44
Associate Institute for Signal Processing Technische Universität München Strategies to Combat Pilot Contamination in Massive MIMO Systems Michael Joham , David Neumann, and Wolfgang Utschick Associate Institute for Signal Processing Technische Universität München 2nd International Workshop on Challenges and Trends of Broadband Wireless Mobile Access Networks — Beyond LTE-A

Strategies to Combat Pilot Contamination in Massive MIMO Systems

  • Upload
    cpqd

  • View
    806

  • Download
    3

Embed Size (px)

DESCRIPTION

II International Workshop on Challenges and Trends on Broadband Wireless Mobile Access Networks – Beyond LTE-A

Citation preview

Page 1: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Associate Institute for Signal Processing Technische Universität München

Strategies to Combat Pilot Contamination in

Massive MIMO Systems

Michael Joham, David Neumann, and Wolfgang Utschick

Associate Institute for Signal ProcessingTechnische Universität München

2nd International Workshop on Challenges and Trends

of Broadband Wireless Mobile Access Networks — Beyond

LTE-A

Page 2: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Fifth Generation Wireless Systems (5G): Goals

◮ higher data rates

◮ better coverage

◮ lower latency

◮ lower battery consumption

Technische Universität München – Associate Institute for Signal Processing 2

Page 3: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Fifth Generation Wireless Systems (5G): Approaches

◮ small (pico) cells

◮ device-to-device (D2D) communication

◮ multi-hop networks

◮ mm-wave technology

◮ massive MIMO

Technische Universität München – Associate Institute for Signal Processing 3

Page 4: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Massive MIMO Setup

M antennas K users

◮ Large number of base station antennas

◮ About two orders of magnitude more antennas than users:

M ≫ K

Technische Universität München – Associate Institute for Signal Processing 4

Page 5: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Law of Large Numbers

Let x ∈ CN and y ∈ C

N be random with N i.i.d. entries.

Due to law of large numbers,

◮ limN→∞1N1Tx = limN→∞

1N

∑Ni=1 xi

a.s.= E[xi]

◮ limN→∞1N‖x‖22

a.s.= E[|xi|2]

zero-mean x: limN→∞1N‖x‖22

a.s.= var(xi)

◮ limN→∞1NyHx

a.s.= E[y∗i ] E[xi]

zero-mean x: limN→∞1NyHx

a.s.= 0

Technische Universität München – Associate Institute for Signal Processing 5

Page 6: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Benefits of Massive MIMO

Array Gain

M

SNR

Law of Large Numbers

◮ Asymptotic orthogonality: 1M

hHi hj → 0

◮ Channel hardening: 1M

‖hi‖22 → σ2 for hi ∼ NC(0, σ2I)

⇒ Robust spacial multiplexing with simple signal

processing methods

[Marzetta, 2010, Mohammed and Larsson, 2013]

Technische Universität München – Associate Institute for Signal Processing 6

Page 7: Strategies to Combat Pilot Contamination in Massive MIMO Systems

System Model

Uplink

yuli =

L∑

j=1

Hijsulj + nul

i

Downlink: Linear Precoding

ydlj =

L∑

i=1

HTijWis

dli + ndl

Wi = [wi1, . . . ,wiK ] and Hij = [hij1, . . . ,hijK ]

TDD: reciprocity of uplink and downlink channels

Technische Universität München – Associate Institute for Signal Processing 7

Page 8: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CSI Acquisition

Uplink Training

h = h + n

Technische Universität München – Associate Institute for Signal Processing 8

Page 9: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CSI Acquisition

Uplink Training

h = h+hI + n

◮ Pilot contamination:

interference during channel estimation

Technische Universität München – Associate Institute for Signal Processing 8

Page 10: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CSI Acquisition

Uplink Training

h = h+hI + n

◮ Pilot contamination:

interference during channel estimation

◮ Focused downlink interference

◮ Ultimate limit on data SINR

[Marzetta, 2010]

Technische Universität München – Associate Institute for Signal Processing 8

Page 11: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CSI Acquisition

Uplink Training

h = h+hI + n

◮ Pilot contamination:

interference during channel estimation

◮ Focused downlink interference

◮ Ultimate limit on data SINR

[Marzetta, 2010]

Multi-cell scenario

Hi = Hii +

L∑

j=1,j 6=i

Hij +N tri

Technische Universität München – Associate Institute for Signal Processing 8

Page 12: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Achievable Rate

Lower bound on achievable rate [Medard, 2000]

rjk = log2(1 + γjk)

with

γjk =|E[hH

jjkwjk]|21ρdl

+ var[hHjjkwjk] +

∑L,Ki=1,n=1

(i,n)6=(j,k)

