57
METODO DE HOLZER (eje X) supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206 Z 1 2.348556 10.06 1 ∆Z 1 1.348556 7.71 416 V 417.45 417.2703 417 F 0.1797 0 1.21 Z 1 2.337522 9.85 20 ∆Z 1 1.337522 7.51 382 V 417.45 413.856 406 F 3.594 8 23.76 Z 1 2.302676 9.19 80 ∆Z 1 1.302676 6.89 284 V 417.45 403.074 372 F 14.376 31 88.70 Z 1 2.279445 8.76 120 ∆Z 1 1.279445 6.48 223.51 V 417.45 395.886 350 F 21.564 46 126.80 Z 1 2.171603 6.83 305.69 ∆Z 1 1.171603 4.66 0.00 V 417.45 362.5175 252 F 54.93249 111 251.92 0.359368 METODO DE HOLZER (eje X) supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206 Z 1 2.1691 6.79 310 ∆Z 1 1.1691 4.62 -4 V 417.45 361.743 250 F 55.707 112 253.85 Z 1 2.163293 6.69 320 ∆Z 1 1.163293 4.53 -14 V 417.45 359.946 245 F 57.504 115 258.18 Z 1 2.14587 6.39 350 ∆Z 1 1.14587 4.25 -40 V 417.45 354.555 229 F 62.895 125 269.78 Z 1 2.058755 4.95 500 ∆Z 1 1.058755 2.89 -142.23 V 417.45 327.6 156 F 89.85 171 298.33 Z 1 2.000679 4.03 600 ∆Z 1 1.000679 2.03 -181.94 V 417.45 309.63 110 F 107.82 200 291.58 Z 1 1.634286 -0.94 1230.88 ∆Z 1 0.634286 -2.57 0.00 V 417.45 196.2609 -139 F 221.1891 335 -138.88 0.17909 CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (1 er Modo) K1 M1 K2 M2 K3 M3 ω 2 T1 = CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (2 do Modo) K1 M1 K2 M2 K3 M3 ω 2 T2 = RESIDUO RESIDUO

Modos de Vibracion

Embed Size (px)

DESCRIPTION

modos de vibracion

Citation preview

Page 1: Modos de Vibracion

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 2.34856 10.061 ∆Z 1 1.34856 7.71 416

V 417.45 417.27 417

F 0.1797 0 1.21

Z 1 2.33752 9.85

20 ∆Z 1 1.33752 7.51 382

V 417.45 413.856 406

F 3.594 8 23.76

Z 1 2.30268 9.19

80 ∆Z 1 1.30268 6.89 284

V 417.45 403.074 372

F 14.376 31 88.70

Z 1 2.27945 8.76

120 ∆Z 1 1.27945 6.48 223.51

V 417.45 395.886 350

F 21.564 46 126.80

Z 1 2.1716 6.83

305.69 ∆Z 1 1.1716 4.66 0.00

V 417.45 362.518 252

F 54.9325 111 251.92

0.3594

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 2.1691 6.79

310 ∆Z 1 1.1691 4.62 -4

V 417.45 361.743 250

F 55.707 112 253.85

Z 1 2.16329 6.69

320 ∆Z 1 1.16329 4.53 -14

V 417.45 359.946 245

F 57.504 115 258.18

Z 1 2.14587 6.39

350 ∆Z 1 1.14587 4.25 -40

V 417.45 354.555 229

F 62.895 125 269.78

Z 1 2.05876 4.95

500 ∆Z 1 1.05876 2.89 -142.23

V 417.45 327.6 156

F 89.85 171 298.33

Z 1 2.00068 4.03

600 ∆Z 1 1.00068 2.03 -181.94

V 417.45 309.63 110

F 107.82 200 291.58

Z 1 1.6343 -0.94

1230.9 ∆Z 1 0.63429 -2.57 0.00

V 417.45 196.261 -139

F 221.189 335 -138.88

0.1791

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (1er Modo)K1 M1 K2 M2 K3 M3

ω2

T1 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (2do Modo)

