77
Presentation on Hydro Energy Technology Ajay Bhatnagar, POWERGRID (POSOCO), New Delhi Mobile: 9910952459

Hydro Energy Technology

Embed Size (px)

Citation preview

Page 1: Hydro Energy Technology

Presentation

on

Hydro Energy TechnologyAjay Bhatnagar, POWERGRID (POSOCO), New Delhi

Mobile: 9910952459

Page 2: Hydro Energy Technology
Page 3: Hydro Energy Technology
Page 4: Hydro Energy Technology

PROJECT MODULE

Page 5: Hydro Energy Technology

OVERVIEW • Advantages & other benefits of Hydro

Power.• Hydro Scenario.• Hydro initiative.• Terminology, used in Hydro Power

stations.• Brief about Hydro Turbines.• Hydro Generating Power stations in

Northern Region.• Transmission line net work of Power

Stations (NHPC).• FAQs.

Page 6: Hydro Energy Technology

Advantages of Hydro Power• A renewable source of energy - saves scarce fuel reserves. • Non-polluting and hence environment friendly. • Long life - The first hydro project completed in 1897 is still in operation at

Darjeeling is still in operation. • Cost of generation, operation and maintenance is lower than the other

sources of energy. • Ability to start and stop quickly and instantaneous load acceptance/rejection

makes it suitable to meet peak demand and for enhancing system reliability and stability.

• Has higher efficiency (over 90%) compared to thermal (35%) and gas (around 50%).

• Cost of generation is free from inflationary effects after the initial installation. • Storage based hydro schemes often provide attendant benefits of irrigation,

flood control, drinking water supply, navigation, recreation, tourism, pisciculture etc.

• Being located in remote regions leads to development of interior/ backward areas in the field of Education, Medical, Road, Communication, telecommunication etc.

Page 7: Hydro Energy Technology

Other benefits of hydropower projectsHydropower is a renewable, economic, non polluting and environment friendly source of energy. It saves fossil fuel resources of the country, which are non renewable. The Hydropower projects have following advantages over other sources of power generation, as discussed below:a) Technical BenefitsHydropower projects have much longer life and provide cheaper electricity as there is no fuel cost & recurring cost, involved in generation and O&M is also lower than other sources of energy. b) Environmental Benefits· Uses renewable and pollution free source i.e water· Increase in Agriculture Productivity and development of irrigation and multipurpose schemes, having generation of electricity as one of the objectives. · Avoid Green House Gas (GHG) emissions from equivalent thermal and other fuel based power projects.· Involve large scale afforestation activities under various schemes like Compensatory Afforestation, Catchment Area Treatment, Green Belt Development, Voluntary Afforestation etc. which ultimately improve the environmental quality of the project area. · Flood Mitigation through large storage dams.· Source of Drinking Water. c) Social Benefits Hydro projects are a boon to the society and the population in and around the projects. With enhanced employment opportunities, increased earnings, enriched life style and improved standard of living, the people in these localities experience an economic and social upliftment. Reservoir area is an ideal place for recreation and source of eco-tourism promotion in the area. The reservoirs are also used for promoting Pisciculture. There are other direct benefits accruing from hydro projects and dams such as increased water for improved irrigation, and drinking water to villages and people living in and around the project area.

Page 8: Hydro Energy Technology

Hydro Scenario 

• India has extremely high level of Hydro-electric potential and ranks 5th in terms of global scenario. As per assessment made by CEA, India has Hydro-power potential of 148700 MW . The basin wise Hydro-power potential is as under :-

• Basin/Rivers Probable Installed Capacity (MW) • Indus Basin 33,831 • Ganga Basin 20,711

Central Indian River system 4,152 Western Flowing Rivers of southern India 9,430

• Eastern Flowing Rivers of southern India 14,511 Brahmaputra Basin 66,065 Total 1,48,700

In addition, 56 number of pumped storage projects have also been identified with probable installed capacity of 94 000 MW.In addition to this, hydro-potential from small, mini & micro schemes has been estimated as 6 782 MW from 1 512 sites.Thus, India, in total, has a Hydro-potential of about 2 50 000 MW. However, exploitation of hydro-potential has not been up to the desired level due to various constraints.

