Arch. Biol. Med. Exp. 13, The Enzymology of DNA Replication · The Enzymology of DNA Replication La...

Preview:

Citation preview

Arch. Biol . Med. E x p . 13, 2 1 3 - 2 3 2 , 1 9 8 0

The Enzymology of DNA Replication

La enzimología de la replicación de DNA

R A F A E L V I C U N A

Laboratorio de Bioquímica. Instituto de Ciencias Biológicas. Universidad Católica de Chile. Casilla 1 14-D. Santiago, Chile.

(Recibido el 26 de marzo de 1980)

I. INTRODUCTION 213

2. T H E INITIATION REACTION 214 2.1. E. dili priming proteins

—dna G gene product —RNA polymerase

2.2. Bacteriophage-coded DNA primases — 1 4 DNA primase —T7 gene 4 protein

2.3. Other primases 2.4. Initiation by a site-specific endonucleolytic

cut — 0 X 174 gene A and fd gene II proteins

3. T H E ELONGATION REACTION 217 3.1. E. coli DNA polimerases

—E. coli DNA polymerase I —E. cob DNA polymerase 111

3.2. Bacteriophage-coded DNA polymerases — T 4 gene 43 protein —T7 gene 5 protein

3.3. DNA polymerases a, B and 7 from eukaryo­tic cells

4. SEALING OF DNA FRAGMENTS 219

4.1. E. coli DNA ligase 4.2. Bacteriophage T 4 gene 30 protein 4.3. Mammalian DNA ligases I and II

C O N F O R M A T I O N A L CHANGES OF DNA DURING REPLICATION 220 5.1. E. coli HDP 5.2. Bacteriophage-coded HDPs

— T 4 gene 32 protein —T7 HDP —fd gene V protein

5.3. Eukaryotic HDPs 5.4. Bacterial DNA topoisomerases

—Swivelases —DNA gyrase

5.5. Bacteriophage-coded DNA topoisomerases — T 4 DNA topoisomerase —Lambda int gene product — 0 X 1 7 4 gene A and fd gene II proteins

5.6. Eukaryotic DNA topoisomerases 5.7. E. coli DNA helicases

—DNA helicase I —DNA helicase II —rep protein —rec BC nuclease

5.8. Bacteriophage-coded DNA helicases — T 4 gene dda protein —T7 gene 4 protein

5.9. Eukaryotic DNA helicases CONCLUSIONS 227 REFERENCES '227 APPENDIX 232

1. INTRODUCTION

Progress made dur ing the last years in our knowledge o f D N A repl ica t ion has shown that it is a somewhat complex process (for recent reviews see refs 1-6). At tempts to elucidate the mechanism o f D N A synthesis have been under taken using simple templates , such as bacterial and animal viral ch romosomes and plasmids. All these systems

have shown that several proteins a re required to initiate and e longate D N A chains, as well as to br ing about the topological changes the D N A molecule must unde rgo dur ing its duplication. T h e requ i remen t for these proteins can be directly demons t ra ted with the utilization o f thermosensi t ive mutants , by using specific inhibitors and by reconsti tut ion o f an in vitro replication system with the purified componen t s . Al though in some cases

'The abbreviations used are: ss: single stranded; ds: double stranded; NEM: N-ethyimaleimide; DNA pol: DNA polymerase; M. W.: molecular weight; ddTTP: 2'3' dideoxythymidine triphosphate; HDP: helix destabilising protein; RF: replicative form; EF: elongation factor; SDS: sodium dodecyl sulfate.

2 1 4 VICl.'ÑA

direct implication of certains proteins has not

been possible, the catalytic activity o f some

proteins (e.g. topoisomerases , helicases)

justify the assumption that they play an

essential role in DNA replication.

T h i s article does not intend to be a critical

nor a comprehens ive review on D N A

synthesis. It represents ra ther a survey of

some o f the proteins that are involved in this

process, both in prokaryot ic and eukaryot ic

systems.

2. T H E INITIATION REACTION

None o f the viral, bacterial o r animal D N A

polymerases isolated to date are able to start

D N A chains de novo, suggesting that o ther

proteins a re involved in chain initiation.

T h e s e enzymes, called D N A primases, show a

high degree o f site specificity when they act at

the origin o f ch romosomal replication. T h e v

must also copy the small ol igonucleot ides that

serve as pr imers for the synthesis o f Okazaky

fragments .

2.1. E. Coll PRIMING PROTEINS

— dna G gene product

Using the ss ' D N A o f phage G 4 as template ,

Bouché et al. (7) were the first to show that the

dna G gene product oi E. coli, in the presence

o f binding protein, catalyzes the synthesis o f a

short polynucleotide p r imer at the origin o f

replication. Later , S. Wickne r (8) demonst ra ­

ted that dna G polymerizes r N T P s and d N T P s

interchangeably, to yield ribo-, deoxyr ibo-

and mixed r ibo-deoxyr ibonucleot ide pr imers .

T h e isolation o f dna G primase has been

approached in three different ways (9 , 10).

O n e m e t h o d c o n s i s t s i n a n in vitro complementa t ion assay, in which dna G

protein present in an ext rac t p repared from

wild type cells restores the activity o f an

ext rac t p repared from a dna G ts mutant. A

second method has been to follow directly the

enzymatic activity o f dna G protein, that is, the

synthesis o f a p r imer using D N A binding

protein plus G 4 , o¡ 3 o r S T - 1 DNAs as

templates. A third method involves the

coupl ing o f the pr iming reaction with the

D N A elongat ion system. In this assay d N M P

incorporat ion is measured , since il is

proport ional to the extent of pr iming.

The dna G protein is a single polypeptide,

(M.W. 6 0 , 0 0 0 ) ; it has an isoelectric point of f>.9

at 8°C and it is resistant to NKM and

rifampicin (9 , 10), but it is sensitive to the

nucleotide analogue 2 ' -deoxy-2 ' -a / ido-

cytidine t r iphosphate ( 1 1 ) .

dna G pr imase recognizes a unique region

at the origin o f minus strand replication o f

phages G 4 , a 3, S T - 1 and 0 K . These various

initiation regions have been located with the

aid o f restriction enzymes and have been

defined at the nucleot ide level by compar ing

the sequence o f these origin sites with the-

sequence o f an R N A pr imer synthesized bv

dna G (12 , 13) . D N A sequencing studies show

that all these origins are very similar, as

compared to adjacent coding regions. It is

possible to a r range them in similar pat terns of

two or three hairpin loops in the regions o f

negative strand initiation suggesting their im­

portance as recognit ion signals for dna G pro­

tein.

Several lines of evidence show that the

main tenance o f the s t ructure at the origin site

ra ther than the sequence itself is essential for

initiation: a) inactive phage D N A can be

activated by heat ing and slow cooling in

the presence of E. coli b inding protein

(9) ; b.) E. coli dna topoisomerase I. an

enzyme known to form knotts with ss DNA

(14 ) , when present , inhibits the p reming

reaction dependent on dna G (9) ; c) three

well separated groups o f nucleot ides within

the negative strand origin o f phage 0 K are

protected by dna G protein agains nuclease

digestion, suggesting some degree o f folding

o f the D N A in a tertiary s tructure ( ) . Sims, E.

Benz , personal communica t ion ) ; d) the

pr iming react ion with 0 X 1 7 4 ss D N A , in

addition to dna G and binding protein,

requires the products o f dna B and dna C, and

the replication factors X , Y and Z (also called i,

n and n') ( 1 5 , 16) . T h e role o f these additional

proteins, which form a pre-pr iming complex

with 0 X 1 7 4 D N A , is perhaps to crea te a site

on the template that can be recognized bv dna

G primase. However , the origin o f 0 X 1 7 4

complementa ry strand synthesis seems not be

unique: i f the pr iming react ion is uncoupled

from D N A synthesis, it gives rise to many

ENZYMOLOGY OF DNA REPLICA I ION 2 1 5

pr imers in each circle ( 1 7 ) . R o m b e r g has proposed (18) that the dna B protein (M.W. 2 8 0 , 0 0 0 ) , aided by its own r N T P a s e action (19 , 2 0 ) , moves processively on the template strand, acting as a mobil replicat ing promoter , dna B protein interacts specifically with dna C protein (M.W. 3 0 , 0 0 0 ) in the presence o f A T P (21) and it is thus t ransferred to the pre-pr iming complex with the help o f protein X (M.W. 4 5 , 0 0 0 ) . (3 ) . Protein Y (M.W. 7 0 , 0 0 0 ) , like dna B , is a DNA-dependen t ATPase or d A T P a s e , but works best with DNAs that require this protein for initiation ( 2 2 ) . T h i s mult ienzyme system o f the host used by 0 X 1 7 4 to pr ime D N A synthesis is probably used by the cell to replicate its own ch romosome .

T h e length o f the p r imer synthesized by dna G in the presence o f G 4 or ct3 D N A as templates and the four r ibonucleot ides is o f 2 8 nucleotides (9 , 2 3 ) . However , the presence o f deoxyr ibonucleot ide residues in the chain limits p r imer chain length (9 , 2 4 ) . This effect occurs even when the r ibonucleot ides are present in a ten-fold excess in the pr iming reaction. Only after p ro longed incubation periods is the full lenght p r imer obtained under these condit ions (9) . W h e n only the four d N T P s are present in the reaction, the rate o f p r imer format ion is ten-fold slower compared to the rate with the four r N T P s alone, and the po lydeoxynucleo t ide chains obtained are he te rogeneous in size. P r imer synthesis is initiated with A T P or d A T P at the 5' end. ( 2 4 ) . I f A D P is used in place o f any o f these nucleoside t r iphosphates , it is incorpora ted both internally and at the 5 ' end (9) .

T o date, several genomes have been shown to require dna G for replication. These include the ss D N A phages, the E. coll. c h r o m o s o m e , plasmid col El and phage lambda.

— RNA polymerase.

Init iat ion o f D N A replication by R N A polymerase both in vivo and in vitro is well documen ted for the Col El type plasmids and the filamentous ss D N A phages id and M 1 3 . In both cases, R N A polymerase initiates D N A synthesis at un ique origin sites and it is not

involved in the pr iming o f Okazaki f ragments . Using fd D N A as template , and in the

presence of binding protein, RNase H (an enzyme that degrades RNA when hvbridized to D N A ) and discriminatorv factors a and B. R N A polymerase recognizes a specific hairpin s tructure o f the viral g e n o m e and transcribes from it a short R N A fragment ( 2 5 - 2 8 ) . This pr imer is subsequently e longated by E. coli D N A polymerase I I I plus the e longat ion factors. The requ i rement o f additional proteins besides R N A polymerase to initiate the pr iming reaction is related to the specificity of the system, i .e. to start at a unique origin and also to avoid unspecific pr iming by R N A polymerase on o the r templates.

T o initiate replication of p B R 3 4 5 , a Col El-type plasmid, R N A polymerase synthesizes a 100 nucleot ide long transcript in a region which is about 4 5 0 bases pairs appar t from the replication origin ( 2 9 ) . Apparent ly , this R N A segment is processed by RNase I I I and RNase H (30 , 3 1 ) and thereaf ter it hybridizes to the origin region where it serves as a p r imer for D N A synthesis. Tomizawa et al. ( 32 ) have mapped the origin o f Col E l D N A replication at the nucleot ide level. T h e y have also found that early D N A fragments (6 S) contain r ibonucleo t ide-DNA linkages, most of them having very few r ibonucleot ides at the i r 5 ' ends ( 3 3 ) .

R N A polymerase is also required to initiate new rounds of replication o f E. coli. c h r o m o s o m e (34 , 3 5 ) . T h e r e is no evidence, however, that the R N A transcr ibed at the origin (36) functions as a p r imer for D N A synthesis. Alternatively, t ranscript ion may be a mechanism by which R N A pol­ymerase activates the origin by separat ing both D N A strands, in o r d e r to help dna G to prime replication in the p resence o f the gene products o f dna A, dna B , dna C, dna I , dna J , dna K and dna P ( 3 7 ) .

Transcr ip t ion by R N A polymerase at t h e i n i t i a t i o n r e g i o n o f p h a g e l a m b d a c h r o m o s o m e has also been shown to be essential for D N A replication, not only to provide the messenger o f genes O and P, but also to activate the origin ( 3 8 ) . Alson in this case, there is no evidence that the t ranscr ipt is elongated by D N A polymerase .

2 1 6 VICUÑA

2.2. BACIERIOPHAGE-CODEl) DNA PRIMASES

— 14 DNA prima.se.

T w o phage T 4 - c o d e d proteins a re required to

initiate replication on a ss D N A template .

T h e y are the product of gene 41 ( 3 9 - 4 0 ) and

another protein tentatively identified as the

product of the DNA-delay gene 61 (40 ) .

Originally, the requ i rement of the latter

protein had been missed because it was

present as a minor contaminant in gene 32

protein preparat ions ( 4 1 ) . G e n e 41 protein

has been purified to nea r homogenei ty (42 ,

4 3 ) . It is a single polypeptide chain with a

M.W. o f 5 8 , 0 0 0 and catalyzes a ss

DNA-dependent hydrolysis o f purinic

nucleoside t r iphosphates . Synthesis o f the

primers, which are 6 to 8 nucleotides long, has

an absolute requ i rement for A T P and G T P .

In contrast to dna G and R N A polymerase,

but similar to T 7 primase, initiation by T 4

proteifis does not requi re b inding protein.

T h e reason for the involvement o f two

proteins in the pr iming react ion o f

bac ter iophage T 4 D N A replication is not

known. It could be related to mechanis t ic

problems inheren t to initiating synthesis in

the lagging strand ( 3 9 ) . I t may also have to do

with the main tenance o f the duplex s t ructure

between the R N A pr imer and the D N A

template , in o r d e r to facilitate elongat ion by

the mul t ienzyme complex fo rmed by proteins

coded by genes 3 2 , 4 3 , 4 4 / 6 2 and 4 5 (39 , 4 4 ) .

—T7 gene 4 protein

G e n e 4 protein o f bac te r iophage T 7 has been

identified as a D N A primase ( 4 5 - 4 8 ) . After

purification with the use o f an in vitro complementa t ion assay, the enzyme has a

M.W. o f 5 8 , 0 0 0 . ( 4 5 , 4 9 ) . G e n e 4 protein, in

the presence o f any natural ss D N A , A T P and

G T P , or a mixture o f all four r N T P s , catalyzes

the s y n t h e s i s o f s h o r t o l i g o n u c l e o t i d e s ,

p r e d o m i n a n t l y p p p A G C A ( 4 5 - 4 8 ) . T h e

primary structure o f these pr imers has been

conf i rmed by T . Okazaki (50 ) by studies done

in vivo. T 7 D N A pol can utilize p p p A C G A o r

synthet ic tri , t e t ra o r p e n t a n u c l e o t i d e s as

chain initiators in the presence o f T 7 gene 4

protein. Apparent ly , in this case the pr imase

plays an active role in chain e longat ion by

stabilizing the shor t p r imer segments in a

duplex state with the D N A template ( 5 1 ) . The

interaction between both T 7 - c o d e d enzymes

is speci f ic , s ince o t h e r D N A p o l y m e r a s e s

cannot replace T 7 DNA pol in the extension

o f t h e s e o l i g o n u c l e o t i d e s . U n l i k e o t h e r

primases, T 7 gene 4 protein is activated five

fold when d N T P s are present , a l though there

is no evidence that they are incorpora ted (45 ) .

