56
Finite speed approximations to Navier-Stokes equations Roberto Natalini Istituto per le Applicazioni del Calcolo - CNR INDAM Workshop on Mathematical Paradigms of Climate Science, Rome, June 2013

Natalini nse slide_giu2013

Embed Size (px)

Citation preview

Page 1: Natalini nse slide_giu2013

Finite speed approximations toNavier-Stokes equations

Roberto Natalini

Istituto per le Applicazioni del Calcolo - CNR

INDAM Workshop on Mathematical Paradigms ofClimate Science, Rome, June 2013

Page 2: Natalini nse slide_giu2013

click here to open the movie in your browser

NASA/JPL’s computational model ”Estimating the Circulationand Climate of the Ocean” a.k.a. ECCO2, a high resolution modelof the global ocean and sea-ice

Page 3: Natalini nse slide_giu2013

The incompressible Navier-Stokes equations

Find (U,Φ) : IRD × (0,T )→ IRD × IR s.t.{∂tU + div(U⊗U) +∇Φ = ν∆UdivU = 0

Motivations for a finite speed approximation♣ New and more adapted class of estimates♣ Robust and simple numerical approximations♣ Natural treatment: upwinding, pressure term and thedivergence-free constraint♣ Possible coupling with other equations

Page 4: Natalini nse slide_giu2013

Plan of the Talk

I Some methods to solve NS eqs.I Relaxation approximationsI A damped wave equation approximationI Boltzmann eq. vs. NS eqsI The Vector BGK approximationI Comparison with Lattice BGK schemesI Some numerical results

Page 5: Natalini nse slide_giu2013

Some Numerical Methods

• Finite Element Methods (FEM): variational formulation• + high computational exibility• + rigorous mathematical error analysis → mesh adaptation• - Difficult control of upwinding phenomena and mass conservation

• - A lot of theoretical work for implementation

• Finite volume methods (FVM): conservation equations• + based on physical conservation properties• - problems on unstructured meshes• - difficult stability and convergence analysis

• - heuristic mesh adaptation

• Spectral Methods• + high order approximation

• - special domains

• Finite difference methods (FDM): direct form• + easy implementation,• - problems along curved boundaries• - difficult stability and convergence analysis

• - mesh adaptation difficult

Page 6: Natalini nse slide_giu2013

More on Finite Difference Schemes

Projection methods: Chorin,Temam, Kim & Moin, E &Liu, Bell & Collella & Glaz,....

⇒ Instability problems for thePressure

MAC methods: Harlow &Welsh, T. Hou & Wetton....

⇒Staggered grids: differentlocations for pressure andvelocity

High order: Strikwerda,Kreiss...

⇒ Implicit methods

Page 7: Natalini nse slide_giu2013

Original projection method (Chorin, Temam)

{∂tu + div(u ⊗ u) +∇φ = ν∆udiv u = 0

Splitting method based on Hodge decomposition. First step

u∗ = un −∆t (un · ∇un − ν∆un) (1)

Second Stepun+1 = u∗ −∆t∇φn+1 (2)

where φn+1 is computed from u∗ to force the incompressibility ofun+1

div∇φn+1 = ∆φn+1 =1

∆tdiv u∗ (3)

Page 8: Natalini nse slide_giu2013

The Hyperbolic Relaxation ApproachA one-slide presentation (not this one!)

Page 9: Natalini nse slide_giu2013

A simple relaxation model: hyperbolic and diffusive scalings

• Approximation of∂tu + ∂xA(u) = 0

Hyperbolic scaling ( xε ,tε ), for ε→ 0, and λ > |A′(u)| ⇒

uε → u {∂tu

ε + ∂xvε = 0

∂tvε + λ2∂xu

ε = 1ε (A(uε)− v ε)

• Approximation of

∂tu + ∂xA(u) = λ2∂xxu

Diffusive scaling ( xε ,tε2 ), for ε→ 0, uε → u{

∂tuε + ∂xv

ε = 0

∂tvε + λ2

ε2 ∂xuε = 1

ε2 (A(uε)− v ε)

