<- 04:SWALEB2B .97 .030 No_date 2:45 10.20 00238> [L/S/n= 229./1.000/.050]00239> {Vmax= .364:Dmax= .100}00240> 002:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00241> CALIB NASHYD 05:B3 .97 .008 No_date 3:06 3.18 00242> [CN= 74.0: N= 3.00]00243> [Tp= .41:DT= 1.00]00244> 002:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00245> ROUTE CHANNEL -> 05:B3 .97 .008 No_date 3:06 3.18 00246> [RDT= 1.00] out<- 06:SWALEB3 .97 .007 No_date 3:20 3.18 00247> [L/S/n= 175./ .650/.050]00248> {Vmax= .182:Dmax= .047}00249> 002:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00250> ROUTE RESERVOIR -> 06:SWALEB3 .97 .007 No_date 3:20 3.18 00251> [RDT= 1.00] out<- 05: 999 .40 .000 No_date 3:24 3.18 00252> overflow <= 01:OVRFWB3 .57 .006 No_date 3:24 3.18 00253> {MxStoUsed=.1010E-02, TotOvfVol=.1804E-02, N-Ovf= 3, TotDurOvf= 2.hrs00254> 002:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00255> CALIB STANDHYD 07:B2C .14 .007 No_date 2:40 10.20 00256> [XIMP=.32:TIMP=.32]00257> [LOSS= 2 :CN= 79.0]00258> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00259> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00260> 002:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00261> ADD HYD 01:OVRFWB3 .57 .006 No_date 3:24 3.18 00262> + 07:B2C .14 .007 No_date 2:40 10.20 00263> [DT= 1.00] SUM= 08: 1000 .71 .007 No_date 3:24 4.58 00264> 002:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00265> ROUTE CHANNEL -> 08: 1000 .71 .007 No_date 3:24 4.58 00266> [RDT= 1.00] out<- 09:SWALEB2C .71 .006 No_date 3:38 4.58 00267> [L/S/n= 88./1.000/.050]00268> {Vmax= .229:Dmax= .031}00269> 002:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00270> CALIB STANDHYD 05:B2D .45 .023 No_date 2:40 10.08

(C:\...Pst-Dev3.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 1

00271> [XIMP=.32:TIMP=.32]00272> [LOSS= 2 :CN= 78.0]00273> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00274> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00275> 002:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00276> ROUTE CHANNEL -> 05:B2D .45 .023 No_date 2:40 10.08 00277> [RDT= 1.00] out<- 06:SWALEB2D .45 .019 No_date 2:42 10.08 00278> [L/S/n= 88./1.000/.050]00279> {Vmax= .280:Dmax= .068}00280> 002:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00281> ADD HYD 02:SWALEB2A 1.34 .042 No_date 2:45 10.20 00282> + 04:SWALEB2B .97 .030 No_date 2:45 10.20 00283> + 06:SWALEB2D .45 .019 No_date 2:42 10.08 00284> + 09:SWALEB2C .71 .006 No_date 3:38 4.58 00285> [DT= 1.00] SUM= 07: 1001 3.48 .094 No_date 2:44 9.04 00286> 002:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00287> ROUTE CHANNEL -> 07: 1001 3.48 .094 No_date 2:44 9.04 00288> [RDT= 1.00] out<- 08:SWALEB2E 3.48 .087 No_date 2:47 9.04 00289> [L/S/n= 111./1.000/.050]00290> {Vmax= .465:Dmax= .153}00291> 002:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00292> CALIB NASHYD 09:B2E .17 .001 No_date 3:18 2.79 00293> [CN= 71.0: N= 3.00]00294> [Tp= .58:DT= 1.00]00295> 002:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00296> ADD HYD 08:SWALEB2E 3.48 .087 No_date 2:47 9.04 00297> + 09:B2E .17 .001 No_date 3:18 2.79 00298> [DT= 1.00] SUM= 10: 1002 3.65 .087 No_date 2:47 8.75 00299> 002:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00300> ROUTE RESERVOIR -> 10: 1002 3.65 .087 No_date 2:47 8.75 00301> [RDT= 1.00] out<- 07: 1003 1.71 .002 No_date 2:56 8.75 00302> overflow <= 05:OVRFLW1 1.94 .071 No_date 2:56 8.75 00303> {MxStoUsed=.1225E-01, TotOvfVol=.1697E-01, N-Ovf= 2, TotDurOvf= 2.hrs00304> 002:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00305> CALIB NASHYD 01:B1 1.72 .011 No_date 3:18 3.04 00306> [CN= 73.0: N= 3.00]00307> [Tp= .58:DT= 1.00]00308> 002:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00309> ROUTE CHANNEL -> 01:B1 1.72 .011 No_date 3:18 3.04 00310> [RDT= 1.00] out<- 02:SWALEB1 1.72 .008 No_date 3:38 3.04 00311> [L/S/n= 325./ .600/.050]00312> {Vmax= .200:Dmax= .057}00313> 002:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00314> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .008 No_date 3:38 3.04 00315> [RDT= 1.00] out<- 03: 1004 .76 .000 No_date 3:46 3.04 00316> overflow <= 01:OVRFLW2 .96 .008 No_date 3:46 3.04 00317> {MxStoUsed=.1690E-02, TotOvfVol=.2922E-02, N-Ovf= 3, TotDurOvf= 3.hrs00318> 002:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00319> CALIB NASHYD 02:B4 1.05 .010 No_date 2:58 2.92 00320> [CN= 72.0: N= 3.00]00321> [Tp= .29:DT= 1.00]00322> 002:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00323> ROUTE CHANNEL -> 02:B4 1.05 .010 No_date 2:58 2.92 00324> [RDT= 1.00] out<- 04:SWALEB4 1.05 .009 No_date 3:04 2.92 00325> [L/S/n= 110./1.000/.050]00326> {Vmax= .229:Dmax= .048}00327> 002:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00328> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .009 No_date 3:04 2.92 00329> [RDT= 1.00] out<- 01: 1004 .38 .000 No_date 3:07 2.92 00330> overflow <= 02:OVRFLW3 .66 .009 No_date 3:07 2.92 00331> {MxStoUsed=.9300E-03, TotOvfVol=.1938E-02, N-Ovf= 2, TotDurOvf= 2.hrs00332> 002:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00333> ADD HYD 05: 1005 1.94 .071 No_date 2:56 8.75 00334> + 01: 1004 .38 .000 No_date 3:07 2.92 00335> + 02:OVRFLW3 .66 .009 No_date 3:07 2.92 00336> [DT= 1.00] SUM= 05: 1005 2.99 .071 No_date 2:56 6.70 00337> ** END OF RUN : 200338> 00339> *******************************************************************************00340> 00341> 00342> 00343> 00344> 00345> RUN:COMMAND#00346> 003:0001-----------------------------------------------------------------------00347> START00348> [TZERO = .00 hrs on 0]00349> [METOUT= 2 (1=imperial, 2=metric output)]00350> [NSTORM= 1 ]00351> [NRUN = 3 ]00352> 003:0002-----------------------------------------------------------------------00353> READ STORM 00354> Filename = STORM.001 00355> Comment = 00356> [SDT=10.00:SDUR= 24.00:PTOT= 48.46]00357> 003:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00358> CALIB STANDHYD 01:B2A 1.34 .081 No_date 12:01 25.94 00359> [XIMP=.32:TIMP=.32]00360> [LOSS= 2 :CN= 79.0]00361> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00362> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00363> 003:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00364> ROUTE CHANNEL -> 01:B2A 1.34 .081 No_date 12:01 25.94 00365> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .065 No_date 12:04 25.94 00366> [L/S/n= 229./1.000/.050]00367> {Vmax= .446:Dmax= .141}00368> 003:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00369> CALIB STANDHYD 03:B2B .97 .059 No_date 12:01 25.94 00370> [XIMP=.32:TIMP=.32]00371> [LOSS= 2 :CN= 79.0]00372> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00373> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00374> 003:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00375> ROUTE CHANNEL -> 03:B2B .97 .059 No_date 12:01 25.94 00376> [RDT= 1.00] out<- 04:SWALEB2B .97 .046 No_date 12:04 25.94 00377> [L/S/n= 229./1.000/.050]00378> {Vmax= .402:Dmax= .118}00379> 003:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00380> CALIB NASHYD 05:B3 .97 .019 No_date 12:20 13.42 00381> [CN= 74.0: N= 3.00]00382> [Tp= .41:DT= 1.00]00383> 003:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00384> ROUTE CHANNEL -> 05:B3 .97 .019 No_date 12:20 13.42 00385> [RDT= 1.00] out<- 06:SWALEB3 .97 .017 No_date 12:30 13.42 00386> [L/S/n= 175./ .650/.050]00387> {Vmax= .250:Dmax= .077}00388> 003:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00389> ROUTE RESERVOIR -> 06:SWALEB3 .97 .017 No_date 12:30 13.42 00390> [RDT= 1.00] out<- 05: 999 .17 .000 No_date 12:15 13.42 00391> overflow <= 01:OVRFWB3 .80 .017 No_date 12:31 13.42 00392> {MxStoUsed=.1010E-02, TotOvfVol=.1071E-01, N-Ovf= 3, TotDurOvf= 13.hrs00393> 003:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00394> CALIB STANDHYD 07:B2C .14 .010 No_date 12:00 25.94 00395> [XIMP=.32:TIMP=.32]00396> [LOSS= 2 :CN= 79.0]00397> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00398> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00399> 003:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00400> ADD HYD 01:OVRFWB3 .80 .017 No_date 12:31 13.42 00401> + 07:B2C .14 .010 No_date 12:00 25.94 00402> [DT= 1.00] SUM= 08: 1000 .94 .020 No_date 12:29 15.31 00403> 003:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00404> ROUTE CHANNEL -> 08: 1000 .94 .020 No_date 12:29 15.31 00405> [RDT= 1.00] out<- 09:SWALEB2C .94 .019 No_date 12:33 15.31