E[|hHjjkwin|2]

Technische Universität München – Associate Institute for Signal Processing 9

Page 13: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Achievable Rate

Lower bound on achievable rate [Medard, 2000]

rjk = log2(1 + γjk)

with

γjk =|E[hH

jjkwjk]|21ρdl

+ var[hHjjkwjk] +

∑L,Ki=1,n=1

(i,n)6=(j,k)

E[|hHjjkwin|2]

Matched filter wjk =√αjkhjk and M → ∞

γjk =αjk tr(Rjjk)

2

∑Li=1i 6=j

αik tr(Rijk)2

Technische Universität München – Associate Institute for Signal Processing 9

Page 14: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Dealing With Pilot-Contamination

◮ Pilot design, allocation of pilot sequences

[ITG WSA 2014], [IEEE SAM 2014]

◮ Non-linear semi-blind channel estimation

[IEEE SPAWC 2014]

◮ CoMP approach based on channel distribution information

[ITG SCC 2015]

Technische Universität München – Associate Institute for Signal Processing 10

Page 15: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Pilot Allocation

Cell 1 Cell 2

Technische Universität München – Associate Institute for Signal Processing 11

Page 16: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Pilot Allocation

Cell 1 Cell 2

Technische Universität München – Associate Institute for Signal Processing 11

Page 17: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Pilot Allocation

T

Ttr Tul Tdl

◮ Fixed pilot sequence length

◮ Limited pool of orthogonal pilot sequences

◮ Allocation of one pilot sequence to each user

Technische Universität München – Associate Institute for Signal Processing 12

Page 18: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Non-Cooperative Allocation

◮ Random allocation

◮ Fractional reuse of pilot sequences if Ttr > K

◮ Position based allocation◮ Group cells with a reuse pattern◮ Assign pilots based on local channel quality and group

index

Technische Universität München – Associate Institute for Signal Processing 13

Page 19: Strategies to Combat Pilot Contamination in Massive MIMO Systems

NUM Based Allocation

◮ Use asymptotic rates to optimize pilot allocation

◮ Network utility maximization with respect to pilot

assignments

maxP1,...,PL∈{0,1}

K×Ttr

U(r11, . . . , rLK) s.t. PiPTi = I ∀i

◮ Network-wide combinatorial optimization problem

◮ Exhaustive search usually prohibitively complex

◮ Greedy methods are applicable

Technische Universität München – Associate Institute for Signal Processing 14

Page 20: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Performance Gain

L = 21, K = 10, β = d−α, α = 3.8

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.00.00

0.20

0.40

0.60

0.80

1.00

CDF of user downlink rates in Bit/s/Hz

Uncoordinated

Position Based

Greedy

Technische Universität München – Associate Institute for Signal Processing 15

Page 21: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Trade-Off between Pilot and Data Resources

L = 21, K = 10, T = 185, β = d−α, α = 3.8

10 14 18 22 26 30 34 38 42 46 50

1.00

1.20

1.40

1.60

1.80

2.00

Training resources Ttr

rate

of5

thp

erc

en

tile

Greedy

Position Based

Fractional Reuse

Uncoordinated

Technische Universität München – Associate Institute for Signal Processing 16

Page 22: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Non-Linear Channel Estimation

◮ Linear channel estimation based on pilots suffers from

pilot-contamination

◮ Reduce pilot-contamination by non-linear channelestimation based on data signals

◮ blind channel estimation[Mueller et al., 2013, Ngo and Larsson, 2012]

◮ semi-blind channel estimation[SPAWC 2014]

Technische Universität München – Associate Institute for Signal Processing 17

Page 23: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

T

Tul Tdl

Uplink data:

Y uli =

L∑

j=1

HijSulj +Nul

i

◮ Estimate all channels Hij at base station i

◮ MAP approach

Technische Universität München – Associate Institute for Signal Processing 18

Page 24: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

Let Hi = [Hi1, . . . ,HiL]

Conditional density

fY

uli|Hi

(Y uli |Hi) ∝

exp[

− tr[

Y uli

H (ρulHiH

Hi + I

)−1Y uli

]]

detTul(

ρulHHi Hi + I

)

∝exp

[

tr

[

Y uli Y ul

i

HHi

(

HHi Hi +

1ρul

I

)−1HH

i

]]

detTul(

ρulHHi Hi + I

)