An exp lana t ion for this s t imula tory effect

could be that d N T P s protect r N T P s against

hydrolysis by T 7 pr imase, an activity that is

intrinsic to the enzyme. (See also section 5 .8 . ) .

2.3. O T H E R PRIMASES

E. Lanka et al. (52) have recently isolated a

D N A primase specified by the I-like plasmids

( R 6 4 , Gol I ) . T h e enzyme has a sedimentat ion

coefficient o f 3 .6 s and utilizes all four

r ibonucleoside t r iphosphates . In react ions

carr ied out with c rude extracts p repared from

thermosensi t ive dna mutans, this pr imase can

substitute for the host functions of dna B-dna

C-dna G, R N A polymerase and dna G, in the

conversion o f t h e s s D N A o f phage 0 X 1 7 4 , fd

and G 4 to the duplex form, respectively.

So far, information about this enzyme is

rather prel iminary. Data regard ing direct

measurements of R N A synthesis, require­

ments o f the reconst i tuted react ion and

site specificity o f initiation must be

awaited.

Polyoma nascent D N A strands synthesized

in vitro contain decar ibonucleot ides at tached

at their 5 ' end ( 5 3 ) . T h e s e pr imers , called

iRNA, begin always with A T P o r G T P and are

t ranscr ibed randomly on the genome . iRNA

synthesized unde r condit ions o f limiting

r N T P contains d N T P s . T h e initiating enzyme

has been t e rmed primase, in analogy to the

dna G protein of E. coli.

2.4. INITIATION BY A SITE-SPECIEIC

ENDONUCLEOLYTIC C U T

— 0174 gene A and fd gene II products

Circular ds genomes which replicate through

the roll ing circle mechan ism must suffer an

EN/.YMOI.OGY OK l)N A REPLICATION 2 1 7

endonucleolvt ic cleavage in one of their strands in o rde r to unwind the duplex and initiate D N A synthesis. S o m e of the best known examples of this type of replication are those represen ted by phages 0 X 1 7 4 and fd. During the life cycle of these phages, their ss circular c h r o m o s o m e becomes a duplex r ing which multiplies itself several fold utilizing the rolling circle model . ( 5 6 - 5 8 ) .

The 0 X 1 7 4 gene A codes for a site-specific endonuclease called A protein (M.W. 5 8 . 0 0 0 ) which int roduces a ss discontinuity in the viral strand of supercoi led 0 X R F I D N A ( 5 9 - 6 5 ) . T h e location of this nick is between nucleotides 4 2 9 7 and 4 2 9 8 in the A cistron ( 6 6 ) . T h e enzyme is highly specific: it will not cleave re laxed 0 X R F T V , Col El, PM2 , fd o r M 1 3 DNAs ( 6 0 , 6 f ) . After cleavage, the A protein remains covalently at tached to the 5 ' end ( 6 0 , 6 1 ) , while the 3 ' hydroxyl genera ted serves as a p r imer for the synthesis of viral strands. T h e 0 X R F I I D N A A protein complex can be isolated and it is able to support D N A synthesis by itself when supplemented with c rude extracts o f uninfected E. coli ( 6 0 ) .

T h e 0 X A protein does not act catalytically in the cleavage o f 0 X R F I D N A . U n d e r condit ions leading to the quantitative cleavage o f 0 X R F I D N A , the molar ratio of 0 X R F I D N A to added 0 X A protein is approximate ly 1:10, a l though the actual s toichiometry o f the react ion is not known ( 6 1 ) .

E isenberg et al. (64)have repor ted that after the synthesis o f a 0 1 7 4 unit lenght viral s t rand is comple ted , the A protein bound at the 5 ' end ligates the two ends of the viral D N A to form covalently closed circles.

Bac t e r iophage fd gene I I protein is also a site-specific endonuc lease which cleaves the viral s t rand o f fd R F I D N A between nucleotides 5 7 6 3 and 5 7 6 4 ( 6 7 - 7 1 ) . T h i s site is only 2 4 nucleot ides away from the origin of complemen ta ry s trand synthesis, in the integenic region between genes I I and I V ( 7 1 ) . G e n e I I protein has a M.W. o f 4 5 , 0 0 0 , and in contras t to 0 X 1 7 4 A protein, it does not remain bound to the 5 ' end o f the viral s trand. Ins tead , it leaves 3 ' hydroxyl and 5 ' phospha te te rmini ( 7 1 ) . G e n e I I protein is conceivably involved in the unwinding o f the strands dur ing replication and the closing o f

the viral strand which is displaced from the rolling circle ( 6 8 ) .

It can be predicted that replication of phages lambda (72) and PM2 ( 7 3 ) , which also proceed utilizing the roll ing-circle system, will require initiation by site-specific viral-coded nucleases, as yet unidentif ied.

3. T H E ELONGATION REACTION

D N A polymerases are the enzymes that actually synthesize the new polynucleot ide chains. T o accomplish this react ion, they function as one o f the componen t s o f the " repl isome" complex , o f which primases, b inding proteins, e longat ion factors, topoisomerases and helicases are also consti tuents. D N A polymerases are widely distr ibuted in nature , be ing present in bacteria, plant and animal cells. T h e y are also coded by some bacterial and animal viral genomes .

Gene t ic and biochemical evidence have demons t ra ted the presence o f three dif ferent D N A polymerases in the bacter ia E. coli ( 74 , 7 5 ) , B. subtilis ( 76 , 77)and A. calcoaceticus ( 7 8 ) , some o f which have been purif ied to homogenei ty ( 7 9 - 8 2 ) . O n the o the r hand, only one D N A polymerase species has been identified and character ized from M. Luteus (83 ) , T. aquaticus ( 84 ) and the mar ine Pseudomonas BAL-31 ( 8 5 ) .

Eukaryot ic cells contain three D N A polymerases, usually re fe r red to as D N A polymerases a , 3 and 7 (reviewed in refs. 8 6 - 8 8 ) . W h e n they are ex t rac ted using non aqueous solvents, they can be found mainly in the nuclei , a l though D N A pol y is also present in the mi tochondr ia . T h e y all share the c o m m o n proper ty of being devoid o f associated exonuclease activities.

Selec ted features of some D N A polymerases are presented below.

3.1. E. COLI DNA POLYMERASES

— E. coli DNA polymerase I

T h i s enzyme is a single polypeptide o f M.W. 1 0 9 , 0 0 0 and it is resistant to N E M . It represents the most extensively studied of all D N A polymerases. D N A pol I participates

2 1 8 VICUÑA

actively in the repair o f lessions suffered by

the ch romosome . However , its role in D N A

synthesis as an elongat ion enzyme is very

restricted. Only the Col El-type plasmids

requi re D N A pol I for replication, a l though in

conjuct ion with D N A pol I I I ( 89 , ' 2 9 ) .

Nevertheless, the activity o f nick translation

which is intrinsic to D N A pol I (90) has been

shown to be essential for cell viability ( 9 1 ) . The

evidence available (91) suggests that this

activity is in charge o f the processing o f the

pr imers o f the Okazaki f ragments , reaction

after which D N A pol I leaves a nick that is

thereaf ter sealed by D N A ligase.

— E. coli DNA polymerase III

T h i s enzyme.is coded by the gene dna E ( 9 2 ) ,

being the M.W. o f the native enzyme 1 8 0 , 0 0 0 .

It is composed o f subunits o f 1 4 0 , 0 0 0 , 2 5 , 0 0 0

and 1 0 , 0 0 0 (62 , 8 1 ) . In addit ion o f being the

enzyme that replicates the host c h r o m o s o m e ,

D N A p o l I I I a l s o is r e q u i r e d f o r t h e

replication o f the icosahedral and f i lamentous

ss D N A phages , p h a g e l a m b d a and some

plasmids. As D N A pol I , the enzyme contains

both a 5' to 3' and a 3 ' to 5 ' (proofreading)

exonuclease activities (62 , 8 1 , 9 3 ) .

D N A pol I I I is unable to copy by itself a

long pr imed ss D N A template . T o accomplish

this react ion, it requires additional e longat ion

factors ( E F ) and A T P o r d A T P (3 ) . T h e s e

proteins a re : E F I ( M . W . 4 0 , 0 0 0 ) , E F I I I (M.W.

6 3 , 0 0 0 ) and the product o f the gene dna Z

(M.W. 1 1 0 , 0 0 0 ) . T h e mechan i sm o f the

e longat ion react ion has been solved ( 9 4 ) : a

complex fo rmed spontaneously by dna Z

protein and E F I I I catalyzes the t ransfer o f

E F I to a pr imed- templa te in an A T P or

d A T P - d e p e n d e n t react ion. D N A pol I I I

binds then to the E F I D N A template complex

and catalyzes the incorporat ion o f d N T P s into

D N A . T h e fate o f A T P in the react ion is not

clear , since hydrolysis o f this molecule has not

been detected. It might be requi red to induce

a conformat iona l change in one o f these

e longat ion proteins .

R o m b e r g ' s g roup has isolated a different

form o f D N A pol I I I , t e rmed D N A pol I I I

ho loenzyme ( 9 5 , 9 6 ) . T h i s form appears to be

a complex o f the th ree polymerase subunits

plus the E F . T h e identity o f the ho loenzyme

as such is not yet clear , since the E F can be separated from D N A pol I I I by convent ional

ch romatograph ic procedures . In addition,

these E F can also activate E. coli D N A pol II

(97 ) and B. subtilrs D N A pol I I I ( 8 2 ) .

Lately, th ree new proteins, have been

implicated in the e longat ion react ion. O n e o f

them has been called protein u ( 9 6 ) . The

other two, which have been identified

independent ly (96 , 9 8 ) , copurify with D N A

pol I I I and weigh about 8 0 , 0 0 0 , indicating

that they may be the same entity.

T h e part icipation o f at least six and possibly

nine polypeptide chains in the e longat ion o f a

pre-pr imed template , makes this react ion far

m o r e compl ica ted than first imagined.

3.2. BACTERIOPHAGE-CODED DNA

POLYMERASES

— T4 gene 43 protein

T 4 induced D N A pol is a single polypept ide 'of

M . W . 1 1 0 , 0 0 0 . Coded by gene 4 3 , T 4 D N A

pol has a 3 ' to 5 ' exonuc lease activity and it is

inhibited by sulfhydryl blocking reagents

( 9 9 - 1 0 0 ) . T h e prefe r red template for the

enzyme is primed-ss D N A . T h e elongat ion

react ion can be activated specifically by T 4

gene 32 binding protein, which forms a

complex with the polymerase ( 1 0 1 ) .

Incorpora t ion o f d N T P s is also activated

synergistically by the products o f T 4 genes 4 5

and 4 4 / 6 2 , in a react ion that requires A T P

( 1 0 2 , 103 ) . T h e 4 4 / 6 2 protein complex is an

A T P a s e and the mechan ism by which it

increases the efficiency o f the D N A pol

react ion is not known.

— T7 gene 5 protein

T 7 D N A pol is d imer composed o f T 7 gene 5

protein (M.W. 8 4 , 0 0 0 ) and t h i o r e d o x i n ( M . W .

1 2 , 0 0 0 ) , a prote in specified by the host gene

T s n C ( 1 0 4 ) . T h e precise role o f th ioredoxin

in T 7 D N A replicat ion is not known, a l though

it could catalyze r ibonucleot ide reduct ion at

the polymerizat ion site. T 7 D N A pol, as o the r

D N A polymerases o f prokaryot ic origin

contains an intrinsic 3 ' to 5 ' exonuc lease

activity.

ENZYMOl.OGY OK 1)NA RKI'I.ICA I ION 2 1 9

3.3 D N A P O L Y M E R A S E S a, B A N D y F R O M

E U K A R Y O T K ; C E L L S

T h e as ignement of precise M.W. for D N A pol a has been difficult because it exhibits some heterogenei ty . Multiple forms could represent proteolytic degradat ion ( 1 0 5 ) , contaminat ion o f the cells used to isolate the enzyme ( 1 0 6 ) o r the format ion o f complexes between D N A pol a and o the r proteins ( 1 0 7 , 108 ) . Most repor ts est imate the M.W. for D N A pol a ranging from 1 3 0 , 0 0 0 to 1 6 0 , 0 0 0 , with variable subunit composi t ions. T h e enzyme is inhibited by N E M and by NaCl concent ra t ions above 2 5 m M . It exhibits optimal activity with gapped D N A as template and shows little activity with pr imed-r ibohomopolymer templates such as poly A-oligo d T .

D N A pol 3 has a M.W. o f about 4 0 , 0 0 0 and it is resistant to N E M . It is st imulated by 1 0 0 - 2 0 0 m M NaCl and utilizes equally well activated D N A and pr imed-polyr ibo-or polydeoxyribonucleot ides as templates.

D N A pol 7 comprises about 1% o f the total cellular polymerase activity. T h e M.W. o f this enzyme ranges between 1 2 0 , 0 0 0 and 3 0 0 , 0 0 0 . Its p re fe r red template is poly A-oligo d T , it is st imulated by 2 0 0 m M KC1 and it is inhibited by N E M .