Page 9: Hydro Energy Technology

Hydro Initiative   Govt. of India had launched a scheme which was formulated by CEA on 24th May, 2003, for preparation of Preliminary Feasibility Report (PFRs) of 162 New Hydro Electric Schemes, totaling  over  50,000 MW. 

PFRs of all the 162 schemes was prepared ahead of schedule. These schemes are located in 16 states. 

Page 10: Hydro Energy Technology
Page 11: Hydro Energy Technology

Do Hydropower projects involve large submergence of land? The following table shows that in 13 representative projects, the area of submergence per MW is only 0.76 ha.

Page 12: Hydro Energy Technology

Does development of Hydropower project leads to large scale displacement? The following table shows that in 17 representative projects, number of displaced families per MW is only 0.26.

Page 13: Hydro Energy Technology

Terminology used in Hydro power Stations ½Ancillary services: Capacity and energy services provided by power plants that are able to respond on short notice, such as hydropower plants, and are used to ensure stable electricity delivery and optimized grid reliability.

Catchment area: It is the complete area behind Dam as river. 

Cavitation: The phase changes that occur from pressure changes in a fluid that forms bubbles, resulting in noise or vibration in the water column. The Implosion of these bubbles against a solid surface, such as a hydraulic turbine, may cause erosion, and lead to reductions in capacity.

Desilt Gallery: It is provided in concrete Dam for removal of silt from river bed.  

Direct current (DC): Electric current which flows in one direction.

Draft tube: It allows the turbine to be set above tail water without loss of head to carry out the inspection & maintenance. It can be straight or curved depending upon the turbine installation.

Efficiency: A percentage obtained by dividing the actual power or energy by the theoretical power or energy. It represents how well the hydropower plant converts the potential energy of water into electrical energy.

Head: Vertical change in elevation, expressed in feet or meters, between the head (reservoir) water level and the tailwater (downstream) level.Flow: Volume of water, expressed as cubic feet or cubic meters per second, passing a point in a given amount of time. 

Page 14: Hydro Energy Technology

Terminology used in Hydro power Stations 2/2Headwater: The water level above the powerhouse or at the upstream face of a dam.

Low Head: Head of 66 feet or less.

Penstock: It is a connecting pipe between Dam & Turbine, conducting water to the powerhouse.

Runner: The rotating part of the turbine that converts the energy of falling water into mechanical energy.

Scroll case: A spiral-shaped steel intake guiding the flow into the wicket gates located just prior to the turbine.

Small hydro: Hydropower projects that generate 30 MW or less of power.

Sluice gate: It allows extra water to spill to maintain reservoir level.

Spill way: It is a type of canal, provided beside the dam. 

Surge shaft: It is provided to avoid the Water Hammering effect. 

Vortex : It is a region, in a fluid medium, in which the flow is mostly rotating on an axis line, the vortical flow that occurs either on a straight-axis or a curved-axis.

Specific speed: It is the Speed (r.p.m)  at which the Turbine runs at unit Head to produce unit Power in hp. 

Turbine: It is a machine which converts Kinetic & Pressure energy of water into mechanical energy.