00406> [L/S/n= 88./1.000/.050]00407> {Vmax= .265:Dmax= .061}00408> 003:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00409> CALIB STANDHYD 05:B2D .45 .030 No_date 12:00 25.54 00410> [XIMP=.32:TIMP=.32]00411> [LOSS= 2 :CN= 78.0]00412> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00413> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00414> 003:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00415> ROUTE CHANNEL -> 05:B2D .45 .030 No_date 12:00 25.54 00416> [RDT= 1.00] out<- 06:SWALEB2D .45 .027 No_date 12:01 25.54 00417> [L/S/n= 88./1.000/.050]00418> {Vmax= .318:Dmax= .080}00419> 003:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00420> ADD HYD 02:SWALEB2A 1.34 .065 No_date 12:04 25.94 00421> + 04:SWALEB2B .97 .046 No_date 12:04 25.94 00422> + 06:SWALEB2D .45 .027 No_date 12:01 25.54 00423> + 09:SWALEB2C .94 .019 No_date 12:33 15.31 00424> [DT= 1.00] SUM= 07: 1001 3.71 .142 No_date 12:03 23.19 00425> 003:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00426> ROUTE CHANNEL -> 07: 1001 3.71 .142 No_date 12:03 23.19 00427> [RDT= 1.00] out<- 08:SWALEB2E 3.71 .134 No_date 12:06 23.19 00428> [L/S/n= 111./1.000/.050]00429> {Vmax= .528:Dmax= .192}00430> 003:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00431> CALIB NASHYD 09:B2E .17 .002 No_date 12:33 12.07 00432> [CN= 71.0: N= 3.00]00433> [Tp= .58:DT= 1.00]00434> 003:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00435> ADD HYD 08:SWALEB2E 3.71 .134 No_date 12:06 23.19 00436> + 09:B2E .17 .002 No_date 12:33 12.07 00437> [DT= 1.00] SUM= 10: 1002 3.88 .135 No_date 12:06 22.71 00438> 003:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00439> ROUTE RESERVOIR -> 10: 1002 3.88 .135 No_date 12:06 22.71 00440> [RDT= 1.00] out<- 07: 1003 1.11 .002 No_date 11:58 22.71 00441> overflow <= 05:OVRFLW1 2.77 .133 No_date 12:06 22.71 00442> {MxStoUsed=.1225E-01, TotOvfVol=.6278E-01, N-Ovf= 3, TotDurOvf= 13.hrs00443> 003:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00444> CALIB NASHYD 01:B1 1.72 .026 No_date 12:33 12.95 00445> [CN= 73.0: N= 3.00]00446> [Tp= .58:DT= 1.00]00447> 003:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00448> ROUTE CHANNEL -> 01:B1 1.72 .026 No_date 12:33 12.95 00449> [RDT= 1.00] out<- 02:SWALEB1 1.72 .022 No_date 12:51 12.95 00450> [L/S/n= 325./ .600/.050]00451> {Vmax= .263:Dmax= .092}00452> 003:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00453> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .022 No_date 12:51 12.95 00454> [RDT= 1.00] out<- 03: 1004 .30 .000 No_date 12:29 12.95 00455> overflow <= 01:OVRFLW2 1.42 .021 No_date 12:51 12.95 00456> {MxStoUsed=.1690E-02, TotOvfVol=.1835E-01, N-Ovf= 2, TotDurOvf= 13.hrs00457> 003:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00458> CALIB NASHYD 02:B4 1.05 .025 No_date 12:12 12.51 00459> [CN= 72.0: N= 3.00]00460> [Tp= .29:DT= 1.00]00461> 003:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00462> ROUTE CHANNEL -> 02:B4 1.05 .025 No_date 12:12 12.51 00463> [RDT= 1.00] out<- 04:SWALEB4 1.05 .023 No_date 12:17 12.51 00464> [L/S/n= 110./1.000/.050]00465> {Vmax= .315:Dmax= .079}00466> 003:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00467> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .023 No_date 12:17 12.51 00468> [RDT= 1.00] out<- 01: 1004 .17 .000 No_date 12:05 12.51 00469> overflow <= 02:OVRFLW3 .88 .023 No_date 12:17 12.51 00470> {MxStoUsed=.9300E-03, TotOvfVol=.1104E-01, N-Ovf= 3, TotDurOvf= 13.hrs00471> 003:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00472> ADD HYD 05: 1005 2.77 .133 No_date 12:06 22.71 00473> + 01: 1004 .17 .000 No_date 12:05 12.51 00474> + 02:OVRFLW3 .88 .023 No_date 12:17 12.51 00475> [DT= 1.00] SUM= 05: 1005 3.81 .150 No_date 12:07 19.90 00476> ** END OF RUN : 300477> 00478> *******************************************************************************00479> 00480> 00481> 00482> 00483> 00484> RUN:COMMAND#00485> 004:0001-----------------------------------------------------------------------00486> START00487> [TZERO = .00 hrs on 0]00488> [METOUT= 2 (1=imperial, 2=metric output)]00489> [NSTORM= 1 ]00490> [NRUN = 4 ]00491> 004:0002-----------------------------------------------------------------------00492> READ STORM 00493> Filename = STORM.001 00494> Comment = 00495> [SDT=30.00:SDUR= 24.50:PTOT= 62.40]00496> 004:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00497> CALIB STANDHYD 01:B2A 1.34 .091 No_date 12:31 36.68 00498> [XIMP=.32:TIMP=.32]00499> [LOSS= 2 :CN= 79.0]00500> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00501> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00502> 004:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00503> ROUTE CHANNEL -> 01:B2A 1.34 .091 No_date 12:31 36.68 00504> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .082 No_date 12:34 36.68 00505> [L/S/n= 229./1.000/.050]00506> {Vmax= .461:Dmax= .150}00507> 004:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00508> CALIB STANDHYD 03:B2B .97 .066 No_date 12:31 36.68 00509> [XIMP=.32:TIMP=.32]00510> [LOSS= 2 :CN= 79.0]00511> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00512> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00513> 004:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00514> ROUTE CHANNEL -> 03:B2B .97 .066 No_date 12:31 36.68 00515> [RDT= 1.00] out<- 04:SWALEB2B .97 .059 No_date 12:33 36.68 00516> [L/S/n= 229./1.000/.050]00517> {Vmax= .421:Dmax= .127}00518> 004:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00519> CALIB NASHYD 05:B3 .97 .030 No_date 12:46 21.53 00520> [CN= 74.0: N= 3.00]00521> [Tp= .41:DT= 1.00]00522> 004:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00523> ROUTE CHANNEL -> 05:B3 .97 .030 No_date 12:46 21.53 00524> [RDT= 1.00] out<- 06:SWALEB3 .97 .027 No_date 12:55 21.53 00525> [L/S/n= 175./ .650/.050]00526> {Vmax= .284:Dmax= .098}00527> 004:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00528> ROUTE RESERVOIR -> 06:SWALEB3 .97 .027 No_date 12:55 21.53 00529> [RDT= 1.00] out<- 05: 999 .11 .000 No_date 12:30 21.53 00530> overflow <= 01:OVRFWB3 .86 .027 No_date 12:55 21.53 00531> {MxStoUsed=.1010E-02, TotOvfVol=.1848E-01, N-Ovf= 2, TotDurOvf= 13.hrs00532> 004:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00533> CALIB STANDHYD 07:B2C .14 .010 No_date 12:30 36.68 00534> [XIMP=.32:TIMP=.32]00535> [LOSS= 2 :CN= 79.0]00536> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00537> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00538> 004:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00539> ADD HYD 01:OVRFWB3 .86 .027 No_date 12:55 21.53 00540> + 07:B2C .14 .010 No_date 12:30 36.68

(C:\...Pst-Dev3.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 2

00541> [DT= 1.00] SUM= 08: 1000 1.00 .031 No_date 12:53 23.68 00542> 004:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00543> ROUTE CHANNEL -> 08: 1000 1.00 .031 No_date 12:53 23.68 00544> [RDT= 1.00] out<- 09:SWALEB2C 1.00 .031 No_date 12:56 23.68 00545> [L/S/n= 88./1.000/.050]00546> {Vmax= .327:Dmax= .083}00547> 004:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00548> CALIB STANDHYD 05:B2D .45 .032 No_date 12:30 36.13 00549> [XIMP=.32:TIMP=.32]00550> [LOSS= 2 :CN= 78.0]00551> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00552> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00553> 004:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00554> ROUTE CHANNEL -> 05:B2D .45 .032 No_date 12:30 36.13 00555> [RDT= 1.00] out<- 06:SWALEB2D .45 .031 No_date 12:31 36.13 00556> [L/S/n= 88./1.000/.050]00557> {Vmax= .330:Dmax= .084}00558> 004:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00559> ADD HYD 02:SWALEB2A 1.34 .082 No_date 12:34 36.68 00560> + 04:SWALEB2B .97 .059 No_date 12:33 36.68 00561> + 06:SWALEB2D .45 .031 No_date 12:31 36.13 00562> + 09:SWALEB2C 1.00 .031 No_date 12:56 23.68 00563> [DT= 1.00] SUM= 07: 1001 3.77 .185 No_date 12:33 33.16 00564> 004:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00565> ROUTE CHANNEL -> 07: 1001 3.77 .185 No_date 12:33 33.16 00566> [RDT= 1.00] out<- 08:SWALEB2E 3.77 .181 No_date 12:36 33.16 00567> [L/S/n= 111./1.000/.050]00568> {Vmax= .573:Dmax= .222}00569> 004:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00570> CALIB NASHYD 09:B2E .17 .004 No_date 12:59 19.57 00571> [CN= 71.0: N= 3.00]00572> [Tp= .58:DT= 1.00]00573> 004:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00574> ADD HYD 08:SWALEB2E 3.77 .181 No_date 12:36 33.16 00575> + 09:B2E .17 .004 No_date 12:59 19.57 00576> [DT= 1.00] SUM= 10: 1002 3.94 .184 No_date 12:36 32.58 00577> 004:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00578> ROUTE RESERVOIR -> 10: 1002 3.94 .184 No_date 12:36 32.58 00579> [RDT= 1.00] out<- 07: 1003 .80 .002 No_date 12:11 32.58 00580> overflow <= 05:OVRFLW1 3.14 .181 No_date 12:36 32.58 00581> {MxStoUsed=.1225E-01, TotOvfVol=.1023E+00, N-Ovf= 3, TotDurOvf= 13.hrs00582> 004:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00583> CALIB NASHYD 01:B1 1.72 .041 No_date 12:59 20.85 00584> [CN= 73.0: N= 3.00]00585> [Tp= .58:DT= 1.00]00586> 004:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00587> ROUTE CHANNEL -> 01:B1 1.72 .041 No_date 12:59 20.85 00588> [RDT= 1.00] out<- 02:SWALEB1 1.72 .036 No_date 13:14 20.85 00589> [L/S/n= 325./ .600/.050]00590> {Vmax= .304:Dmax= .119}00591> 004:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00592> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .036 No_date 13:14 20.85 00593> [RDT= 1.00] out<- 03: 1004 .20 .000 No_date 12:41 20.85 00594> overflow <= 01:OVRFLW2 1.52 .036 No_date 13:15 20.85 00595> {MxStoUsed=.1690E-02, TotOvfVol=.3180E-01, N-Ovf= 3, TotDurOvf= 14.hrs00596> 004:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00597> CALIB NASHYD 02:B4 1.05 .037 No_date 12:39 20.20 00598> [CN= 72.0: N= 3.00]00599> [Tp= .29:DT= 1.00]00600> 004:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00601> ROUTE CHANNEL -> 02:B4 1.05 .037 No_date 12:39 20.20 00602> [RDT= 1.00] out<- 04:SWALEB4 1.05 .036 No_date 12:43 20.20 00603> [L/S/n= 110./1.000/.050]00604> {Vmax= .354:Dmax= .099}00605> 004:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00606> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .036 No_date 12:43 20.20 00607> [RDT= 1.00] out<- 01: 1004 .11 .000 No_date 12:19 20.20 00608> overflow <= 02:OVRFLW3 .94 .036 No_date 12:43 20.20 00609> {MxStoUsed=.9300E-03, TotOvfVol=.1903E-01, N-Ovf= 2, TotDurOvf= 13.hrs00610> 004:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00611> ADD HYD 05: 1005 3.14 .181 No_date 12:36 32.58 00612> + 01: 1004 .11 .000 No_date 12:19 20.20 00613> + 02:OVRFLW3 .94 .036 No_date 12:43 20.20 00614> [DT= 1.00] SUM= 05: 1005 4.19 .214 No_date 12:38 29.48 00615> ** END OF RUN : 400616> 00617> *******************************************************************************00618> 00619> 00620> 00621> 00622> 00623> RUN:COMMAND#00624> 005:0001-----------------------------------------------------------------------00625> START00626> [TZERO = .00 hrs on 0]00627> [METOUT= 2 (1=imperial, 2=metric output)]00628> [NSTORM= 1 ]00629> [NRUN = 5 ]00630> 005:0002-----------------------------------------------------------------------00631> READ STORM 00632> Filename = STORM.001 00633> Comment = 00634> [SDT=30.00:SDUR= 24.50:PTOT= 71.99]00635> 005:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00636> CALIB STANDHYD 01:B2A 1.34 .112 No_date 12:31 44.46 00637> [XIMP=.32:TIMP=.32]00638> [LOSS= 2 :CN= 79.0]00639> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00640> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00641> 005:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00642> ROUTE CHANNEL -> 01:B2A 1.34 .112 No_date 12:31 44.46 00643> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .103 No_date 12:33 44.46 00644> [L/S/n= 229./1.000/.050]00645> {Vmax= .495:Dmax= .170}00646> 005:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00647> CALIB STANDHYD 03:B2B .97 .083 No_date 12:31 44.46 00648> [XIMP=.32:TIMP=.32]00649> [LOSS= 2 :CN= 79.0]00650> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00651> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00652> 005:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00653> ROUTE CHANNEL -> 03:B2B .97 .083 No_date 12:31 44.46 00654> [RDT= 1.00] out<- 04:SWALEB2B .97 .075 No_date 12:33 44.46 00655> [L/S/n= 229./1.000/.050]00656> {Vmax= .449:Dmax= .143}00657> 005:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00658> CALIB NASHYD 05:B3 .97 .039 No_date 12:46 27.72 00659> [CN= 74.0: N= 3.00]00660> [Tp= .41:DT= 1.00]00661> 005:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00662> ROUTE CHANNEL -> 05:B3 .97 .039 No_date 12:46 27.72 00663> [RDT= 1.00] out<- 06:SWALEB3 .97 .036 No_date 12:54 27.72 00664> [L/S/n= 175./ .650/.050]00665> {Vmax= .309:Dmax= .113}00666> 005:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00667> ROUTE RESERVOIR -> 06:SWALEB3 .97 .036 No_date 12:54 27.72 00668> [RDT= 1.00] out<- 05: 999 .09 .000 No_date 12:21 27.72 00669> overflow <= 01:OVRFWB3 .88 .036 No_date 12:55 27.72 00670> {MxStoUsed=.1010E-02, TotOvfVol=.2441E-01, N-Ovf= 2, TotDurOvf= 14.hrs00671> 005:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00672> CALIB STANDHYD 07:B2C .14 .013 No_date 12:30 44.46 00673> [XIMP=.32:TIMP=.32]00674> [LOSS= 2 :CN= 79.0]00675> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]