K1 M1 K2 M2 K3 M3

ω2

T2 =

RESID

UO

RESID

UO

Page 2: Modos de Vibracion

METODO DE HOLZER (eje X)

supuesta 417.45 0.1797 309.42 0.1666 54.04 0.1206

Z 1 1.59414 -1.39

1300 ∆Z 1 0.59414 -2.99 57

V 417.45 183.84 -161

F 233.61 345 -218.38

Z 1 1.47799 -2.62

1500 ∆Z 1 0.47799 -4.10 252

V 417.45 147.9 -221

F 269.55 369 -473.94

Z 1 1.41991 -3.18

1600 ∆Z 1 0.41991 -4.60 365

V 417.45 129.93 -249

F 287.52 378 -613.55

Z 1 1.30376 -4.19

1800 ∆Z 1 0.30376 -5.50 612.98

V 417.45 93.99 -297

F 323.46 391 -909.96

Z 1 -0.635 0.06

5138.1 ∆Z 1 -1.6349 0.70 0.00

V 417.45 -505.86 38

F 923.31 -543 37.59

0.0877

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (3er Modo)

K1 M1 K2 M2 K3 M3

ω2

T3 =

RESID

UO

Page 3: Modos de Vibracion

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 2.30922 11.461 ∆Z 1 1.30922 9.15 485

V 486.91 486.73 486

F 0.1797 0 1.38

Z 1 2.26137 10.38

100 ∆Z 1 1.26137 8.12 306

V 486.91 468.94 431

F 17.97 38 125.17

Z 1 2.21303 9.31

200 ∆Z 1 1.21303 7.10 153

V 486.91 450.97 377

F 35.94 74 224.63

Z 1 2.18887 8.79

250 ∆Z 1 1.18887 6.60 85.74

V 486.91 441.985 351

F 44.925 91 265.08

Z 1 2.1538 8.05

322.65 ∆Z 1 1.15375 5.89 0.00

V 486.91 428.93 313

F 57.9802 116 313.16

0.3498

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 2.1502 7.97

330 ∆Z 1 1.1502 5.82 -8

V 486.91 427.609 309

F 59.301 118 317.33

Z 1 2.14053 7.77

350 ∆Z 1 1.14053 5.63 -29

V 486.91 424.015 299

F 62.895 125 328.06

Z 1 2.06803 6.30

500 ∆Z 1 1.06803 4.23 -155

V 486.91 397.06 225

F 89.85 172 379.83

Z 1 1.92302 3.56

800 ∆Z 1 0.92302 1.63 -256.40

V 486.91 343.15 87

F 143.76 256 343.25

Z 1 1.72967 0.33

1200 ∆Z 1 0.72967 -1.40 -121.84

V 486.91 271.27 -75

F 215.64 346 47.32

Z 1 1.6546 -0.80

1355.33 ∆Z 1 0.65459 -2.45 0.00

V 486.91 243.357 -130

F 243.553 374 -130.25

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (1er Modo)K1 M1 K2 M2 K3 M3

ω2

T1 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (2do Modo)

K1 M1 K2 M2 K3 M3

ω2

RESID

UO

RESID

UO

Page 4: Modos de Vibracion

0.1707

METODO DE HOLZER (eje Y)

supuesta 486.91 0.1797 371.77 0.1666 53.13 0.1206

Z 1 1.633 -1.11

1400 ∆Z 1 0.633 -2.74 41

V 486.91 235.33 -146

F 251.58 381 -186.82

Z 1 1.58466 -1.78

1500 ∆Z 1 0.58466 -3.36 143

V 486.91 217.36 -179

F 269.55 396 -321.60

Z 1 1.34298 -4.68

2000 ∆Z 1 0.34298 -6.02 809

V 486.91 127.51 -320

F 359.4 447 -1128.68

Z 1 0.85962 -8.21

3000 ∆Z 1 -0.1404 -9.07 2488.27

V 486.91 -52.19 -482

F 539.1 430 -2970.09

Z 1 -0.635 0.05

6091.40 ∆Z 1 -1.6347 0.68 0.00

V 486.91 -607.71 36

F 1094.62 -644 36.34

0.0805

T2 =

CALCULO DE MODOS DE VIBRACIÓN DE PISOS SUPERIORES (3er Modo)

