Modos de Vibracion

Preview:

DESCRIPTION

modos de vibracion

Citation preview

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 2.34856 10.061 ∆Z 1 1.34856 7.71 416

V 417.45 417.27 417

F 0.1797 0 1.21

Z 1 2.33752 9.85

20 ∆Z 1 1.33752 7.51 382

V 417.45 413.856 406

F 3.594 8 23.76

Z 1 2.30268 9.19

80 ∆Z 1 1.30268 6.89 284

V 417.45 403.074 372

F 14.376 31 88.70

Z 1 2.27945 8.76

120 ∆Z 1 1.27945 6.48 223.51

V 417.45 395.886 350

F 21.564 46 126.80

Z 1 2.1716 6.83

305.69 ∆Z 1 1.1716 4.66 0.00

V 417.45 362.518 252

F 54.9325 111 251.92

0.3594

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 2.1691 6.79

310 ∆Z 1 1.1691 4.62 -4

V 417.45 361.743 250

F 55.707 112 253.85

Z 1 2.16329 6.69

320 ∆Z 1 1.16329 4.53 -14

V 417.45 359.946 245

F 57.504 115 258.18

Z 1 2.14587 6.39

350 ∆Z 1 1.14587 4.25 -40

V 417.45 354.555 229

F 62.895 125 269.78

Z 1 2.05876 4.95

500 ∆Z 1 1.05876 2.89 -142.23

V 417.45 327.6 156

F 89.85 171 298.33

Z 1 2.00068 4.03

600 ∆Z 1 1.00068 2.03 -181.94

V 417.45 309.63 110

F 107.82 200 291.58

Z 1 1.6343 -0.94

1230.9 ∆Z 1 0.63429 -2.57 0.00

V 417.45 196.261 -139

F 221.189 335 -138.88

0.1791

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (1er Modo)K1 M1 K2 M2 K3 M3

ω2

T1 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (2do Modo)

K1 M1 K2 M2 K3 M3

ω2

T2 =

RESID

UO

RESID

UO

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 1.59414 -1.39

1300 ∆Z 1 0.59414 -2.99 57

V 417.45 183.84 -161

F 233.61 345 -218.38

Z 1 1.47799 -2.62

1500 ∆Z 1 0.47799 -4.10 252

V 417.45 147.9 -221

F 269.55 369 -473.94

Z 1 1.41991 -3.18

1600 ∆Z 1 0.41991 -4.60 365

V 417.45 129.93 -249

F 287.52 378 -613.55

Z 1 1.30376 -4.19

1800 ∆Z 1 0.30376 -5.50 612.98

V 417.45 93.99 -297

F 323.46 391 -909.96

Z 1 -0.635 0.06

5138.1 ∆Z 1 -1.6349 0.70 0.00

V 417.45 -505.86 38

F 923.31 -543 37.59

0.0877

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (3er Modo)

K1 M1 K2 M2 K3 M3

ω2

T3 =

RESID

UO

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 2.30922 11.461 ∆Z 1 1.30922 9.15 485

V 486.91 486.73 486

F 0.1797 0 1.38

Z 1 2.26137 10.38

100 ∆Z 1 1.26137 8.12 306

V 486.91 468.94 431

F 17.97 38 125.17

Z 1 2.21303 9.31

200 ∆Z 1 1.21303 7.10 153

V 486.91 450.97 377

F 35.94 74 224.63

Z 1 2.18887 8.79

250 ∆Z 1 1.18887 6.60 85.74

V 486.91 441.985 351

F 44.925 91 265.08

Z 1 2.1538 8.05

322.65 ∆Z 1 1.15375 5.89 0.00

V 486.91 428.93 313

F 57.9802 116 313.16

0.3498

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 2.1502 7.97

330 ∆Z 1 1.1502 5.82 -8

V 486.91 427.609 309

F 59.301 118 317.33

Z 1 2.14053 7.77

350 ∆Z 1 1.14053 5.63 -29

V 486.91 424.015 299

F 62.895 125 328.06

Z 1 2.06803 6.30

500 ∆Z 1 1.06803 4.23 -155

V 486.91 397.06 225

F 89.85 172 379.83

Z 1 1.92302 3.56

800 ∆Z 1 0.92302 1.63 -256.40

V 486.91 343.15 87

F 143.76 256 343.25

Z 1 1.72967 0.33

1200 ∆Z 1 0.72967 -1.40 -121.84

V 486.91 271.27 -75

F 215.64 346 47.32

Z 1 1.6546 -0.80

1355.33 ∆Z 1 0.65459 -2.45 0.00

V 486.91 243.357 -130

F 243.553 374 -130.25

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (1er Modo)K1 M1 K2 M2 K3 M3

ω2

T1 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (2do Modo)