00676> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00677> 005:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00678> ADD HYD 01:OVRFWB3 .88 .036 No_date 12:55 27.72 00679> + 07:B2C .14 .013 No_date 12:30 44.46 00680> [DT= 1.00] SUM= 08: 1000 1.02 .041 No_date 12:52 30.04 00681> 005:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00682> ROUTE CHANNEL -> 08: 1000 1.02 .041 No_date 12:52 30.04 00683> [RDT= 1.00] out<- 09:SWALEB2C 1.02 .040 No_date 12:56 30.04 00684> [L/S/n= 88./1.000/.050]00685> {Vmax= .358:Dmax= .096}00686> 005:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00687> CALIB STANDHYD 05:B2D .45 .040 No_date 12:30 43.80 00688> [XIMP=.32:TIMP=.32]00689> [LOSS= 2 :CN= 78.0]00690> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00691> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00692> 005:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00693> ROUTE CHANNEL -> 05:B2D .45 .040 No_date 12:30 43.80 00694> [RDT= 1.00] out<- 06:SWALEB2D .45 .038 No_date 12:31 43.80 00695> [L/S/n= 88./1.000/.050]00696> {Vmax= .356:Dmax= .095}00697> 005:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00698> ADD HYD 02:SWALEB2A 1.34 .103 No_date 12:33 44.46 00699> + 04:SWALEB2B .97 .075 No_date 12:33 44.46 00700> + 06:SWALEB2D .45 .038 No_date 12:31 43.80 00701> + 09:SWALEB2C 1.02 .040 No_date 12:56 30.04 00702> [DT= 1.00] SUM= 07: 1001 3.79 .241 No_date 12:33 40.49 00703> 005:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00704> ROUTE CHANNEL -> 07: 1001 3.79 .241 No_date 12:33 40.49 00705> [RDT= 1.00] out<- 08:SWALEB2E 3.79 .236 No_date 12:35 40.49 00706> [L/S/n= 111./1.000/.050]00707> {Vmax= .616:Dmax= .254}00708> 005:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00709> CALIB NASHYD 09:B2E .17 .005 No_date 12:59 25.34 00710> [CN= 71.0: N= 3.00]00711> [Tp= .58:DT= 1.00]00712> 005:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00713> ADD HYD 08:SWALEB2E 3.79 .236 No_date 12:35 40.49 00714> + 09:B2E .17 .005 No_date 12:59 25.34 00715> [DT= 1.00] SUM= 10: 1002 3.96 .239 No_date 12:35 39.84 00716> 005:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00717> ROUTE RESERVOIR -> 10: 1002 3.96 .239 No_date 12:35 39.84 00718> [RDT= 1.00] out<- 07: 1003 .66 .002 No_date 11:49 39.84 00719> overflow <= 05:OVRFLW1 3.30 .237 No_date 12:35 39.84 00720> {MxStoUsed=.1225E-01, TotOvfVol=.1313E+00, N-Ovf= 2, TotDurOvf= 14.hrs00721> 005:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00722> CALIB NASHYD 01:B1 1.72 .053 No_date 12:59 26.90 00723> [CN= 73.0: N= 3.00]00724> [Tp= .58:DT= 1.00]00725> 005:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00726> ROUTE CHANNEL -> 01:B1 1.72 .053 No_date 12:59 26.90 00727> [RDT= 1.00] out<- 02:SWALEB1 1.72 .048 No_date 13:13 26.90 00728> [L/S/n= 325./ .600/.050]00729> {Vmax= .329:Dmax= .137}00730> 005:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00731> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .048 No_date 13:13 26.90 00732> [RDT= 1.00] out<- 03: 1004 .16 .000 No_date 12:33 26.90 00733> overflow <= 01:OVRFLW2 1.57 .048 No_date 13:13 26.90 00734> {MxStoUsed=.1690E-02, TotOvfVol=.4211E-01, N-Ovf= 2, TotDurOvf= 14.hrs00735> 005:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00736> CALIB NASHYD 02:B4 1.05 .049 No_date 12:39 26.11 00737> [CN= 72.0: N= 3.00]00738> [Tp= .29:DT= 1.00]00739> 005:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00740> ROUTE CHANNEL -> 02:B4 1.05 .049 No_date 12:39 26.11 00741> [RDT= 1.00] out<- 04:SWALEB4 1.05 .047 No_date 12:43 26.11 00742> [L/S/n= 110./1.000/.050]00743> {Vmax= .384:Dmax= .114}00744> 005:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00745> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .047 No_date 12:43 26.11 00746> [RDT= 1.00] out<- 01: 1004 .08 .000 No_date 12:06 26.11 00747> overflow <= 02:OVRFLW3 .96 .047 No_date 12:43 26.11 00748> {MxStoUsed=.9300E-03, TotOvfVol=.2517E-01, N-Ovf= 2, TotDurOvf= 13.hrs00749> 005:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00750> ADD HYD 05: 1005 3.30 .237 No_date 12:35 39.84 00751> + 01: 1004 .08 .000 No_date 12:06 26.11 00752> + 02:OVRFLW3 .96 .047 No_date 12:43 26.11 00753> [DT= 1.00] SUM= 05: 1005 4.34 .280 No_date 12:36 36.53 00754> ** END OF RUN : 500755> 00756> *******************************************************************************00757> 00758> 00759> 00760> 00761> 00762> RUN:COMMAND#00763> 006:0001-----------------------------------------------------------------------00764> START00765> [TZERO = .00 hrs on 0]00766> [METOUT= 2 (1=imperial, 2=metric output)]00767> [NSTORM= 1 ]00768> [NRUN = 6 ]00769> 006:0002-----------------------------------------------------------------------00770> READ STORM 00771> Filename = STORM.001 00772> Comment = 00773> [SDT=30.00:SDUR= 24.50:PTOT= 84.00]00774> 006:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00775> CALIB STANDHYD 01:B2A 1.34 .143 No_date 12:31 54.54 00776> [XIMP=.32:TIMP=.32]00777> [LOSS= 2 :CN= 79.0]00778> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00779> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00780> 006:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00781> ROUTE CHANNEL -> 01:B2A 1.34 .143 No_date 12:31 54.54 00782> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .132 No_date 12:33 54.54 00783> [L/S/n= 229./1.000/.050]00784> {Vmax= .529:Dmax= .192}00785> 006:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00786> CALIB STANDHYD 03:B2B .97 .104 No_date 12:31 54.54 00787> [XIMP=.32:TIMP=.32]00788> [LOSS= 2 :CN= 79.0]00789> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00790> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00791> 006:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00792> ROUTE CHANNEL -> 03:B2B .97 .104 No_date 12:31 54.54 00793> [RDT= 1.00] out<- 04:SWALEB2B .97 .095 No_date 12:33 54.54 00794> [L/S/n= 229./1.000/.050]00795> {Vmax= .481:Dmax= .162}00796> 006:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00797> CALIB NASHYD 05:B3 .97 .051 No_date 12:46 36.02 00798> [CN= 74.0: N= 3.00]00799> [Tp= .41:DT= 1.00]00800> 006:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00801> ROUTE CHANNEL -> 05:B3 .97 .051 No_date 12:46 36.02 00802> [RDT= 1.00] out<- 06:SWALEB3 .97 .048 No_date 12:53 36.02 00803> [L/S/n= 175./ .650/.050]00804> {Vmax= .337:Dmax= .132}00805> 006:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00806> ROUTE RESERVOIR -> 06:SWALEB3 .97 .048 No_date 12:53 36.02 00807> [RDT= 1.00] out<- 05: 999 .07 .000 No_date 11:59 36.02 00808> overflow <= 01:OVRFWB3 .90 .048 No_date 12:53 36.02 00809> {MxStoUsed=.1010E-02, TotOvfVol=.3237E-01, N-Ovf= 2, TotDurOvf= 14.hrs00810> 006:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-