K1 M1 K2 M2 K3 M3

ω2

T3 =

RESID

UO

Page 5: Modos de Vibracion

RIGIDECES DE MUROS

E = 800 f*m Para cargas de corta duración

f*m = 20 Para bloques de concreto tipo pesado

E = 16 Ton/cm²

t = 15 cm (espesor de muro)

MARCO ENTREPISO H L12 L23

cm cm cm Ton-cm Ton-cm Ton-cm

3 360 - - 13.01

D 2 410 700 600 11.73 144.125 118.378

1 350 700 600 24.51 174.545 144.855

3 360 - - 13.01

C 2 410 - - 11.73

1 350 - - 24.51

3 360 - - 13.01

B 2 410 - - 11.73

1 350 - - 24.51

3 360 - - 13.01

A 2 410 - - 11.73

1 350 - - 24.51

|

MARCO ENTREPISO H

cm cm cm Ton-cm Ton.cm Ton-cm

3 360 - 17.71

3 2 410 500 500 14.38 92.259 92.259

1 350 500 500 27.68 114.668 114.668

3 360 - - 17.71

2 2 410 - - 14.38

KMARCO KMURO 12 KMURO 23

LD-C LC-B KMARCO KMURO D-C KMURO C-B

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

K=(( h3

12 EI )+( hGA ))

−1

Page 6: Modos de Vibracion

1 350 - - 27.68

3 360 - - 17.71

1 2 410 700 - 14.38 144.125

1 350 700 - 27.68 174.545

Page 7: Modos de Vibracion

Ton-cm

13.01

274.23

343.91

13.01

11.73

24.51

13.01

11.73

24.51

13.01

11.73

24.51

Ton-cm

17.71

198.89

257.01

17.71

14.38

KTOTAL

KTOTAL

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

Page 8: Modos de Vibracion

27.68

17.71

158.50

202.22

Page 9: Modos de Vibracion

RIGIDECES TOTALES DE ENTREPISOS

52.06 Ton-cm

53.12

Ton-cm

Y

309.42 Ton-cm

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

Page 10: Modos de Vibracion

371.77

Ton-cm

Y

417.45 Ton-cm

ENTREPISO #1ENTREPISO #1

Page 11: Modos de Vibracion

486.91

Ton-cm

Y

Page 12: Modos de Vibracion

RIGIDECES TOTALES DE ENTREPISOS

X

X

Page 13: Modos de Vibracion

X

Page 14: Modos de Vibracion

COEFICIENTES DE PARTICIPACIÓN

EJE MODO NIVEL MASA Z Z² MZ MZ²

1 0.1797 1 1 0.1797 0.1797

1 305.69 2 0.1666 2.1716 4.7159 0.3618 0.7857

3 0.1206 6.83 46.695 0.8241 5.6314

1 0.1797 1 1 0.1797 0.1797

X 2 1230.9 2 0.1666 1.6343 2.6709 0.2723 0.445

3 0.1206 -0.94 0.8752 -0.1128 0.1056

1 0.1797 1 1 0.1797 0.1797

3 5138.1 2 0.1666 -0.6349 0.4031 -0.1058 0.0671

3 0.1206 0.06 0.0037 0.0073 0.0004

1 0.1797 1 1 0.1797 0.1797

1 322.65 2 0.1666 2.1538 4.6386 0.3588 0.7728

3 0.1206 8.05 64.769 0.9706 7.8112

Y 1 0.1797 1 1 0.1797 0.1797

2 1355.3 2 0.1666 1.6546 2.7377 0.2757 0.4561

3 0.1206 -0.80 0.635 -0.0961 0.0766

1 0.1797 1 1 0.1797 0.1797

3 6091.4 2 0.1666 -0.6347 0.4028 -0.1057 0.0671

3 0.1206 0.05 0.0024 0.006 0.0003

w2

Page 15: Modos de Vibracion

COEFICIENTES DE PARTICIPACIÓN

Cp

0.000677

0.000377

6.394E-05

0.000534

0.000372

5.311E-05

CP=1ω2 ( Σ MZΣ MZ 2 )