Since condit ional mutat ions in the genes specifying for the various D N A polymerase species a re not available in eukaryot ic cells, d ifferent approaches have been used to assign a role for each o f them: a) the levels o f D N A pol a have been found to increase in rapidly growing cells, such as those from regenera t ing rat liver ( 1 0 9 ) and neoplasic liver ( 1 1 0 ) , and also dur ing the S period o f the cell cycle ( 1 1 1 ) . No changes in the level of D N A pol 3 have been observed unde r these condit ions, a l though D N A pol 7 levels have also expe r imen ted a rise; b) the effect of the inhibitors 2 ' 3 ' d ideoxy T T P ( d d T T P ) and a r a C T P o n D N A r e p l i c a t i o n h a s b e e n examined. D N A synthesis in isolated S-phase H e L a nuclei ( 1 1 2 ) and in permeabi l ized baby hamste r kidney cells ( 1 1 3 ) is very sensitive to a r a C T P , while purified D N A pol B is resistant to this inhibitor. O n the o the r hand, d d T T P , which inhibits D N A pols 3 and 7 but not D N A pol a , does not inhibit e i ther in vitro S V 4 0

( 1 1 4 , 115) of H e L a cell ( 1 1 2 , 116) D N A synthesis; c) a third approach has been to identify the different D N A polymerase species present in replication complexes o f some animal viruses. Thus, D N A pols a and 7, but not DNA pol 3, are present in adenovirus replication complexes ( 1 1 7 - 1 1 8 ) , while D N A pol a is found in S V 4 0 replication complexes ( 1 1 4 , 115 , 119) . Addition of d d T T P to isolated nuclei which synthesize adenovirus D N A in vitro has a s t rong inhibitory effect, indicating that D N A pol 7 is required for viral r e p l i c a t i o n ( 1 2 0 ) ; d ) n u c l e i f r o m a d u l t non-dividing brain neurons contain only D N A pol 3 ( 1 2 1 ) . B y st imulating repair-type synthesis with U V light, a seven- to ten-fold stimulation o f D N A repair at tr ibutable to D N A pol B e a n be observed ( 1 2 1 , 122 ) . Also in these cells, evidence has been obtained for a role o f D N A pol 7 in mitochondria l D N A replication, since this is the only D N A polymerase species present in this organel le (106 , 123) ; e) Spadar i and Weissbach ( 1 2 4 ) have found that only D N A pol a can ex tend a natural R N A pr imer hybridized to a D N A template. Pr imers in vivo consist mainly o f short RNA transcripts ( 5 3 , 1 2 5 - 1 2 7 ) .

T h e conclusions emerg ing from these studies seem to indicate the following: D N A pol a is the replicating enzyme in the nuclei . D N A pol 3 is a repai r enzyme and D N A pol 7 replicates mitochondria l DNA. However , the possibility that D N A pol a and D N A pol 3 have minor roles in repai r and replication respectively, cannot be ruled out.

4. S E A L I N G O F D N A F R A G M E N T S

Cells have an enzyme capable of j o i n i n g single-stranded interrupt ions which arise in D N A dur ing the processes of replication, recombinat ion and repair . T h i s enzyme, called D N A ligase, is essential for viability o f the cell ( 1 2 8 ) . I t was first found en E. coli using as an assay the enzymatic conversion o f l inear lambda D N A conta in ing sticky ends to a covalently closed circular form ( 1 2 9 , 130) . D N A ligase plays an active role in discontinuous D N A replication, linking the short Okazaki f ragments to the growing ch romosome .

2 2 0 VICUÑA

4.1. E . C O L I U N A L I G A S E

T h e enzyme has been purified to

homogenei ty ; it is a single polypeptide with a

M.W. o f 7 5 , 0 0 0 (reviewed in ref. 131) . T h e

sealing react ion requires M g 2 + and also N A D

as a cofactor , to form a l igase-AMP

intermedia te complex . T h e adenyl g roup o f

the coenzyme binds to an e-amino g roup o f a

lysine residue o f the enzyme, with the release

o f N M N . In a second step, the A M P moiety is

t ransferred to the 5 ' phospha te terminus of

D N A , in a react ion that requires the free 3 '

hydroxyl end . Th i rd ly , a phosphodies ter

bond is fo rmed by a nucleophi l ic attack, o f the

3 ' hydroxyl t e rminus to the activated 5' end ,

with the concomi tan t release o f A M P . Each

step o f this react ion can be reversed by the

cor respond ing products . A m m o n i u m ions

activate the enzyme. E. coli D N A ligase can

j o i n adjacent D N A fragments and also 3 ' R N A

to 5 'DNA, only when they are hybridized to a

D N A strand.

4.2. BACTERIOPHAGE T 4 GENE 30 PROTEIN

Phage T 4 induces ( 1 3 2 ) , as does T 7 ( 1 3 3 ) , a

D N A ligase which is the product o f gene 3 0 .

T 4 D N A synthesis is impaired in gene 3 0

mutants , the re fo re the phage- induced ligase

canno t be replaced by the host enzyme ( 1 3 4 ,

135 ) . Al though the same three-step

mechan ism out l ined for the E. coli enzyme is

also followed by T 4 ligase, both enzymes

differ in several aspects: a) A T P is the cofactor

o f the phage enzyme, be ing A M P and

pyrophosphate the products o f the react ion

instead o f A M P and N M N ; b) T 4 D N A ligase

can pe r fo rm end-to-end j o i n i n g o f flush

ended D N A molecules , conver t ing ds phage

P22 D N A into ol igomers ( 1 3 6 ) ; c) in contrast

to the host enzyme, T 4 D N A ligase can j o i n

D N A o r R N A segments in all combinat ions ,

e i ther hybridized to D N A o r R N A ( 1 3 7 , 1 4 0 ) .

4.3. MAMMALIAN DNA LIGASES I AND II

T h e major D N A ligase activity present in

extracts p repared f rom mouse embryo

fibroblasts ( 1 4 1 ) , c a l f thymus ( 1 4 2 ) , rat liver

( 1 4 3 ) and a h u m a n cell l ine ( 1 4 4 ) is called

D N A ligase I . I t is an A T P - requi r ing enzyme

with a M.W. ranging from 1 7 5 , 0 0 0 to 2 0 0 , 0 0 0 .

T h e mechanism of the ligation reaction

appears to be similar to that observed with

D N A ligases o f prokaryot ic origin, since the

format ion o f l igase-AMP and D N A - A M P

intermediates has been detected ( 1 4 5 , 146) .

Mammal ian cells also contain a second

enzyme with an A T P - d e p e n d e n t D N A ligase

activity, called D N A ligase I I ( 1 4 2 ) . Im­

munological tests indicate that this enzyme

is not related to D N A ligase I ( 1 4 7 ) . Bo th

enzymes are present in the nuclei , a l though

only D N A ligase 1 levels appea r to be regulat­

ed dur ing the cell cycle ( 1 4 7 ) .

5. CONFORMATIONAL CHANGES OF DNA DURING REPLICATION

St rand separat ion at the replication fork, as

well as the el iminat ion o f the topological

constraints arising dur ing the overall process

o f duplication, a re problems inheren t to D N A

synthesis.

A m o n g the proteins that alter D N A

conformat ion are the ss D N A binding

proteins , also called hel ix destabilizing

proteins ( H D P ) . T h e y have been isolated from

a variety o f prokaryot ic and eukaryot ic

sources, and they are thought to play several

roles in the cell: a) HDPs are requi red for the

pr iming react ion o f the ss D N A phage-s and

most probably o f the E. coli c h r o m o s o m e ;

b) they activate the e longat ion reaction

catalyzed by D N A polymerases; c) HDPs

facilitate unwinding catalyzed by D N A

helicases by binding to ss D N A at the

replication fork.

Enzymes that al ter the deg ree o f

supercoiling o f D N A are called topo-

isomerases. A m o n g them, nicking-

closing enzymes (swivelases) r emove super-

helical turns f rom circular dup lex D N A

to yield a re laxed and covalently closed

molecule . T h e react ion involves the

introduct ion o f a t ransient nick into the helix,

which allows the strand to swivel in o rde r to

relieve the torque crea ted dur ing the

unwinding o f the duplex . As nicking-closing

enzymes opera te without an energy source , it

has been proposed that a covalent

enzyme-DNA complex conserves the energy

o f the phosphodies ter bond dur ing the

ENZYMOLOGY OF DNA REPLICA H O N 2 2 1

relaxat ion react ion. Swivelases lack D N A ligase-type activity. T h e i r part icipation in D N A replication is only assumed, since no mutans have been isolated to date. O n the contrary, it has been clearly established that E. coli D N A gyrase, an enzyme that introduces superhel ical turns into D N A in an A T P - d e p e n d e n t react ion, plays an active role in D N A synthesis (as well as in t ranscript ion and recombina t ion) . T h e r e is now good evidence showing that D N A must be supertwisted in o r d e r to be replicated ( 3 1 , 1 4 8 - 1 5 1 ) . In addition, D N A gyrase is the target enzyme o f nalidixic acid and novobiocin, two potent inhibitors o f D N A synthesis ( 1 5 2 ) .

Topoisomerases can be assayed by agarose-gel e lectrophoresis , where supercoiled circular duplex D N A can be separated from re laxed D N A . ( 1 5 3 ) . S ince the reaction catalyzed by both nicking-closing enzymes and D N A gyrase does not follow a single hit mechanism, the separat ion of topoisomers with an in termedia te degree o f superhelici ty can be achieved.

Actual strand separat ion is carr ied out by DNA helicases. T h e s e enzymes catalyze the hydrolysis o f A T P to A D P and Pi in a reaction coupled to strand separat ion. S o m e o f them, like £ . coli rep protein and the r e c B C nuclease, require in addition the presence o f a H D P to avoid reassociation o f the D N A strands. T h e substrate utilized to measure the activity of DNA helicases consist in a labelled polynucleotide (e.g. a restrict ion f ragment ) hybridized to non-labelled ss D N A . T h e degree o f unwinding can be quant i ta ted as the amount o f radioactive D N A which is r endered acid soluble after t rea tment o f the product with a ss specific deoxyr ibonuclease . Helicases have been isolated from E. coli, bacter io-phage-infected cells and mammal ian cells.

5.1. E. COLI HDP

E. coli D N A binding protein is a heat stable te t ramer o f 1 8 , 5 0 0 M.W. subunits ( 1 5 4 ) which binds cooperatively to ss D N A . In the absence o f M g 2 + and at low ionic s trength, it lowers the melting tempera ture o f the duplex by nearly 40°C ( 1 5 5 ) . Each t e t r amer o f the native protein interacts with 32 nucleot ides, causing

a 4 0 percent shor tening in the length of ss DNA ( 1 5 5 ) . B ind ing o f E. coli H D P to D N A reduces the activity o f most ss DNases , excep t micrococcal nuclease, E . oy/2 exonuc lease I and the nucleases associated with E. coli D N A pol II and T7- induced D N A pol ( 1 5 6 ) . Mol ineux el al. ( 156 ) have shown that, excep t for micococcal nuclease, these enzymes form stable complexes with the binding protein. Moreover , the D N A pol I I - H D P c o m p l e x is able to copy a long gap in dup lex D N A , a reaction the free polymerase cannot carry out (157) .

In vitro, E. coli H D P is required for the convers ion of ss D N A o f icosahedral and f i lamentous bacter iophages to the ds replicative form. (3) . Its role in D N A replication in vivo became evident only recently, when Meyer et al. ( 1 5 8 ) identified a mutant with a temperature-sensi t ive defect in E. coli H D P .

5.2. BACTERIOPHAGE-CODED HDPs

— T4 gene 32 protein

T h e product o f T 4 gene 32 (M.W. 3 5 , 0 0 0 ) was the first H D P isolated ( 1 5 9 ) . W h e n gene 32 protein binds to ss D N A at saturat ing levels.it covers about eight nucleotides, ex tend ing the D N A chain 5 0 percent ( 1 6 0 , 1 6 1 ) . In this ss DNA-pro te in complex , T 4 H D P forms l inear aggregates in which the D N A binding sites a re thought to be al igned. T h e s e protein-protein interact ions could be the basis for cooperat ive binding to D N A . G e n e 32 protein stimulates specifically T 4 D N A pol when assayed with a long ss D N A template ( 1 0 1 ) and also with nicked ds D N A ( 1 6 2 ) ; in the later case, it does it presumably by allowing the d isplacement o f the non- templa te s trand. T 4 H D P plays a p rominen t role in D N A metabol ism, since it is requi red for replication ( 1 6 3 ) , repai r ( 1 6 4 ) , and genet ic recombina t ion ( 1 6 5 ) .

— T7 HDP

T 7 D N A binding protein (M.W. 3 0 , 0 0 0 ) stimulates specifically T 7 D N A pol ( 1 6 6 , 167 ) . I t has not been def ined genetically, possibly because it can be replaced by E. coli H D P . T 7 HDP lowers the T m o f poly d A T by 4 0 ° C , and

222 VICl'ÑA

aggregates itself in the p re sen te of M g 2 +

( 1 6 8 ) .

— fd gene V protein

Bac te r iophage fd-coded binding protein is

absolutely required to direct the synthesis of

progeny ss viral D N A ( 1 6 9 , 170) . The native

protein consists of a d imer of 2 0 , 0 0 0 , each

m o n o m e r covering approximate ly four nu­

cleotides ( 1 7 0 , 171) . Coopera t ive binding is so

strong, that fd H D P lowers the I'm o f ds DNA

by nearly 40°C ( 1 6 9 ) . The t e r c i a n s tructure o f

gene V product o f bac te r iophage fd and its

complexes with D N A have been studied ( 1 7 2 ) .

T h e enzyme binds to c i rcular single strands in

such a way that brings toge ther non adjacent

regions o f the D N A , giving to the complex a

rod-like shape ( 1 7 3 ) . .,

5.3. EUKARYOTIC HDPs

Proteins have been isolated from plant ( 1 7 4 ) ,

mammal ian ( 1 7 5 - 1 8 0 ) and viral infected cells

( 1 8 1 , 182) by virtue o f their preferent ia l bin­

ding to ss D N A . T h i s property, c o m m o n to

their prokaryot ic counterpar ts , besides facili­

tating mel t ing o f a duplex, promotes also re-

naturat ion o f single strands, a react ion requi­

red dur ing recombina t ion and repair . HDPs

isolated from the various eukaryot ic sources

activate specifically homologous D N A poly­

merases ( 1 0 8 , 178 , 183) , indicating a possible

involvement o f these proteins in the replicati-

ve process in vivo.

Nuclei isolated from meiotic cells o f lilies

and some mammals conta in an H D P (M.W.

3 2 , 0 0 0 ) which is only active dur ing the inter­

val following the S-phase until te rminat ion o f

c h r o m o s o m e pair ing ( 1 7 4 , 184 ) . T h i s enzyme,

as well as H D P isolated from mouse ascites

cells, changes its binding capacity to ss and

ds DNA upon phosphorylat ion; which may

constitute a regulatory mechanism ( 1 7 8 ,

185) .

H u m a n adenovirus induces an H D P (its

M . W . varies with the type o f virus) which has

several functions: a) it is involved in the initia­

tion and e longat ion steps o f viral D N A repli­

cation ( 1 8 6 , 1 8 7 ) ; b) it modulates the levels o f

several early viral t ranscripts , including auto-

r e g u l a t i o n o f i ts o w n leve l s ( 1 8 8 , 1 8 9 ) ;

c) t empera tu re - sens i t i ve mutan t s in a d e n o

H D P transform rat cells at non permissive

t empera tu re at h igher frequencies than wild

type virus ( 1 9 0 ) ; d) the enzyme is also requi­

red for in vitro viral replication. When this

reaction contains endogenous viral DNA as

template , adeno H D P can be replaced by E. coli H D P ( 1 9 1 , 192) . Adeno- induced H D P is

present as a phosphoprote in that exhibits dif­

ferent degrees of phosphorylat ion ( 1 9 2 - 1 9 5 ) .