(C:\...Pst-Dev3.sum) Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering

Oliver, Mangione,Mccalla Ltd, Division of Trow Engineering Page 3

00811> CALIB STANDHYD 07:B2C .14 .016 No_date 12:30 54.54 00812> [XIMP=.32:TIMP=.32]00813> [LOSS= 2 :CN= 79.0]00814> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00815> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00816> 006:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00817> ADD HYD 01:OVRFWB3 .90 .048 No_date 12:53 36.02 00818> + 07:B2C .14 .016 No_date 12:30 54.54 00819> [DT= 1.00] SUM= 08: 1000 1.04 .054 No_date 12:51 38.55 00820> 006:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00821> ROUTE CHANNEL -> 08: 1000 1.04 .054 No_date 12:51 38.55 00822> [RDT= 1.00] out<- 09:SWALEB2C 1.04 .053 No_date 12:54 38.55 00823> [L/S/n= 88./1.000/.050]00824> {Vmax= .388:Dmax= .112}00825> 006:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00826> CALIB STANDHYD 05:B2D .45 .050 No_date 12:30 53.76 00827> [XIMP=.32:TIMP=.32]00828> [LOSS= 2 :CN= 78.0]00829> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00830> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00831> 006:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00832> ROUTE CHANNEL -> 05:B2D .45 .050 No_date 12:30 53.76 00833> [RDT= 1.00] out<- 06:SWALEB2D .45 .048 No_date 12:31 53.76 00834> [L/S/n= 88./1.000/.050]00835> {Vmax= .379:Dmax= .107}00836> 006:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00837> ADD HYD 02:SWALEB2A 1.34 .132 No_date 12:33 54.54 00838> + 04:SWALEB2B .97 .095 No_date 12:33 54.54 00839> + 06:SWALEB2D .45 .048 No_date 12:31 53.76 00840> + 09:SWALEB2C 1.04 .053 No_date 12:54 38.55 00841> [DT= 1.00] SUM= 07: 1001 3.81 .311 No_date 12:33 50.08 00842> 006:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00843> ROUTE CHANNEL -> 07: 1001 3.81 .311 No_date 12:33 50.08 00844> [RDT= 1.00] out<- 08:SWALEB2E 3.81 .305 No_date 12:35 50.08 00845> [L/S/n= 111./1.000/.050]00846> {Vmax= .660:Dmax= .288}00847> 006:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00848> CALIB NASHYD 09:B2E .17 .006 No_date 12:58 33.13 00849> [CN= 71.0: N= 3.00]00850> [Tp= .58:DT= 1.00]00851> 006:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00852> ADD HYD 08:SWALEB2E 3.81 .305 No_date 12:35 50.08 00853> + 09:B2E .17 .006 No_date 12:58 33.13 00854> [DT= 1.00] SUM= 10: 1002 3.98 .309 No_date 12:35 49.35 00855> 006:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00856> ROUTE RESERVOIR -> 10: 1002 3.98 .309 No_date 12:35 49.35 00857> [RDT= 1.00] out<- 07: 1003 .55 .002 No_date 11:14 49.36 00858> overflow <= 05:OVRFLW1 3.43 .307 No_date 12:35 49.35 00859> {MxStoUsed=.1225E-01, TotOvfVol=.1694E+00, N-Ovf= 2, TotDurOvf= 14.hrs00860> 006:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00861> CALIB NASHYD 01:B1 1.72 .070 No_date 12:58 35.03 00862> [CN= 73.0: N= 3.00]00863> [Tp= .58:DT= 1.00]00864> 006:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00865> ROUTE CHANNEL -> 01:B1 1.72 .070 No_date 12:58 35.03 00866> [RDT= 1.00] out<- 02:SWALEB1 1.72 .064 No_date 13:11 35.03 00867> [L/S/n= 325./ .600/.050]00868> {Vmax= .357:Dmax= .159}00869> 006:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00870> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .064 No_date 13:11 35.03 00871> [RDT= 1.00] out<- 03: 1004 .12 .000 No_date 12:19 35.03 00872> overflow <= 01:OVRFLW2 1.60 .063 No_date 13:11 35.03 00873> {MxStoUsed=.1690E-02, TotOvfVol=.5599E-01, N-Ovf= 2, TotDurOvf= 15.hrs00874> 006:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00875> CALIB NASHYD 02:B4 1.05 .064 No_date 12:38 34.07 00876> [CN= 72.0: N= 3.00]00877> [Tp= .29:DT= 1.00]00878> 006:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00879> ROUTE CHANNEL -> 02:B4 1.05 .064 No_date 12:38 34.07 00880> [RDT= 1.00] out<- 04:SWALEB4 1.05 .063 No_date 12:42 34.07 00881> [L/S/n= 110./1.000/.050]00882> {Vmax= .419:Dmax= .133}00883> 006:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00884> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .063 No_date 12:42 34.07 00885> [RDT= 1.00] out<- 01: 1004 .07 .000 No_date 11:36 34.08 00886> overflow <= 02:OVRFLW3 .98 .062 No_date 12:42 34.07 00887> {MxStoUsed=.9300E-03, TotOvfVol=.3346E-01, N-Ovf= 2, TotDurOvf= 14.hrs00888> 006:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00889> ADD HYD 05: 1005 3.43 .307 No_date 12:35 49.35 00890> + 01: 1004 .07 .000 No_date 11:36 34.08 00891> + 02:OVRFLW3 .98 .062 No_date 12:42 34.07 00892> [DT= 1.00] SUM= 05: 1005 4.48 .364 No_date 12:36 45.78 00893> ** END OF RUN : 600894> 00895> *******************************************************************************00896> 00897> 00898> 00899> 00900> 00901> RUN:COMMAND#00902> 007:0001-----------------------------------------------------------------------00903> START00904> [TZERO = .00 hrs on 0]00905> [METOUT= 2 (1=imperial, 2=metric output)]00906> [NSTORM= 1 ]00907> [NRUN = 7 ]00908> 007:0002-----------------------------------------------------------------------00909> READ STORM 00910> Filename = STORM.001 00911> Comment = 00912> [SDT=30.00:SDUR= 24.50:PTOT= 103.21]00913> 007:0003---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00914> CALIB STANDHYD 01:B2A 1.34 .193 No_date 12:31 71.25 00915> [XIMP=.32:TIMP=.32]00916> [LOSS= 2 :CN= 79.0]00917> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00918> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 232.:MNI=.013:SCI= .0]00919> 007:0004---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00920> ROUTE CHANNEL -> 01:B2A 1.34 .193 No_date 12:31 71.25 00921> [RDT= 1.00] out<- 02:SWALEB2A 1.34 .181 No_date 12:33 71.25 00922> [L/S/n= 229./1.000/.050]00923> {Vmax= .579:Dmax= .226}00924> 007:0005---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00925> CALIB STANDHYD 03:B2B .97 .142 No_date 12:30 71.25 00926> [XIMP=.32:TIMP=.32]00927> [LOSS= 2 :CN= 79.0]00928> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00929> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 197.:MNI=.013:SCI= .0]00930> 007:0006---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00931> ROUTE CHANNEL -> 03:B2B .97 .142 No_date 12:30 71.25 00932> [RDT= 1.00] out<- 04:SWALEB2B .97 .130 No_date 12:32 71.25 00933> [L/S/n= 229./1.000/.050]00934> {Vmax= .528:Dmax= .191}00935> 007:0007---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00936> CALIB NASHYD 05:B3 .97 .072 No_date 12:45 50.29 00937> [CN= 74.0: N= 3.00]00938> [Tp= .41:DT= 1.00]00939> 007:0008---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00940> ROUTE CHANNEL -> 05:B3 .97 .072 No_date 12:45 50.29 00941> [RDT= 1.00] out<- 06:SWALEB3 .97 .068 No_date 12:52 50.29 00942> [L/S/n= 175./ .650/.050]00943> {Vmax= .371:Dmax= .158}00944> 007:0009---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00945> ROUTE RESERVOIR -> 06:SWALEB3 .97 .068 No_date 12:52 50.29