Page 16: Modos de Vibracion

DETERMINACIÓN DE C'

C = 0.54

0.80

2.20 0.25

= 0.12

EJE MODO T CONDICIÓN c

seg T < Ta ejemplo

1 0.359368 0.440000

X 2 0.179090 0.440000

3 0.087656 0.440000

1 0.349795 0.440000

Y 2 0.170670 0.440000

3 0.080505 0.440000

T1 =

T2 =

Si T en menor que Ta :

Si T ≥ Ta

Si T > Tb

Si Ta ≤ T ≤ Tb

α

Q '=1+ (Q−1 )( TT a)

Q '=Q

a=qc q=(T b

T )r

a=c

Page 17: Modos de Vibracion

Verificar irregularidad para modificar Q'

Page 18: Modos de Vibracion

DETERMINACIÓN DE C'

0.13

0.70

r = 1.33

g = 981

Q a Q´ A A Q=1

2 0.44000 2.00000 215.82000 107.91

2 0.44000 2.00000 215.82000 107.91

2 0.37811 1.67427 221.54553 132.323

2 0.44000 2.00000 215.82000

2 0.44000 2.00000 215.82000

2 0.36766 1.61927 222.73978

y :

Ta =

Tb =

cm/seg2

Q '=1+ (Q−1 )( TT a) a=a0+(c−a0)

TTa A=a( gQ ´ )

q=(T b

T )r

Page 19: Modos de Vibracion

Verificar irregularidad para modificar Q'

Page 20: Modos de Vibracion

0.22

0.22

0.22584

0.22

0.22

0.22705

Page 21: Modos de Vibracion

8.5

EJE MODO NIVEL Z Cp

1 417.45 1.00000 215.82 0.00068 0.1797

1 2 309.42 2.17160 215.82 0.00068 0.1666

3 52.06 6.83338 215.82 0.00068 0.1206

1 417.45 1.00000 215.82 0.00038 0.1797

X 2 2 309.42 1.63429 215.82 0.00038 0.1666

3 52.06 -0.93554 215.82 0.00038 0.1206

1 417.45 1.00000 221.54553 6.39E-05 0.1797

3 2 31.00 -0.63487 221.54553 6.39E-05 0.1666

3 52.06 0.06066 221.54553 6.39E-05 0.1206

1 486.91 1.00000 215.82 0.00053 0.1797

1 2 371.77 2.15375 215.82 0.00053 0.1666

3 53.12 8.04794 215.82 0.00053 0.1206

1 486.91 1.00000 215.82 0.00037 0.1797

Y 2 2 371.77 1.65459 215.82 0.00037 0.1666

3 53.12 -0.79687 215.82 0.00037 0.1206

1 486.91 1.00000 222.73978 5.31E-05 0.1797

3 2 371.77 -0.63465 222.73978 5.31E-05 0.1666

3 53.12 0.04947 222.73978 5.31E-05 0.1206

KT

A (cm/seg2)

m (Ton.seg2/cm)