K1 M1 K2 M2 K3 M3

ω2

RESID

UO

RESID

UO

0.1707

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 1.633 -1.11

1400 ∆Z 1 0.633 -2.74 41

V 486.91 235.33 -146

F 251.58 381 -186.82

Z 1 1.58466 -1.78

1500 ∆Z 1 0.58466 -3.36 143

V 486.91 217.36 -179

F 269.55 396 -321.60

Z 1 1.34298 -4.68

2000 ∆Z 1 0.34298 -6.02 809

V 486.91 127.51 -320

F 359.4 447 -1128.68

Z 1 0.85962 -8.21

3000 ∆Z 1 -0.1404 -9.07 2488.27

V 486.91 -52.19 -482

F 539.1 430 -2970.09

Z 1 -0.635 0.05

6091.40 ∆Z 1 -1.6347 0.68 0.00

V 486.91 -607.71 36

F 1094.62 -644 36.34

0.0805

T2 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (3er Modo)

K1 M1 K2 M2 K3 M3

ω2

T3 =

RESID

UO

RIGIDECES DE MUROS

E = 800 f*m Para cargas de corta duración

f*m = 20 Para bloques de concreto tipo pesado

E = 16 Ton/cm²

t = 15 cm (espesor de muro)

MARCO ENTREPISO H L12 L23

cm cm cm Ton-cm Ton-cm Ton-cm

3 360 - - 13.01

D 2 410 700 600 11.73 144.125 118.378

1 350 700 600 24.51 174.545 144.855

3 360 - - 13.01

C 2 410 - - 11.73

1 350 - - 24.51

3 360 - - 13.01

B 2 410 - - 11.73

1 350 - - 24.51

3 360 - - 13.01

A 2 410 - - 11.73

1 350 - - 24.51

|

MARCO ENTREPISO H

cm cm cm Ton-cm Ton.cm Ton-cm

3 360 - 17.71

3 2 410 500 500 14.38 92.259 92.259

1 350 500 500 27.68 114.668 114.668

3 360 - - 17.71

2 2 410 - - 14.38

KMARCO KMURO 12 KMURO 23

LD-C LC-B KMARCO KMURO D-C KMURO C-B

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

K=(( h3

12 EI )+( hGA ))

−1

1 350 - - 27.68

3 360 - - 17.71

1 2 410 700 - 14.38 144.125

1 350 700 - 27.68 174.545

Ton-cm

13.01

274.23

343.91

13.01

11.73

24.51

13.01

11.73

24.51

13.01

11.73

24.51

Ton-cm

17.71

198.89

257.01

17.71

14.38

KTOTAL

KTOTAL

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

27.68

17.71

158.50

202.22

RIGIDECES TOTALES DE ENTREPISOS

52.06 Ton-cm

53.12

Ton-cm

Y

309.42 Ton-cm

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

371.77

Ton-cm

Y

417.45 Ton-cm

ENTREPISO #1ENTREPISO #1

486.91

Ton-cm

Y

RIGIDECES TOTALES DE ENTREPISOS

X

X

X

COEFICIENTES DE PARTICIPACIÓN

EJE MODO NIVEL MASA Z Z² MZ MZ²

1 0.1797 1 1 0.1797 0.1797

1 305.69 2 0.1666 2.1716 4.7159 0.3618 0.7857

3 0.1206 6.83 46.695 0.8241 5.6314

1 0.1797 1 1 0.1797 0.1797

X 2 1230.9 2 0.1666 1.6343 2.6709 0.2723 0.445

3 0.1206 -0.94 0.8752 -0.1128 0.1056

1 0.1797 1 1 0.1797 0.1797

3 5138.1 2 0.1666 -0.6349 0.4031 -0.1058 0.0671

3 0.1206 0.06 0.0037 0.0073 0.0004

1 0.1797 1 1 0.1797 0.1797

1 322.65 2 0.1666 2.1538 4.6386 0.3588 0.7728

3 0.1206 8.05 64.769 0.9706 7.8112

Y 1 0.1797 1 1 0.1797 0.1797

2 1355.3 2 0.1666 1.6546 2.7377 0.2757 0.4561

3 0.1206 -0.80 0.635 -0.0961 0.0766

1 0.1797 1 1 0.1797 0.1797

3 6091.4 2 0.1666 -0.6347 0.4028 -0.1057 0.0671

3 0.1206 0.05 0.0024 0.006 0.0003

w2

COEFICIENTES DE PARTICIPACIÓN

Cp

0.000677

0.000377

6.394E-05

0.000534

0.000372

5.311E-05

CP=1ω2 ( Σ MZΣ MZ 2 )