T h i s modificat ion, however, does not affect

the binding of this protein to D N A .

5.4. BACTERIAL DNA I OPOISOMERASES

—Swivelases

E. coli omega protein was the first

nicking-closing enzvme to be discovered

(196) . Since then, they have been isolated

from M. luteus ( 1 9 7 - 1 9 8 ) , Pseudomonas B A L - 3 1 ( 1 9 9 ) and .4. tumejaaens ( 2 0 0 ) . B a c ­

terial swivelases (M.W. about 1 1 0 , 0 0 0 ) art-

designated type I topoisomerases . since they

tan readily remove negative superhelical

turns but remove positive turns inefficiently.

T h e y all require only Mg~ + ion for activity,

except the enzyme from Pseudomonas B AL-3 1,

which requires in addit ion a monovalent

eation salt.

In the absence of M g 2 + , E. coli omega

protein forms stable complexes with ss DNA,

which dissociate when minute amounts of

M g 2 + are added ( 2 0 1 ) . T r e a t m e n t o f the

complex with alkali o r pronase leads to the

eleavage of the D N A chain, after which the

protein remains covalently l inked to the 5 '

terminus o f the DNA.

It has been demons t ra ted that the ss

character o f a duplex D N A molecule is

proportional to its deg ree of negative

supercoiling ( 2 0 2 ) . T h e r e f o r e , the removal o f

only negative superhelical turns, the

dependency on the degree o f supercoi l ing for

catalysis and the inhibition of the reaction by

ss DNA, are consistent with the initial binding

of bacterial swivelases to ss regions o f the

substrate in o r d e r to catalyze the relaxation

reaction.

E. coli nicking-closing enzyme also forms

salt stable complexes with ds D N A , al though

they are nei ther dissociated by the addit ion o f

M g 2 + , nor does D N A scission occur when

protein denaturants are added ( 2 0 3 ) .

E N Z Y M O L O G Y O K U N A R E P L I C A T I O N 2 2 3

Two novel react ions a re catalyzed by the E. coli and M. luteus enzymes with c i rcular ss D N A : a) in the presence of monovalent cations they form knot ted rings which can be identified by sedimentat ion and e lect ron microscopy ( 1 9 7 , 2 0 4 ) , and b) they p romote the interwinning o f circles of complemen ta ry sequences into a covalently closed duplex r ing ( 2 0 5 ) .

— DNA gyrase

D N A gyrase is an enzyme that induces negative supercoi l ing into closed ci rcular ds D N A at the expense o f A T P hydrolysis ( 2 0 6 ) . It has been isolated from E. coli ( 2 0 6 ) and M. luteus ( 2 0 7 ) , a l though most o f the studies have been pe r fo rmed with the fo rmer enzyme. D N A gyrase is an essential enzyme in E. coli ( 2 0 8 ) and it is involved in: a) replication o f 0 X 1 7 4 ( 1 4 8 ) , some plasmids ( 3 1 , 2 0 9 ) , T 7 ( 2 0 1 , 2 1 1 ) and host D N A s ( 1 4 9 ) ; b) integrative recombina t ion o f phage lambda ( 2 1 2 ) ; c) D N A repa i r ( 2 1 3 ) and, d) t ranscript ion ( 2 1 4 - 2 1 8 ) . Repl icat ion o f phage T 4 mutants in DNA-delay genes 3 9 , 52 and 6 0 unde r non permissive condit ions, also requires E. coli D N A gyrase ( 2 1 9 ) . T h e s e genes code for the componen t s o f a phage A T P - d e p e n d e n t topoisomerase (see below). In addit ion to A T P , gyrase requires M g 2 + and it is activated by spermidine ( 2 0 6 ) .

T h e purif ied enzyme can catalyze five dif ferent react ions: a) the int roduct ion o f negative superhelical turns in the presence o f A T P ; b) re laxat ion o f supercoils in the absence o f A T P ; c) D N A - d e p e n d e n t hydrolysis o f A T P to A T P and Pi; d) enzyme binding to D N A , e) site-specific cleavage o f D N A .

D N A gyrase is composed o f two subunits, A and B , which can be purif ied separately and r ecombined to reconst i tute active D N A gyrase ( 2 2 0 - 2 2 2 ) . Apparent ly , both subunits a re present independent ly in the cell, as well as forming a complex . Subuni t A is coded by nal A gene , which governs sensitivity to nalixidic and oxol inic acids ( 2 1 8 , 2 2 1 , 2 2 0 , 2 2 3 ) . W h e n purif ied separately to homogenei ty , nal A gene product is a d imer o f two identical subunits, each with a M.W. o f 1 1 0 , 0 0 0 . Nal A gene product catalyzes, as does native D N A

gyrase, the A T P - i n d e p e n d e n t and nalidixic acid sensitive relaxat ion o f positive and negative superhel ical turns o f D N A , there fore it is a type II topoisomerase ( 2 2 0 , 2 2 3 ) . Several cr i ter ia indicate that in spite o f their similar M . W . and activities, the nal A protein is not related to the o m e g a protein ( 2 2 0 ) . Subuni t B o f D N A gyrase is coded by thecou g e n e , which governs sensitivity to coumermic in and novobiocin ( 2 2 4 ) . Gel ler t et al. have found that the c o u , gene product (M.W. 9 5 , 0 0 0 ) is involved in the energy t ransduct ion aspect o f the supercoi l ing react ion and that this protein has a specific binding site for A T P which is b locked by novobiocin ( 2 2 5 - 2 2 7 ) . Native D N A gyrase is able to induce negative superhel ical turns in the p resence o f nonhydrolyzable A T P analogs ( 2 2 6 ) . T h e r e f o r e , Cozzarelli et al. have proposed that A T P acts as an allosteric ef fec tor which is hydrolyzed to A D P and Pi in o r d e r to make the enzyme work catalically ( 2 2 6 ) .

W h e n oxol inic acid and S D S are added to the react ion mix ture , D N A gyrase cleaves ds D N A site-specifically ( 2 2 0 , 2 2 3 , 2 2 5 , 2 2 6 , 2 2 8 ) . I t makes a four nucleot ide s taggered cut, c reat ing D N A termini with a 3 ' hydroxyl end and a 5 ' ex tens ion which contains the enzyme covalently bonded ( 2 2 8 ) . D N A gyrase follows then the pat tern o f type I and type I I topoisomerases , storing the energy released by scission o f the D N A backbone in a covalent enzyme-DNA intermedia te .

5.5 BACTERIOPHAGE-CODED DNA

TOPOISOMERASES

— T4 DNA topoisomerase

A distinct A T P - d e p e n d e n t D N A topo­isomerase has been isolated from T 4 infected cells ( 2 2 9 , 2 3 0 ) . T h e purified en­zyme preparat ion exhibits th ree protein componen t s : the product o f the DNA-delay gene 3 9 (M.W. 6 4 , 0 0 0 ) , the product o f the DNA-delay gene 5 2 (M.W. 5 1 , 0 0 0 ) and a third protein (M.W. 1 1 0 , 0 0 0 ) the identify o f which is not known. T 4 topoisomerase hydrolyzes A T P during the relaxat ion o f both positive and negative superhelical turns. T h e enzyme is not inhibited by the antibiotics oxol inic acid and novobiocin, which are known antagonists

2 2 4 V I C U Ñ A

oí E. coli D N A gyrase. T 4 D N A topoisomerase

is not essential for viral replication, since it can

be replaced by E. coli D N A gyrase ( 2 1 9 ) .

Under these condit ions, however, phage

DNA synthesis is depressed.

Liu et al. ( 230 ) have proposed that the

enzyme may act at the origin site in conjunc­

tion with the products o f phage genes 41 and

61 (pr imase) in o r d e r to initiate D N A synthe­

sis. I t remains to be seen i f this A TP-

dependen t T 4 topoisomerase is able to induce

superhel ical turns on ds D N A , as well as to

establish the role o f A T P in the relaxat ion

react ion.

—Lambda int gene product

This phage-coded enzyme, which is required

for integrative recombinat ion , contains

swivelase activity ( 2 3 1 ) . T h e int gene product

is a type II topoisomerase , since it re laxes

positive and negative supercoils . T h e

nicking-closing activity o f int protein shows

no sequence specificity and functions in the

absence o f a divalent cation. It is inhibited by

M g 2 + ions, spermidine and ss D N A .

—0X174 gene A and fd gene II proteins

T h e s e enzymes, which are site-specific

endonucleases requi red to start replication o f

the ds replicative forms 0 X 1 7 4 and fd

phages , ( 5 9 , 6 7 ) also display nicking-closing

activity.

W h e n 0 X R F I D N A is incubated with low

levels o f A protein, a small p ropor t ion o f

re laxed D N A is detected ( 6 0 ) . T r e a t m e n t o f

re laxed 0 X R F I V D N A with sarkosyl o r S D S

has no effect in its s t ructure. I n contrast ,

t reatment with phenol and/or prote inase K

quantitatively yields nicked R F I I D N A ( 6 0 ) .

Incubat ion o f 0 X R F I with large amounts o f A

protein yields R F I I with large detectable

re laxed structures.

U p o n t rea tment o f fd supercoi led D N A

with gene I I endonuclease , two thirds o f this

substrate are cover ted to the nicked form and one third is t r ans formed to re laxed covalently closed circles. T h i s addit ional activity o f gene I I protein might be impor tan t for the circularization o f the l inear viral s trands dur ing phage D N A synthesis ( 6 8 ) .

5.6 EUKARYOT1C DNA TOPOISOMERASES

T h e eukaryot ic enzymes have been te rmed

type I I topoisomerases since they can catalyze

relaxat ion o f both positive and negative su­

perhelical turns. They have been found in

mouse ( 2 3 2 ) , drosophi la eggs ( 2 3 3 ) , K B cells

( 2 3 4 ) , H e L a cells ( 2 3 5 ) , rat iiver nuclei ( 2 3 6 ) ,

vaccinia virions ( 2 3 7 ) , yeast ( 2 3 8 ) , e tc . In addi­

tion to their possible role at the replication

fork, they part icipate in the association of his­

tories to the c h r o m o s o m e s ( 2 3 9 ) . Eukaryot ic

swivelases exhibi t M.W. ranging from 6 0 . 0 0 0

to 8 0 . 0 0 0 and posses several features that dis­

tinguish t hem from swivelases o f bacterial ori­

gin: a) they requi re between 0 .15 M and 0 . 2 0

M monovalen t cation salt; b) they can be as­

sayed in the p resence o f excess E D T A , and c)

their activity does not d e p e n d on the deg ree

o f superhelici ty o f the substrate. O n the o the r

hand, like type I topoisomerases , they do not

requi re an energy source and catalyze the

stepwise relaxat ion of the supercoi led subs­

trate.

Work ing with the rat liver enzyme,

C h a m p o u x ( 2 4 0 - 2 4 2 ) has been able to t rap a

nicked p ro te in -DNA in te rmedia te c o m p l e x

which contains the enzyme covalentfy

a t tached to the 3 ' end . T h e chemica l na ture o f

this l inkage is not known. With respect to

specificity, the enzyme can act at any site on ds

DNA.^However , studies carr ied out with the

S V 4 0 c h r o m o s o m e , show that rat liver

nicking-closing enzyme has a p re fe rence for

six discrete sites ( 2 4 3 ) . C h a m p o u x et al. have

also demons t ra ted that in contras t to o the r

enzymes involved in D N A replicat ion, rat liver

topoisomerase levels a re not regula ted dur ing

the cell cycle ( 2 4 3 ) .

Recent ly , a D N A topoisomerase has been

purif ied f rom rat liver mi tochondr ia ( 2 4 4 ) .

T h e enzyme sensitivity to e thidium b romide

and to the t rypanocidal d rug bereni l is

d i f ferent to that o f its nuc lear counte rpar t ,

suggesting that they may be dif ferent en­

zymes.

5.7. E. COLI DNA HELICASES

— DNA helicase I

E. coli helicase I is a long, f ibrous single

polypeptide (M.W. 1 8 0 , 0 0 0 ) which is present

KN/.VM()l.(X;V ()!• 1)NA RK.I'l.ICAHON 2 2 5

at about 6 0 0 copies per cell ( 2 4 5 - 2 4 7 ) . The enzyme has a ss DNA-dependen t N P T a s e activity: A T P and d A T P are the pre fe r red substrates, a l though the o the r r N T P s are hydrolyzed to some exten t . T o initiate unwinding o f ds DN A, helicase I binds first to pro t ruding 5' ss ends which have to be at least 2 0 0 nucleotides long. It then advances in the 5' to 3 ' direct ion o f the D N A chain to which it is bound , in a react ion coupled to A T P hydrolysis. A D N A molecule with prot ruding 3 ' ss ends is not a substrate for helicase 1 ( 2 4 8 , 2 4 9 ) . Abou t 7 0 molecules o f enzyme are present continously at the separat ion fork. Since the protein has a s t rong tendency to ' form aggregates in solution, this type o f protein-protein interact ion may be the basis for cooperativity and translocation o f the enzyme at the replication fork.

A T P a s e activity o f helicase I is opt imal under condit ions where the enzyme is known to form aggregates and it is abolished when ds DNA is used as a cofactor .

D N A h e l i c a s e I w o r k s in a p r o c e s s i v e fashion: i f ss D N A is added once the react ion has started, there is no inhibit ion o f the unwinding react ion ( 2 4 8 , 2 4 9 ) .

— DNA helicase II

E. coli helicase IITM.W. 7 5 , 0 0 0 ) ( 2 5 0 , 2 5 1 ) is probably identical to D N A - d e p e n d e n t A T P a s e I isolated by Kohiyama's g roup ( 2 5 2 , 2 5 3 ) . T h e enzyme shows specificity for A T P or d A T P hydrolysis and it is inactive with o the r nucleotides ( 2 5 0 ) . As helicase I , it starts unwinding ds D N A sequentially in the 5 ' to 3 ' direct ion, a l though it requires ss ends only 12 nucleot ides long ( 2 4 8 , 2 4 9 ) . In contrast to helicase I , helicase.11 requires the cont inous absort ion o f enzyme molecules to D N A at the separation fork. T h i s s toichiometr ic require­ment o f enzyme is consistent with the inhibition observed when compet ing ss D N A is added to the assay.