Page 15: Hydro Energy Technology
Page 16: Hydro Energy Technology

Brief about Hydro Turbines 

Page 17: Hydro Energy Technology

Classification of Turbines•Type of Energy at Inlet: Impulse or, Reaction Turbine.•Direction of flow: Tangential, Radial, Axial or, Mixed.•Head at inlet: High, Medium or, Low  head.•Specific speed (Ns): High, Medium or, Low speed.•Installed capacity:Micro:  upto 100 KWMini:     101KW  to 2 MWSmall:   2 MW to 25 MWMega:    Hydro projects with installed capacity >= 500 MW

Typical range of heads• Water wheel: 0.2 < H < 4 (H = head in meter) • Screw turbine: 1 < H < 10• VLH turbine: 1.5 < H < 4.5 • Kaplan turbine: 20 < H < 40 • Francis turbine: 40 < H < 600 • Pelton wheel: 50 < H < 1300 • Turgo turbine: 50 < H < 250

Page 18: Hydro Energy Technology

Comparison of Impulse & Reaction turbine

1. In Impulse turbine, the nozzle and moving blades are in series while, there are fixed blades and moving blades, present in Reaction turbine (No nozzle is present in Reaction turbine).2. In Impulse turbine pressure falls in nozzle while in Reaction turbine in fixed 

blade boiler pressure falls.3. In Impulse turbine velocity (or kinetic energy) of steam increases in nozzle 

while this work is to be done by fixed blades in the Reaction turbine. 4. Compounding is to be done for Impulse turbines to increase their efficiency while  no compounding is necessary in Reaction turbine. 5. In Impulse turbine pressure drop per stage is more than Reaction turbine. 6. The number of stages is required less in Impulse turbine while required more in Reaction turbine. 7 More power can be developed in Reaction turbine than Impulse turbine. 8 Efficiency of Impulse turbine is lower than Reaction turbine. 9. Impulse turbine requires less space than Reaction turbine.10. Blade manufacturing of Impulse turbine is less difficult as compared to Reaction turbine.11. Newton’s IInd  & IIIrd law is followed in Impulse & Reaction turbines respectively.

Page 19: Hydro Energy Technology

• What is the difference between Impulse & Reaction Turbine? 

 

 

S.no. Impulse Turbine Reaction Turbine 1  The water flows through the nozzles and 

impinges on the buckets. The water is guided by the guide blades to flow over the moving vanes. 

2  The entire water energy is first converted in kinetic energy 

There is no energy conversion in reaction turbine. 

3  The water impinges on the buckets with kinetic energy. 

The water glides over the moving vanes with pressure energy. 

4  The work is done only by the change in the kinetic energy of the jet. 

The work is done partly by the change in the velocity head, but almost entirely by the change in pressure head. 

5  The pressure of flowing water remains unchanged and is equal to the atmospheric pressure. 

The pressure of flowing water is reduced after gliding over the vanes. 

6  It is not essential that the wheel should run full. Moreover, there should be free access of air between the vanes and the wheel. 

It is essential that the wheel should always run full and kept full of water in reaction turbine. 

7  The water may be admitted over a part of the circumference or over the whole circumference of the wheel. 

The water must be admitted over the whole circumference of the wheel. 

8  It is possible to regulate the flow of water without loss in impulse turbine. 

It is not possible to regulate the flow without loss in reaction turbine. 

Page 20: Hydro Energy Technology
Page 21: Hydro Energy Technology

Type of turbines used in Hydro Power Plants

• 1.      Pelton turbines - It is aTangential flow  Impulse turbine which is normally used for more than 250 m of water head. Newton’s 2nd law is followed here.

• 2.      Francis - This is a Radial flow Reaction turbine which is used for head varying between 2.5m to 450m. Newton’s 3rd law is followed here.

• 3.      Kaplan – It is Axial flow Reaction turbine, used for heads varying between 1.5 m to 70 m.

• 4.      Propeller – It is same as Kaplon turbine only  with a difference that here, the vanes are fixed while, the blades are adjustable in Kaplon turbine. This turbine is used for head between 1.5 to 30 m.

• The Kaplon turbine  is more compact in construction and smaller in size for the same power, developed as compared to Francis turbine.  The frictional losses passing through the blades are considerably lower due to small number of blades used.

Page 22: Hydro Energy Technology

Radial flow turbine may be outward radial or, inward radial flow turbine, depending on whether water is radially flowing from outward to inward (towards axis of rotation) or, from inward to outward (towards casing) respectively.