DETERMINACIÓN DE C'

C = 0.54

0.80

2.20 0.25

= 0.12

EJE MODO T CONDICIÓN c

seg T < Ta ejemplo

1 0.359368 0.440000

X 2 0.179090 0.440000

3 0.087656 0.440000

1 0.349795 0.440000

Y 2 0.170670 0.440000

3 0.080505 0.440000

T1 =

T2 =

Si T en menor que Ta :

Si T ≥ Ta

Si T > Tb

Si Ta ≤ T ≤ Tb

α

Q '=1+ (Q−1 )( TT a)

Q '=Q

a=qc q=(T b

T )r

a=c

Verificar irregularidad para modificar Q'

DETERMINACIÓN DE C'

0.13

0.70

r = 1.33

g = 981

Q a Q´ A A Q=1

2 0.44000 2.00000 215.82000 107.91

2 0.44000 2.00000 215.82000 107.91

2 0.37811 1.67427 221.54553 132.323

2 0.44000 2.00000 215.82000

2 0.44000 2.00000 215.82000

2 0.36766 1.61927 222.73978

y :

Ta =

Tb =

cm/seg2

Q '=1+ (Q−1 )( TT a) a=a0+(c−a0)

TTa A=a( gQ ´ )

q=(T b

T )r

Verificar irregularidad para modificar Q'

0.22

0.22

0.22584

0.22

0.22

0.22705

8.5

EJE MODO NIVEL Z Cp

1 417.45 1.00000 215.82 0.00068 0.1797

1 2 309.42 2.17160 215.82 0.00068 0.1666

3 52.06 6.83338 215.82 0.00068 0.1206

1 417.45 1.00000 215.82 0.00038 0.1797

X 2 2 309.42 1.63429 215.82 0.00038 0.1666

3 52.06 -0.93554 215.82 0.00038 0.1206

1 417.45 1.00000 221.54553 6.39E-05 0.1797

3 2 31.00 -0.63487 221.54553 6.39E-05 0.1666

3 52.06 0.06066 221.54553 6.39E-05 0.1206

1 486.91 1.00000 215.82 0.00053 0.1797

1 2 371.77 2.15375 215.82 0.00053 0.1666

3 53.12 8.04794 215.82 0.00053 0.1206

1 486.91 1.00000 215.82 0.00037 0.1797

Y 2 2 371.77 1.65459 215.82 0.00037 0.1666

3 53.12 -0.79687 215.82 0.00037 0.1206

1 486.91 1.00000 222.73978 5.31E-05 0.1797

3 2 371.77 -0.63465 222.73978 5.31E-05 0.1666

3 53.12 0.04947 222.73978 5.31E-05 0.1206

KT

A (cm/seg2)

m (Ton.seg2/cm)

CORTANTES TOTALES

V NIVEL

0.146150 0.146150383496849 61.010434 3722.27

0.317381 0.171230278173265 52.9816069 2807.05 1

0.998701 0.681319854447566 35.468694 1258.03

0.081434 0.081434153385669 33.994663 1155.64

0.133087 0.05165256706929 15.9821968 255.43 2

-0.076185 -0.209271629487822 -10.89443 118.69

0.014166 0.014166353975717 5.91374024 34.97

-0.008994 -0.023160092417486 -0.7179629 0.52 3

0.000859 0.009853052574678 0.51293809 0.26

0.115184 0.115183590583016 56.0837928 3145.39

0.248077 0.132893116432571 49.405802 2440.93 1

0.926990 0.678913704241325 36.0629455 1300.54

0.080304 0.080303882666248 39.1005897 1528.86

0.132870 0.052566177890854 19.5425786 381.91 2

-0.063992 -0.196861717599256 -10.457019 109.35

0.011829 0.011828739178714 5.7595058 33.17

-0.007507 -0.019335872345594 -7.1885159 51.67 3

0.000585 0.008092338982424 0.42985372 0.18

Desplazamiento Máximos de las masas U (cm)

