20
Seventh International Conference on Informatics and Urban and Regional Planning 1012 May 2012, University of Cagliari A new approach for the assessment of landscape evolution scenarios: from whole to local scale. by Raffaele Pelorosso 1 , Federica Gobattoni 1 , Roberto Monaco 2 and Antonio Leone 1 . 1 DAFNE Department, University of Tuscia, Viterbo, Italy. 2 Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy

Pelorosso, Gobattoni, Monaco & Leone - Input2012

Embed Size (px)

DESCRIPTION

Raffaele Pelorosso, Federica Gobattoni, Roberto Monaco and Antonio Leone on "A new approach for the assessment of landscape evolution scenarios: from whole to local scale"

Citation preview

Page 1: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Seventh International Conference on Informatics and Urban and Regional Planning

10‐12 May 2012, University of Cagliari

A new approach for the assessment of landscape evolution scenarios: from whole to 

local scale. by Raffaele Pelorosso1, Federica Gobattoni1, Roberto Monaco2 and Antonio Leone1 .

1 DAFNE Department, University of Tuscia, Viterbo, Italy.2 Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Torino, Italy

Page 2: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Landscape EquilibriumLandscape continuously evolves. The interactions between human actions and natural 

processes are evolved together researching an equilibrium, usually precarious or metastable, based on fundamental physics laws as the energy conservation and entropy 

growing principles (Kleidon, 2010; Naveh, 1987; Pelorosso et al., 2011). 

All ecosystems, as open systems, continuously exchange energy, nutrients and biomass with the environment through irreversible processes.

Ecosystems evolve developing highly ordered, lower entropy structures to increase the total dissipation of energy and maximize the “global”production of entropy(Gobattoni et al., 2011).

Ecosystems strive to increase their ability to degrade incoming solar energy, and much of this dissipation occurs through vegetation (Brunsel at al., 2011).

Page 3: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Landscape is a complex system

flux

flux

flux

More energy exchange more landscape resilience and biodiversity are ensured

Human actions (infrastructures, urban development, natural resources exploitation etc) behave as external constraints imposed on the eco‐system, reducing flows of energy and matter; they alter the dynamic equilibrium affecting landscape evolution in terms of functionality, biodiversity reduction, as well as accelerated erosion phenomena and hydrological instability.These external constraints represent obstacles to the connected fluxes of energy and matter (barriers), leading to local reduction of entropy and to the creation of organized  systems (Chakrabartiand Ghosh, 2010).

Page 4: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Modelling the energy fluxes and variation of landscape energetic equilibrium state, is therefore interesting because it could allow to assess the most suitable plan strategies for natural resources conservation  management  and  landscape  functionality preservation.

Numerous physical and empirical models have been developed to simulate landscape and vegetation dynamics  in time  in order to explain environmental evolution and equilibrium conditions. 

Although  these  efforts,  a macroscopic  theory  about  landscape rules and  its variables  still  lacks  (Chakrabarti and Ghosh, 2010; Coulthard,  2001;  Jorgensen,  2004)  and  if  some  equilibrium  is observed  it may only be seen at certain  spatio‐temporal  scales (Pickett at al., 1994).

Introduction

Page 5: Pelorosso, Gobattoni, Monaco & Leone - Input2012

2000

2005

Urban sprawl

An  innovative  procedure,  called  PANDORA,  Procedure  for  mAthematical aNalysis of lanDscape evOlution and equilibRium scenarios Assessment, was proposed  to assess  the effects  of  different  planning  strategies  on  final  possible  equilibrium  states  that  are energetically stable. It  provides  a  tool  for  the  evaluation  of  landscape  functionality and  its  resilience. PANDORA,  linking  together  thermodynamic  concepts,  mathematical  equilibrium, metabolic  theory  and  landscape metrics,  allows  to model  landscape  evolution  in  time under the impact of external constraints and giving a unique response from it in terms of energy. All the parameters required by the mathematical model can be obtained  from GIS data, which are usually available to land managers.The  model  is  proposed  as  a  Decision  Support  System  for  choosing  among  possible planning strategies following a holistic approach. 