— rep protein

A third E. coli D N A helicase is coded by the rep gene . T h i s protein (M.W. 7 0 , 0 0 0 ) is requ i red for the replicat ion both in vito and in

vitro of certain bac te r iophage genomes ( 0 X 1 7 4 , fd, P2) and for the ' normal replication o f the host c h r o m o s o m e ( 6 3 , 2 5 4 - 2 5 7 ) . T h i s r equ i r emen t has provided an assay for the purification o f r ep protein and the subsequent study o f its physiological role ( 6 2 - 6 4 , 2 5 8 - 2 6 1 ) .

Replicat ion in vitro o f ds 0 X 1 7 4 R F I requires the phage coded A protein, rep protein, E. coli H D P and D N A pol I I I plus e longat ion factors (62 , 6 4 ) . First, i the A protein cleaves site-specifically the viral s t rand o f 0 X 1 7 4 R F I and remains covalently bound to the 5 ' end o f the nick ( 6 0 ) . T h e dup lex D N A is then unwound by the rep protein in the presence o f H D P with the s imultaneous hydrolysis o f two A T P (or d A T P ) molecules per base pair b roken ( 2 5 8 - 2 6 2 ) . Nicked 0 X 1 7 4 R F lacking A protein is not a substrate no r a cofac tor for rep A T P a s e , suggesting that the A protein present at the nick interacts with rep to start unwinding (62 , 2 6 1 ) . In the absence o f A protein, but in the presence o f HDP, rep enzyme unwinds ds D N A when it has ss extending regions. As D N A helicases I and I I , rep protein unwinds in the 5 ' to 3 ' direc­tion ( 2 6 1 ) . T h i s is impor tan t i n ' t he react ion descr ibed above, because the 3 ' end o f the A prote in- induced nick is left in a duplex structure, to be used as a p r imer for viral replication via rolling circle mechanism.

A T P a s e activity o f rep protein requires ss D N A as a cofactor ; ds D N A o r HDP-coa ted ss D N A are inactive as cofactors . However , since the rep catalyzed unwinding react ion requires HDP, it appears that the t rue ef fec tor for the A T P a s e is the separat ing fork ( 2 6 1 , 2 6 2 ) .

— rec BC nuclease

E. coli rec B C nuclease, also called exonuclease V , plays a centra l role in genet ic recombina t ion and recombinat ional repai r ( 2 6 3 ) . T h e native enzyme is a composi te protein o f M.W. 2 7 0 , 0 0 0 which exhibits several activities: a) it is an A T P - d e p e n d e n t 5 ' to 3' and 3' to 5' exonuclease , which degrades both ds and ss D N A ; b) it is also an A TP-stimulated ss endonuc lease and c) it is a D N A dependent A T P a s e , a l though s imultaneous DNA degradat ion is not necessary for A T P hydrolysis ( 2 6 4 , 2 6 5 ) .

2 2 6 VICUÑA

S. L inn has proposed a model for the

degradat ion o f ds D N A by re t B C nuclease

( 2 6 6 ) : the enzyme binds to both strands at the

end o f the duplex. It then unwinds the strands

from o n e t e rminus , cleaving f ragments at 5 0 0

nucleot ide intervals while it remains bound to

the end o f the undegraded strand. Af ter

unwinding about 5 , 0 0 0 nucleotides, the

enzyme switches strands and degrades the ss

tail f rom its terminus , yielding a shor tened

wholly duplex molecule . T h e 5 0 0 nucleotides

long f ragments a re then degraded by the

enzyme to acid soluble ol igonucleot ides.

Presumably, A T P hydrolysis is coupled to the

unwinding o f the D N A helix and it is not

related to the actual nucleolytic activity, since

several A T P molecules a re hydrolyzed per

each phosphodies ter bond broken ( 2 6 4 , 2 6 7 ) .

I f H D P is added to this react ion, rec B C

works as a D N A helicase ( 2 6 8 , 2 6 9 ) . B ind ing

o f H D P to the ex tend ing ss tails results in

protect ion against exonucleolyt ic

degradat ion. T h e r e f o r e , the products a re

long ss pieces derived from limited nuclease

cutt ing after helix unwinding.

R e c B C enzyme is regulated by C a 2 + ions.

W h e n both C a 2 + and M g 2 + are present

simultaneously in the react ion, a marked

inhibit ion o f the nuclease activity is observed,

while the A T P a s e is not affected ( 2 6 9 , 2 7 0 ) .

U n d e r these condit ions, the enzyme binds

initially to the te rminus o f duplex D N A and

then tracks a long the D N A molecule ,

producing local and transient unwinding o f

the strads as it moves. As a result, ds D N A

remains as a dup lex s tructure, in spite o f the

fact that it contains a few n i c k s . T h e c o m b i n e d

action o f M g 2 + , C a 2 + and H D P produces

complete denatura t ion o f ds D N A and solely

ss f ragments a re found ( 2 6 9 , 2 7 0 ) .

5.8. BACTERIOPHAGE-CODED DNA HELICASES

— T4 dda protein

The purified product o f 1*4 gene dda is

DNA-dependent A T P a s e (M.W. 5 6 , 0 0 0 )

which is able to unwind ds D N A in the 5' to 3 '

direction ( 2 4 8 , 2 4 9 , 2 7 1 ) . The enzyme action

is non processive as indicated by the following

criteria: a) the n u m b e r of enzyme molecules

required to unwind D N A is a function o f the

lenght o f the DNA; b) the reaction is inhibited

when ss DNA is added to t rap Iree en/.yme

molecules. As most DNA helicases, T 4 - d d a

protein binds first to a ss region and (ba in

separation is brought about by the cont inued

adsortion o f protein molecules to DNA at the

separating fork. T h i s reaction is driven bv

A T P (or d A T P ) hydrolysis. Mutational loss o f

this enzyme is not lethal to the virus ( 2 7 2 ) .

— T7 gene 4 protein

T h i s enzyme does not only fuction as a D N A

primase for T 7 replication ( 4 5 - 4 8 ) , but also as

a nucleoside t r iphosphate-dependent D N A

unwinding catalyst ( 4 5 , 4 9 , 2 7 3 - 2 7 5 ) . T 7 D N A

pol is unable to use intact o r nicked duplex

D N A as template . However , in the presence o f

gene 4 protein and the four d N T P s , T 7 D N A

pol catalyzes the incorporat ion of d N T P s ,

which is started at a nick in ds D N A (49 ,

2 7 3 - 2 7 5 ) . T h i s activation o f the polymerase by

gene 4 protein is specific. Polymerization

occurs simultaneously with the displacement

o f o n e of the parental strands, with the

concomi tan t hydrolysis o f 4 .6 d N T P s to

dNDPs and Pi for each d N T P polymerized

( 2 7 3 ) . At later t imes in the react ion, the

polymerase j u m p s across the fork and copies

the displaced strand, the re fo re all the newly

synthesized D N A is covalently a t tached to the

template ( 2 7 4 , 2 7 5 ) .

I f the react ion mix tu re with nicked D N A

contains both d N T P s and r N T P s , 17 gene

4 unwinding protein synthesizes oligo-

ribonucleotides on the displaced ss tail which

function as pr imers for T 7 D N A pol. As a

result, D N A chains copied in the lagging

strand are not covalently at tached to the D N A

template (47 , 4 8 , 2 7 4 ) . U n d e r these

condit ions, the total n u m b e r o f d N T P s and

r N T P s hydrolyzed per d N T P incorpora ted

are 3 .0 and 1.2, respectively ( 2 7 3 ) . B o t h

p r imer and D N A synthesis a re st imulated

about 5-fold by e i ther E. coli o r T 7 binding

proteins ( 4 7 ) .

T 7 gene 4 protein is a ss DNA-dependen t

r N T P a s e or d N T P a s e ( 4 5 , 2 7 3 ) . Dup lex D N A

is a cofac tor only when hydrolysis o f

nucleoside t r iphosphates is coupled to D N A

synthesis; d d T T P , an inhibi tor o f T 7 D N A

pol, stops N T P a s e activity. Moreover , 3 — 7

E N Z Y M O L O G Y O F D N A R E P L I C A T I O N 2 2 7

methylene d T T P , which cannot be

hydrolyzed to T D P and Pi, inhibits also D N A

synthesis ( 2 7 3 ) .

5.9. EUK.ARYOTIC DNA HELICASES

Cobianchi et al. ( 2 7 6 ) have isolated from

human cells a ss D N A - d e p e n d e n t A T P a s e

(M.W. 1 1 0 , 0 0 0 ) . T h e enzyme binds first to ss

D N A and moves a long in the 5 ' to 3 ' direct ion

unwinding dup lex D N A . H u m a n A T P a s e can

activate D N A pol 6 from H e L a cells possibly

by providing it with a template upon

denatura t ion o f the duplex . d N T P

incorporat ion is e n h a n c e d even futher by ca l f

thymus HDP.

In contras t to E. coli helicase I, human

helicase is unable to unwind R N A fragments

hybridized to D N A .

6. CONCLUSIONS

A b r i e f outl ine o f some o f the proteins

involved in D N A replication has been

presented. As stated before , the re is direct

p r o o f for the part icipation o f most o f them in

this process. O t h e r proteins , like lambda int

gene product and rec B C nuclease a re not

involved in D N A synthesis, but they have been

included due to their similarity with

replicat ing proteins .

Al though all these enzymes have been

discussed independent ly , o n e has to imagine

all o f them working as a repl isome complex at

the replication fork.

D N A synthesis starts at a specific origin and

proceeds almost continously in the leading

strand. At t h e same t ime, helicases with the

help o f H D P s unwind the duplex , and

discont inuous synthesis proceeds in the

lagging strand. Pr iming o f Okazaki f ragments

may requi re several proteins and elongat ion

proteins. La te r , Okazaki f ragments a re

processed and sealed by D N A ligase to form a

cont inuous polynucleot ide chain.

S o m e aspects o f D N A synthesis remain still

obscure . Not much is known about its

regulat ion and the mechan i sm o f te rminat ion

o f c h r o m o s o m e replication. T h e answer o f

these quest ions presents cer tain difficulties,

since the various systems which have been

investigated, a l though shar ing a c o m m o n

genera l pat tern, present also several different

features. F o r example , a c i rcular duplex

molecule may replicate th rough a rolling

circle o r a Cairns ( tetha) type o f in termediate ,

or both. W e still have to learn the role o f

adenovirus terminal protein, the lambda

genes O and P and the T antigen of S V 4 0 in

the initiation react ion, e tc . The picture

complicates even fur ther when cons ider ing

the involvement o f enzymes that display more

than a single catalytic activity, such as D N A

gyrase, 0 X 1 7 4 A protein, fd gene II protein

and T 7 gene 4 protein.

Finally, it is interest ing to point out how

actively A T P participates in D N A replicat ion:

a) pr imases pre fe r to start with A T P at the 5 '

end ; b) A T P is required for the format ion of

specific complexes a m o n g proteins , i.e. dna

B-dna C, pr imed- template-e longat ion factor

I, etc.; c) A F P es a cofac tor for D N A ligases

and d) A T P is hydrolyzed by helicases, gyrase,

dna B , replication factor Y , T 4 coded

topoisomerase, T 4 gene 41 protein, e tc .

ACKNOWLEDGEMENTS

I am grateful to E. Cardemil, J . Eyzaguirre and A. Yudelevich for their help in the preparation of this manuscript.

REFERENCES

1. GEIDER, K . C u r r . Topics Microbiol. Immunol .

74:55-112. 1976. 2. ALBERTS, B . , STERNULAN*, R . Nature 2 6 9 : 6 5 5 - 6 6 1 ,

1977. 3. WICKNEK, S. Ann. Rev. Biochem. 47:1163-1191, 1978. 4. SHEININ, R . , HUMBERT, J . , PEARLMAN, P . E . Ann. Rev.

Biochem. 47:277-316, 1978.

5. H u R w i r z , J . CRC. Crit. Rev. Biochem. 7:45-74, 1979. 6. KORNBERG, A. CRC. Crit. Rev. Biochem. 7:23-43,

1979.

7. Boucm:, J .P . , ZUMEL, K., KORNBERC, A. J. Biol. Chem. 250:5995-6001, 1975.

8. WICKNER, S. Proc. Natl. Acad. Sci. USA. 74:2815-2819, 1977.

9. BENZ, E . , REINBERC, D., VICUÑA, R . , HLKWITZ, J . J. Biol.

Chem. in press, 1980.

10. ROWEN, L., KORNBERG, A . J . Biol. Chem. 255:758-764 , 1978.

11. REICHARU, P., ROWEN, L. , EI.IASSON, R . , HOBBS. S.,

ECKSTEIN, F . J . Biol. Chem. 255:7011-7016 , 1978.

2 2 8 V I C U Ñ A

12. S I M S , J . , Koms, K., DRLSSI.EK, D. (x>ld Spring Harbor Symp. Quant. Biol. 45:349-365, 1978.

13. SIMS, J . , CAPON, D., DRESSIER, D. ) . Biol. Chem.

254:12615-12628 , 1979. 14. L i u , L . F . , DKCEW, R.E. , WANG, ].C. | . Mol. Biol.

706:439-452, 1976. 15. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA.

77:4120-4124, 1974.

16. ScilEKMAN, R . , W E I N E R , | . H . , W t l N t k , A., KoRNIURG, A.

J . Biol. Chem. 250:5859-5865 , 1975. 17. MCMACKEN, R., KORNBERG. A. J . Biol. Chem.

255:3313-3319 , 1978. 18. MCMACKEN, R., U t .uA, K . KORNBERG. A. Proc. Natl.

Acad. Sci. ISA. 74:4190-4194, 1977. 19. WICKNER, S., WRIGHT, M., HURWIIZ, J . Proc. Natl.

Acad. Sci. USA., 77:783-787, 1974.

20. REHA-KRAN I z, L . J . , H I - R W I I / , J . | . Biol. Chem. 255:4051-4057, 1978.

21. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA. 72:921-925, 1975.

22. WICKNER, S., HURWIIZ, J . Proc. Natl. Acad. Sci. USA. 72:3342-3346, 1975.

23. BOUCHE, J .P . , Row EN, L . , KORNBERG, A . J . Biol. Chem. 255:765-769, 1978.

24. ROWEN, L . , KORNBERG, A . J . Biol. Chem. 255:770-774, 1978.

25. VICUÑA, R., HURWIIZ,J. WALLACE, S., GIRARU, M . J . Biol.

Chem. 252:2524-2533 , 1977.

26. VICUÑA, R., IKEDA, J . , HURWIIZ, J . J . Biol. Chem.

252:2534-2544 , 1977.

27. GEIDER, K . , BECK, E., SCHALLER, H. Proc. Natl. Acad.

Sci. USA. 75:645-649, 1978.

28. G E I D E R , K . , K O R N B E R G , A. J . B i o l . C h e m .

249:3999-4005 , 1974.

29. BACKMAN, K . , BETLACH, M., BOVER, H . W . , YANOESKY, S.

Cold Spring Harbor Symp. Quant. Biol. 45:69-76, 1978.

