Massive MIMO

Embed Size (px)

DESCRIPTION

presentation on massive MIMO

Citation preview

  • MM

    YS

    Massive MIMO:

    Fundamentals, Opportunities and Challenges

    Erik G. Larsson

    June 9, 2013

    Div. of Communication SystemsDept. of Electrical Engineering (ISY)

    Linkoping UniversityLinkoping, Sweden

    www.commsys.isy.liu.se

  • With thanks to my team and collaborators:

    Hien Q. Ngo (LiU, Sweden) Antonios Pitarokoilis (LiU) Hei Victor Cheng (LiU) Daniel Persson (LiU)

    Fredrik Rusek (Lund, Sweden) Ove Edfors (Lund) Buon Kiong Lau (Lund) Fredrik Tufvesson (Lund)

    Thomas L. Marzetta (Bell Labs/Alcatel-Lucent, USA)

    Saif Mohammed (IIT/Delhi, India)

    Christoph Studer (Rice Univ., USA)

    1/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Massive MIMO

    M=

    x100

    antennas!K

    terminals

    k=1

    k=K

    Massive multiuser MIMO (MISO): M K 1 (think 100 10 or 500 50) coherent, but simple, processing

    Potential to dramatically improve rate & reliability

    Potential to drastically scale down TX power

    Not only theory, at least one known testbed (64 10)

    2/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Large MIMO Deployment Scenarios

    Reduce bulky items (coax) Each antenna unit simple (low accuracy) Resilience against individual failures (hotswapping) Potential economy of scale in manufacturing Grid-free powering

    3/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Massive MIMO Operation

    Not enough resources for pilots & CSI feedback, so operate in TDD.

    On the uplink, acquire CSI from uplink pilots and/or blindly from data detect symbols M K linear processing (MRC, ZF, MMSE) nearly optimal

    On the downlink, use CSI obtained on the uplink make necessary adjustments based on reciprocity calibration apply multiuser MIMO precoding simple precoders desirable (and very good!): MRT, ZF, MMSE, ...

    MRC/MRT operation intracell interference will appear as noise 1 bps/Hz/terminal; K bps/Hz/terminal total distributed implementation

    ZF/MMSE operation can cancel out intra cell interference computationally more demanding

    4/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • MRT versus ZF precoding

    5/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Massive MIMO Opportunities

    Multiplexing gain K, Array power gain M (ideally)

    Rely on the law of large numbers average out fast fading and thermal noise

    Channel hardens h2/M constant no FD scheduling, full BW to all terminals, simple MAC almost no air-interface latency

    In the 1 bps/Hz/t regime, many impairments drown in thermal noise

    M K unused degrees of freedom (e.g. 500 50 = 450)

    6/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Massive MIMO Challenges and Questions

    Multiplexing gain can only materialize if channel responses are(nearly) orthogonal

    Array gain relies on coherency getting CSI is the main thing

    HW power consumption (RF) must scale fast enough with PHW power consumption (BB) must scale slow enough with M

    Scaling down P thermal noise eventually limits performance.

    P large enough, interference limits performance intracell interference intercell interference

    7/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Limits Imposed by Propagation

    8/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Favorable propagation in Point-to-Point MIMO

    M K MIMO link H , M K

    Favorable propagation (f.p.) if

    HHH I 21 = . . . = 2K For H2 = constant, log

    I + 1N0HHH max if f.p.

    (maxmin

    )2= extra power needed to use all eigenmodes

    Hmk zero mean & i.i.d., and M K f.p.

    9/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Favorable propagation in MU-SIMO

    Favorable propagation if

    1

    MgHi gj 0 for i 6= j

    gi2 depends on path loss and shadow fading10/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • I.i.d. channels give favorable propagation

    tail no tail

    ~20 dB ~3 dB

    11/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Do we have favorable propagation in practice?

    Our partners at Lund Univ., Sweden have conducted uniquemeasurements [RPL2013,GERT2011,GTER2012].

    Indoor 128-ant. (4x16 dual-pol.) array. 3 users indoor, 3 outdoor.

    2.6 GHz CF, 50 MHz BW, 100 snapshots (10m).

    Normalized to retain only small-scale fading.