Tangential flow turbine: The water flows along the tangent of runner. 

Axial flow turbine: The water flows parallel to the axis of runner. 

Different efficiencies of Turbine

Hydraulic efficiency: It is the ratio of Power, developed by runner (HP) to the power, supplied by water at inlet (WHP).

Mechanical efficiency: It is the ratio of Power at shaft of turbine (SHP) to the power, developed by runner (HP).

Volumetric efficiency: It is the ratio of volume of water, actually striking the runner to the volume of water, supplied to the turbine.and rectangular outlet.

Overall efficiency: It is the ratio of Power, available at shaft of turbine (SHP) to the Power, supplied by water at inlet (WHP)  i.e:  Hydraulic efficiency x Mechanical efficiency.

Types of Draft tube:Conical, Simple Elbow, Moody  spreading,  Elbow draft tube with circular inlet.  

Page 23: Hydro Energy Technology
Page 24: Hydro Energy Technology
Page 25: Hydro Energy Technology

Governor in Turbine

Page 26: Hydro Energy Technology

Hydro Power Generating stations

in Northern Region

Page 27: Hydro Energy Technology

  SALAL

 BAIRA SIUL

  CHAMERA - I

  PARBATI - III

  RAMPUR

  KARCHAM WANGTOO

  NAPTHA JHAKRI

  TANAKPUR

  CHAMERA - III

  CHAMERA – II

  KOLDAM

  BASPA

  DHAULIGANGA

 SEWA - II

  URI - I   URI - II

  DULHASTI

Location of Hydro Power stations

Page 28: Hydro Energy Technology

SJVNL's HYDRO POWER STATIONS IN NORTHREN REGION

S.no. Name of Power station Location Name

of RiverReservoir /

RoRNo. of units

Installed capacity in

MW

Year of commissioni

ngBenificiary

States

1 NJPC HP Sutlej RoR with small Pondage 6*250 1500 2004 All NR States.

2 Rampur HP Sutlejin Tandem mode with 

NJPC6*66.67 412 2014 All NR States 

except Delhi.

 Total 1912  

THDC's HYDRO POWER STATIONS IN NORTHREN REGION

S.no. Name of Power station Location Name of

RiverReservoir

/ RoRNo. of units

Installed capacity in

MW

Year of commissionin

gBenificiary

States

1 Tehri HPS Uttrakhand Bhagirathi Reservoir 4*250 1000 2006 All NR States except HP.

2 Koteshwar Uttrakhand Bhagirathi Reservoir 4*100 400 2011 All NR States except HP.

  Total 1400    

Page 29: Hydro Energy Technology

BBMB's POWER STATIONS IN NORTHREN REGIONS.no. Name of Power

station Location Name of River

Reservoir / RoR No. of units

Installed capacity in

MW

Year of commissionin

gBenificiary States

1 Bhakra lower3 HP Sutlej Reservoir 3*108+2*126+6*157= 1518 1948

Punjab, Haryana, Rajasthan, HP, Chandigarh, Irrigation & NFF.

2 Dehar max. head1 HP Beas-sutlej 

bslBalancingReservoir 6*165 990 1977

Punjab, Haryana, Rajasthan, HP & Chandigarh.