30. KAHN, M.L., FIGURSKI, D., lio, L . , HELINSKI, D.R. Cold

Spring Harbor Symp. Quant. Biol. 45:99-103, 1978.

31. IIOH, T . , TOMIZAWA, J . Cold Spring Harbor Symp. Quant. Biol. 45:409-417, 1978.

32. TOMIZAWA, J . , OHMORI, H., BIRD, R. Proc. Natl. Acad.

Sci. USA. 74:1865-1869, 1977. 33. BIRD. R., TOMI/AWA, | . | . Mol. Biol. 720:137-143.

1978. 34. LARK, K.G. J . Mol. Biol. 64:47-60, 1972. 35. MESSER, W . J . Bact. 772:7-12, 1972. 36. MESSER, W . , DANKWARIH, L . , TIPPE-SCHINDLER, R.,

WOMACK, J . E . , ZAHN, G. in DNA synthesis and its

regulation (Goulian, M., Hanawalt, P. Eds.) W . A . Benjamin Inc. USA. 1975, pp. 602-617.

37. TOMIZAWA, ) . , S I L / I R , G. Ann. Rev. Biocheni.

4<V:999-1034, 1979.

38. DOVE, W . F . , IMIKUCHI, H . , STEVENS, W . F . in The

bacteriophage lambda (Hershey, A.D., E d ) . Coltl Spring Harbor Press. 1971, pp. 747-771.

39. Liu, C.C., BURKE, R.L., HIRNER. U . , BAKKV, ] . . Ai IIERTN.

B. Cold Spring H a r b o r Symp. Quant . Biol. 45:469-487, 1978.

40. SILVER, L . L . , NOSSAL, N.G. Cold Spring Harbor Svmp. Quant. Biol. 45:489-494, 1978.

41. B i r r s K R , M., BURKE, R .L . , ALBERTS, B. | . Biol. Chem. 254:9565-9572, 1979.

42. NOSSM, N. J . Biol. Chem. 254:6020-6031 , 1979. 43. MORRIS, CM.I-. , MOKMM, I..A., A u n t R i s . B. |. Biol.

Chem. 254:6797-0802, 1979. 44 NOSSAL, N . G . , PITI.RI.ISG, B.M. J . Biol. Chem.

254:6032-6037, 1979. 45. I i 11 I.EMIKAMI, ( . . , MORI i.i.i, ( . . , LA*K\ , E . , Si;m KWIMCXK.

E . Cold Spring H a r b o r Svmp. Quanl . Biol. 43:449-459, 1978.

46. SCIII-RZINGER, E . , LANKA, E . . MOKLLLI, G. , S H I I I K I , I ) . .

VIKI. A . Eur. J . Biocheni. 72:543-558, 1977. 47. ROMANO, L . J . , Rn IIARDSON, CM. | . Biol. Chem.

254:10476-10482, 1979. 48. ROMANO, L . S . . Ri< M'AKDSON, ( i n . | . Biol. Chem.

254:10483-10489, 1979.

49. KOI.ODNER, R., MASAMUNE, Y . , Le CI . IRC, | . E . ,

RICHARDSON, CM. J . Biol. Chem. 255:566-573 . 1978.

50. OKA/.AKI, I . , K l R O S A U A , Y . , O l . A U \ , 1.. S t K I , I .,

S l l l N O / \ K I , K. , H l R O M , S . , F l j | I V A M A . A.A.. K o i l A K f G Y . .

MAGUIDA, Y., TAMANOI, F\, H o / i i U i , I . Cold Spring

Harbor Symp. Quant. Biol. 45:203-219, 1978. ,

51. Scm.R/iM.t.K. E . , LANKA, E . , Mil LEMKRAMD. (.. Nucí. Ai.

Res. 4:4151-4163, 1977.

52. LANK\, E . , SI HEKZINCIK, E . . GUNIHIK, E . . S c i i y s T i K, I I .

Proc. Natl. Acad. Sci. USA. 76:3632-3636. 1979. 53. REKIIARD, P. , EI.IAS.SON, R., SODI RM VK, (.',.. Proc. Natl.

Acad. Sci. ISA. 7/:49(ll-49t)5, 1974. 54. ELIASSON, R . , R i K H A R D , P. Nature 272:184-185, 1978. 55. REKIIARD. P. , ELIASSON, R. Cold Spring Harbor Sunp.

Quant. Biol. 45:271-277, 1978.

56. DRESSIER, D., WOI.ESON, ) . Proc. Natl. Acad. Sci. USA. 67:456-463. 1970.

57. Koms, K . , DRESSIER. D. Proc. Natl. Acad. Sci. u s * .

75:605-610. 1978. 58. ALLISON, D .P . . GANEN vs.. A . T . . MURA. S . Fed. P r i x .

55:1491, 1974. 59. HENRY, T . J . , KMPHERN, R. Proc. Natl. Acad. Sci. ysi\.

77:1549-1553, 1974. 60. IKEDA, J . , Yi DELEYICH. A . , H i RUIIZ, ]. Proc. Natl. Acad.

Sci. ISA. 75:2669-2673. 1976. 61. IKEDA, ) . , Yi DEI.EA K M. A . , SIIIMAMOIO. H . , H I KUI I/ . J. | .

Biol. Chem. 254:9416-9428 , 1979. 62. Si MIDA-YASI Muro, Cti., IKKI>\. } . . BEN/, E . . M \RIANN. K. .

VICUÑA, R., SUGRUI, S., Zii'i KSKI. L . , HiRuiiyi, J .

Spring Harbor Svmp. Quant. Biol. 4 5 : 3 1 1 - 3 2 9 . 1978.

63. ElSENBERG. S-, ScOTI, J.F., KoRNBIRG, A . Proc. Natl.

Acad. Sci. VSA. 75:1594-1597, 1976. 64. EISENBERG, S., Scon, J . F . , KORNBERG, A . Cold Spring

Harbor Symp. Quant. Biol. 45:295-302. 1978. 65. EISENBERG, S., KORNBERG, A . J . Bio l . C h e m .

254:5328-5332, 1979. 66. LANGEVELD. S.A., VVN MANSUI.II, A . D . M . . B\.v>. P .D. ,

JANS/, H.S., VAN ARKEL, G . A . , WEISSBEI K, P . J . Nature

277:417-420, 1978. 67. LIN, N.S.C.. PRAM. D . J . Mol. Biol. 72:37-49, 1972. 68. GEIDER, K . , MEYER, I F . Cold Spring Harbor Symp.

Quant. Biol. 45:59-62, 1978. 69. M E Y E R , T . F . , ( i n HER. K . J . B i o l . C h e m .

254:12636-12642, 1979. 70. M E Y E R , T . F . , ( « E I D E R . K . ) . B i o l . Q h e m .

254:12643-12646, 1979. 71. SCHALLER, H. Cold. Spring Harbor Symp. Quant.

Biol. 45:401-408, 1978.

E N Z Y M O I A ) G Y O K ON A R E P L I C A T I O N 2 2 9

7'.». E N Q I I S I . 1 . .W. , S K U K A . A.M. 1 1 B S 5:279-283, 1978.

73. E S P E J O . R . T . . C \ M i.o. E.S. , S I N S I I E I M I K . R . L . J . Mol. Biol.

56.597-621. 1971.

74. KoKMiiRc. 1.. K O R N I U R G . A . in The Enzymes (Bover.

P. E<1.)3"' Edition. Academic Press. New York. 1974.

/fV: 119-144.

75. ( W H K R . Ml. . Ann. Rev. Biochem. 44:45-78. 1975.

76. G \ss, K . B . . Co/z V R E I . L I . N R . J . Biol. C h e m .

2 ^ : 7 6 8 8 - 7 7 0 0 . 1973.

7 7 . G \ N I S M A N . A .T . . Y I I I I . E , C O . . Y i . C.C. Biochem.

Biophvs. Res. Coinniun. 50:155-163. 1973.

78. Nvs. I.E.. K I . E P P E . K. EEBS Lett. 4 ? : 180-184, 1974.

79. K O R N B E R G . A. Science 16J: 1410-1418. 1969.

80. G E E T E R . M . L . in Piogi. Nucl. Ac. Res. Mol. Biol.

(Davidson. I .M. . C.ohn. W . E . Eds.) Academic Press.

New York. 1974. 74:101-1 15.

8 1 . M . H E N R Y , C . S . . C R O W . W . J . B i o l . C h e m .

2W: 17 18-1753, 1979.

82. Low, R . L . . R A I I S B ¿ I > M , S.A., C D Z Z A R E I . I . I , N.R. J . Biol.

Chem. 257:1311-1325 , 1976.

83. ZIMMERMAN, B . K . J . Biol. Chem.247:2035-2041 . 1966.

84. C H U N , A., E D G A R , D . B . , T R E I . A , J . M . J . Bact .

727_: 1550-1557. 1976.

85. Vu i V Y , R. , V A I D E S , F . J . , M E D I N A , M.A., Yi D E I . I A K M , A.

J . Bact.' in press, 1980.

8 6 . D» B E , D.K., K I N K E L , T.A. , S E A L , G . , L O E B , L.A.

Biochim. Biophys. Acta 567:369-382. 1979.

87. W E I S S B A C H , A . Ann. Rev. Biochem. 46:25-47, 1977.

88. S A R N G A D H A R A N . M.G. , R O B E R T - G I R O E E , M. , G A L L O , R.

Biochim. Biophys. Acta, 5 /6 :419-487 , 1978.

89. S i A I D E N B A I E R , W . L . Mol. Gen. Genet. /49:151 - 1 5 8 .

1976.

9 0 . K E L L Y , R . B . , C O Z Z A R E I . L I , N .R . , D E I I S C H E R , M . P . ,

L E H M A N , I .R. . K O R N B E R G , A . J . Biol. Chem. 245:39-45 ,

1970.

9 1 . L E H M A N , I .R. , U Y E M U R A , D.G. Science 795:963-969,

1976.

92. (Ill I l k , M.L . , H I R O I A , Y., K O K N B L K I . , T., W E I I I S I . I R ,

J . A . , B A R N O I x, C. P r o c . Natl. Acad. Sci. I S A .

6#:3150-3153. 1971.

93. L I V I N G S T O N , D . M . , R I C H A R D S O N , C. J . Biol. Chem.

250:470-478, 1975.

94. W I C K N E R , S. Proc. Natl. Acad. Sci. I S A . 75:3511-3515,

1976.

95. M c H E N R Y , C , K O R N B E R G , A. ) . B io l . C h e m .

252:6478-6484, 1977.

96. M E Y E R , R.R., S H L O M A I , J . , K O B O K I , ) . , B A T E S , D .L . ,

R O W E N , L., M C M A C K E N , R . , U E D A , K . , K O R N B E R G , A.

Cold Spring Harbor Symp. Quant. Biol. 45:289-293 , '

1978.

97. H I K W I I Z , J . , W I C K N E R , S. Biochem. Biophys. Res.

Commun. 57:257-267, 1973.

98. M C H E N R Y , C. Abst. XI' 1 ' Intern. Congress Biochem. Toronto, p. 42, 1979.

99. C M H . I L I A N , M., L U C A S . Z . ) . , K O R N B E R G , A . ] . Biol. Chem. 245:627-638, 1968.

100. H U A N G , W . M . , L E H M A N , R .R . J . Biol . C h e m .

247:3139-3146, 1972.

101. Hi B E R M A N , J . , K O R N B E R G , A . , A L B E R T S , B . J . Mol. Biol.

62:39-52, 1971.

102. P I P E R N O , J . R . , A L B E R T S . B .M. J . Biol . C h e m .

255:5174-5179, 1978.

1 0 3 . P I P E R N O . J R . . K A I I E N . R.C;., A L B E R I S , B.M. J . Biol.

Chem. 2 5 3 : 5 1 8 0 - 5 1 8 5 , 1 9 7 8 .

1 0 4 . M A R K . J . F . , Ru I I A R D S D N , C. Proc. Natl. Acad. Sci. L I S A .

7 . 5 : 7 8 0 : 7 8 4 , 1 9 7 6 .

1 0 5 . B R A K E I . C . L . . B I I M I N I U M , A . B . Biochemistry

/ 6 : 3 1 3 7 - 3 1 4 3 , 1 9 7 7 .

1 0 6 . B o i D E N . A., N O Y , G.P. , W K L S K B A I . I I , A. ]. Biol. Chem.

2 5 2 : 3 3 5 1 - 3 3 5 6 , 1 9 7 7 .

1 0 7 . Mn I I A I I , M., Di R I C O N D O , A.M. Eur. J . Biochem.

5 « : 4 6 1 - 4 6 6 , 1 9 7 5 .

1 0 8 . H E R R I C K , G . , D E E D S , H., A L B E R I S , B. J . Biol. Chem.

2 5 7 : 2 1 4 2 - 2 1 4 6 , 1 9 7 6 .

1 0 9 . B A R I I , E . F . , J E N K I N S , M.D., B R O W N , O., L A S Z L O , | . ,

M O R R I S , H.P. Cancer Res. 5 5 : 1 1 8 7 - 1 1 9 3 , 1 9 7 3 .

1 1 0 . Gnu, J . F . , C R A D D O C K , C , M O R R I S , H.P., H N M . I C A , L .S .

Cancer Biochem. Biophys. 7 : 1 3 - 2 1 , 1 9 7 4 .

1 1 1 . S P A D A R I , S., W E I S S B A C H , A. J . Mol. Biol. # 6 : 1 1 - 2 0 , 1 9 7 4 .

I 12 . W I S I , E. Biochem. Biophys. Acta 5 6 2 : 6 2 - 6 9 , 1 9 7 9 .

1 1 3 . C A S i E L L o i , J . J . , M I L L E R , M.R., L E H T O M A K I , D.M.,

P A R D E E , A . B . J . Biol. Chem. 2 5 4 : 6 9 0 4 - 6 9 0 8 , 1 9 7 9 .

1 1 4 . E D E N B E R G , H.J., A N D E R S O N , S., D E P A M P H I L I S , M.L. J.

Biol. Chem. 2 5 5 : 3 2 7 3 - 3 2 8 0 , 1 9 7 8 .

1 1 5 . D E P A M P H I L I S , M.L. , A N D E R S O N , S., B A R - S I I A V I I , R.,

C O L L I N S , E., E D E N B E R G , H., H E R M A N , T . , K A R A S , B.,

K A L L M A N N , G. , K R O K A N , H., S H E L T O N , E., S I , R „ T A P P E R ,

D., W A S S A R M A N , P.M. Cold Spring Harbor Svmp.

Quant. Biol. 4 5 : 6 7 9 - 6 9 2 , 1 9 7 8 .

1 1 6 . W A O U A R , M.A., E V A N S , M.J., H L B E K M A N , J.A. Nucl. Ac.