    12/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Lund measurements, example of results

    tail no tail

    ~26 dB ~7dB

    13/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Summary

    Assumptions on f.p. have substantial support in measurements

    I.i.d. model for small-scaled fading appears reasonable

    More details and models in F. Tufvessons tutorial next

    14/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Limits Imposed by Noise and Intracell Interferencewith Linear Processing

    15/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Single-Cell (Noise-Limited) Uplink

    M antennas K terminals Power (SNR) per terminal: P i.i.d. Rayleigh fading

    Coherence interval: T symbols (e.g. 2 100kHz 1ms = 200) K mutually orthogonal pilots of length (K T )

    pilots data

    t T-t MMSE channel estimation

    16/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Spectral-energy efficiency tradeoff

    Sum-spectral efficiency bounds [NLM2013]:

    R =

    (1

    T

    )K log2

    (1 + (M1)P

    2

    (K1)P 2+(+K)P+1), for MRC(

    1 T

    )K log2

    (1 + (MK)P

    2

    (+K)P+1

    ), for ZF

    Energy efficiency: ,R

    P SISO system: K = 1,M = 1

    maxP,

    , s.t. R = const.

    17/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • UL, T = 200, SISO reference, M = K = 1

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    K = 1, M = 1

    20 dB

    10 dB

    0 dB

    -10 dB

    Rel

    ativ

    e En

    ergy

    -Ef

    ficie

    ncy

    (b

    its/J)

    /(bits

    /J)

    Spectral-Efficiency (bits/s/Hz)18/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Spectral-energy efficiency tradeoff, cont.

    Sum-spectral efficiency bounds [NLM2013]:

    R =

    (1

    T

    )K log2

    (1 + (M1)P

    2

    (K1)P 2+(+K)P+1), for MRC(

    1 T

    )K log2

    (1 + (MK)P

    2

    (+K)P+1

    ), for ZF

    Energy efficiency: =R

    P SISO system: K = 1,M = 1

    maxP,

    , s.t. R = const.

    Single-user SIMO system: K = 1,M = 100

    maxP,

    , s.t. R = const.

    19/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • UL, T = 200, SISO and SU-SIMO

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    K=1, M=1 (SISO)

    20 dB

    10 dB

    0 dB

    -10 dB

    Rel

    ativ

    e En

    ergy

    -Ef

    ficie

    ncy

    (b

    its/J)

    /(bits

    /J)

    Spectral-Efficiency (bits/s/Hz)

    K=1, M=100 (SU-SIMO)

    20/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Spectral-energy efficiency tradeoff, cont. Sum-spectral efficiency bounds [NLM2013]:

    R =

    (1

    T

    )K log2

    (1 + (M1)P

    2

    (K1)P 2+(+K)P+1), for MRC(

    1 T

    )K log2

    (1 + (MK)P

    2

    (+K)P+1

    ), for ZF

    Energy efficiency: =R

    P SISO system: K = 1,M = 1

    maxP,

    , s.t. R = const.

    Single-user SIMO system: K = 1,M = 100

    maxP,

    , s.t. R = const.

    Multi-user SIMO system: M = 100, K 1 adapted

    maxP,,K

    , s.t. R = const.

    21/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • UL, T = 200, SISO, SU-SIMO & MU-SIMO

    0 10 20 30 40 50 60 70 80 9010

    -1

    100

    101

    102

    103

    104

    (MU-SIMO)M = 100K adaptive

    ZF processing

    K=1, M=1 (SISO)

    20 dB

    10 dB

    0 dB

    -10 dB

    -20 dB

    Rel

    ativ

    e En

    ergy

    -Ef

    ficie

    ncy

    (b

    its/J)

    /(bits

    /J)

    Spectral-Efficiency (bits/s/Hz)

    K=1, M=100 (SU-SIMO)

    MRC processing

    22/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Analysis Methodology - MRC & Perfect CSI

    y =PGGGxxx+ nnn

    noise, i.i.d. CN (0,1)

    zmrc ,GGGHyyy =GGGH

    (PGGGxxx+ nnn

    )=PGHGx+GHn

    zk,mrc =Pgggk2xk desired signal

    +Pi6=k

    gggHk gggixi interference

    +gggHk nnnnoise

    Achievable ergodic rate

    Rk,mrc = E

    {log2

    (1 +

    Pgggk2PK

    i6=k |gi|2 + 1

    )} log2

    1 +

    (E

    {PK

    i6=k |gi|2 + 1Pgggk2

    })1= log2

    (1 +

    P (M 1)P (K 1) + 1

    )

    Observe that: gi ,gggHk gggigggk

    CN (0, 1), indep. of gk Use E[log(1 + 1/x)] log(1 + 1/E[x])

    Here: E{

    1

    gk2

    }= 1

    M1, since E

    {tr

    (WWW1

    )}= m

    nm, if

    WWW Wm (n,IIIn).