Page 6: Pelorosso, Gobattoni, Monaco & Leone - Input2012

GOBATTONI  F.,  LAURO  G.,  LEONE  A.,  MONACO  R.,  PELOROSSO  R.  (2010).  “A  mathematical procedure  for  the  evolution  of  future  landscapes  scenarios”.  LIVING  LANDSCAPE  The  European Landscape Convention  in research perspective.” Firenze, 18‐19 Ottobre 2010. Vol II. ISBN 978‐88‐8341‐459‐6.

GOBATTONI  F.,  LAURO  G.,  LEONE  A.,  MONACO  R.,  PELOROSSO  R.  (2010).  “A  mathematical procedure for the evolution of future landscapes scenarios”. La Matematica e le Sue Applicazioni n°11. Hard copy ISSN 1974‐3041. Online ISSN 1974‐305X.

GOBATTONI F., PELOROSSO R., LAURO G., LEONE A., MONACO R. (2011). PANDORA: Procedure for mAthematical aNalysis of  lanDscape evOlution and  equilibRium scenarios  Assessment.  EGU General Assembly, Session ERE 5.1 Landscape  functionality and conservation management, 3  ‐ 8 April 2011, Vienna, Austria. Vol. 13, EGU2011‐4023‐1, 2011.

GOBATTONI  F.,  PELOROSSO  R.,  LAURO  G.,  LEONE  A.,  MONACO  R.  (2011).  A  procedure  for mathematical analysis of  landscape evolution and equilibrium scenarios assessment. Landscape and Urban Planning, 103:289‐302. 

GOBATTONI F., LAURO G., MONACO R. PELOROSSO R. (2012). Mathematical models in landscape ecology: Stability analysis and numerical tests. SUBMITTED.

For more details:

Page 7: Pelorosso, Gobattoni, Monaco & Leone - Input2012

PANDORA: Procedure for mAthematical aNalysis of lanDscape

evOlution and equilibRium scenarios Assessment. 

PANDORAmodel was proposed to assess the effects of different planning strategies on final possible equilibrium states that are energetically stable. It is able to describe and assess the environmental fragmentation due to external constrictions .The whole model implementation procedure is constituted by 3 sequential steps :

1) Landscape Units definition

2) Calculation of GeneralizedBiological Energy and Landscape graph building

3) Resolution of differentialequations

[ ] ),()(1)(1)()(

max

' tMtVkM

tMtcMtM −−⎥⎦

⎤⎢⎣

⎡−=

[ ] ),()(1)()(' 0 tVUhtVtVbtV T −−=

Page 8: Pelorosso, Gobattoni, Monaco & Leone - Input2012

46 Landscape UnitsMinumun LU 0.36 Km2

Maximun LU 29.26 Km2

In this case, a Landscape Unit (LU) is considered as an area delimited by significant barriers to energy fluxes. LUswere pointed out by means of holistic classification method (Van Eetvelde and Antrop, 2009).

Most important factors that represent the barriers to energy fluxes were weighted (Saaty matrix) and used to individuate LUs.

In order of importance used barriers can be identified as follows:

1) Main roads and railways

2) Lines of change between very different soil types

3) Limits between hill and mountain areas

1. Landscape UnitsIdentification

Page 9: Pelorosso, Gobattoni, Monaco & Leone - Input2012

The energy  flow between LUs can be derived  from Biological Territorial Capacity, BTC,  (Ingegnoli, 2002) through the definition of a Generalized Biological Energy as the available energy for each LU. M  is  the  energy  available  for  exchange  between  LUs and  it  depends  on  several  intrinsic characteristics  of  each  LU  such  as  energetic  diversity  inside  it,  barriers  in  it,  shape,  climatic conditions, permeabilities of the boundaries and so on.

Land cover

BTC, Biological Territorial CapacityIngegnoli (2002)

Generalized BiologicalEnergy (GBE) or bio‐energyof LUj

LU characteristics(energy diversity, shape, climatic conditions,……)

( ) Jjj BKM ⋅+= 1

5/)( Ej

Cj

Dj

Pj

Sjj KKKKKK ++++=

2. Calculation of GeneralizedBiological Energy and 

Landscape graph building

BTC,    Biological  Territorial  Capacity,  is  a  physical  quantity  measured  in Mcal/m2/year,  linked  with  the  capacity  of  vegetation  to  transform  solarenergy. By considering the concepts of biodiversity (i.e., landscape diversity), resistance  stability  and  the  principal  ecosystem  types  and  their metabolic data  (biomass, gross primary production,  respiration),  the BTC  index seems to sum up the available energy in an ecosystem.The BTC index can assess the flux of energy that an ecological system needs to  dissipate  to  maintain  its  level  of  metastability,  i.e.,  its  temporaneousstability condition 

Calcolation of GeneralizedBiological Energy 

Page 10: Pelorosso, Gobattoni, Monaco & Leone - Input2012

‐Barriers with different degrees of permeability to the flow of bio‐energy. 