Page 10: Natalini nse slide_giu2013

A simple relaxation model: hyperbolic and diffusive scalings

• Approximation of∂tu + ∂xA(u) = 0

Hyperbolic scaling ( xε ,tε ), for ε→ 0, and λ > |A′(u)| ⇒

uε → u {∂tu

ε + ∂xvε = 0

∂tvε + λ2∂xu

ε = 1ε (A(uε)− v ε)

• Approximation of

∂tu + ∂xA(u) = λ2∂xxu

Diffusive scaling ( xε ,tε2 ), for ε→ 0, uε → u{

∂tuε + ∂xv

ε = 0

∂tvε + λ2

ε2 ∂xuε = 1

ε2 (A(uε)− v ε)

Page 11: Natalini nse slide_giu2013

A relaxation approximation of Navier Stokes equations

Y. Brenier, R.Natalini, & M. Puel 2004Let u ∈ IR2 and V ∈ IR4

∂tu

ε + divV ε +∇φε = 0∂tV

ε + 1εν∇u

ε = 1ε (uε ⊗ uε − V ε)

∇ · uε = 0

ε→ 0 ⇒{∂tu + div(u ⊗ u) +∇φ = ν∇uε,∇ · u = 0.

Page 12: Natalini nse slide_giu2013

A relaxation approximation of Navier Stokes equations

Y. Brenier, R.Natalini, & M. Puel 2004The same model as a damped Wave equation.

∂tuε + div(uε ⊗ uε) +∇φ = −ε∂ttuε + ν∆uε

∇ · uε = 0

ε→ 0 ⇒{∂tu + div(u ⊗ u) +∇φ = ν∇uε,∇ · u = 0.

Page 13: Natalini nse slide_giu2013

A convergence result For all fixed T ≥ 0, let U0 be a smooth divergencefree vector field on T2. Let (uε0,V

ε0 ) be a sequence of smooth initial data

for the relaxation approximation. Assume that there exists C s.t.

||uε0||H1 + ||∂tuε(0, ·)||L2 ≤ C , |uε0|H2 <C0

Ks√ε∫

|uε0(x)− U0(x)|2dx ≤ C√ε

Then, if U is the (smooth) solution of the incompressible Navier Stokesequations with U0 as initial data, we have

supt∈[0,T ]

∫|uε − U|2dx ≤ CT

√ε

Extensions in IR2 and IR3 for less regular initial data in:

• R. Natalini, F. Rousset, Proc. AMS, 2006

• M. Paicu and G. Raugel, ESAIM, Proc.,21:6587, 2007

• I. Hachicha, arXiv:1205.5166v1 May 2013

Page 14: Natalini nse slide_giu2013

A convergence result For all fixed T ≥ 0, let U0 be a smooth divergencefree vector field on T2. Let (uε0,V

ε0 ) be a sequence of smooth initial data

for the relaxation approximation. Assume that there exists C s.t.

||uε0||H1 + ||∂tuε(0, ·)||L2 ≤ C , |uε0|H2 <C0

Ks√ε∫

|uε0(x)− U0(x)|2dx ≤ C√ε

Then, if U is the (smooth) solution of the incompressible Navier Stokesequations with U0 as initial data, we have

supt∈[0,T ]

∫|uε − U|2dx ≤ CT

√ε

Extensions in IR2 and IR3 for less regular initial data in:

• R. Natalini, F. Rousset, Proc. AMS, 2006

• M. Paicu and G. Raugel, ESAIM, Proc.,21:6587, 2007

• I. Hachicha, arXiv:1205.5166v1 May 2013

Page 15: Natalini nse slide_giu2013

A Kinetic Approach

Goal: a better approximation of the divergence-free constraint

Page 16: Natalini nse slide_giu2013

Hydrodynamic limits

The Boltzmann equation in the hyperbolic scaling ( xε ,tε )

∂t fε + ξ · ∇x f

ε =1

εQ(f ε)

ε→ 0

If f ε → f , then

f (x , t, ξ) =ρ(x , t)

(2πθ(x , t))3/2exp

(−|ξ − u(x , t)|2

2θ(x , t)

)where ρ, u, and θ solve the compressible Euler equations.