Technische Universität München – Associate Institute for Signal Processing 19

Page 25: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

MAP Formulation

Hblindi = argmax

Hi

[

tr

[

Y uli Y ul

i

HHi

(

HHi Hi +

1

ρul

I

)−1

HHi

]]

− Tul log det(

ρulHHi Hi + I

)

− tr(HiD−1i HH

i )

hijk ∼ NC(0, βijk I) and Di = diag(βi11, . . . , βiLK)

Technische Universität München – Associate Institute for Signal Processing 20

Page 26: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

with the singular value decomposition Hi = UiΣiVHi

MAP Formulation

Hblindi = argmax

Hi

tr

[

UHi Y ul

i Y uli

HUiΣ

2i

(

Σ2i +

1

ρulI

)−1]

− Tul log det(

ρulΣ2i + I

)

− tr(V Hi D−1

i ViΣ2i )

Technische Universität München – Associate Institute for Signal Processing 21

Page 27: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

Left Singular Vectors

tr

[

UHi Y ul

i Y uli

HUiΣ

2i

(

Σ2i +

1

ρulI

)−1]

⇒ Ui: principal eigenvectors of Y uli Y ul

i

H

Right Singular Vectors

− tr(V Hi D−1

i ViΣ2i )

⇒ Vi: permutation such that diagonal of V Hi D−1

i Vi is sorted

ascendingly

Technische Universität München – Associate Institute for Signal Processing 22

Page 28: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

⊕ Analytical solution for MAP estimator

Technische Universität München – Associate Institute for Signal Processing 23

Page 29: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Blind Estimation

⊕ Analytical solution for MAP estimator

⊖ Large amount of uplink data necessary

⊖ Not applicable in practical systems

⊖ Performance disappointing

Technische Universität München – Associate Institute for Signal Processing 23

Page 30: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Semi-blind Estimation

T

Ttr Tul Tdl

◮ Use both training signals and uplink data

◮ MAP approach

Technische Universität München – Associate Institute for Signal Processing 24

Page 31: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Semi-blind Estimation

Additional Training Based Term

−∥

Y tr −√ρtrHiiΨi −

L∑

j=1j 6=i

√ρtrHijΨj

2

F

◮ No analytical solution

◮ Gradient based optimization

◮ Accurate initial guess via heuristic based on projection of

least squares estimate on eigenvectors of Y uli Y ul

i

H

Technische Universität München – Associate Institute for Signal Processing 25

Page 32: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Results

L = 21, M = 100, K = 5, Tul = 200channel model based on urban macro scenario in [ITU-R, 2009]

0.0 1.0 2.0 3.0 4.0 5.0 6.00.00

0.20

0.40

0.60

0.80

1.00

User rates

Linear MMSE

Blind

Subspace Projection

Semi-blind Heuristic

Semi-blind MAP

Technische Universität München – Associate Institute for Signal Processing 26

Page 33: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI Precoding

◮ Additional static precoding step

◮ Reduction of interference based on structure in the

propagation environment and/or a coordinated multi-point

approach

Technische Universität München – Associate Institute for Signal Processing 27

Page 34: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI structure

CoMP

d11

d21

d12

d22

◮ Structure of channel covariance matrix depends on

terminal position

Technische Universität München – Associate Institute for Signal Processing 28

Page 35: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI structure

Multi-path propagation

◮ Structure of channel covariance matrix depends on

terminal position

Technische Universität München – Associate Institute for Signal Processing 28

Page 36: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI Precoding

Equivalent Single Cell Scenario

hi ∼ NC(0,Ri) with Ri 6= βi I

Identical Pilot Sequences

least squares estimate: hi =∑L

j=1 hj + ni

CDI precoder

wi = Aihi

Technische Universität München – Associate Institute for Signal Processing 29

Page 37: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Achievable Rate

SINR

γi =ui

1ρdl

+ vi + ti

with

ui = |tr[RiAi]|2

vi =

K∑

j=1

tr

[

RiAj

(

1

ρtrI+

K∑

n=1

Rn

)

AHj

]

ti =

K∑

j=1j 6=i

|tr[RiAj]|2

◮ For large M the quadratic terms are dominant

◮ Choose Ai such that tr(RiAj) = 0

Technische Universität München – Associate Institute for Signal Processing 30

Page 38: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI Zero-forcing

◮ Choose Ai such that tr(RiAj) = 0

Vectorization

ri = vec(Ri)