00946> [RDT= 1.00] out<- 05: 999 .05 .000 No_date 11:10 50.30 00947> overflow <= 01:OVRFWB3 .92 .068 No_date 12:52 50.29 00948> {MxStoUsed=.1010E-02, TotOvfVol=.4608E-01, N-Ovf= 2, TotDurOvf= 15.hrs00949> 007:0010---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00950> CALIB STANDHYD 07:B2C .14 .022 No_date 12:30 71.25 00951> [XIMP=.32:TIMP=.32]00952> [LOSS= 2 :CN= 79.0]00953> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00954> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00955> 007:0011---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00956> ADD HYD 01:OVRFWB3 .92 .068 No_date 12:52 50.29 00957> + 07:B2C .14 .022 No_date 12:30 71.25 00958> [DT= 1.00] SUM= 08: 1000 1.06 .075 No_date 12:50 53.10 00959> 007:0012---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00960> ROUTE CHANNEL -> 08: 1000 1.06 .075 No_date 12:50 53.10 00961> [RDT= 1.00] out<- 09:SWALEB2C 1.06 .075 No_date 12:53 53.10 00962> [L/S/n= 88./1.000/.050]00963> {Vmax= .439:Dmax= .137}00964> 007:0013---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00965> CALIB STANDHYD 05:B2D .45 .067 No_date 12:30 70.30 00966> [XIMP=.32:TIMP=.32]00967> [LOSS= 2 :CN= 78.0]00968> [Pervious area: IAper= 6.50:SLPP=2.00:LGP= 40.:MNP=.250:SCP= .0]00969> [Impervious area: IAimp= 1.57:SLPI=1.00:LGI= 78.:MNI=.013:SCI= .0]00970> 007:0014---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00971> ROUTE CHANNEL -> 05:B2D .45 .067 No_date 12:30 70.30 00972> [RDT= 1.00] out<- 06:SWALEB2D .45 .066 No_date 12:30 70.30 00973> [L/S/n= 88./1.000/.050]00974> {Vmax= .425:Dmax= .129}00975> 007:0015---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00976> ADD HYD 02:SWALEB2A 1.34 .181 No_date 12:33 71.25 00977> + 04:SWALEB2B .97 .130 No_date 12:32 71.25 00978> + 06:SWALEB2D .45 .066 No_date 12:30 70.30 00979> + 09:SWALEB2C 1.06 .075 No_date 12:53 53.10 00980> [DT= 1.00] SUM= 07: 1001 3.83 .427 No_date 12:32 66.12 00981> 007:0016---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00982> ROUTE CHANNEL -> 07: 1001 3.83 .427 No_date 12:32 66.12 00983> [RDT= 1.00] out<- 08:SWALEB2E 3.83 .419 No_date 12:34 66.12 00984> [L/S/n= 111./1.000/.050]00985> {Vmax= .720:Dmax= .338}00986> 007:0017---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00987> CALIB NASHYD 09:B2E .17 .009 No_date 12:58 46.65 00988> [CN= 71.0: N= 3.00]00989> [Tp= .58:DT= 1.00]00990> 007:0018---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00991> ADD HYD 08:SWALEB2E 3.83 .419 No_date 12:34 66.12 00992> + 09:B2E .17 .009 No_date 12:58 46.65 00993> [DT= 1.00] SUM= 10: 1002 4.00 .425 No_date 12:34 65.29 00994> 007:0019---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-00995> ROUTE RESERVOIR -> 10: 1002 4.00 .425 No_date 12:34 65.29 00996> [RDT= 1.00] out<- 07: 1003 .42 .002 No_date 10:15 65.29 00997> overflow <= 05:OVRFLW1 3.57 .423 No_date 12:35 65.29 00998> {MxStoUsed=.1225E-01, TotOvfVol=.2332E+00, N-Ovf= 2, TotDurOvf= 15.hrs00999> 007:0020---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01000> CALIB NASHYD 01:B1 1.72 .098 No_date 12:57 49.05 01001> [CN= 73.0: N= 3.00]01002> [Tp= .58:DT= 1.00]01003> 007:0021---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01004> ROUTE CHANNEL -> 01:B1 1.72 .098 No_date 12:57 49.05 01005> [RDT= 1.00] out<- 02:SWALEB1 1.72 .092 No_date 13:09 49.05 01006> [L/S/n= 325./ .600/.050]01007> {Vmax= .393:Dmax= .189}01008> 007:0022---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01009> ROUTE RESERVOIR -> 02:SWALEB1 1.72 .092 No_date 13:09 49.05 01010> [RDT= 1.00] out<- 03: 1004 .09 .000 No_date 11:36 49.05 01011> overflow <= 01:OVRFLW2 1.63 .091 No_date 13:10 49.05 01012> {MxStoUsed=.1690E-02, TotOvfVol=.7995E-01, N-Ovf= 2, TotDurOvf= 16.hrs01013> 007:0023---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01014> CALIB NASHYD 02:B4 1.05 .091 No_date 12:38 47.84 01015> [CN= 72.0: N= 3.00]01016> [Tp= .29:DT= 1.00]01017> 007:0024---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01018> ROUTE CHANNEL -> 02:B4 1.05 .091 No_date 12:38 47.84 01019> [RDT= 1.00] out<- 04:SWALEB4 1.05 .089 No_date 12:41 47.84 01020> [L/S/n= 110./1.000/.050]01021> {Vmax= .463:Dmax= .160}01022> 007:0025---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01023> ROUTE RESERVOIR -> 04:SWALEB4 1.05 .089 No_date 12:41 47.84 01024> [RDT= 1.00] out<- 01: 1004 .05 .000 No_date 10:44 47.85 01025> overflow <= 02:OVRFLW3 1.00 .089 No_date 12:42 47.84 01026> {MxStoUsed=.9300E-03, TotOvfVol=.4780E-01, N-Ovf= 3, TotDurOvf= 15.hrs01027> 007:0026---------------ID:NHYD-----------AREA----QPEAK-TpeakDate_hh:mm----R.V.-01028> ADD HYD 05: 1005 3.57 .423 No_date 12:35 65.29 01029> + 01: 1004 .05 .000 No_date 10:44 47.85 01030> + 02:OVRFLW3 1.00 .089 No_date 12:42 47.84 01031> [DT= 1.00] SUM= 05: 1005 4.62 .503 No_date 12:36 61.33 01032> 007:0002-----------------------------------------------------------------------01033> FINISH01034> --------------------------------------------------------------------------------01035> ********************************************************************************01036> WARNINGS / ERRORS / NOTES01037> -------------------------01038> Simulation ended on 2014-10-03 at 14:34:4201039> ================================================================================01040> 01041>

exp Services Inc.

2099116 Ontario Inc. Manotick Subdivision

Stormwater Management Report 215355!A0

August 2015

Appendix E – Reference Material

Low Impact Development Stormwater Management Planning and Design Manual, Version 1.0. Credit Valley Conservation, Toronto and Region Conservation. Section 4.9 Dry Swales, Pages 40149 through 40167

USEPA 0 National Pollutant Discharge Elimination System (NPDES) Infiltration Trench

USEPA 0 National Pollutant Discharge Elimination System (NPDES) Grassed Swales

Low Impact Development Stormwater Management Planning and Design Guide

4-149 Version 1.0

4.9 Dry Swales

4.9.1 Overview Description A dry swale can be thought of as an enhanced grass swale that incorporates an engineered soil (i.e., filter media or growing media) bed and optional perforated pipe underdrain or a bioretention cell configured as a linear open channel (Figure 4.9.1). They can also be referred to as infiltration swales or bio-swales. Dry swales are similar to enhanced grass swales in terms of the design of their surface geometry, slope, check dams and pretreatment devices. They are similar to bioretention cells in terms of the design of the filter media bed, gravel storage layer and optional underdrain components. In general, they are open channels designed to convey, treat and attenuate stormwater runoff. Vegetation or aggregate material on the surface of the swale slows the runoff water to allow sedimentation, filtration through the root zone and engineered soil bed, evapotranspiration, and infiltration into the underlying native soil. Dry swales may be planted with grasses or have more elaborate landscaping (Figure 4.9.1).

Figure 4.9.1 Dry swales can be vegetated with turf grass or more elaborate vegetation

Source: SVR Design (left); Seattle Public Utilities (right)

Common Concerns If properly designed and maintained, dry swales can provide stormwater treatment while accenting the natural landscape and providing improved site aesthetics. Concerns associated with their use should be addressed through design and may include:

• Risk of Groundwater Contamination: Most pollutants in urban runoff are well retained by infiltration practices and soils and therefore, have a low to moderate potential for groundwater contamination (Pitt et al., 1999). Chloride and sodium from de-icing salts applied to roads and parking areas during winter are not well attenuated in soil and can easily travel to shallow groundwater. Infiltration of de-

Low Impact Development Stormwater Management Planning and Design Guide

4-150 Version 1.0

icing salt constituents is also known to increase the mobility of certain heavy metals in soil (e.g., lead, copper and cadmium), thereby raising the potential for elevated concentrations in underlying groundwater (Amrhein et al., 1992; Bauske and Goetz, 1993). However, very few studies that have sampled groundwater below infiltration facilities or roadside ditches receiving de-icing salt laden runoff have found concentrations of heavy metals that exceed drinking water standards (e.g., Howard and Beck, 1993; Granato et al., 1995). To minimize risk of groundwater contamination the following management approaches are recommended (Pitt et al., 1999; TRCA, 2009b):

o stormwater infiltration practices should not receive runoff from high traffic areas where large amounts of de-icing salts are applied (e.g., busy highways), nor from pollution hot spots (e.g., source areas where land uses or activities have the potential to generate highly contaminated runoff such as vehicle fuelling, servicing or demolition areas, outdoor storage or handling areas for hazardous materials and some heavy industry sites);

o prioritize infiltration of runoff from source areas that are comparatively less contaminated such as roofs, low traffic roads and parking areas; and,

o apply sedimentation pretreatment practices (e.g., vegetated filter strip, pea gravel diaphragm, sedimentation forebay) before infiltration of road or parking area runoff.

• Risk of Soil Contamination: Available evidence from monitoring studies indicates

that small distributed stormwater infiltration practices do not contaminate underlying soils, even after more than 10 years of operation (TRCA, 2008).

• On Private Property: If dry swales are installed on private lots, property owners or

managers will need to be educated on their routine maintenance needs, understand the long-term maintenance plan, and be subject to a legally binding maintenance agreement. An incentive program such as a storm sewer user fee based on the area of impervious cover on a property that is directly connected to a storm sewer (i.e., does not first drain to a pervious area or LID practice) could be used to encourage property owners or managers to maintain existing practices. Alternatively, dry swales could be located in an expanded road right-of-way or “stormwater easement” so that municipal staff can access the facility in the event it fails to function properly.

• Maintenance: The major maintenance requirement associated with dry swales is

mowing or trimming vegetation. Occasionally, sediment will need to be removed, although this can be minimized by ensuring that upstream areas are stabilized and incorporating pretreatment devices (e.g., vegetated filter strips, sedimentation forebays, gravel diaphragms).

• Erosion: Erosion can be prevented by limiting the allowable longitudinal slope

and incorporating check dams. Additionally, designers can provide permanent reinforcement matting for swales with high velocity and temporary matting during the vegetation establishment period.

Low Impact Development Stormwater Management Planning and Design Guide

4-151 Version 1.0

• Standing Water and Mosquitoes: Properly designed dry swales will not pond

water at the surface for longer than 24 hours following a storm event. However, poor design, installation, or maintenance can lead to nuisance conditions.

Physical Suitability and Constraints Dry swales can be implemented on a variety of development sites where development density, topography and depth to water table permit their application. Some key constraints for dry swales include:

• Wellhead Protection: Facilities receiving road or parking lot runoff should not be located within two (2) year time-of-travel wellhead protection areas.

• Available Space: Dry swale footprints are approximately 5 to 15% of their

contributing drainage area. When applied to residential areas, the swale segments between driveways should be at least 5 metres in length.

• Site Topography: Dry swales should be designed with longitudinal slopes

generally ranging from 0.5 to 4%, and no greater than 6% (PDEP, 2006). On slopes steeper than 3%, check dams should be used.

• Water Table: Designers should ensure that the bottom of the swale is separated

from the seasonally high water table or top of bedrock elevation by at least one (1) metre to prevent groundwater contamination.

• Soils: Dry swales can be located over any soil type, but hydrologic soil group A

and B soils are best for achieving water balance benefits. Facilities should be located in portions of the site with the highest native soil infiltration rates. Where infiltration rates are less than 15 mm/hr (hydraulic conductivity less than 1x10-6 cm/s) an underdrain is required. Native soil infiltration rate at the proposed facility location and depth should be confirmed through measurement of hydraulic conductivity under field saturated conditions using the methods described in Appendix C.