Page 22: Modos de Vibracion

CORTANTES TOTALES

V NIVEL

0.146150 0.146150383496849 61.010434 3722.27

0.317381 0.171230278173265 52.9816069 2807.05 1

0.998701 0.681319854447566 35.468694 1258.03

0.081434 0.081434153385669 33.994663 1155.64

0.133087 0.05165256706929 15.9821968 255.43 2

-0.076185 -0.209271629487822 -10.89443 118.69

0.014166 0.014166353975717 5.91374024 34.97

-0.008994 -0.023160092417486 -0.7179629 0.52 3

0.000859 0.009853052574678 0.51293809 0.26

0.115184 0.115183590583016 56.0837928 3145.39

0.248077 0.132893116432571 49.405802 2440.93 1

0.926990 0.678913704241325 36.0629455 1300.54

0.080304 0.080303882666248 39.1005897 1528.86

0.132870 0.052566177890854 19.5425786 381.91 2

-0.063992 -0.196861717599256 -10.457019 109.35

0.011829 0.011828739178714 5.7595058 33.17

-0.007507 -0.019335872345594 -7.1885159 51.67 3

0.000585 0.008092338982424 0.42985372 0.18

Desplazamiento Máximos de las masas U (cm)

Desplazamiento Máximos de Entrepisos (cm) V2

Δ

Page 23: Modos de Vibracion

CORTANTES TOTALES

37.11

70.09

18.24

55.34 X

14.75

37.11

68.61 37.55

53.61

16.06

Y37.55

15.00

CORTANTE (V) Ton

Fsísmica

(Ton)

Page 24: Modos de Vibracion

37.11

55.34

70.09

37.55

53.61

68.61

Cortante V (Ton)

Page 25: Modos de Vibracion

CENTRO DE CORTANTE PARA TORSIÓN

E = 800 f*m Para cargas de corta duración

f*m = 20 Para bloques de concreto tipo pesado

E = 16 Ton/cm²

t = 15 cm (espesor de muro)

MARCO ENTREPISO H

cm cm cm Ton-cm Ton-cm Ton-cm

3 350 - - 13.31

3 2 360 500 700 11.93 162.911 115.000

1 370 500 700 24.45 150.286 110.273

3 350 - - 13.31

2 2 360 - - 11.93

1 370 - - 24.45

3 350 - - 13.31

1 2 360 - 700 11.93 115.000

1 370 - 700 24.45 110.273

MARCO ENTREPISO H

cm cm Ton-cm Ton-cm

3 350 900 13.31 171.19

A 2 360 900 11.93 164.84

1 370 900 22.40 158.81

3 350 - 13.31

B 2 360 - 11.93

LAB LBC KMARCO KMURO A-B KMURO B-C

L1-2 KMARCO KMURO 1-2

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

Kmuro=Et

4 (HL )3

+3 (HL )

Page 26: Modos de Vibracion

1 370 - 22.40

3 350 - 13.31

C 2 360 - 11.93

1 370 - 22.40

Page 27: Modos de Vibracion

ejes NIVEL 3

3 13.31

6

2 13.31

5 7

39.939

1 13.311

84

.50

13

.31

13

.31

ejes A B C

211.12

Ton-cm

13.31

289.84

285.01

13.31

11.93

24.45

13.31

126.93

134.72 Nivel 3

159.707 + 66.5444 =

211.12

199.633 + 119.78 =

Ton-cm 39.93

184.50

176.76

181.21

13.31

11.93

KTOTAL

XT =

KTOTAL YT =

MARCO DE EJE "X"MARCO DE EJE "X"

MARCO DE EJE "Y"MARCO DE EJE "Y"