‐Bio‐energy (M) of each LU represented by proportional nodes.

‐Energy exchange flux, (F), between LUsdepends on the degree of permeability of the barriers. 

‐Connections between LUs are  represented by arcs, whose thickness is proportional to the magnitude of the energy flux between LUs

Landscape Graph building

2. Calculation of GeneralizedBiological Energy and 

Landscape graph building

ji

ijijji

i j PP

pLMMF

+⋅

+=

2

Mi and Mj are the Generalized Biological Energies correspondent to LU‐i and LU‐j, respectively, Lij is the length of the boundary between LU‐i and LU‐j and Pi and Pj are the perimeters of LUi and LUj, respectively.  pij ∈ [0;1] is the mean permeability index of such a boundary.

Page 11: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Analysis of M and V variation in time t until the reaching of mathematical equilibrium (asymptotic)

V(t)= fraction of the total territory occupied by areas with high values of BTC (e.g forests)

M(t)= Generalized Biological Energy of the whole system. It is derived from BTC values and intrinsic characteristics of each LU

[ ] ),()(1)(1)()(

max

' tMtVkM

tMtcMtM −−⎥⎦

⎤⎢⎣

⎡−= [ ] ),()(1)()(' 0 tVUhtVtVbtV T −−=

3. Resolution of differentialequations

•U0 depends on urban areas (compact and sprawl)•h depends on urban perimeters (compact and sprawl)•k depends on global impermeability of barriers•bt is related to mean BTC value of the system•c is the connectivity index and depends on number and amount of fluxes

The PANDORA evolution model uses a system of two nonlinear differential equations (a kind of Lotka‐Volterra model) and is based on a balance law between a logistic growth of energy and its reduction due to limiting factors coming from environmental constraints 

Page 12: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Beside the interesting results, the model presents some drawbacks:1‐ parameters bT and  c  are  time‐independent  (this  assumption  is  not  realistic since bio‐energy production and connectivity must change during environment evolution). 2‐ relative  small  and/or  localized modifications  of  landscape  connectivity  and GBE  could be  not well  assessed  by  the model.  Indeed,  the model works with global  variables  for  all  the  system  and  local  environmental  quality  variations could be balanced by the response of another portion of the studied territory.

For  these  reasons a new model, overcoming  these  simplifications, is proposed (PANDORA2?) on the basis of the following aims:

1) To investigate the landscape evolution at the level of each LU and not only at that of the whole environment under investigation;

2)  To  re‐define  the  connectivity  index making  it  time‐dependent  so  that  the links between the LUs are updated at any time;

3)  To  make  the  dimensionless  variables  defined  with  respect  to  absolute quantities.

Page 13: Pelorosso, Gobattoni, Monaco & Leone - Input2012

where the constants νi, µi and Ui play almost the same role of h, k and U0, but this time are referred to each LU, i = 1,….,n, so that

νi are the ratios between the sum of all the perimeters of the impermeable barriers inside the i‐th LU and the perimeter Pi of the LU itself;

µi are the ratios between the sum of the perimeters of all the compact edified areas (those with lower BTC (0‐0.4)belonging to class A) inside the i‐th LU and Pi;

Ui are the ratios between the sum of the surfaces of all the edified areas inside the i‐th LU and Ai.

iiiiii MViMMcM )1()1(' −−−= ν

iiiiiii VUVVMV µ−−= )1('

maxi

i

MM

=iM

ii A

V iV=

The new PANDORA differential equations system:

Page 14: Pelorosso, Gobattoni, Monaco & Leone - Input2012

The  connectivity  indexes  cik between  two  LUs i and  k,  as  well  as  the  total connectivity  index ci between  the  i‐LU and all  its neighbors can be defined by  the following formulas:

where Ii is the set of the neighbors of the i‐th LU. 