Desplazamiento Máximos de Entrepisos (cm) V2

Δ

CORTANTES TOTALES

37.11

70.09

18.24

55.34 X

14.75

37.11

68.61 37.55

53.61

16.06

Y37.55

15.00

CORTANTE (V) Ton

Fsísmica

(Ton)

37.11

55.34

70.09

37.55

53.61

68.61

Cortante V (Ton)

CENTRO DE CORTANTE PARA TORSIÓN

E = 800 f*m Para cargas de corta duración

f*m = 20 Para bloques de concreto tipo pesado

E = 16 Ton/cm²

t = 15 cm (espesor de muro)

MARCO ENTREPISO H

cm cm cm Ton-cm Ton-cm Ton-cm

3 350 - - 13.31

3 2 360 500 700 11.93 162.911 115.000

1 370 500 700 24.45 150.286 110.273

3 350 - - 13.31

2 2 360 - - 11.93

1 370 - - 24.45

3 350 - - 13.31

1 2 360 - 700 11.93 115.000

1 370 - 700 24.45 110.273

MARCO ENTREPISO H

cm cm Ton-cm Ton-cm

3 350 900 13.31 171.19

A 2 360 900 11.93 164.84

1 370 900 22.40 158.81

3 350 - 13.31

B 2 360 - 11.93

LAB LBC KMARCO KMURO A-B KMURO B-C

L1-2 KMARCO KMURO 1-2

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

Kmuro=Et

4 (HL )3

+3 (HL )

1 370 - 22.40

3 350 - 13.31

C 2 360 - 11.93

1 370 - 22.40

ejes NIVEL 3

3 13.31

6

2 13.31

5 7

39.939

1 13.311

84

.50

13

.31

13

.31

ejes A B C

211.12

Ton-cm

13.31

289.84

285.01

13.31

11.93

24.45

13.31

126.93

134.72 Nivel 3

159.707 + 66.5444 =

211.12

199.633 + 119.78 =

Ton-cm 39.93

184.50

176.76

181.21

13.31

11.93

KTOTAL

XT =

KTOTAL YT =

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

X

Y

X T=ΣK yy x

ΣK yy

Y T=ΣK xx y

ΣK xx

22.40

13.31

11.93

22.40

NIVEL 2

289.84

11.93

428.70

126.93

17

6.7

6

11

.93

11

.93

200.62

Nivel 2

1.0717 m 143.14 + 59.6417 = 1.0108

200.62

8.0000 m 4347.6 + 107.355 = 10.3918

428.70

XT =

YT =

X

Y

X

Y T=ΣK xx y

ΣK xx

NIVEL 1

285.01

24.45

444.18

134.72

18

1.2

1

22

.40

22

.40

226.02

Nivel 1

m 268.834 + 112.014 = 1.6851 m

226.02

m 4275.11 + 220.032 = ### m

444.18

XT =

YT =

Y

X X

X

CÁLCULO DE EXCENTRICIDADES

ENTREPISO W Xm Ym Fy

3 37.55

183.57 7.4232658072 9.8848987109

3

2 16.06

227.99 7.5700601996 9.8020263052

2

1 15.00

240.26 7.660530863 10.569945038

1

NIVEL EJE X L= 15

Xv

3 7.42327 1.07167 6.35160 13.45319

2 7.46725 1.01077 6.45647 13.66295

1 7.50949 1.68505 5.82444 12.39889

NIVEL EJE XVy

3 37.55090 13.45319 4.85160 505.17955

2 53.61455 13.66295 4.95647 732.53271

1 68.61064 12.39889 4.32444 850.69548

Peso (W) del Análisis Sísmico Estático (Ton)

Obtenidas del centro de masas

Excentricidad torsional

estática es ex(1.5 + 0.1L/|ex|)

XCT eX e1

e1 e2 MTe1

CÁLCULO DE EXCENTRICIDADES

Fy(Xm)

Vy My

278.75031 7.42327

278.75030841

37.55

121.60283 7.46725

400.35314061

53.61

114.87797 7.50949

515.23111519

68.61

EJE Y L= 20

Yv

4.85160 9.88490 8.00000 1.88490

4.95647 9.85759 10.39185 -0.53426

4.32444 10.00747 10.12018 -0.11270

EJE X EJE YVx

182.18184 37.10768 4.76980 -0.11510

265.73906 55.34435 -2.06851 1.46574

296.70279 70.09196 -1.22541 1.88730

∑My/Vy

∑My

Coordenadas del centro

de Rigideces Xv

ex(1.5 - 0.1L/|ex|)