• Drainage Area and Runoff Volume to Site: Dry swales typically treat drainage

areas of less than two hectares. If dry swales are used to treat larger areas, the velocity through the swale becomes too great to treat runoff or prevent erosion. Typical ratios of impervious drainage area to dry swale area range from 5:1 to 15:1.

Pollution Hot Spot Runoff: To protect groundwater from possible contamination,

source areas where land uses or human activities have the potential to generate highly contaminated runoff (e.g., vehicle fueling, servicing and demolition areas, outdoor storage and handling areas for hazardous materials and some heavy industry sites) should not be treated dry swales designed for full or partial

Low Impact Development Stormwater Management Planning and Design Guide

4-152 Version 1.0

infiltration. Facilities designed with an impermeable liner (filtration only facilities) can be used to treat runoff from pollution hot spots.

• Setbacks from Buildings: Dry swales should be setback four (4) metres from

building foundations. When located within 3 metres of building foundations, an impermeable liner and perforated pipe underdrain system should be used.

• Proximity to Underground Utilities: Designers should consult local utility design

guidance for the horizontal and vertical clearance between storm drains, ditches, and surface water bodies. It is feasible for on-site utilities to cross dry swales; however, this may require the use of special protection (e.g., double-casing) for the subject utility line.

Typical Performance The ability of various dry swale design variations to help meet stormwater management objectives is summarized in Table 4.9.1.

Table 4.9.1 Ability of dry swales to meet SWM objectives

BMP Water Balance Benefit

Water Quality Improvement

Stream Channel Erosion Control

Benefit

Dry swale with no underdrain or full infiltration

Yes Yes – size for water

quality storage requirement

Partial – based on available storage

volume and infiltration rates

Dry swale with underdrain or partial infiltration

Partial – based on available storage

volume beneath the underdrain and soil

infiltration rate

Yes – size for water quality storage

requirement

Partial – based on available storage

volume beneath the underdrain and soil

infiltration rate Dry swale with underdrain and impermeable liner or no infiltration

Partial – some volume reduction through evapotranspiration

Yes – size for water quality storage

requirement

Partial – some volume reduction

through evapotranspiration

Water Balance Limited data are available to define the typical runoff reduction rate for dry swales. Since they incorporate many of the same design elements, dry swales can be expected to perform similar to bioretention cells (Table 4.9.2). Water Quality - Pollutant Removal Capacity While few field studies of the pollutant removal capacity of dry swales are available from cold climate regions like Ontario, it can be assumed that they would perform similar to bioretention facilities (see Section 4.5.1). Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, plant uptake, soil adsorption, and microbial processes. It is important to note that there is a relationship between the water balance and water quality functions. If a dry swale infiltrates and evaporates 100% of the flow from a site, then there is essentially no pollution leaving the site in

Low Impact Development Stormwater Management Planning and Design Guide

4-153 Version 1.0

surface runoff. Furthermore, treatment of infiltrated runoff will continue to occur as it moves through the native soils.

Table 4.9.2 Volumetric runoff reduction1 achieved by dry swales

Notes: 1. Runoff reduction estimates are based on differences in runoff volume between the practice and a

conventional impervious surface over the period of monitoring. 2. This estimate is provided only for the purpose of initial screening of LID practices suitable for achieving

stormwater management objectives and targets. Performance of individual facilities will vary depending on site specific contexts and facility design parameters and should be estimated as part of the design process and submitted with other documentation for review by the approval authority.

Performance results from both laboratory and field studies indicate that bioretention systems have the potential to be one of the most effective BMPs for pollutant removal (TRCA, 2009b). Excellent pollutant removal rates have been observed through field studies for total suspended solids (Roseen et al., 2009), polycyclic aromatic hydrocarbons (TRCA, 2008b; Diblasi et al., 2009), and metals (Davis et al., 2003; Hunt et al., 2006; Roseen et al., 2006; Davis, 2007; TRCA, 2008b). Good removal rates for metals have even been observed in bioretention facilities receiving snow melt that contains de-icing salt constituents (Muthanna et al., 2007). Field investigations of nutrient removal by bioretention facilities have produced more variable results (TRCA, 2009b). Some facilities have been observed to increase total phosphorus in infiltrated water (Dietz and Clausen, 2005; Hunt et al., 2006; TRCA, 2008b). These findings have been attributed to leaching from the filter media soil mixture which contained high phosphorus content. To avoid phosphorus export, the phosphorus content (i.e., Phosphorus Index) of the filter media soil mixture should be examined and kept between 10 to 30 ppm (Hunt and Lord, 2006). While moderate

LID Practice Location Runoff Reduction1 Reference Dry Swale without underdrain

Washington 98% Horner et al. (2003)

United Kingdom 94% Jefferies (2004)

Dry Swale with underdrain Maryland 46 to 54% Stagge (2006)

Bioretention without underdrain

Connecticut 99% Dietz and Clausen (2006)

Pennsylvania 80% Ermilio (2005)

Pennsylvania 70% Emerson and Traver (2004)

Bioretention with underdrain

Ontario 58% TRCA (2008b)

North Carolina 40 to 60% Smith and Hunt (2007)

North Carolina 33 to 50% Hunt and Lord (2006)

Maryland and North Carolina 20 to 50% Li et al. (2009)

Runoff Reduction Estimate2 85% without underdrain; 45% with underdrain

Low Impact Development Stormwater Management Planning and Design Guide

4-154 Version 1.0

reductions in total nitrogen and ammonia nitrogen have been observed in laboratory studies (Davis et al., 2001) and field studies (Dietz and Clausen, 2005), nitrate nitrogen has consistently observed to be low. Little data exists on the ability of bioretention to reduce bacteria concentrations, but preliminary results report good removal rates for fecal coliform bacteria (Rusciano and Obropta, 2005; Hunt et al., 2008; TRCA, 2008b). Several factors that can greatly increase or decrease the pollutant removal capacity of dry swales are provided in Table 4.9.4.

Table 4.9.3 Factors that influence the pollutant removal capacity of dry swales

Factors that Reduce Removal Rates Factors that Enhance Removal Rates

Longitudinal slope > 3% Longitudinal slope between 0.5 to 3% Measured soil infiltration rate is less than 15 mm/hr

Measured soil infiltration rate is 15 mm/hr or greater

Filter media P-Index values > 30 ppm1 Filter media P-Index values < 30 ppm1

Flow velocity within swale > 0.5 m/s during a 4 hour, 25 mm Chicago storm event

Flow velocity within swale is 0.5 m/s or less during a 4 hour, 25 mm Chicago storm event

No pretreatment Pretreatment with vegetated filter strips, gravel diaphragms and/or sedimentation forebays

Swale side slopes steeper than 3:1 (H:V) Swale side slopes 3:1 (H:V) or less Notes: 1. P-index values refers to phosphorus soil test index values in parts per million (ppm). See www.omafra.gov.on.ca for information on soil testing and a list of accredited soil laboratories. Stream Channel Erosion Control While most dry swales are not designed to provide channel erosion control storage volume, the high degree of runoff reduction reported in performance monitoring studies suggests that they have the potential to protect downstream channels from erosion. If space is available, they may be designed for extended detention. 4.9.2 Design Template Applications The linear nature of dry swales makes them well-suited to treat road runoff as they can be incorporated into road rights-of-way (see Figure 4.9.2). They are also a suitable practice for managing runoff from parking lots, roofs and pervious surfaces, such as yards, parks and landscaped areas. Dry swales can be used for storing and treating snow from the contributing drainage area. Dry swales require a considerable amount of space, often making them impractical in densely developed urban areas. Where development density, topography and depth to water table permit, dry swales can be used to provide stormwater conveyance in place of conventional curb and gutter and storm drain systems.

Low Impact Development Stormwater Management Planning and Design Guide

4-155 Version 1.0

Dry swales vary in appearance based on the type of vegetation. Swales can be planted with turf grass, tall meadow grasses, decorative herbaceous cover, or trees (Figure 4.9.2).

Figure 4.9.2 Dry swales are well suited to road rights-of-way and parking lots

Source: City of Portland (left); Lake County Illinois (centre); Portland Public Schools (right)

Design Guidance Geometry and Site Layout Design guidance regarding the geometry and layout of dry swales is provided below:

• Shape: A parabolic shape is preferable for aesthetic, maintenance and hydraulic reasons. However, design may be simplified with a trapezoidal cross section as long as the engineered soil (filter media) bed boundaries lay in the flat bottom areas. Swale length between culverts should be 5 metres or greater.

• Bottom Width: For the trapezoidal cross section, the bottom width should be between 0.75 and 3 metres. When greater widths are desired, bioretention cell designs (Section 4.5) should be used.

• Side Slopes: The side slopes of the channel should be no steeper than 3:1 for

maintenance considerations (mowing). Flatter slopes are encouraged where adequate space is available to aid in providing pretreatment for sheet flows entering the swale.

• Longitudinal Slope: The slope of the swale should be as gradual as possible to

permit the temporary ponding of the water quality storage requirement. Dry swales should be designed with longitudinal slopes generally ranging from 0.5 to 4%. On slopes steeper than 3%, check dams should be used. Check dam spacing should be based on the slope and desired ponding volume. They should

Low Impact Development Stormwater Management Planning and Design Guide

4-156 Version 1.0

be spaced far enough apart to allow access for maintenance equipment (e.g., mowers).

Typical Details

Figure 4.9.3 Schematic of a dry swale

Also see Figure 4.10 from the OMOE Stormwater Management Planning and Design Manual (OMOE, 2003). Pretreatment Pretreatment devices capture and remove coarse sediment particles before they reach the engineered soil (i.e., filter media) bed to prevent premature clogging and prolong effective function of dry swales. A two-cell design that incorporates a sedimentation

Low Impact Development Stormwater Management Planning and Design Guide

4-157 Version 1.0

forebay is recommended as it provides the most-effective pretreatment. Several pretreatment measures are feasible, depending on the method of conveyance and the drainage area:

• Sedimentation forebay (two-cell design): Forebay ponding volume should account for 25% of the water quality storage requirement and be designed with a 2:1 length to width ratio. This pre-treatment device is the most effective and has the easiest sediment-removal mechanism.

• Grass filter strip (sheet flow): These grass strips should ideally be a minimum of three metres in width. However, space constraints at some sites prohibit this width. If smaller strips are used, more frequent maintenance of the filter bed can be anticipated.