Page 17: Natalini nse slide_giu2013

Diffusive limits

The Boltzmann equation in the parabolic scaling ( xε ,tε2 )

∂t fε +

1

εξ · ∇x f

ε =1

ε2Q(f ε)

Given the equilibrium configuration M(x , t, ξ) := 1(2π)3/2 exp

(− |ξ|2

2

).

Then

f ε(x , t, ξ) = M(1 + εg) + O(ε2)

where g = ρ+ ξ · u + ( 12 |ξ|

2 − 32 )θ, and

divu = 0, ∇(ρ+ θ) = 0

∂tu + div(u⊗ u) +∇φ = ν∆u

Smooth local solutions: De Masi, Esposito, LebowitzRenormalized solutions: Golse, Saint-Raymond

Page 18: Natalini nse slide_giu2013

Diffusive limits

The Boltzmann equation in the parabolic scaling ( xε ,tε2 )

∂t fε +

1

εξ · ∇x f

ε =1

ε2Q(f ε)

Given the equilibrium configuration M(x , t, ξ) := 1(2π)3/2 exp

(− |ξ|2

2

).

Thenf ε(x , t, ξ) = M(1 + εg) + O(ε2)

where g = ρ+ ξ · u + ( 12 |ξ|

2 − 32 )θ, and

divu = 0, ∇(ρ+ θ) = 0

∂tu + div(u⊗ u) +∇φ = ν∆u

Smooth local solutions: De Masi, Esposito, LebowitzRenormalized solutions: Golse, Saint-Raymond

Page 19: Natalini nse slide_giu2013

Diffusive limits

The Boltzmann equation in the parabolic scaling ( xε ,tε2 )

∂t fε +

1

εξ · ∇x f

ε =1

ε2Q(f ε)

Given the equilibrium configuration M(x , t, ξ) := 1(2π)3/2 exp

(− |ξ|2

2

).

Thenf ε(x , t, ξ) = M(1 + εg) + O(ε2)

where g = ρ+ ξ · u + ( 12 |ξ|

2 − 32 )θ, and

divu = 0, ∇(ρ+ θ) = 0

∂tu + div(u⊗ u) +∇φ = ν∆u

Smooth local solutions: De Masi, Esposito, LebowitzRenormalized solutions: Golse, Saint-Raymond

Page 20: Natalini nse slide_giu2013

The Vector BGK Approach

Relaxation + Kinetic

Page 21: Natalini nse slide_giu2013

The vector BGK approximationFirst formulation was made in collaboration with F. Bouchut(uncredited)M.F. Carfora & R. Natalini 2008Y. Jobic, R. Natalini & V. Pavan in preparation

Find f εi ∈ IRD+1s.t.

∂t fεi + 1

ελi · ∇x fεi = 1

τε2 (Mi (ρε, ερuε)− f εi )

f εi (x , 0) = Mi (ρ, ερu0), i = 1, . . . ,N

ρε :=∑N

i=1 fi ,0, ερuεl :=

∑Ni=1 f

εi ,l

System of semilinear hyperbolic equationsMain idea: ρε → ρ,uε → U, where U is a solution of theNavier–Stokes eqs.

Page 22: Natalini nse slide_giu2013

Compatibility conditions for the Maxwellian functions

N∑i=1

M0i (ρ,q) = ρ (4)

N∑i=1

M li (ρ,q) =

N∑i=1

λilM0i (ρ,q) = ql (5)

N∑i=1

λijMli (ρ,q) =

qjqlρ

+ P(ρ)δjl (P(ρ) = Cργ)

(6)

τ

N∑i=1

λijλik∑r

∂qrMli (ρ, 0)ur = νδjkul (7)

Page 23: Natalini nse slide_giu2013

Expansion in the D + 1 Conservation Laws

Set:

ρε :=N∑i=1

fi ,0, ερuεl :=

N∑i=1

f εi ,l

∂tρ+∑j

∂xj

(N∑i=1

λijεf 0i

)= 0

∂t(ερul) +∑j

∂xj

(N∑i=1

λijεf li

)= 0

l = 1, . . . ,D

Page 24: Natalini nse slide_giu2013

Velocity equation

To have a the right limit we need

P(ρ)− P(ρ)