X

Y

X T=ΣK yy x

ΣK yy

Y T=ΣK xx y

ΣK xx

Page 28: Modos de Vibracion

22.40

13.31

11.93

22.40

Page 29: Modos de Vibracion

NIVEL 2

289.84

11.93

428.70

126.93

17

6.7

6

11

.93

11

.93

200.62

Nivel 2

1.0717 m 143.14 + 59.6417 = 1.0108

200.62

8.0000 m 4347.6 + 107.355 = 10.3918

428.70

XT =

YT =

X

Y

X

Y T=ΣK xx y

ΣK xx

Page 30: Modos de Vibracion

NIVEL 1

285.01

24.45

444.18

134.72

18

1.2

1

22

.40

22

.40

226.02

Nivel 1

m 268.834 + 112.014 = 1.6851 m

226.02

m 4275.11 + 220.032 = ### m

444.18

XT =

YT =

Y

X X

Page 31: Modos de Vibracion

X

Page 32: Modos de Vibracion

CÁLCULO DE EXCENTRICIDADES

ENTREPISO W Xm Ym Fy

3 37.55

183.57 7.4232658072 9.8848987109

3

2 16.06

227.99 7.5700601996 9.8020263052

2

1 15.00

240.26 7.660530863 10.569945038

1

NIVEL EJE X L= 15

Xv

3 7.42327 1.07167 6.35160 13.45319

2 7.46725 1.01077 6.45647 13.66295

1 7.50949 1.68505 5.82444 12.39889

NIVEL EJE XVy

3 37.55090 13.45319 4.85160 505.17955

2 53.61455 13.66295 4.95647 732.53271

1 68.61064 12.39889 4.32444 850.69548

Peso (W) del Análisis Sísmico Estático (Ton)

Obtenidas del centro de masas

Excentricidad torsional

estática es ex(1.5 + 0.1L/|ex|)

XCT eX e1

e1 e2 MTe1

Page 33: Modos de Vibracion

CÁLCULO DE EXCENTRICIDADES

Fy(Xm)

Vy My

278.75031 7.42327

278.75030841

37.55

121.60283 7.46725

400.35314061

53.61

114.87797 7.50949

515.23111519

68.61

EJE Y L= 20

Yv

4.85160 9.88490 8.00000 1.88490

4.95647 9.85759 10.39185 -0.53426

4.32444 10.00747 10.12018 -0.11270

EJE X EJE YVx

182.18184 37.10768 4.76980 -0.11510

265.73906 55.34435 -2.06851 1.46574

296.70279 70.09196 -1.22541 1.88730

∑My/Vy

∑My

Coordenadas del centro

de Rigideces Xv

ex(1.5 - 0.1L/|ex|)

Excentricidad torsional

estática es

e2 YCT eY

MTe2 e1 e2

Page 34: Modos de Vibracion

CÁLCULO DE EXCENTRICIDADES

Fx(Ym)

Fx Vx Mx

37.11 366.80566

366.80566

37.11

18.24 178.75628

545.56195

55.34

14.75 155.88143

701.44338

70.09

4.76980 -0.11510

-2.06851 1.46574

-1.22541 1.88730

EJE Y

176.99612 -4.27114

-114.48039 81.12067

-85.89112 132.28434

∑Mx

ey(2 + 0.05/|ey|) ey(1 - 0.1/|ey|)

e1 e2

MTe1 MTe2

Page 35: Modos de Vibracion

CÁLCULO DE EXCENTRICIDADES

9.88490

9.85759

10.00747

∑Mx/Vx

Coordenadas del centro

de Rigideces Yv

Page 36: Modos de Vibracion

ENTREPISO 3

SENTIDOV

(Ton) (m) (m)

X 37.11 13.4532 4.8516 499.21684

Y 37.55 4.7698 -0.1151 179.11018

EJE Kx y (Kx)y

1 13.01 0 0.00000 -8.00000

2 13.01 9 117.13230 1.00000

3 13.01 15 195.22050 7.00000

S 39.04 312.35

312.35 =

39.04

EJE Ky x (Ky)x

A 17.71 0 0.00000 -5.66667

B 17.71 5 88.53100 -0.66667

C 17.71 12 212.47440 6.33333

S 53.12 301.01

301.01 =

53.12

ENTREPISO 2

SENTIDOV

(Ton) (m) (m)

X 55.34 13.6629 4.9565 756.16677

Y 53.61 -2.0685 1.4657 -110.9023

e1 e2 Mt1=Ve1

yt

xt =

xt

yt =

e1 e2 Mt1=Ve1

Page 37: Modos de Vibracion

EJE Kx y (Kx)y

1 126.93 0 0.00000 -10.39185

2 11.93 9 107.35510 -1.39185

3 289.84 15 4347.59563 4.60815

S 428.70 4454.95

4454.95 =

428.70

EJE Ky x (Ky)x

A 176.76 0 0.00000 -1.01077

B 11.93 5 59.64172 3.98923

C 11.93 12 143.14014 10.98923

S 200.62 202.78

202.78 =

200.62

ENTREPISO 1

SENTIDO V

(Ton) (m) (m)