    23/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Analysis Methodology - MRC & Estimated CSI CSI from pilots: GGG =GGG + EEE , where i CN

    (0, 1

    Pp+1IIIM

    ), gggi CN

    (0,

    Pp

    Pp+1IIIM

    ),

    Pp = P , =#pilots MRC

    zmrc = GGGHyyy = GH (

    PGx+ n) = GGG

    H(

    PGGGxxxPEEExxx +nnn

    ) zk,mrc =

    Pgggk2xk +

    P

    Ki6=k

    gggHk gggixi

    P

    Ki=1

    gggHk ixi + ggg

    Hk nnn

    Achievable ergodic rate per terminal

    Rk,mrc =

    (1

    T

    )E

    {log2

    (1 +

    Pgggk2P

    Ki6=k |gi|2 + P

    Ki=1

    1P+1

    + 1

    )}

    (1

    T

    )log2

    1 +(E{PKi6=k |gi|2 + PKi=1 1P+1 + 1Pgggk2

    })1=

    (1

    T

    )log2

    (1 +

    P 2 (M 1)P (P + 1) (K 1) + ( + 1)P + 1

    )

    gk and gi ,gggHk gggi

    gggk, i 6= k are independent

    24/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Summary

    10 spectral efficiency and 1000 radiated energy efficiencypossible with M = 100 antennas and MRC

    Results for DL are similar (no D.o.F penalty for pilot transmission)

    25/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Limits Imposed by Intercell Interference

    26/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Pilot Contamination Problem

    (Probably) must rely on UL pilots to get CSI

    On UL, may rely partly on blind/joint channel estimation and datadecoding techniques to avoid pilot based estimation

    But on DL, need explicit CSI to precode

    27/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Pilot Contamination Problem, cont.

    Consider UL training; one interferer

    YpM

    = GMK

    K

    +N + fffM1

    T1

    LS estimation, with orthogonal pilots(H = PpI, say Pp = 1)

    G = YpH = G

    MK+NH

    i.i.d.

    + fffM1

    TH 1K

    rank1

    1

    2

    M

    g1

    gk

    gK

    1

    K

    k

    f

    Say g1 used for MRC data detection: y = Gx+ fffz + n

    1M

    gH1 y =1

    M

    (gH1 Gx+ g

    H1 fffz + g

    H1 n

    )=

    1

    MgH1 G eeeT

    1

    x

    x1

    +1

    M

    (fffH

    )1fffz

    1M()

    1fffHfffz

    ()1z

    + O(

    1M

    )

    28/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Pilot Contamination Problem, cont.

    In principle, could project away fffT :

    YpT = G

    T +N

    T

    and estimate G from YpT . But rank

    (T

    )= 1, so we

    sacrifice signal space

    The effect on the downlink is similar

    Can show: p.c. fundamentally limits performance of massive MIMOif P is fixed and M [Mar2010]

    Can show: other cells transmitting data is as bad as other cellssending pilots [NLM2013]

    But currently not clear, how bad the p.c. effect is if other types ofCSI estimation is used

    29/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Summary

    Interference from other cells can significantly impair CSI estimationand the ensuing UL detection & DL precoding: pilotcontamination

    Possible (partial) countermeasures (on UL) Blind (partial pilot-free) CSI estimation (NL2011) identify subspace associated with different cells exploiting power

    control & channel hardening [MVC2013] clever allocation of pilots in different cells [YGFL2013,FAM2013] pilot cont. precoding [AM2012]

    30/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Excess Degrees of Freedom in Massive MIMO:

    A Unique Opportunity for Hardware-Friendly SignalShaping

    31/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Excess Degrees of Freedom

    There are M K unused degrees of freedom.