3 Pong 2 HP Beas Reservoir 6*66 396 1974Punjab, Haryana, Rajasthan, HP, Chandigarh & NFF.

  Total 2904  

IPPs HYDRO POWER STATIONS IN NORTHREN REGIONS.no. Name of Power

stationLocati

onName of

RiverReservoir

/ RoRNo. of units

Installed capacity in

MW

Year of commissionin

gBenificiary States

1 AD Hydro HP Allian  Reservoir 2*96 192 2010 Bilateral+ Power exchange.

2 K.Wangtoo HPS (JP) HP Sutlej ROR 4*250 1000 2011LTA (Haryana, Rajasthan & UP) + Bilateral + Power exchange..

3 Malana - II (HPSEB) HP Malana Reservoir 2"50 100 2001 LTA (Punjab) + Bilateral + Power exchange..

4 Budhil HPS (Lanco) HP Ravi Reservoir 2*35 70 2012 Only Pwer exchange.

5 Baspa  HPS (JP) HP Baspa RoR 3*100 300 2003 Only Bilateral.

  Total 1662    

Page 30: Hydro Energy Technology

NHPC's HYDRO POWER STATIONS IN NORTHREN REGION

S.no. Name of Power station Location Name

of RiverReservoir / RoR

No. of units

Installed capacity in

MW

Year of commissioni

ngBenificiary

States

1 Baira Siul HP Baira & Siul RoR 3*66 198 1981 Punjab, Haryana,

Delhi & HP.

2 Chamera - I HP Ravi Reservoir 3*180 540 1994 All NR States.

3 Chamera - II HP Ravi Reservoir 3*100 300 2004 All NR States.

4 Chamera - III HP Ravi Reservoir 3*77 231 2012 All NR States.

5 Dhauli Ganga Uttrakhand Sharda Reservoir 4*70 280 2005 All NR States.

6 Dulhasti J&K Chandra Reservoir 3*130 390 2007 All NR States except HP.

7 Salal J&K Chenab RoR 6*115 690 1996 All NR States.

8 Sewa - II J&K Sewa Reservoir 3*40 120 2010 All NR States except HP.

9 Tanakpur Uttrakhand Sharda RoR 3*40 120 1992 All NR States.

10 Uri - I J&K Jhelum Reservoir 4*120 480 1997 All NR States.

11 Uri - II J&K Jhelum Reservoir 4*60 240 2012 All NR States except HP.

12 Parbati - III HP Sainj RoR 4*130 520 2014 All NR States.

 Total

4109   

Page 31: Hydro Energy Technology

Introduction, Layout plan &Technical Features

of Hydro Power Stations

(NHPC) in

Northern Region

Page 32: Hydro Energy Technology

BAIRA SIUL Power station

Page 33: Hydro Energy Technology

INTRODUCTIONBaira Siul  Power Station  is  constructed  on  the  three tributaries  of  the  Ravi river, namely Baira, Siul and Bhaledh for generation of power on run of the-river.The  project  headquarter  is  at  Surangani  in  HP.  The construction  of  the  project  was  undertaken  by  the Central  Government  under  the  erstwhile  Ministry  of Irrigation and Power in 1970-71. The project was taken over  by  the  National  Hydroelectic  Power  Corporation on  20/01/1978.  Units  I,  II  and III  were  commissioned on  18/05/1980,  19/05/1980  and  13/09/1981 respectively.  The  commercial  production  started  on 01/04/1982. 

Page 34: Hydro Energy Technology

LAYOUT PLAN

Page 35: Hydro Energy Technology

Technical Features

Location Distt. Chamba, Himachal PradeshApproach Nearest Rail Head - PathankotCapacity 180 MW (3 x 60 MW)Uprated Capacity 198 MWAnnual Generation 779.28 million units Project Cost Rs. 142.5 Crore (Jan'81 price level)Beneficiary States H.P., Punjab, Haryana & DelhiYear of Completion 1981

53 m high earth and rockfill dam. 7.63 km long head race tunnel. Surface power house containing 3units of 66 MW each.

Page 36: Hydro Energy Technology

CHAMERA – IPower station

Page 37: Hydro Energy Technology

INTRODUCTION

Chamera Power Station Stage-I  is  constructed on  RoR  scheme  on  river Ravi in  HP which  is  a major river of the Indus Basin, originating in the Himalayas. The project utilises the Hydro Power potential  available  after  the  confluence  of  the river Siul with Ravi.