R = [r1, . . . , rK ]and

ai = vec(Ai)

A = [a1, . . . ,aK ]

Technische Universität München – Associate Institute for Signal Processing 31

Page 39: Strategies to Combat Pilot Contamination in Massive MIMO Systems

CDI Zero-forcing

◮ Choose Ai such that tr(RiAj) = 0

Vectorization

ri = vec(Ri)

R = [r1, . . . , rK ]and

ai = vec(Ai)

A = [a1, . . . ,aK ]

Pilot-contamination Suppressing Precoder

RHA!= 0 ⇒ A = R+

Technische Universität München – Associate Institute for Signal Processing 31

Page 40: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Single-cell Scenario

K = 9, Ttr = 3channel model based on urban macro scenario in [ITU-R, 2009]

200 400 600 800 1,000 1,200 1,4000.00

2.00

4.00

Number of Antennas

Sp

ectr

ale

fficie

ncy

pe

ru

se

rin

Bit/s

/Hz

No CDI precoding

MMSE estimation

CDI zero-forcing

Time sharing

Technische Universität München – Associate Institute for Signal Processing 32

Page 41: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Multi-cell Scenario

L = 7, K = 2

100 200 300 4000.00

2.00

4.00

6.00

Number of Antennas

Sp

ectr

ale

fficie

ncy

pe

ru

se

rin

Bit/s

/Hz

No CDI precoding

MMSE estimation

CDI zero-forcing

PCP zero-forcing

Technische Universität München – Associate Institute for Signal Processing 33

Page 42: Strategies to Combat Pilot Contamination in Massive MIMO Systems

Conclusions

◮ huge antenna gain

◮ law of large numbers: orthogonalization & hardening

◮ limited number of pilot sequences: pilot contamination

◮ reduction of pilot contamination:

coordination and semi-blind channel estimation

◮ potentially suppression of pilot contamination:

decontamination by channel distribution precoding

Technische Universität München – Associate Institute for Signal Processing 34

Page 43: Strategies to Combat Pilot Contamination in Massive MIMO Systems

References I

[ITU-R, 2009] ITU-R (2009).Guidelines for evaluation of radio interface technologies for IMT-Advanced.Technical Report Report ITU-R M.2135-1, International Telecommunication Union (ITU).

[Marzetta, 2010] Marzetta, T. (2010).Noncooperative cellular wireless with unlimited numbers of base station antennas.IEEE Transactions on Wireless Communications, 9(11).

[Medard, 2000] Medard, M. (2000).The Effect Upon Channel Capacity in Wireless Communications of Perfect and Imperfect Knowledge of theChannel.IEEE Transactions on Information Theory, 46(3):933–946.

[Mohammed and Larsson, 2013] Mohammed, S. and Larsson, E. (2013).Per-antenna constant envelope precoding for large multi-user MIMO systems.IEEE Transactions on Communications, 61(3):1059–1071.

[Mueller et al., 2013] Mueller, R. R., Vehkaperae, M., and Cottatellucci, L. (2013).Blind pilot decontamination.In 17th International ITG Workshop on Smart Antennas (WSA).

[Neumann et al., 2014a] Neumann, D., Gründinger, A., Joham, M., and Utschick, W. (2014a).On the amount of training in coordinated massive MIMO networks.In 8th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 293–296.Invited paper.

[Neumann et al., 2014b] Neumann, D., Gründinger, A., Joham, M., and Utschick, W. (2014b).Pilot coordination for large-scale multi-cell TDD systems.In 18th International ITG Workshop on Smart Antennas (WSA).

Technische Universität München – Associate Institute for Signal Processing 35

Page 44: Strategies to Combat Pilot Contamination in Massive MIMO Systems

References II

[Neumann et al., 2014c] Neumann, D., Joham, M., and Utschick, W. (2014c).Channel Estimation in Massive MIMO Systems.In preparation.

[Neumann et al., 2014d] Neumann, D., Joham, M., and Utschick, W. (2014d).Suppression of pilot-contamination in massive MIMO systems.In 15th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC),pages 11–15.

[Neumann et al., 2015] Neumann, D., Joham, M., and Utschick, W. (2015).CDI precoding for massive MIMO.In 10th International ITG Conference on Systems, Communications and Coding (SCC).

[Ngo and Larsson, 2012] Ngo, H. Q. and Larsson, E. (2012).EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays.In 37th International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3249–3252.

Technische Universität München – Associate Institute for Signal Processing 36