    In the downlink, these excess DoF may be used to shape thetransmitted signals in a hardware-friendly way

    Per-antenna constant envelope or low-PAR multiuser precoding Robust to PA non-linearity/less PA backoff Exploit nullspace of HT :

    nullspace dimension = M K!

    y = HTx+w = HT (x+ z) +w

    32/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Beamforming versus Low-PAR Signal Shaping

    33/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Constant-env. MU-MIMO, Flat channel [ML2013]

    0 50 100 150 200 250 30010

    8

    6

    4

    2

    0

    2

    4

    6

    8

    Number of Base Station Antennas (M)

    Min

    . req

    d. P

    T/2

    to a

    chie

    ve a

    per

    use

    r rat

    e of

    2 b

    pcu

    K = 10, Proposed CE Precoder (CE)

    K = 10, GBC Sum Cap. Upp. Bou. (APC)

    1.7 dB

    34/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Constant-env. MU-MIMO, Freq. sel. channel [ML2013a]

    0 10 20 30 40 50 604

    3

    2

    1

    0

    1

    2

    3

    Min

    . req

    d. P

    T/

    2 (dB

    ) to ac

    hieve

    2 bp

    cu/us

    er

    L=1,2,4,8. ZF upper bound (TAPC)L = 1,2,4,8. Coop. lower bound (TAPC)L = 1, CEL = 2, CE (T >> )L = 4, CE (T >> )L = 8, CE (T >> )

    35/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • CE-MU-MIMO PrecodingAnalysis Methodology Ek: energy per information symbol uk (per user) P : total transmit power Received signals:

    yk =

    P

    M

    Mi=1

    hk,ieji+nk =

    PEkuk+

    P

    (Mi=1 hk,ie

    ji

    M

    Ekuk

    )

    ,k

    +nk

    With Gaussian symbols per user:

    I(yk;uk) = h(uk) h(uk | yk) = h(uk) h(uk yk

    PEk

    yk) h(uk) h(uk ykPEk

    ) h(uk) h

    ( kEk

    +nkPEk

    )= log2(pie) h

    ( kEk

    +nkPEk

    )

    log2(pie) log2(pie var

    [ kEk

    +nkPEk

    ])

    log2(pie) log2(pieE

    [ kEk

    +nkPEk

    2 ])

    = log2(pie) log2(pie[E[|k|2]Ek

    +1

    PEk

    ])

    Downlink signal design:

    mini[pi,pi)

    Kk=1

    |k|2 mini[pi,pi)

    Kk=1

    M

    i=1 hk,ieji

    M

    Ekuk

    2

    36/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • PAR-Aware MU-MIMO OFDM Downlink [SL2013]

    Precoder design problem:

    (PMP)

    minimize max{a1 , . . . , aN}

    subject to yw = Hwsw + noise, w Tyw = only noise, w T c.

    Hw: time-frequency channel

    T : used subcarriers; T c: null subcarriers Convex optimization problem, fast algorithm; relaxation

    37/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • PAR-aware MU-MIMO OFDM DL (99% percentiles)

    38/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • PAR-aware MU-MIMO OFDM DL (99% percentiles)

    39/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Summary

    Low PAR may be desirable to enable high overall energy efficiency &low cost

    Large number of antennas offers entirely new and uniqueopportunities for low PAR signal design

    40/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Massive MIMOa Goldmine of Research Problems Base station receiver processing

    Partially distributed processing (MRC/ZF/MMSE hybrids) Advanced channel estimation (exploit excess DoF) Synchronization at low SNR

    Base station transmitter processing Partially distributed processing Low-complexity low-PAPR precoders OFDM or single-carrier?

    Effects of hardware imperfections: Will the law of large numbersdeliver? phase noise and clock distribution, I/Q imbalance, A/D resolution, PA linearity

    Pilot contamination (both UL & DL) may be mitigated by Blind channel estimation algorithms [NL2012] Coordination and planning of pilot reuse [YGFL2013]

    TDD operation using UL channels for DL precoding requiresreciprocity calibration Cost? (BW & power), algorithms?, dedicated hardware?

    Other system issues Time and frequency synchronization at low SNR Idle-terminal paging (DL) under non-CSI@TX

    41/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Eq.-Free SC vs. OFDM @ 1 bps/Hz/t [PML2012]

    50 100 150 200 250 300 350 40018

    16

    14

    12

    10

    8

    6

    4

    2

    0

    No of Base Station Antennas (M)

    Pow

    er (n

    ormali

    zed)

    [dB]

    Time reversal MRT precodingCoop. SumCapacity BoundOFDM Bound T

    cp=Tu/4

    K=10

    42/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Literature

    RPL+2013 F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L.Marzetta, O. Edfors, and F. Tufvesson, Scaling up MIMO:Opportunities and Challenges with Large Arrays, IEEE SPMagazine, Jan. 2013

    NLM2013 H.Q. Ngo, E.G. Larsson and T. Marzetta, Energy andSpectral Efficiency of Very Large Multiuser MIMOSystems, IEEE Trans. Comm. 2013, arXiv:1112.3810.