Page 38: Hydro Energy Technology

LAYOUT PLAN

Page 39: Hydro Energy Technology

Technical Features

Location Chamba district, Himachal Pradesh

Approach Nearest railhead: Pathankot 120 km. Nearest airport: Jammu 220 km

Capacity 540 MW (3 x 180 MW)

Annual Generation 1664.55 million units

Project Cost Rs. 2114.02 Crore, (March'94 price level )

Beneficiary States H.P., Punjab, Haryana, Delhi, J&K, Rajasthan, U.P. & Chandigarh

Year of Commissioning/Completion Schedule 1994

140 m high, 295 m long concrete arch gravity dam. 6.4 km long, 9.5 m dia head race tunnel.2.4 km long, 9.5 m dia tail race tunnel.Underground Power House containing 3 units of 180 MW each.

Page 40: Hydro Energy Technology

CHAMERA – IIPower station

Page 41: Hydro Energy Technology

INTRODUCTION

Chamera HE Project Stage-II also  has  been constructed on river Ravi in HP. This is also based on  run of the river scheme.

Page 42: Hydro Energy Technology

LAYOUT PLAN

Page 43: Hydro Energy Technology

Technical Features

Location Distt. Chamba in Himachal Pradesh.

Approach Nearest Rail Head - Pathankot.

Capacity 300 MW (3 x 100 MW)

Annual Generation 1499.89 MUs

Project Cost Rs.1929.57 crores (Completion cost)

Beneficiary States Uttranchal, U.P., Delhi, H.P., Haryana, J&K, Punjab, Rajasthan & Chandigarh

Year of Commissioning/Completion Schedule March 2004

•39 m high, 118.50 m long Concrete Gravity Dam.• 7.0 m dia circular shape, 7.86 km long Head Race Tunnel.• 7.0 m dia circular shape, 3.6 km long Tail Race Tunnel.Underground Power House containing 3 units of 100 MW each.

Page 44: Hydro Energy Technology

CHAMERA – IIIPower station

Page 45: Hydro Energy Technology

Chamera Hydroelectric Project Stage-III  is  situated  in Chamba  district  of  Himachal  Pradesh.  This  project  is situated in comparatively lower Himalayan region  and is being  constructed.  This  power  station  has  been constructed on  river Ravi.  This  is also based on    run of the river scheme.

INTRODUCTION

Page 46: Hydro Energy Technology

LAYOUT PLAN

Page 47: Hydro Energy Technology

Technical Features

Location Distt. Chamba in Himachal Pradesh.

Approach Nearest Rail Head - Pathankot, Airport - Jammu,

Capacity 3*77 = 231 MW

Annual Generation 1104 MUs (90% dependable year).

Project Cost Rs.1405.63 Crores (February 2005 P.L.)

Year of Commissioning/Completion Schedule June 2012

•64 m high concrete gravity dam on river Ravi.(Max height above deepest foundation level) •Underground disilting arrangement with two parallel chambers each 200m x 13m x 17m in size. •6.5m dia horse shoe shaped tunnel 15.97 kms long HRT. •105 m high surge shaft of 18 m dia.  Underground power house consisting of 3 units of 77 MW each.

Page 48: Hydro Energy Technology

DHAULI GANGA Power station

Page 49: Hydro Energy Technology

Dhauliganga – I  The  Sharda  river  basin (Uttrakhand)  in  the  upper  reaches  of  the Himalayas comprises  three main tributaries - the Dhauliganga,  Goriganga,  and  the  Eastern Ramganga.  The  power  potential  of  these  rivers has been estimated at 1240 MW, 345 MW and 80 MW respectively. 

INTRODUCTION

Page 50: Hydro Energy Technology

LAYOUT PLAN

Page 51: Hydro Energy Technology

Technical Features

Location Distt. Pithoragarh in Uttarakhand.