Excentricidad torsional

estática es

e2 YCT eY

MTe2 e1 e2

CÁLCULO DE EXCENTRICIDADES

Fx(Ym)

Fx Vx Mx

37.11 366.80566

366.80566

37.11

18.24 178.75628

545.56195

55.34

14.75 155.88143

701.44338

70.09

4.76980 -0.11510

-2.06851 1.46574

-1.22541 1.88730

EJE Y

176.99612 -4.27114

-114.48039 81.12067

-85.89112 132.28434

∑Mx

ey(2 + 0.05/|ey|) ey(1 - 0.1/|ey|)

e1 e2

MTe1 MTe2

CÁLCULO DE EXCENTRICIDADES

9.88490

9.85759

10.00747

∑Mx/Vx

Coordenadas del centro

de Rigideces Yv

ENTREPISO 3

SENTIDOV

(Ton) (m) (m)

X 37.11 13.4532 4.8516 499.21684

Y 37.55 4.7698 -0.1151 179.11018

EJE Kx y (Kx)y

1 13.01 0 0.00000 -8.00000

2 13.01 9 117.13230 1.00000

3 13.01 15 195.22050 7.00000

S 39.04 312.35

312.35 =

39.04

EJE Ky x (Ky)x

A 17.71 0 0.00000 -5.66667

B 17.71 5 88.53100 -0.66667

C 17.71 12 212.47440 6.33333

S 53.12 301.01

301.01 =

53.12

ENTREPISO 2

SENTIDOV

(Ton) (m) (m)

X 55.34 13.6629 4.9565 756.16677

Y 53.61 -2.0685 1.4657 -110.9023

e1 e2 Mt1=Ve1

yt

xt =

xt

yt =

e1 e2 Mt1=Ve1

EJE Kx y (Kx)y

1 126.93 0 0.00000 -10.39185

2 11.93 9 107.35510 -1.39185

3 289.84 15 4347.59563 4.60815

S 428.70 4454.95

4454.95 =

428.70

EJE Ky x (Ky)x

A 176.76 0 0.00000 -1.01077

B 11.93 5 59.64172 3.98923

C 11.93 12 143.14014 10.98923

S 200.62 202.78

202.78 =

200.62

ENTREPISO 1

SENTIDO V

(Ton) (m) (m)