ε2→ε→0 ρΦ⇒ ρ = ρ+ O(ε2)

and using two compatibility conditions and the Taylor expansion ofM

M(ρ, ερu) = M(ρ, 0)+∂ρM(ρ, 0)(ρ−ρ)+∇qM(ρ, 0) ·ερu+O(ε2),

⇒ ∂tu + div(u⊗ u) +∇Φ = ν∆u + O(ε)

Page 25: Natalini nse slide_giu2013

Incompressibility equation

If, in the first conservation law, we assume

N∑i=1

λilM0i (ρ,q) = ql

0 = ∂tρ+∑j

∂xj

N∑i=1

λijεM0

i − τ∑j ,k

∂2xjxk

N∑i=1

λijλikM0i + O(ε)

=∑j

∂xj (ρuj) + O(ε)

⇒ divu = O(ε)

Page 26: Natalini nse slide_giu2013

Hyperbolic compatibility conditions (1)–(3)

As τ → 0 (ε fixed) ; Isentropic Euler Eqs. (A. Sepe in 2011){∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +1

ε2∇P(ρ) = 0

Rmk. ε→ 0 in the isentropic Gas-Dynamics yields (formally) the(incompressible) Euler Eqs.{

∂tU + div(U⊗U) +∇Φ = 0divU = 0

Page 27: Natalini nse slide_giu2013

The basic Energy (in)equality

H–Theorem

∂tH(f) + Λ · ∇xH(f) ≤ H(M(Uf ))−H(f) ≤ 0

Bouchut’s Theorem (1999): There exist kinetic entropies if eachM ′i has positive real eigenvalues

∫ [12ρ|u|

2 + C(γ−1)ε2

(ργ − ργ − γργ−1(ρ− ρ)

)]dx

+ Cε4τ

∫∫|f −M|2dxdt ≤

∫1

2ρ|u0|2dx

Page 28: Natalini nse slide_giu2013

The basic Energy (in)equality

H–Theorem

∂tH(f) + Λ · ∇xH(f) ≤ H(M(Uf ))−H(f) ≤ 0

Bouchut’s Theorem (1999): There exist kinetic entropies if eachM ′i has positive real eigenvalues

∫ [12ρ|u|

2 + C(γ−1)ε2

(ργ − ργ − γργ−1(ρ− ρ)

)]dx

+ Cε4τ

∫∫|f −M|2dxdt ≤

∫1

2ρ|u0|2dx

Page 29: Natalini nse slide_giu2013

A 5 velocities scheme in 2DOrthogonal Velocities Model (D. Aregba-Driollet & R. Natalini2003). Setting W = (ρ,q) and

A1(W ) =

(q1,

q21

ρ+ P(ρ),

q1q2

ρ

), A2(W ) =

(q2,

q1q2

ρ,q2

2

ρ+ P(ρ)

)Maxwellian functions in the form

Mi (W ) = aiW +2∑

j=1

bijAj(W )

The velocities are λi = λci ,, for some λ > 0, with

c1 = (1, 0), c2 = (0, 1), c3 = (−1, 0), c4 = (0,−1), c5 = (0, 0)

a1 = · · · = a4 = a,a5 = 1− 4a;

b11 = b22 = −b31 = −b42 = 12λ ,

bij = 0 otherwise.

Page 30: Natalini nse slide_giu2013

Consistency, Stability, and Global Existence

♣ The continuous model is consistent if τ = ν2λ2a

♣ The Maxwellian functions are positive and the model has akinetic entropy if the following conditions are verified:

1

4> a >

1

(√P ′(ρ) + εum

)So it is enough to take λ > 2

(√P ′(ρ) + εum

)♣ Under these conditions, for fixed ε and τ and small initial data,the smooth solution is global in time (Kawashima conditions →Hanouzet-Natalini ARMA 2003)

Page 31: Natalini nse slide_giu2013

The fully discrete schemeSolve (using the upwind scheme) a discrete version of

∂t fi + 1ελi · ∇x fi = 0 tn ≤ t < tn+1

fi (x , tn) = f ni (x),(8)