• Gravel diaphragm (sheet flow): A gravel diaphragm at the end of pavement should run perpendicular to the flow path to promote settling. The pea gravel diaphragm (a small trench running along the top of the dry swale) serves two purposes. First, it acts as a pretreatment device, settling out sediment particles before they reach the practice. Second, it acts as a level spreader, maintaining sheet flow into the dry swale. If the contributing drainage area is steep, then larger stone should be used in the diaphragm. A 50 to 150 mm drop from a hard-edged surface into a gravel or stone diaphragm can be used to dissipate energy and promote settling.

• Rip rap and/or dense vegetation (channel flow): These energy dissipation techniques are acceptable as pre-treatment on small swales with a drainage area of less than 100 square metres.

Conveyance and Overflow Dry swales should be designed for a maximum velocity of 0.5 m/s or less for a 4 hour 25 mm Chicago storm event. The swale should also convey the locally required design storm (usually the 10 year storm) at non-erosive velocities with freeboard provided above the required design storm water level. Monitoring Wells A capped vertical standpipe consisting of an anchored 100 to 150 millimetre diameter perforated pipe with a lockable cap installed to the bottom of the facility at the furthest downgradient end is recommended for monitoring the length of time required to fully drain the facility between storms. Gravel Storage Layer

• Depth: Should be a minimum of 300 mm deep and sized to provide the required storage volume. Granular material should be 50 mm diameter clear stone.

Low Impact Development Stormwater Management Planning and Design Guide

4-158 Version 1.0

• Pea gravel choking layer: A 100 mm deep layer of pea gravel (3 to 10 mm diameter clear stone) should be placed on top of the coarse gravel storage layer as a choking layer separating it from the overlying filter media bed.

Filter Media

• Composition: The recommended bioretention filter media soil mixture is:

Component Percent by Weight Sand (2.0 to 0.050 mm dia.) 85 to 88 %

Fines (< 0.050 mm dia.) 8 to 12 % Organic matter 3 to 5 %

To ensure a consistent and homogeneous bed, filter media should come pre-mixed from an approved vendor. The filter media soil mixture should have the following properties:

o The recommended Phosphorus soil test (P- index) value is between 10 to 30 ppm (Hunt and Lord, 2006). Visit the Ontario Ministry of Agriculture, Food, and Rural Affairs website (www.omafra.gov.on.ca) for information on soil testing and a list of accredited soil laboratories.

o Soils with cationic exchange capacity (CEC) exceeding 10 milliequivalents per 100 grams (meq/100 g) are preferred for pollutant removal (Hunt and Lord, 2006).

o The mixture should be free of stones, stumps, roots, or other similar objects larger than 50 mm.

o For optimal plant growth, the recommended pH is between 5.5 to 7.5. Lime can be used to raise the pH, or iron sulphate plus sulphur can be used to lower the pH. The lime and iron sulphate need to be uniformly mixed into the soil (Low Impact Development Center, 2003a).

o The media should have an infiltration rate of greater than 25 mm/hr.

One adaptation is to design the media as a sand filter with organic content only at the top. Leaf compost tilled into the top layers will provide organic content for the plants. If grass is the only vegetation, the ratio of compost may be reduced (Hirschman, 2008; Smith and Hunt, 2007).

• Depth: The recommended filter bed depth is between 1.0 and 1.25 metres. However, in constrained applications, pollutant removal benefits may be achieved in filter beds as shallow as 500 millimetres. (Davis et al., 2009; and Hunt et al., 2006). If trees are included in the bioretention design, then the filter bed depth must be at least 1.0 metre and have soil volume to accommodate the root structure of mature trees. A minimum of 12 cubic metres of shared root space is recommended for healthy canopy trees. Use perennials, shrubs or grasses instead of trees when landscaping shallower filter beds.

Low Impact Development Stormwater Management Planning and Design Guide

4-159 Version 1.0

• Mulch: A 75 millimetre layer of mulch on the surface of the filter bed enhances plant survival, suppresses weed growth, and pre-treats runoff before it reaches the filter bed. Shredded hardwood bark mulch makes a very good surface cover, as it retains a significant amount of nitrogen and typically will not float away. The mulch layer also plays a key role in the removal of heavy metals, sediment, and nutrients (Davis et al., 2001; Davis et al., 2003; Davis et al., 2006; Dietz and Clausen, 2006; Hunt, 2003; and Hsieh and Davis, 2005). Alternately, temporary or permanent erosion control matting can be used in lieu of the mulch layer. The matting should be coconut fiber or another durable material, and should be installed prior to the landscaping. Matting is recommended where flow velocities would likely wash the mulch away.

Underdrain

• Only needed where native soil infiltration rate is less than 15 mm/hr (hydraulic conductivity of less than 1x10-6 cm/s).

• Should consist of a perforated pipe embedded in the coarse gravel storage layer at least 100 mm above the bottom of the gravel storage layer.

• HDPE or equivalent material perforated pipes with smooth interior walls should be used. Pipes should be over-sized to accommodate freezing conditions. A minimum 200 mm diameter underdrain is recommended for this reason (MPCA, 2005). Underdrains should be capped on the upstream end(s).

• A strip of geotextile filter fabric placed between the filter media and pea gravel choking layer over the perforated pipe is optional to help prevent fine soil particles from entering the underdrain. Table 4.5.7 provides further detail regarding geotextile specifications.

• A vertical standpipe connected to the underdrain can be used as a cleanout and monitoring well.

Landscaping Designers should choose grasses, herbaceous plants, or trees that can withstand both wet and dry periods as well as relatively high velocity flows within the swale. Where possible a combination of native trees, shrubs and perennial herbs should be used in addition to grasses. For applications along roads and parking lots, where snow may be plowed or stored, non-woody and salt tolerant species should be chosen. A list of native plant species suitable for dry swale applications and direction on picking the right plants is provided in Appendix B. Other Details Check dams or weirs may be used to obtain the necessary water quality storage volume. The check dams should be spaced based on the longitudinal slope and ponding requirements, while considering the maximum ponding depth. Check dams should be composed of wood or stone. Alternatively, driveway culverts can be used for this purpose. In urban settings, trash accumulation and pedestrian traffic call for special consideration. Consider the following adaptations:

Low Impact Development Stormwater Management Planning and Design Guide

4-160 Version 1.0

• To protect vegetation and prevent soil compaction, fencing (low, wrought iron fences), low walls, bollards and chains, curbs, and constructed walkways can be incorporated.

• Trash racks can be installed between pretreatment devices and the swale or across curb cuts.

Other Design Resources Several other manuals that provide useful design guidance for dry swales are:

Center for Watershed Protection (CWP). 2007b. Urban Stormwater Retrofit Practices: Manual 3 in the Urban Subwatershed Restoration Manual Series. Ellicott City, MD. Claytor, R. and T. Schueler. 1996. Design of Stormwater Filtering Systems. Center for Watershed Protection. Ellicott City, MD. Ontario Ministry of the Environment (OMOE). 2003. Stormwater Management Planning and Design Manual. Ontario, Canada.

BMP Sizing The surface channel component of dry swales should be designed for a maximum flow velocity of 0.5 m/sec. during the 25 mm, 4 hour Chicago storm event over the drainage area. The sizing methodology for the filter media bed component of dry swales is the same as that for bioretention practices. The depth of a dry swale filter media bed designed for full infiltration (i.e., no underdrain) is dependent on the native soil infiltration rate, porosity (void space ratio) of the filter bed and gravel storage layer media (i.e, aggregate material used in the stone reservoir) and the targeted time period to achieve complete drainage between storm events. Assuming a void space ratio of 0.4 for both the filter bed and gravel storage layer media, the maximum allowable depth of the filter bed can be calculated using the following equation:

db max = i * (ts –dp / i) / Vr Where:

db max = Maximum filter media bed depth (mm) i = Infiltration rate for native soils (mm/hr) Vr = Void space ratio for filter bed and gravel layer (assume 0.4) ts = Time to drain (design for 48 hour time to drain is recommended) dp = Maximum surface ponding depth (mm)

For designs that include an underdrain, the filter media bed should be 1 to 1.25 metres in depth. The following equation can be used to determine the maximum depth of the stone reservoir below the invert of the underdrain pipe:

Low Impact Development Stormwater Management Planning and Design Guide

4-161 Version 1.0

dr max = i * ts / Vr Where:

dr max = Maximum depth of stone reservoir below the underdrain pipe The value for native soil infiltration rate (i) used in the above equations should be the design infiltration rate that incorporates a safety correction factor based on the ratio of the mean value at the proposed bottom elevation of the practice to the mean value in the least permeable soil horizon within 1.5 metres of the proposed bottom elevation (see Appendix C, Table C2). For designs with no underdrain that are located on less permeable soils, a minimum filter bed depth of 0.5 metres is recommended to ensure water quality benefits will be achieved. For designs with filter bed depths less than 1 metre, a maximum surface ponding depth of 85 to 100 mm is recommended. Once the depth of the filter media bed is determined the water quality volume, computed using the methods in the relevant CVC and TRCA stormwater management criteria documents (CVC, 2010; TRCA, 2010), can be used to determine the footprint needed using the following equation: Af = WQV / (db* Vr) Where: Af = Footprint surface area (m2) WQV = Water quality volume (m3) db = Filter media bed depth (m) Vr = Void space ratio for filter bed and gravel layer (assume 0.4) The ratio of impervious drainage area to footprint surface area of the practice should be between 5:1 and 15:1 to limit the rate of accumulation of fine sediments and thereby prevent clogging. Design Specifications Recommended design specifications for dry swales are provided in Table 4.9.4.

Table 4.9.4 Design specifications for dry swales

Component Specification Quantity

Filter Media Composition

Filter Soil Mixtures to contain: 85 to 88% sand 8 to 12% soil fines 3 to 5% organic matter in form of leaf

compost Other Criteria: Phosphorus soil test (P-Index) value 10 to 30

ppm Cationic exchange capacity (CEC) greater

than 10 meq/100 g pH between 5.5 to 7.5

Recommended depth is between 1.0 and 1.25 metres. Alternative depths may be appropriate in constrained applications. Volumetric computation based on surface area and depth used in design computations.