Approach 370 km from Bareilly and Nearest Airport - Pithoragarh,

Capacity 4x70 MWAnnual Generation 1134.70 MUsProject Cost Rs.1578.31 Crores

Beneficiary StatesUttarakhand, U.P., Delhi, H.P., Punjab, Chandigarh, J&K, Haryana & Rajasthan.

Year of Commissioning/Completion Schedule

October 2005

•56 m high concrete faced rock fill dam. •6.5 m dia, 5.29 km long head race tunnel. •6.5 m dia, 437 m long tail race tunnel. Underground power house containing 4 units of 70 MW each.

Page 52: Hydro Energy Technology

DULHASTI Power station

Page 53: Hydro Energy Technology

Dulhasti Power Station  is  the  second  project  to  be executed  by  NHPC  in  the  state  of  Jammu  and  Kashmir after Salal Stage-II. It is a run-of-river scheme.The  project  is constructed  on  river Chandra,  a  tributary of  river  Chenab.  The  project  headquarter  is  located  at Kishtwar in district Doda of J&K. The commercial production started on 07/04/2007.

INTRODUCTION

Page 54: Hydro Energy Technology

LAYOUT PLAN

Page 55: Hydro Energy Technology

Technical Features

Location Distt. Doda in J & K

Approach Nearest Rail Head / Airport - Jammu

Capacity 390 MW (3x130 MW)Annual Generation 1928 MUsProject Cost Rs. 3559.77 31 Crores

Beneficiary StatesJ&K, H.P., Punjab, Haryana, Delhi, U.P, Rajasthan & Chandigarh, Uttaranchal

Year of Commissioning/Completion Schedule

March 2007

•65 m high, 186 m long concrete gravity dam. •7.46 m & 7.7 m dia., 10.586 Km long head race tunnel• 7.46 m dia., 298 m long tail race tunnel. Underground power house containing 3 units of 130 MW each.

Page 56: Hydro Energy Technology

SALALPower station

Page 57: Hydro Energy Technology

Salal Hydroelectric Project Stage-I & Stage-II is constructed on  river Chenab  in  J&K.  The  project was  conceived  in  the year 1920. The investigations on the project were started in the  year  1961  by  the  Govt.  of  J&K  and  construction  was started  in  1970  by  Central  Hydroelectric  Project  Control Board under Ministry of Irrigation and Power, Govt. of India. In 1978 construction of the projects was entrusted to NHPC on agency basis. After completion of project, it was handed over  to  NHPC  on  ownership  basis  for  operation  and Maintenance.Stage-I  of  the  project  was  commissioned  in 1987. First unit of Stage-II of the project was commissioned in 1993, second in 1994 and third in 1995. 

INTRODUCTION

Page 58: Hydro Energy Technology

LAYOUT PLAN

Page 59: Hydro Energy Technology

Technical Features

Location Distt. Udhampur, J & K

Approach Nearest Rail Head - Jammu

Capacity 690 MW

Annual Generation 3101 million units

Project Cost Rs. 9288.9 million

Beneficiary States U.P, J&K, Punjab, Haryana, Delhi, H.P. Chandigarh & Rajasthan

Year of Commissioning/Completion Schedule

Stage-I 1987 Stage-II 1st unit-1993 2nd unit-1994 3rd unit-1995. Finally Commissioned in 1996

•118 m high, 630m long rockfill dam. •113 m high, 450 m long concrete dam •11 m dia, 2.46 km long tail race tunnel. •6 nos. Penstocks 5.23 m dia, 279 m long each. Sub-surface power house containing 6 units of 115 MW each.

Page 60: Hydro Energy Technology

SEWA – II Power station

Page 61: Hydro Energy Technology

Sewa Power Station - II is a RoR project, constructed on river Sewa which is a tributary of river Ravi in J&K.

INTRODUCTION

Page 62: Hydro Energy Technology

LAYOUT PLAN

Page 63: Hydro Energy Technology

Technical Features

Location State - J&K, District - Kathua, River - Sewa (a tributary of Ravi)

Approach Nearest Rail Head - Pathankot & Nearest Airport - Jammu.