X 70.09 12.3989 4.3244 869.06217

Y 68.61 -1.2254 1.8873 -84.0759

EJE Kx y (Kx)y

1 134.72 0 0.00000 -10.12018

2 24.45 9 220.03156 -1.12018

3 285.01 15 4275.10571 4.87982

S 444.18 4495.14

4495.14 =

444.18

yt

xt =

xt

yt =

e1 e2 Mt1=Ve1

yt

xt =

Page 38: Modos de Vibracion

EJE Ky x (Ky)x

A 181.21 0 0.00000 -1.68505

B 22.40 5 112.01413 3.31495

C 22.40 12 268.83392 10.31495

S 226.02 380.85

380.85 =

226.02

xt

yt =

Page 39: Modos de Vibracion

180.03152 179.11018 4.3221569 179.110

-4.322157 499.21684 180.03152 499.217

J = S (Kx)(yt) ²

-104.11760 832.94080 0.33333 -0.03758 12.369 -18.762 -6.766

13.01470 13.01470 0.33333 0.00470 12.369 2.345 0.846

91.10290 637.72030 0.33333 0.03289 12.369 16.417 5.920

0.00 1483.68 1.00000 0.00000 37.11 0.00000 0.00000

8.0000 J= 2770.33

-100.33513 568.56576 0.33333 -0.03622 12.517 -6.487 0.157

-11.80413 7.86942 0.33333 -0.00426 12.517 -0.763 0.018

112.13927 710.21536 0.33333 0.04048 12.517 7.250 -0.175

0.00 1286.65 1.00000 0.00000 37.55 0.00000 0.00000

5.6667 J= 2770.33

274.31274 110.90229 78.585238 110.902

78.585238 756.16677 274.31274 756.167

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

Page 40: Modos de Vibracion

J = S (Kx)(yt) ²

### ### 0.29608 -0.06080 16.386 -45.972 -16.677

-16.60243 23.10803 0.02782 -0.00077 1.540 -0.579 -0.210

1335.62581 6154.76850 0.67609 0.06156 37.418 46.551 16.887

0.00 19884.97 1.00000 0.00000 55.34 0.00000 0.00000

10.3918 J= 21695.89

-178.66812 180.59325 0.88109 -0.00824 47.239 0.913 -0.647

47.58485 189.82669 0.05946 0.00219 3.188 -0.243 0.172

131.08327 1440.50352 0.05946 0.00604 3.188 -0.670 0.475

0.00 1810.92 1.00000 0.00000 53.61 0.00000 0.00000

1.0108 J= 21695.89

303.10867 84.075901 129.48865 129.489

129.48865 869.06217 303.10867 869.062

J = S (Kx)(yt) ²

### ### 0.30331 -0.05738 21.259 -49.869 -17.393

-27.38601 30.67716 0.05504 -0.00115 3.858 -1.002 -0.349

1390.78417 6786.78172 0.64165 0.05854 44.975 50.871 17.743

0.00 20615.29 1.00000 0.00000 70.09 0.00000 0.00000

10.1202 J= 23759.62

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

Mt2=Ve2 Valores absolutos de Momentos

Mt0 cd = K / (SK)