X 70.09 12.3989 4.3244 869.06217

Y 68.61 -1.2254 1.8873 -84.0759

EJE Kx y (Kx)y

1 134.72 0 0.00000 -10.12018

2 24.45 9 220.03156 -1.12018

3 285.01 15 4275.10571 4.87982

S 444.18 4495.14

4495.14 =

444.18

yt

xt =

xt

yt =

e1 e2 Mt1=Ve1

yt

xt =

EJE Ky x (Ky)x

A 181.21 0 0.00000 -1.68505

B 22.40 5 112.01413 3.31495

C 22.40 12 268.83392 10.31495

S 226.02 380.85

380.85 =

226.02

xt

yt =

180.03152 179.11018 4.3221569 179.110

-4.322157 499.21684 180.03152 499.217

J = S (Kx)(yt) ²

-104.11760 832.94080 0.33333 -0.03758 12.369 -18.762 -6.766

13.01470 13.01470 0.33333 0.00470 12.369 2.345 0.846

91.10290 637.72030 0.33333 0.03289 12.369 16.417 5.920

0.00 1483.68 1.00000 0.00000 37.11 0.00000 0.00000

8.0000 J= 2770.33

-100.33513 568.56576 0.33333 -0.03622 12.517 -6.487 0.157

-11.80413 7.86942 0.33333 -0.00426 12.517 -0.763 0.018

112.13927 710.21536 0.33333 0.04048 12.517 7.250 -0.175

0.00 1286.65 1.00000 0.00000 37.55 0.00000 0.00000

5.6667 J= 2770.33

274.31274 110.90229 78.585238 110.902

78.585238 756.16677 274.31274 756.167

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

J = S (Kx)(yt) ²

### ### 0.29608 -0.06080 16.386 -45.972 -16.677

-16.60243 23.10803 0.02782 -0.00077 1.540 -0.579 -0.210

1335.62581 6154.76850 0.67609 0.06156 37.418 46.551 16.887

0.00 19884.97 1.00000 0.00000 55.34 0.00000 0.00000

10.3918 J= 21695.89

-178.66812 180.59325 0.88109 -0.00824 47.239 0.913 -0.647

47.58485 189.82669 0.05946 0.00219 3.188 -0.243 0.172

131.08327 1440.50352 0.05946 0.00604 3.188 -0.670 0.475

0.00 1810.92 1.00000 0.00000 53.61 0.00000 0.00000

1.0108 J= 21695.89

303.10867 84.075901 129.48865 129.489

129.48865 869.06217 303.10867 869.062

J = S (Kx)(yt) ²

### ### 0.30331 -0.05738 21.259 -49.869 -17.393

-27.38601 30.67716 0.05504 -0.00115 3.858 -1.002 -0.349

1390.78417 6786.78172 0.64165 0.05854 44.975 50.871 17.743

0.00 20615.29 1.00000 0.00000 70.09 0.00000 0.00000

10.1202 J= 23759.62

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

-305.34828 514.52716 0.80176 -0.01285 55.009 1.081 -1.664

74.26425 246.18226 0.09912 0.00313 6.801 -0.263 0.405

231.08404 2383.62025 0.09912 0.00973 6.801 -0.818 1.259

0.00 3144.33 1.00000 0.00000 68.61 0.00000 0.00000

1.6851 J= 23759.62

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

+ S (Ky)(xt) ²

-6.393 5.603 5.60 -6.732 7.623

14.714 13.215 14.71 0.841 14.967

28.786 18.290 28.79 5.890 30.553

6.030 12.674 12.67 -18.081 18.098

11.754 12.535 12.54 -2.127 13.174

19.767 12.342 19.77 20.208 25.829

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

+ S (Ky)(xt) ²

-29.586 -0.291 -0.29 -6.742 1.732

0.961 1.330 1.33 -0.085 1.355

83.969 54.305 83.97 6.827 86.017

48.152 46.592 48.15 -6.227 50.020

2.945 3.360 3.36 1.658 3.858

2.518 3.663 3.66 4.569 5.033

+ S (Ky)(xt) ²

-28.610 3.866 3.87 -7.430 6.095

2.856 3.509 3.51 -0.149 3.553

95.846 62.717 95.85 7.580 98.120

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

56.090 53.345 56.09 -11.169 59.440

6.538 7.205 7.21 2.716 8.020

5.983 8.060 8.06 8.452 10.596

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

8.412 8.412

5.256 14.967

14.526 30.553

21.883 21.883

5.888 13.174

26.138 26.138

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

6.655 6.655

0.484 1.355

32.018 86.017

20.673 50.020

2.667 3.858

5.667 5.667

8.590 8.590

1.202 3.553

36.333 98.120

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

27.996 59.440

4.878 8.020

10.870 10.870

0.30Vm + |V0| Vdiseño

ejes

3 30.55

6

2 14.97

9

1 8.41

ejes

DESPLAZAMIENTOS

EJE

X

Y

NIVEL 3 NIVEL 2

3 86.02

2 1.36

5 7

53.93

1 6.66

21

.88

13

.17

26

.14

50

.02

A B C A

61.19

DESPLAZAMIENTOS

NIVEL h V K d Condición

cm Ton < 0.006

3 305.00 53.93 52.06 1.03599 0.0034 si

2 335.50 94.03 309.42 0.30389 0.00091 si

1 366.00 110.26 417.45 0.26414 0.00072 si

3 305.00 61.19 53.12 1.15202 0.00378 si

2 335.50 59.55 371.77 0.16017 0.00048 si

1 366.00 78.33 486.91 0.16087 0.00044 si

d / h

X

YY

NIVEL 2 NIVEL 1

3 98.12

2 3.55

94.03

1 8.59

3.8

6

5.6

7

59

.44

B C A

59.55 78.33

Y Y

X

NIVEL 1

110.26

8.0

2

10

.87

B C

Y

X

RIGIDECES TOTALES DE ENTREPISOS

52.06

53.12

Ton-cm

Y

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

309.42

371.77

Ton-cm

Y

417.45

ENTREPISO #1ENTREPISO #1

486.91

Ton-cm

Y

RIGIDECES TOTALES DE ENTREPISOS

Ton-cm X

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

Ton-cm X

Ton-cm X

ENTREPISO #1ENTREPISO #1