    ML2013 S.K. Mohammed and E.G. Larsson, Per-antenna ConstantEnvelope Precoding for Large Multi-User MIMO Systems,IEEE Trans. Comm. 2013, arXiv:1201.1634v1.

    ML2013a S.K. Mohammed and E.G. Larsson, Constant-EnvelopeMulti-User Precoding for Frequency-Selective MassiveMIMO Systems, arXiv:1305.1525.

    SL2013 C. Studer and E.G. Larsson, PAR-Aware Large-ScaleMulti-User MIMO-OFDM Downlink, IEEE JSAC, Feb.2013.

    HBD2013 J. Hoydis, S. ten Brink, M. Debbah, Massive MIMO in theUL/DL of cellular networks: How many antennas do weneed, IEEE JSAC, Feb. 2013.

    GERT2011 X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, Linearpre-coding performance in measured very-large MIMOchannels, IEEE VTC 2011

    GTER2012 X. Gao, F. Tufvesson, O. Edfors, and F. Rusek, Measuredpropagation characteristics for very-large MIMO at 2.6GHz, in Proc. Asilomar, 2012 VTC 2011

    YGFL2013 H. Yin, D. Gesbert, M. Filippou, and Y. Liu, ACoordinated Approach to Channel Estimation in Large-scaleMultiple-antenna Systems, IEEE JSAC, Feb. 2013.

    AM2012 A. Ashikhmin and T. Marzetta, Pilot ContaminationPrecoding in Multi-Cell Large Scale Antenna Systems, inProc. ISIT 2012.

    NL2012 H. Q. Ngo and E. G. Larsson, EVD-Based ChannelEstimations for Multicell Multiuser MIMO with Very LargeAntenna Arrays, ICASSP 2012.

    GJ2011 B. Gopalakrishnan and N. Jindal, An Analysis of PilotContamination on Multi-User MIMO Cellular Systems withMany Antennas, IEEE SPAWC 2011.

    NML2013 H. Q. Ngo, T. Marzetta and E. G. Larsson, The multicellmultiuser MIMO uplink with very large antenna arrays anda finite-dimensional channel, IEEE TCOM, 2013.

    PML2012 A. Pitarokoilis, S. K. Mohammed and E. G. Larsson, Onthe optimality of single-carrier transmission in large scaleantenna systems, IEEE Wireless Communication Letters,2012.

    PML2012b A. Pitarokoilis, S. K. Mohammed and E. G. Larsson, Effectof Oscillator Phase Noise on Uplink Performance of LargeMU-MIMO Systems, in Proc. Allerton, 2012.

    Mar2010 T. L. Marzetta, Noncooperative MU-MIMO with unlimitednumbers of base station antennas, IEEE Trans. WC 2010.

    JAMV2011 J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath,Pilot contamination and precoding in multi-cell TDDsystems, IEEE Trans. WC 2011.

    ZYP2013 J. Zhang, X. Yuan, and L. Ping, Hermitian Precoding forDistributed MIMO Systems with Individual Channel StateInformation, IEEE JSAC 2013.

    SY...2012 C. Shepard et al., Argos: practical many-antenna basestations, in Proc. MobiCom 2012.

    MVC2013 R. R. Muller, M. Vehkapera, and L. Cottatellucci, BlindPilot Decontamination, in Proc. WSA 2013.

    FAM2013 F. Fernandes, A. Ashikhmin, and T. L. Marzetta, Inter-CellInterference in Noncooperative TDD Large Scale AntennaSystems, IEEE JSAC, Feb. 2013.

    LTEM2013 E. G. Larsson, F. Tufvesson, O. Edfors and T. L. Marzetta,Massive MIMO for Next Generation Wireless Systems,arXiv:1304.6690.

    43/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University

  • Thank You

    Visit the massive MIMO website

    www.commsys.isy.liu.se/ egl/vlm/vlm.html

    44/44

    Erik G. LarssonMassive MIMO: Fundamentals, Opportunities and Challenges

    Communication Systems

    Linkoping University