c can be greater than one

LUi

LUk

LUkLUk

LUk

LUi

LUkLUk

LUkLUk LUi

LUk

LUk

LUkLUk

LUi

LUk

LUkLUk

LUk

LUi

LUk

LUk

LUkLUk

Page 15: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Once the variables Mi(t) and Vi(t) are known from the new equations, one can recover, at each time t, the

corresponding variables at the level of the whole environmental system; in particular the non-

dimensionless variablesM and V can be computed by

whereas the dimensionless ones M and V referred to the whole system are given by

Page 16: Pelorosso, Gobattoni, Monaco & Leone - Input2012

Study case

Subset of 8 landscape units. The total area covered by urban sprawl is about 21% of the total urban area.Road and railway networks are highly developed (183.7 Km).A new stretch of the Orte-Civitavecchia freeway (dashed line) was completed during the year 2011 and it crosses the LU No.26.

Lazio Region

Traponzo watershed

Scenario analysisScenario A without the stretch of the freeway Orte-CivitavecchiaScenario B with the completed freeway (actual landscape)

Page 17: Pelorosso, Gobattoni, Monaco & Leone - Input2012

The table shows the values of the model parameters for each simulated LU in the initial conditions. i.e. scenario A, without the last stretch of the free-way Orte-Civitavecchia that was completed during the year 2011. In this Table changed values referred to scenario B are reported between brackets.

LU Vi Mi Ui µi νi913142224262941

0.0000 0.044 0.689 1.317 1.8590.0317 0.191 0.014 0.084 0.2860.3895 0.423 0.013 0.222 0.8350.4329 0.457 0.006 0.005 0.5620.0335 0.206 0.021 0.909 0.5660.1604 (0.1601) 0.257 (0.256) 0.016 (0.017) 0.347 (0.746) 1.517 (1.956)0.0624 0.185 0.014 0.912 0.3410.2226 0.311 0.016 0.177 1.029

RESULTS and DISCUSSION

Page 18: Pelorosso, Gobattoni, Monaco & Leone - Input2012

0 5 10 15 20 25 30 35 40 45 500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2MV

0 5 10 15 20 25 30 35 40 45 500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2MV

a) b)

0 5 10 15 20 25 30 35 40 45 500

0.05

0.1

0.15

0.2

0.25

0.3MV

0 5 10 15 20 25 30 35 40 45 500

0.05

0.1

0.15

0.2

0.25

0.3MVa) b)

Evolution trends of the variables V(t) and M(t) for LU n° 24: a) scenario A; b) scenario B.

Evolution trends of the variables V(t) and M(t) for LU n°26. a) scenario A; b) scenario B.

Page 19: Pelorosso, Gobattoni, Monaco & Leone - Input2012

0 5 10 15 20 25 30 35 40 45 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7MV

00 55 1010 1515 2020 2525 3030 3535 4040 4545 505000

0.0.11

0.0.22

0.0.33

0.0.44

0.0.55

0.0.66

0.0.77MMVVa)

Evolution trends of the variables V(t) and M(t) for the whole environmental system in scenario A (black lines) and scenario B (grey lines)

PANDORA2

PANDORA2 differential equations consider the time evolution of parameters and the feedback effects between them.To better understand the complex mechanism of cause and effect underlying landscape evolution dynamics, a holistic approach should be pursued, but local critical status of landscape health can be pointed out recurring to the simulation of the evolution of the global variables at local level, namely at the level of each LU.

Page 20: Pelorosso, Gobattoni, Monaco & Leone - Input2012

PANDORA2 can provide a reliable tool to estimate the effects of actions and strategies on the landscape equilibrium conditions not only at the whole landscape scale but also at that of each LU.

Local critical values of the variables chosen to describe the health of the landscape can be pointed out only recurring to the simulation of the evolution of the same variables at local level, at the level of each Landscape Unit.

The parameters and indices of the model can suitably represent the ecological health of the landscape and can be used alone or in combination to assess and compare landscape scenarios.

Further effort is needed to accurately test this new dynamical model to real-life applications assessing its sensibility in order to develop a more helpful tool for “what if " scenarios analysis and planning strategy conception.

CONCLUSIONS

Thank you very much!

Raffaele Pelorosso

[email protected]