Res. 5 : 1 9 3 3 - 1 9 4 6 , 1 9 7 8 .

1 1 7 . A R E N S , M., Y A M A S H I I A , T . , P A D M A N A B I I A N , R., T S U R N O ,

T . , G R E E N , M . J . Biol. Chem. 2 5 2 : 7 ° 4 7 - 7 9 5 4 , 1 9 7 7 .

1 1 8 . B R I S O N , O., K E D I N G L R , C., W I I . H E L M , J. | . Virol.

2 4 : 4 2 3 - 4 3 5 , 1 9 7 7 .

1 1 9 . O n o , B„ F A N N I N G , E. Nucl. Ac. Rs. 5 : 1 7 1 5 - 1 7 2 8 ,

1 9 7 8 .

1 2 0 . V A N D E R V I . I E I , P.C., K W A N T , M.M. Nature

2 7 6 : 5 3 2 - 5 3 4 , 1 9 7 8 .

1 2 1 . H C B S C H E R , U . , Kl E N Z L E , C . C , LlMACHER, W . , ScHERRER,

P., S P A D A R I , S. Cold Spring Harbor Symp. Quant.

Biol. 4 5 : 6 2 5 - 6 2 9 , 1 9 7 8 .

1 2 2 . Hi B S C H E R , U . , K U E N Z L E , C.C., S P A D A R I . S. Proc. Natl.

Acad. Sci. C S A . 7 6 : 2 3 1 6 - 2 3 2 0 , 1 9 7 9 .

1 2 3 . H U B S C H E R , U . , Ki E N Z L E , C.C., S P A D A R I , S. Eur. ].

Biochem. A 7 . 2 4 9 - 2 5 8 , 1 9 7 7 .

1 2 4 . S P A D A R I , S., W E I S S B A C H , A. Proc. Natl. Acad. Sci.

I S A . 7 2 : 5 0 3 - 5 0 7 , 1 9 7 5 .

1 2 5 . A N D E R S O N , S., K A L E M A N N , G . , D E P A M P H I L I S . M.L .

Biochemistry 7 6 : 4 9 9 0 - 4 9 9 8 , 1 9 7 7 .

1 2 6 . T S E N G , B . Y . , G O I L I A N , M . J . Mol. Biol. 9 9 : 3 3 9 - 3 4 6 ,

1 9 7 5 .

1 2 7 . W A Q L A R . M . A . , Hi B E R M A N , J . A . Cell; 6 : 5 5 1 - 5 5 7 , 1 9 7 5 .

1 2 8 . P A L L I N G , C , H A M M , L . Proc. Natl. Acad. Sci. i s\.

6 0 : 1 4 9 5 - 1 5 0 2 , 1 9 6 8 .

1 2 9 . G E L L E R I , M. Proc. Natl. Acad. Sci. is\ . 5 7 : 1 4 8 - 1 5 5 ,

1 9 6 7 .

1 3 0 . G E E T E R , M.L., B E C K E R , A., Hi R I V I I / , ). Proc. Natl.

Acad. Sci. I S A . 5 5 : 2 4 0 - 2 4 7 , 1 9 6 7 .

1 3 1 . L E H M A N , l.R. Science: 7 5 6 : 7 9 0 - 7 9 7 , 1 9 7 4 .

1 3 2 . W E I S S , B., R I C H A R D S O N , C. Prod. Natl. Acad. Sci. I S A .

5 7 : 1 0 2 1 - 1 0 2 8 , 1 9 6 7 .

1 3 3 . M A S A M U N E , Y . , F R E N K E L , G.D., R I C H A R D S O N , C . J . Biol.

Chem. 2 4 6 : 6 8 7 4 - 6 8 7 9 , 1 9 7 1 .

2 3 0 VICUÑA

1 3 4 . S lGIMOIO. K . , O K A / . A K I . T . , O k A / A K I . R. PlOC. Nall.

Acad. Sci. I S A . 60:1356-1362. 1968. 135. N E W M A N , ) . , H A N A U A L I , P. Cold Spring Harbor Svinp.

Quant. Biol. 53:145-150. 1968. 136. S G \ R A M E L L A , V. P r o c . Nat l . A c a d . Sci. i s v.

69:3389-3393. 1972.

137. K l . E P P E , K . , VAN lit S A S D K , J . H . . K l I O R A N A , H . G . P l O C .

Natl. Acad. Sci. I S A . 67:68-73, 1970.

138. F A R E E D , ( i . C , W i l l , E.M.. R I C H A R D S O N , C. J . Biol.

Chem. 246:925-932, 1971.

139. S A N O , H . , F E I X , G . Biochemistry /5:51 10-5115, 1974.

140. N A I I I . K. , H U R W I I Z , ) . | . Biol. C:hem. 249:3680-3688 ,

197*4.

141. B E A R D , P. Biochim. Biophys. Acta: 269:385-396,

1972.

142. SontRi iAi . i , S., L I N D A I I I . , T . Biochim. Biophys. Res.

Commun. 53:910-916, 1973.

143. Z I M M E R M A N , S . B . , L E \ I N . C . J . ) . Biol. C h e m .

250:149-155, 1975.

144. P U M I A I J - N O V , G . L . . S l ' A D A k l , S.. ClARROCGIII, G. , P E I I R I N I .

A.M., F A I . V K . H I , A . , Eur. ]. Biochem. 39:343-351, 1973.

145. S O D E R H A I E , H . , L I M H H I . , T . | . Bio l . C h e m . 24^:672-675, 1973.

146. S O D E R H A I . ! . . S. Eur. J . Biochem. 57:129-136. 1975. 147. S O D E R H A L I , S . , L I N D A I I I . , T . J . B io l . C h e m .

250:8438-8444. 1975.

148. M A R I A N S , K . J . , I K E D A , ]., S C I I I . A C . U A N , S., H I K W U Z . J .

Proc. Natl. Acad. Sci. I S A . 74:1965-1968, 1977.

149. D K I I C A , K. , S N Y D E R , M. ]. Mol. Biol. 720:145-154, 1978.

150. M A I I E K N . M.R., P A I N I K R , R . B . Biochim. Biophvs.

Acta. 563:293-305, 1979.

151. M A I I - E R N , M.R. , P A L M E R , R . B . Biochim. Biophys.

Acta. 563:306-312, 1979.

152. C O Z Z A R E L L I , N.R. Ann. Rev. Biochem. 46:641-

668, 1977.

153. K E L L E R , W . , W E N D E L L , I . Cold Spring Harbor Symp.

Quant. Biol. 39:199-208, 1975.

154. W E I N E R , J . H . , B E R I S C H , L . L . , K O R N B E R G , A . | . Biol.

Chem. 250:1972-1980 , 1975.

155. S l t . A L , N., D E L I U S , H . , K O R N B E R G , T . . G E E I E R , M.L.,

A L B E R I S , B . P r o c Natl. Acad. Sci. I S A . 69:3537-3541,

1972.

156. M O L I N E L X , I . J . . G E E I E R , M.L. ) . Mol. Biol. 9#:811-825,

1975.

157. MoiiNEix, I . J . , F R I E D M A N , S . , G E E T E K , M.L. J . Biol.

Chem. 249:6090-6098 , 1974.

158. M E Y E R , R.R., G L A S S B E R G , J . , K O R N B E R G , A . Proc. Natl.

Acad. Sci. L ' S A . 76:1702-1705, 1979.

159. A L B E R I S , B . M . , F R E Y , L . Nature227:1313-1318, 1970.

160. J E N S E N , D . E . , K E L L Y , R.C., V O N H I P P I E , P . H . J . Biol.

Chem. 257:7215-7228 , 1976.

161. D E L R S , H., M A N T E L L , N . J . , A L B E R I S , B . M . J . Mol. Biol.

67:341-350, 1972.

162. N O S S A L , N . G . J . Biol. Chem. 249:5668-5676 , 1974.

163. E P S T E I N , R., B O L L E , A., S T E I N B E R G , C , K E L L E N B E R I . E R , E.,

B O Y D E L A T O U R , E., C H E V A L L E Y , R., E D G A R , R., S I S M A N ,

M., D E N H A R D I , G., L i E i . A i s i s , A. Cold Spring Harbor

Symp. Quant. Biol. 2<?:375-392, 1963.

174. We, J . , Y F H , Y . J . Virol. 72:758-765, 1973.

1 6 5 . T O M I Z A U \ , ] . . A N R A K I . N. , 1 \ \ A M A . Y . | . Mol. Biol.

2 7 : 2 4 7 - 2 5 3 . 1 9 6 6 .

1 6 6 . St i i r . K / i M . E R . E . . L I I I I N , I .. ] o s i , E . Mol. ( . tu . Genet.

7 2 3 : 2 4 7 - 2 6 2 , 1 9 7 3 .

1 6 7 . R E U B E N , R.C.. G E M I R . M . L . Proc. Natl. Acad. Sci. i s \ .

7 0 : 1 8 4 6 - 1 8 5 0 . 1 9 7 3 .

1 6 8 . R E U B E N , R . C . , G E M I R , M . L . J . Biol . C h e m .

2 4 9 : 3 8 4 3 - 3 8 5 0 . 1 9 7 4 .

1 6 9 . S A L S i R O M . J .S . . P R A I I . O . J . Mol. Biol. 61:

4 8 9 - 5 0 1 , 1 9 7 1 .

1 7 0 . O E Y . J . L . , K N I I T E R S , R . J . Mol. Biol. 6.V: 1 2 5 - 1 3 8 . 1 9 7 2 .

1 7 1 . A L B I R E S , B . , F R E Í , L . . D E L H S , H . J . Mol. Biol. 6 ^ : 1 3 9 - 1 5 2 . 1 9 7 2 .

1 7 2 . M c P l l E R S O N , A . , Joi 'RNAk, F . . W \ N G , A., K o i I ' V k , 1'..

M o i . i N t i N , L, Run, A . Cold Spring Harbor Svmp.

Quant. Biol. 4 3 : 2 1 - 2 8 , 1 9 7 8 .

1 7 3 . P R A I I , D.. L A W S , P . , Gkiiiiin, | . J . Mol. Biol.

« 2 : 4 2 5 - 4 3 9 , 1 9 7 4 .

1 7 4 . Hon A . Y. . S i i .RN. H . Dev. Biol. 2 6 : 8 7 - 9 9 . 1 9 7 1 .

1 7 5 . HikkiGk. G. . A i H I K I S , B . M . | . Bio l . Clieni.

2 5 7 : 2 1 2 4 - 2 1 3 2 , 1 9 7 6 .

1 7 6 . D i c i i i . M . , i n R . M O N D O , A . M . J . Biol. Chem.

2 5 5 : 1 6 6 0 - 1 6 6 6 . 1 9 7 8 .

1 7 7 . T S A I , R.L., G R E E N , H . J . Mol. Biol. 7 3 : 3 0 7 - 3 1 6 . 1 9 7 3 .

1 7 8 . O M O , B . , B A V N K S , M . . K N U ' P E R S . R. Eur. J . Bioilieni.

7 3 : 1 7 - 2 4 , 1 9 7 7 .

1 7 9 . E N O M O I O , "!'., Y A M A H A , M. Biochem. Biophvs. Res.

Commun. 7 7 : 1 2 2 - 1 2 7 , 1 9 7 6 .

1 8 0 . N A S S , F R E N K E L , G.D. J . Biol. Chem. 2 5 4 : 3 4 0 7 - 3 4 1 0 ,

1 9 7 9 .

1 8 1 . V A N D E R V I . I E I , P . C . , L E V I N E , A . J . , E N S I N G I K . M..

( . I N S B E R G , H.S. |. Virol. 7 5 : 3 4 8 - 3 5 4 . 1 9 7 5 .

1 8 2 . P I R I E O Y , D.J.M., P O W E L L , K . L . J . Virol. 7 9 : 7 1 7 - 7 3 1 .

1 9 7 6 .

1 8 3 . B L U E , W . T . , W I I S S I I A I I I . A . Biochem. Biophvs. Res.

Commun. # 4 : 6 0 3 - 6 1 0 , 1 9 7 8 .

1 8 4 . M A I L E R , | . , H O I I A , Y . Exp. Cell. Res. / 0 9 T 8 1 - I 8 9 .

1 9 7 7 .

1 8 5 . H O L L A , Y . , S I I R N , H . Eur. J . Biochem. 9 5 : 3 1 - 3 8 ,

1 9 7 9 .

1 8 6 . V A N D E R V I . I E I , P . C . , Si S S E N H A G I I , ) .S. Virologv

6 7 : 4 1 5 - 4 2 6 , 1 9 7 5 .

1 8 7 . H O R W I T Z , M . S . P r o c . Nat l . A c a d . Sci . i s \ .

7 5 : 4 2 9 1 - 4 2 9 5 , 1 9 7 8 .

1 8 8 . C A R T E R , T . H . , ( Í I M S B E R G , H.S. | . Virol. IS: 1 5 6 - 1 6 6 ,

1 9 7 6 .

1 8 9 . C A R E E R , T . H . , B L A N I O N , R.A. ) . Virol. 2 5 : 6 6 4 - 6 7 4 .

1 9 7 8 .

1 9 0 . W I L L I A M S , J . F . , Y o l N G , C . S . H . , H A I S I I N , P.E. Cold

Spring Harbor Symp. Quant. Biol. 5 9 : 4 2 7 - 4 3 7 .

1 9 7 4 .

1 9 1 . H o R w r r z , M.S., K A P L A N , L . , A B B O L D , M., M A R I I M O . ) . .

C H O W , L . T . , B R O K E R , T . R . Cold Spring Harbor Svmp.

Quant. Biol. 4 3 : 7 6 9 - 7 8 0 . 1 9 7 8 .

1 9 2 . K A P L A N , L . , A R I O A , H . , H I R W I I Z , ]. , H O R W I I Z , M.S.

Proc. Natl. Acad. Sci. I S A . 7 6 : 5 5 3 4 - 5 5 3 8 . 1 9 7 9 .

1 9 3 . J E N G , Y . H . , Worn, W.S.M., S L G A W A R A , K . , G I L Í \I>. Z . ,

G R E E N , M . J . Virol. 2 2 : 4 0 2 - 4 1 I , 1 9 7 7 .

1 9 4 . L E V I N S O N , A.D., P O S I E L , E.H.. L I A I N I . A.). Virologv

7 9 : 1 4 4 - 1 5 9 , 1 9 7 7 .

1 9 5 . L I N N E , T . , J O R N V A I I , H., P u n I P S O N , L . Fur. ] . Biochem.

7 6 : 4 8 1 - 4 9 0 , 1 9 7 7 .

1 9 6 . W A N G , J . C . J . Mol. Biol. 5 5 : 5 2 3 - 5 3 3 . 1 9 7 1 .