(ρn+1

ερn+1un+1

)=

N∑i=1

fi (tn+1−) and fn+1 = M(ρn+1, ερn+1un+1

)

Consistent with the Navier-Stokes equations (order 2 in space) if

ε = aλ∆xν , ∆t ≤ a(∆x)2

ν

Main idea: the artificial viscosity is used to reconstruct theNavier-Stokes viscosity

Page 32: Natalini nse slide_giu2013

The fully discrete schemeSolve (using the upwind scheme) a discrete version of

∂t fi + 1ελi · ∇x fi = 0 tn ≤ t < tn+1

fi (x , tn) = f ni (x),(8)

(ρn+1

ερn+1un+1

)=

N∑i=1

fi (tn+1−) and fn+1 = M(ρn+1, ερn+1un+1

)

Consistent with the Navier-Stokes equations (order 2 in space) if

ε = aλ∆xν , ∆t ≤ a(∆x)2

ν

Main idea: the artificial viscosity is used to reconstruct theNavier-Stokes viscosity

Page 33: Natalini nse slide_giu2013

Comparison with the Lattice BGK models:

(McNamara & Zanetti, Higuera & Jimenez, Succi, Benzi, H. Chen,S. Chen, Doolen,.....)Give a set of velocities ci , and a grid such that ∆x = ∆tci

fi (x + ∆tci , t + ∆t) = fi (x , t) +1

τ(Mi − fi )

The D2Q9 lattice

ρ :=∑N

i=1 fi ,q :=∑N

i=1 ci fi

Mi (ρ,q) = Wiρ

{ρ+ 3ci · q− 3

2 |q|2 + 9

2 (ci · q)2}

Page 34: Natalini nse slide_giu2013

ConsistencyTo reach consistency with the Navier-Stokes equations, fix ∆x andω = ∆t

τ ∈ (0, 2)⇓

|c | =3ν

∆x

(2ω

2− ω

)∆t = ωτ =

∆x2

(2− ω

)

BGK Lattice Boltzmann models vs. Kinetic schemes

• Lattice grids (µ = 1);

• Scalar distribution function (for fixed i);

• No nonlinear stability criteria;

• boundary conditions

; Junk & Klar (2000): finite difference version

Page 35: Natalini nse slide_giu2013

ConsistencyTo reach consistency with the Navier-Stokes equations, fix ∆x andω = ∆t

τ ∈ (0, 2)⇓

|c | =3ν

∆x

(2ω

2− ω

)∆t = ωτ =

∆x2

(2− ω

)

BGK Lattice Boltzmann models vs. Kinetic schemes

• Lattice grids (µ = 1);

• Scalar distribution function (for fixed i);

• No nonlinear stability criteria;

• boundary conditions

; Junk & Klar (2000): finite difference version

Page 36: Natalini nse slide_giu2013

Numerical Validation

in collaboration with V. Pavan and Y. Jobic

(IUSTI, Aix-Marseille Universite)

Page 37: Natalini nse slide_giu2013

Lid-driven cavity : Computational domain

u = U, v = 0

wa

ll wa

ll

wall

primary

vortex

top left

vortex

(T)

bottom

left vortex

(BL1)

bottom

right vortex

(BR1)