ct = (Kx)y / J

(Kx)yt (Kx)(yt) ² cd ct VD V1 V2

Page 41: Modos de Vibracion

-305.34828 514.52716 0.80176 -0.01285 55.009 1.081 -1.664

74.26425 246.18226 0.09912 0.00313 6.801 -0.263 0.405

231.08404 2383.62025 0.09912 0.00973 6.801 -0.818 1.259

0.00 3144.33 1.00000 0.00000 68.61 0.00000 0.00000

1.6851 J= 23759.62

(Ky)xt (Ky)(xt) ² cd ct VD V1 V2

Page 42: Modos de Vibracion

+ S (Ky)(xt) ²

-6.393 5.603 5.60 -6.732 7.623

14.714 13.215 14.71 0.841 14.967

28.786 18.290 28.79 5.890 30.553

6.030 12.674 12.67 -18.081 18.098

11.754 12.535 12.54 -2.127 13.174

19.767 12.342 19.77 20.208 25.829

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

Page 43: Modos de Vibracion

+ S (Ky)(xt) ²

-29.586 -0.291 -0.29 -6.742 1.732

0.961 1.330 1.33 -0.085 1.355

83.969 54.305 83.97 6.827 86.017

48.152 46.592 48.15 -6.227 50.020

2.945 3.360 3.36 1.658 3.858

2.518 3.663 3.66 4.569 5.033

+ S (Ky)(xt) ²

-28.610 3.866 3.87 -7.430 6.095

2.856 3.509 3.51 -0.149 3.553

95.846 62.717 95.85 7.580 98.120

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

VD+V1 VD+V2 Vm (VD+V1 ó V2) V0 Vm + 0.3|V0|

Page 44: Modos de Vibracion

56.090 53.345 56.09 -11.169 59.440

6.538 7.205 7.21 2.716 8.020

5.983 8.060 8.06 8.452 10.596

VD+V1 VD+V2 Vm(VD+V1 ó V2) V0 Vm + 0.3|V0|

Page 45: Modos de Vibracion

8.412 8.412

5.256 14.967

14.526 30.553

21.883 21.883

5.888 13.174

26.138 26.138

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

Page 46: Modos de Vibracion

6.655 6.655

0.484 1.355

32.018 86.017

20.673 50.020

2.667 3.858

5.667 5.667

8.590 8.590

1.202 3.553

36.333 98.120

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

0.30Vm + |V0| Vdiseño

Page 47: Modos de Vibracion

27.996 59.440

4.878 8.020

10.870 10.870

0.30Vm + |V0| Vdiseño

Page 48: Modos de Vibracion

ejes

3 30.55

6

2 14.97

9

1 8.41

ejes

DESPLAZAMIENTOS

EJE

X

Y

Page 49: Modos de Vibracion

NIVEL 3 NIVEL 2

3 86.02

2 1.36

5 7

53.93

1 6.66

21

.88

13

.17

26

.14

50

.02

A B C A

61.19

DESPLAZAMIENTOS

NIVEL h V K d Condición

cm Ton < 0.006

3 305.00 53.93 52.06 1.03599 0.0034 si

2 335.50 94.03 309.42 0.30389 0.00091 si

1 366.00 110.26 417.45 0.26414 0.00072 si

3 305.00 61.19 53.12 1.15202 0.00378 si

2 335.50 59.55 371.77 0.16017 0.00048 si

1 366.00 78.33 486.91 0.16087 0.00044 si

d / h

X

YY

Page 50: Modos de Vibracion

NIVEL 2 NIVEL 1

3 98.12

2 3.55

94.03

1 8.59

3.8

6

5.6

7

59

.44

B C A

59.55 78.33

Y Y

X

Page 51: Modos de Vibracion

NIVEL 1

110.26

8.0

2

10

.87

B C

Y

X

Page 52: Modos de Vibracion

RIGIDECES TOTALES DE ENTREPISOS

52.06

53.12

Ton-cm

Y

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

Page 53: Modos de Vibracion

309.42

371.77

Ton-cm

Y

417.45

ENTREPISO #1ENTREPISO #1

Page 54: Modos de Vibracion

486.91

Ton-cm

Y

Page 55: Modos de Vibracion

RIGIDECES TOTALES DE ENTREPISOS

Ton-cm X

ENTREPISO #3ENTREPISO #3

ENTREPISO #2ENTREPISO #2

Page 56: Modos de Vibracion

Ton-cm X

Ton-cm X

ENTREPISO #1ENTREPISO #1