E N / Y M O I . O G Y O F U N A R E P L I C A I I O N

197. K I M . , V . T . , W A N G , J . C . J . B i o l . C l i c m . 252:5398-5402, 1977.

198. Ili cu i . R . , Tu 11 i M \ N N . I I . W . N m . Ac. Res. 4:4235-4248, 1977.

199. Bn.i.. M.,REINBERG, 1)., Vic i NA A, R. , YI DI I.IAII II, A.

Abstr. X I ' 1 ' Intern. Congress Biochein., Toronto, |) . 44, 1979.

200. LK BON, ]. , KADO, C . I . , ROSEN I IIAI , l . J . ( JIIKIKM \ X , J . G .

Proc. Nati. Atad. So. ISA. 75:4097-4101. 1978. 201.Dr.i-Ew, R E . , Lir, L . F . , WAM„ J . C . ). Biol. Clieni.

255:511-518, 1978. 202. B A I E R , W . R . A n n . Rev . B i o p h y s . B i o e n g .

7:287-313, 1978. 203. Li i , L . F . , W A N < ; , J . C . J . B i o l . C h e m .

254:11082-11088, 1979. 204. L I E , L . F . , DEPEW, R . E . , WAM;, J . C . J . Mol. Biol.

706:439-452, 1976. 205. K i R K E i . A A R u , K . , W.INI; , J . C . Nuc l . A c . Res .

5:3811-3820, 1978. 206. GEILERT, M. , MIZITCHI,K.,0'DEA, M . H . , NASH, H . Proc.

Natl. Acad. Sci. ISA. 73:3872-3876, 1976. 207. Lic. L . F . , WANG. J . C . Proc. Natl Acad. Sci. ISA.

75:2098-2102, 1978. 208. K R E I Z E R , K . M . , M C . E N I E E , K . . GI.BAI.EE. A . P . ,

COZZARELLI, H . R . Mol. Gen. Genet. 767:129-137, 1978.

209. TAYLOR, D.E. , LEVI.NE, J . G . Mol. Gen. Genet.

774:127-133, 1979. 210. lion, T . , TOMIZ.AWA, J . Nature; 270:78-80, 1977. 211. Di. W i s G A E R i , M . A . , H I N K I E , D . C . J . Viro l .

29:529-535, 1979. 212. M i z i T c m , K . , GEELERI, M. , NASH, H . A . J . Mol. Biol.

727:375-392, 1978. 213. HAYS, J .B. , BOEHMEK, S. Proc. Natl. Acad. Sci. ISA.

75:4125-4129, 1978. 214. FALCO, S.C.Zivis .R., ROIIIMAN-DENES, L . B . Proc. Natl.

Acad. Sci. ISA. 75:3220-3224, 1978. 215. S M I I H , C . L . , K ino , M . , IMAMOIO. F . N a t u r e

275:420-423, 1978. 216. Sin MAN, H . M SCHWARIZ, M. Biochem. Biophys. Res.

Commun. 64:204-209, 1975. 217. SANZEY, B . J . Bact. 735:40-47, 1979. 218. Y \NG, H . L . , HELLER, K . , GEELERI , M. , ZIIIAY. G. Proc.

Natl. Acad. Sci. ISA. 76:3304-3308, 1979. 219. MCAR-IIIY, D.J. Mol. Biol. 727:265-283, 1979. 220. SIGINO, A., PEEBLES, C . L . , KRLI ZER, K.N. , COZZAREI.I.I,

N.R. Proc. Natl. Acad. Sci. ISA. 74:4767-4771, 1977. 221. HIGGINS, N.P., PEEBLES, C . L . , SIGINO, A., COZZARELLI,

N.R. Proc. Natl. Acad. Sci. ISA. 75:1773-1777, 1978. 222. PEIBI.ES, C . L . , HIGGINS, N.P., KREI ZER, K.N., MORRISON,

A., BROWN, P . O . , SIGINO, A., COZZARELLI, N.R. Cold

Spring Harbor Symp. Quant. Biol. 43:41-52, 1978. 223. GEI.LERI, M. , MiziTciii, K., O'DEA, M . H . , lion, T . ,

ToMizAw.A,). Proc. Natl. Acad. Sci. ESA. 74:4772-4776, 1977.

224. GEI.I.EKI, M. , O'DEA. MIL. Iron, T . , TOMI/.AWA, J . Proc.

Natl. Acad. Sci. ISA. 75:4474-4478, 1976. 225. GEI.I.EKL, M „ MIZLLC.III, K., O'DEA, M . H . , OILMORI, H . ,

TOMIZAWA,]. Cold Spring Harbor Symp. Quant. Biol. 43:35-40, 1978.

226. SIGINO, A., HIGGINS, N.P., BROWN, P.O., PEEBLES. C.I..,

COZZARELLI. N.R. Proc. Natl. Acad. Sci. ISA. 75:4838-4842. 1978.

2 2 7 . Mi/i LCIII, K. , O'DEA, M.H., GEELERI, M. Proc. Natl. Acad. Sci. i SA. 7 5 : 5 9 6 0 - 5 9 6 3 , 1 9 7 8 .

2 2 8 . MORRISON, A., COZZARELLI, N. Cell. 7 7 : 1 7 5 - 1 8 4 , 1 9 7 9 .

2 2 9 . SIEILER, G.I . . , KING, G . | . , HI \NG, W.M. Proc. Natl.

Acad. Sci. ISA. 7 6 : 3 7 3 7 - 3 7 4 1 , 1 9 7 9 .

2 3 0 . L I E , L . F . , L I E , C - C , A I . B I R I S , B . M . N a t u r e

2 5 7 : 4 5 6 - 4 6 1 , 1 9 7 9 .

2 3 1 . KiKic . i i i , Y . , NYSII, 11.A. Proc. Nail. Acad. Sci. i s \ .

7 6 : 3 7 6 0 - 3 7 6 4 , 1 9 7 9 .

2 3 2 . VOSBERG, H-P, VI.NCX.RAI>, ]. Biochem. Biophys. Res. Commun. 6 5 : 4 5 6 - 4 6 4 , 1 9 7 6 .

2 3 3 . B.AASE, W.A. , WANG, J . C . Biochemistry /5=4299-4303,

1 9 7 4 .

2 3 4 . KELLER, W . Proc. Natl. Acad. Sci. ISA. 7 2 : 4 8 7 6 - 4 8 8 0 , 1 9 7 5 .

2 3 5 . VOSBERG, H-P., GROSSMAN, L . I . , VINOGKAD, J . Eur. J

Biochem. 5 5 : 7 9 - 9 3 , 1 9 7 5 .

2 3 6 . CIIAMPOI x, ) . ( . , Mi CON AI GH Y , B . L . Biochemistry

7 5 : 4 6 3 8 - 4 6 4 2 , 1 9 7 6 .

2 3 7 . BALER, W . , RESSNER, E.G., KAIES, ) . , PAIZKE, J . V . Proc.

Natl. Acad. Sci. ISA. 7 4 : 1 8 4 1 - 1 8 4 5 , 1 9 7 7 . 2 3 8 . DLRNEORD, J.M., CIIAMPOI X, J . J . J . Biol. Chem.

2 5 3 : 1 0 8 6 - 1 0 8 9 , 1 9 7 8 .

2 3 9 . GERMOXD, )-E., ROIMERE-YANIV, J . , YANIV, M., BRI I I YG,

D. Proc. Natl. Acad. Sci. ISA. 7 6 : 3 7 7 9 - 3 7 8 3 , 1 9 7 9 . 2 4 0 . C I I A M P O I \ , ) . ) . P r o c . Nat l . A c a d . Sci . I S I ,

7 3 : 3 4 8 8 - 3 4 9 1 , 1 9 7 6 .

2 4 1 . CIIAMPOI x, J . J . P r o c . Nat l . A c a d . Sci . I S Y . 7 4 : 3 8 0 0 - 3 8 0 4 , 1 9 7 7 .

2 4 2 . CIIAMPOI x . J . J . J . Mol. Biol. 7 / 5 : 4 4 1 - 4 4 6 , 1 9 7 8 .

2 4 3 . CIIAMPOI X, J . J . , Yoi xc, L.S. BEEN, M.D. Cold Spring

Harbor Symp. Quant. Biol. 4 3 : 5 3 - 5 8 , 1 9 7 8 . 2 4 4 . FAIREIEI.D, F . R . . BALER, W . R . , SIMPSON, M . V . J . Biol.

Chem. 2 5 4 : 9 3 5 2 - 9 3 5 4 , 1 9 7 9 .

2 4 5 . ABDEE-MONEM, M., HOEEMAN-BERI.ING, H. Eur. J .

Biochem. 6 5 : 4 3 1 - 4 4 0 , 1 9 7 6 .

2 4 6 . ABDEE-MONEM, M., D i RWAID, H . , HOEEMANN-BEREIXG.

H. Eur. J . Biochein. 6 5 : 4 4 1 - 4 4 9 , 1 9 7 6 .

2 4 7 . ABDEE-MONEM, M., LAII-PE, H - F . , KARIENDEC K , J . .

Di 8KAI.II, H . , HOEEMANN-BERI INC., H. J . Mol. Biol.

/ 7 0 : 6 6 7 - 6 8 5 , 1 9 7 7 .

2 4 8 . Ki IIN, B . . ABDEE-MONEM, M.. HOI I \IANX-BI RI ING.

H. Cold Spring H a r b o r Symp. Quant . Biol. 4 3 : 6 3 - 6 7 . 1 9 7 8 .

2 4 9 . K I H N . B . . ABDEE-MONEM, M.. KREI.L, H.. HOEI-

MANN-BIRIING, H. J . Biol. Chem. 2 5 4 : 1 1 3 4 3 - 1 1 3 5 0 .

1 9 7 9 .

2 5 0 . ABDEE-MONEM, M., CHANAL, M-C., Hoi EMANN-BERI ING,

H. Eur. J . Biochem. 7 9 : 3 3 - 3 8 , 1 9 7 7 .

2 5 1 . ABDEE-MONEM, M., DIRWAI.D, H . , HOEEMANN-BEREIXG,

H. Eur. J . Biochem. 7 9 : 3 9 - 4 5 , 1 9 7 7 .

2 5 2 . Rum I . E . . KOHIYAMA, M. ) . Biol. C h e m . 2 5 / : 8 0 8 - 8 1 2 ,

1 9 7 6 .

2 5 3 . RiciiE.i, E., MOREAL, J . , KOHIYAMA, M. Cold Spring Harbor Symp. Quant. Biol. 4 3 : 3 4 5 - 3 4 8 , 1 9 7 4 .

2 5 4 . LANE, H . E . D . , DENIIARDI, D . T . J . Mol. Biol.

9 7 : 9 9 - 1 1 2 , 1 9 7 5 .

2 5 5 . DENIIARDI, D.T., IWAYA, M., LARISON, I . . L . Virology

4 9 : 4 8 6 - 4 9 6 , 1 9 7 2 .

2 5 6 . TESSM.AN, E.S., PETERSON, P . K . J . Virol. 2 0 : 4 0 0 - 4 1 2 ,

1 9 7 6 .

2 5 7 . SIMIDA-YASLMOLO, C , Y I DEEEVIGII. A . , HIRWIIZ. J .

Proc. Natl. Acad. Sci. ISA. 7 3 : 1 8 8 7 - 1 8 9 1 . 1 9 7 6 .

232 VICUÑA

258. Dfoi-iT, M., Y A R R A N T O N , G . , G E E T E R , M . Cold Spring Harbor Symp. Quant. Biol. 43:335-343, 1978.

2 5 9 . S C O T T , J . F . , K O K N B E R G , A. J . B i o l . C h e n ) . 253:3292-3297, 1978.

260. T A K A H A S H I , S. H O L ' K S , C , C H E , A., D E N H A R D T , D . T .

Can. J . Biochem. 57:855-866, 1979.

261. Y A R R A N I O N , G.T. , G E E T E R , M . L . Proc. Natl. Acad. Sci. U S A . 76:1658-1662, 1979.

262. K O R N B E R C , A., Scon, J . F . , B E R T S C H , L . L . J . Biol. Chem. 253:3298-3304, 1978.

263. C L A R C K , A.J. Ann. Rev. Genet. 7:67-86, 1973.

264. Got D M A R K , P. J . , L I N N , S. ] . B i o l . C h e m . 247:1849-1860, 1972.

265. K A R U , A.E., M A C K A V , V . G O L O M A R K , P.J., L I N N , S.J. Biol. Chem. 245:4874-4884, 1973.

266. M A C K A V , V . , ' L I N N , S . J . Biol. Chem. 249:4286-4294 , 1974.

267. K A R U , A.E., L I N N , S. P r o c Natl. Acad. Sci. U S A .

69:2855-2859, 1972.

268. M A C K A V , V . , L I N N , S . J . Biol. Chem. 257:3716-3719 , 1976.

269. R O S A M O N D , J . , E N D I . I C H , B. , T E L A N D E R , K M . , L I N N , S.

C o l d S p r i n g H a r b o r S y m p . Q u a n t . B i o l . 43:1049-1057, 1978.

270. R O S A M O N D , J . , T E L A N D E R , K . M . , L I N N , S. ] . Biol. Chem. 254:8646-8652, 1979.

271. K R E L L , H., D U R W A L O , H., H O E E M A N N - B E K I . I N C , H. Eur. J .

Biochem. 93:387-395, 1979.

272. H O M V K , T . , W E I L , J . Virology 67:505-523. 1974.

273. K O I . O D N E R , R . , R I C H A R D S O N , C.C. Proc. Natl. Acad. Sci.

I S A . 74:1525-1529, 1977.

274. R I C H A R D S O N , C . C , R O M A N O , L .J . . K O L O D N E R , R„ L E . C I . E R C .

J . E . , T A M A N O I , F . , E N G I . E R , M . J . , D E A N , F . B . .

R I C H A R D S O N , D.S. Cold Spring Harbor Symp. Quant.

Biol. 43:427-440, 1978.

275. K O L O D N E R , R . , R I C H A R D S O N , C.C. J . Biol. Chem.

253:574-584, 1978.

276. CoBIANCHI, F . , RlVA, S., M A S T R O M E I , G., S F A D A R I , S.,

P E O R A L I - N O Y , G., F A L A S C . H I , A. Cold Spring Harbor

Symp. Quant. Biol. 43:639-647, 1978.

8. APPENDIX

The following translations into Spanish for the

names of the enzymes discussed in this paper are

proposed:

primase: enzima partidora.

DNA binding protein: proteína DNA-ligante.

HDP: proteína hélice-inestabilizadora. nicking-closing enzyme: enzima de corte y sellado. gyrase: girasa. helicase: helicasa.

swivelase: enzima DNA-relajante.

Recommended