BL2 BR2

Figure: Setting of the problem

Page 38: Natalini nse slide_giu2013

Lid-driven cavity : results 1

Figure: streamlines at Re 400, Nx = Ny= 400

Figure: streamlines at Re 7500, Nx =Ny = 7500

Page 39: Natalini nse slide_giu2013

Lid-driven cavity : results 2

y/N

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u/U

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

a Re = 100 present work

b Re = 400 present work

c Re = 1000 present work

d Re = 3200 present work

e Re = 5000 present work

f Re = 7500 present work

Re 100 Ghia&al

Re 400 Ghia&al

Re 1000 Ghia&al

Re 3200 Ghia&al

Re 5000 Ghia&al

Re 7500 Ghia&al

a

bcde

f

Figure: u values at the centerline

v/U

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/N

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

a Re = 100 present work

b Re = 400 present work

c Re = 1000 present work

d Re = 3200 present work

e Re = 5000 present work

f Re = 7500 present work

Re 100 Ghia&al

Re 400 Ghia&al

Re 1000 Ghia&al

Re 3200 Ghia&al

Re 5000 Ghia&al

Re 7500 Ghia&ala

b

c

de

f

Figure: v values at the centerline

Page 40: Natalini nse slide_giu2013

Transient couette flow : Computational domain

Wall

UmPeriodic

Periodic

H

Figure: boundary conditions

analytical solution

ux(y , t) = Um

(1− y

H− 2

π

∞∑k=1

1

kexp

(−k2π2

H2νt

)sin

(kπ

Hy

))(9)

Page 41: Natalini nse slide_giu2013

Transient couette flow : results 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Flu

id v

eloc

ity U

x

y / H

t = 0.125t = 0.5

t = 1t = 2t = 3

Figure: Different time solutions at Re 10

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Flu

id v

eloc

ity U

x

y / H

t = 0.1t = 1t = 2t = 3t = 4t = 6

Figure: Different time solutions at Re800

Page 42: Natalini nse slide_giu2013

Transient couette flow : results 2

L1 relative error

1e−07

1e−06

1e−05

0.0001

1e−07

1e−06

1e−05

0.0001

Number of points

100 200 300 400 500 600 700

100 200 300 400 500 600 700

slope : 2

Figure: Order 2 in space

Page 43: Natalini nse slide_giu2013

Backward-Facing Step : Computational domain

H

Um

h

hi

L

x1

x2

x3

Figure: Conditions limites

Page 44: Natalini nse slide_giu2013

Backward-Facing Step : results 1

0 5 10 150

1

2

Figure: streamlines at Re 100, Nx = 1000, Ny = 250, ε = 0.016

0 5 10 15 200

1

2

Figure: streamlines at Re 800, Nx = 20000, Ny = 1000, ε = 0.25

Page 45: Natalini nse slide_giu2013

Backward-Facing Step : results 1

0 5 10 150

1

2

Figure: streamlines at Re 100, Nx = 1000, Ny = 250, ε = 0.016

0 5 10 15 200

1

2

Figure: streamlines at Re 800, Nx = 20000, Ny = 1000, ε = 0.25

Page 46: Natalini nse slide_giu2013

Backward-Facing Step : results 2

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800

x1/h

Re

present workArmalyErturk

Biswas

Figure: attachment point for the firstvortex

6

8

10

12

14

16

18

20

22

24

450 500 550 600 650 700 750 800 850

x/h

Re

X2

X3

present workArmalyErturk

Biswaspresent work

ArmalyErturk

Biswas

Figure: detachment/attachment pointfor the second vortex

Page 47: Natalini nse slide_giu2013

Backward-Facing Step : results 2

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800

x1/h

Re

present workArmalyErturk

Biswas

Figure: attachment point for the firstvortex

6

8

10

12

14

16

18

20

22

24

450 500 550 600 650 700 750 800 850x/

hRe

X2

X3

present workArmalyErturk

Biswaspresent work

ArmalyErturk

Biswas

Figure: detachment/attachment pointfor the second vortex

Page 48: Natalini nse slide_giu2013

Figure: Landsat 7 image of clouds off the Chilean coast near the JuanFernandez Islands (also known as the Robinson Crusoe Islands)

Page 49: Natalini nse slide_giu2013

Figure: Von Karman vortices off the coast of Rishiri Island in Japan

Page 50: Natalini nse slide_giu2013

Von Karman streets

click here to open the movie in your browserThe instabilities of the steady flow make the Von karman streets

appear

Page 51: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...

Page 52: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...

Page 53: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...

Page 54: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...

Page 55: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...

Page 56: Natalini nse slide_giu2013

Conclusions (?) and possible directions

• Hyperbolic approximations furnish a nice framework to studyNSE

• Some analytical problems are still open.

• It is possible to derive simple and effective schemes for NSE.

• 3D dimensions, complex geometries (coming soon...)

• coupling with other equations, multidomains...