Low Impact Development Stormwater Management Planning and Design Guide

4-162 Version 1.0

Component Specification Quantity

Geotextile Material specifications should conform to Ontario Provincial Standard Specification (OPSS) 1860 for Class II geotextile fabrics. Should be woven monofilament or non-woven needle punched fabrics. Woven slit film and non-woven heat bonded fabrics should not be used as they are prone to clogging. Primary considerations are: - Suitable apparent opening size (AOS) for non-woven fabrics, or percent open area (POA) for woven fabrics, to maintain water flow even with sediment and microbial film build-up; - Texture (i.e., grain size distribution) of the overlying native soil, filter media soil or aggregate material; and - Permeability of the native soil. The following geotextile fabric selection criteria are suggested (adapted from AASHTO, 2002; Smith, 2006; and U.S. Dept. of Defense, 2004): Apparent Opening Size (AOS; max. average roll value) or Percent Open Area (POA) For fine grained soils with more than 85% of particles smaller than 0.075 mm (passing a No. 200 sieve): AOS ≤ 0.3 mm (non-woven fabrics) For fine grained soils with 50 to 85% of particles smaller than 0.075 mm (passing a No. 200 sieve): AOS ≤ 0.3 mm (non-woven fabrics) POA ≥ 4% (woven fabrics) For coarser grained soils with 5 to 50% of particles smaller than 0.075 mm (passing a No. 200 sieve): AOS ≤ 0.6 mm (non-woven fabrics) POA ≥ 4% (woven fabrics) For coarse grained soils with less than 5% of particles smaller than 0.075 mm (passing a No. 200 sieve): AOS ≤ 0.6 mm (non-woven fabrics) POA ≥ 10% (woven fabrics) Hydraulic Conductivity (k, in cm/sec) k (fabric) > k (soil) Permittivity (in sec-1) Where,

Between the filter media bed and gravel storage layer (stone reservoir).

Low Impact Development Stormwater Management Planning and Design Guide

4-163 Version 1.0

Component Specification Quantity

Permittivity = k (fabric)/thickness (fabric): For fine grained soils with more than 50% of particles smaller than 0.075 mm (passing a No. 200 sieve), Permittivity should be 0.1 sec-1 For coarser grained soils with 15 to 50% of particles smaller than 0.075 mm (passing a No. 200 sieve), Permittivity should be 0.2 sec-1. For coarse grained soil with less than 15% of particles smaller than 0.075 mm (passing a No. 200 sieve), Permittivity should be 0.5 sec-1.

Gravel Washed 50 mm diameter clear stone should be used to surround the underdrain and for the gravel storage layer Washed 3 to 10 mm diameter clear stone should be used for pea gravel choking layer.

Volume based on dimensions, assuming a void space ratio of 0.4.

Underdrain Perforated HDPE or equivalent, minimum 100 mm diameter, 200 mm recommended.

Perforated pipe for length of swale where required.

Non-perforated pipe as needed to connect with storm drain system.

One or more caps. T’s for underdrain

configuration. Check Dams Check dams should be constructed of a

non-erosive material such as wood, gabions, riprap, or concrete. All check dams should be underlain with filter fabric conforming to local design standards.

Wood used for check dams should consist of pressure treated logs or timbers, or water-resistant tree species such as cedar, hemlock, swamp oak or locust.

Computation of check dam material needed based on surface area and depth used in design computations.

Mulch or Matting Mulch should be shredded hardwood bark at least 75 mm deep.

Where flow velocities dictate, use erosion and sediment control matting – coconut fiber or equivalent.

A 75 mm layer on the surface of the filter bed.

Matting – based on surface area of filter bed.

Construction Considerations Sequencing Ideally, dry swale sites should remain outside the limit of disturbance until construction of the swale begins to prevent soil compaction by heavy equipment. Dry swale locations should never be used as the site of sediment basins during construction, as the concentration of fines will prevent post-construction infiltration. To prevent sediment from clogging the surface of a dry swale, stormwater should be diverted away from the practice until the drainage area is fully stabilized.

Low Impact Development Stormwater Management Planning and Design Guide

4-164 Version 1.0

The construction sequence for dry swales is similar to that used for bioretention (for further details see section 4.5). Three key steps should be emphasized. First, the contributing drainage area has been fully stabilized prior to dry swale construction. Second, designers should check elevations at driveway culverts and check dams to ensure ponding depths are achieved. Lastly, the swale channel and side slopes should be rapidly stabilized using biodegradable geotextile blankets and seeding before bringing the swale “on line”. Construction Inspection Common construction pitfalls can be avoided by careful construction supervision that focuses on the following aspects: Erosion and Sediment Control

• Dry swale locations should be blocked from construction traffic and should not be used for erosion and sediment control.

• Proper erosion and sediment controls should be in place for the drainage area during construction, including sediment fencing around the swale.

Materials

• Gravel for the underdrain should be clean and washed; no fines should be present in the material.

• Underdrain pipe material should be perforated and of the correct size. • A cap should be placed on the upstream (but not the downstream) end of the

underdrain. • Filter media should be tested to confirm that it meets specifications. • Mulch composition should be correct. • Matting, if used, should be correct specification, and durable enough to last at

least 2 growing seasons.

Elevations Elevations of the following items should be checked for accuracy:

• Depth of the gravel and invert of the underdrain • Inverts for inflow and outflow points • Filter depth after media is placed • Ponding depth provided between the surface of the filter bed and the overflow

structure • Mulch depth

Landscaping and Stabilization

• Correct vegetation should be planted. • Pretreatment area should be stabilized. • Drainage area should be stabilized prior to directing water to the swale.

The following items should be checked after the first rainfall event, and adjustments should be made as necessary:

Low Impact Development Stormwater Management Planning and Design Guide

4-165 Version 1.0

• Sheet flow should occur as designed. • Outfall protection/energy dissipation at concentrated inflow should be stable. • Ponded water on the surface of the swale should drain within 24 hours of the end

of the storm event. The filter media bed should fully drain within 72 hours. • Sediment accumulation should not be present.

4.9.3 Maintenance and Construction Costs Inspection and Maintenance Maintenance of dry swales mostly involves maintenance of the vegetative cover as well as periodic inspection for less frequent maintenance needs. Generally, routine maintenance will be the same for any other landscaped area; weeding, pruning, mowing and litter removal. Inspections annually and after every major storm event (> 25 mm), will determine whether corrective action is necessary to address gradual deterioration or abnormal conditions. For the first six months following construction, the site should be inspected after each storm event greater than 10 mm, or a minimum of twice. Subsequently, inspections should be conducted in the spring of each year and after rainfall events greater than 25 mm. Two or three growing seasons may be required to establish vegetation to the desired level. During this period, erosion and sediment control practices, such as mats or blankets, should be used to help protect swale structure. The expected lifespan of infiltration practices is not well understood, however, it can be expected that it will vary depending on pretreatment practice maintenance frequency, and the sediment texture and load coming from the catchment. Routine Inspection and Maintenance Routine inspection and maintenance activities, as shown in Table 4.9.5, are necessary for the continued operation of dry swales. Suggested inspection items and corrective actions are provided in Table 4.9.6.

Low Impact Development Stormwater Management Planning and Design Guide

4-166 Version 1.0

Table 4.9.5 Suggested routine inspection and maintenance activities for dry swales Activity Schedule

Inspect for vegetation density (at least 80% coverage), damage by foot or vehicular traffic, channelization, accumulation of debris, trash and sediment, and structural damage to pretreatment devices.

After every major storm event (>25 mm), quarterly for the first two years, and twice annually

thereafter. Regular watering may be required during the first two years

while vegetation is becoming established; As needed for the first two years

of operation.

Mow grass to maintain height between 75 to 150 mm; Remove trash and debris from pretreatment devices, the

swale surface and inlet and outlets.

At least twice annually. More frequently if desired for aesthetic

reasons.

Remove accumulated sediment from pretreatment devices, inlets and outlets;

Trim trees and shrubs; Replace dead vegetation, remove invasive growth, dethatch,

remove thatching and aerate (PDEP, 2006; Repair eroded or sparsely vegetated areas; Remove accumulated sediment on the swale surface when

dry and exceeds 25 mm depth (PDEP, 2006); If gullies are observed along the swale, regrading and

revegetating may be required.

Annually or as needed

Table 4.9.6 Suggested inspection items and corrective actions for dry swales Inspection Item Corrective Actions

Vegetation health, diversity and density

• Remove dead and diseased plants. • Add reinforcement planting to maintain desired vegetation density. • Prune woody matter. • Check soil pH for specific vegetation. • Add mulch to maintain 75 mm layer.

Sediment build up and clogging at inlets

• Remove sand that may accumulate at the inlets or on the filter bed surface following snow melt.

• Examine drainage area for bare soil and stabilize. Apply erosion control such as silt fence until the area is stabilized.

• Check that pretreatment is properly functioning. For example, inspect filter strips for erosion or gullies. Reseed as necessary.

Ponding for more than 48 hours

• Check underdrain for clogging and flush out. • Apply core aeration or deep tilling • Mix amendments into the soil • Remove the top 75 mm of filter media soil • Replace filter media soil

Installation and Operation Costs Very limited information is available regarding dry swale construction costs. Due to similarities in design, dry swale construction costs are likely comparable to those for bioretention. In a study by the Center for Watershed Protection to estimate and compare construction costs for various stormwater BMPs, the median base construction cost for bioretention was estimated to be $62,765 (2006 USD) per impervious hectare treated with estimates ranging from $49,175 to $103,165 (CWP, 2007b). These estimates do not include design and engineering costs, which could range from 5 to

Low Impact Development Stormwater Management Planning and Design Guide

4-167 Version 1.0

40% of the base construction cost (CWP, 2007b). However, since dry swales serve as a conveyance measure, their cost is offset by the savings in curb and gutter, inlets, and storm sewer pipe as well as the reduction in other stormwater best management practices needed downstream. 4.9.4 References American Association of State Highway and Transportation Officials (AASHTO). 2002. Geotextile Specification for Highway Applications. AASHTO M 288-00. Washington DC. Amrhein, C., Strong, J.E., and Mosher, P.A. 1992. Effect of de-icing salts on metal and organic matter mobilization in roadside soils. Environmental Science and Technology. Vol. 26, No. 4, pp. 703-709. Bauske, B., Goetz, D. 1993. Effects of de-icing salts on heavy metal mobility. Acta Hydrochimica Hydrobiologica. Vol. 21. pp. 38-42. Center for Watershed Protection (CWP). 2007a. National Pollutant Removal Database – Version 3. September 2007. Ellicott City, MD. Center for Watershed Protection (CWP). 2007b. Urban Stormwater Retrofit Practices: Manual 3 in the Urban Subwatershed Restoration Manual Series. Ellicott City, MD. City of Portland. 2004. Portland Stormwater Management Manual. Prepared by the Bureau of Environmental Services (BES). Portland, OR. Claytor, R. and T. Schueler. 1996. Design of Stormwater Filtering Systems. Center for Watershed Protection. Ellicott City, MD. Davis, A.P. 2007. Field performance of bioretention: Water Quality. Environmental Engineering Science. Vol. 24. No. 8. pp. 1048-1064. Davis, A. 2008. Field performance of bioretention: hydrology impacts. Journal of Hydrological Engineering. Feb 2008. 90-96. Davis, A., M. Shokouhian, H. Sharma and C. Minami. 2001. Laboratory Study of Biological Retention for Urban Stormwater Management. Water Environment Research. 73(5): 5-14. Davis, A., M. Shokouhian, H. Sharma and C. Minami. 2006. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environment Research. 78(3): 284-293.