Capacity 120 MW (3 X 40)

Annual Generation 533.52 MU (90% dependable year)

Project Cost Rs.665.46 Crores. Year of Commissioning/Completion Schedule

July 2010

•53 m high Concrete Gravity Dam •6.0 m Horse Shoe Shaped, 289 m length Diversion tunnel •3.3 m Horse Shoe Shaped concrete lined Head Race Tunnel (HRT), 10.02 Km length. • 3 x 40 MW, vertical Pelton turbine Rated Net Head = 560 m, Max. Gross Head = 599 m Rated Net Head = 560 m, Max. Gross Head = 599 m

Page 64: Hydro Energy Technology

TANAKPUR Power station

Page 65: Hydro Energy Technology

Tanakpur Power Station is the first major operational run-of-river   located 5 km down stream of Brahmadeo in the Sharda Valley. Tanakpur Power Station  is the first hydel project commissioned by the NHPC in April 1993 in the Sharda Valley. The power from this project is now is being supplied to neighbouring conutry.

INTRODUCTION

Page 66: Hydro Energy Technology

LAYOUT PLAN

Page 67: Hydro Energy Technology

Technical Features

Location Banbassa, District Champawat, Uttarakhand.

Approach Nearest Rail Head - BareillyCapacity 120 MW (3 x 40 MW)Uprated Capacity 94.2 MWAnnual Generation 452.19 million unitsProject Cost Rs. 379.16 Crore

Beneficiary StatesU.P, Uttarakhand, J&K, Punjab, Haryana, Delhi, H.P., Chandigarh & Rajasthan

Year of Commissioning/Completion Schedule

1992

•475.3 m long barrage having 22 bays.• 6.4 km long head race channel. Surface power house having 3 units of 40 MW each.

Page 68: Hydro Energy Technology

URI - I Power station

Page 69: Hydro Energy Technology

Uri Power Station - I is a run-of-the-river scheme, located on the downstream of Lower Jhelum. The water conductor system upto the tunnel intake, has been designed to cater to both Phase-I & II.

INTRODUCTION

Page 70: Hydro Energy Technology

LAYOUT PLAN

Page 71: Hydro Energy Technology

Location Uri Tehsil, Baramulla DIstt, J&K

Approach

75 km from Srinagar on Srinagar-Uri National Highway. Nearest railhead-Jammu(380 KM), Nearest airport-Srinagar (90 KM)

Capacity 4*120 = 480MWAnnual Generation 2587.38 MUProject Cost Rs.3300 Crores

Beneficiary StatesJ&K, Punjab, Haryana, Delhi, Himachal Pradesh, Rajasthan, Uttar Pradesh & UT of Chandigarh.

Year of Commissioning/Completion Schedule January 1997

•10.64 km long head race tunnel.• 2 km long tail race tunnel. Underground power house containing 4 units of 120 MW each. •93.5 m long barrage.

Technical Features

Page 72: Hydro Energy Technology
Page 73: Hydro Energy Technology

FAQs on Hydro power What are the major components of a Hydroelectric

Power Plant? The major components of a Hydroelectric Power

Plant are:-Dam/Barrage .

Head works i.e. power intake, head regulator and desilting chambers etc.

Head race tunnels.Tailrace tunnel. Surge shaft. Penstock .Underground / Surface power house. Draft tube (it may be Conical, Moody spreading,

Simple Elbow & Elbow with circular inlet & Rectangular outlet).  

Page 74: Hydro Energy Technology

How energy is generated in Hydroelectric Power Plant? A hydroelectric power plant consists of a high dam that is built across a large river to create a reservoir, and a station where the process of energy conversion to electricity takes place.The water falls through a dam, into the hydropower plant and turns a large wheel called a turbine which converts the energy of falling water into mechanical energy to drive the generator. 

Which is the largest Hydropower station in the world? Three Gorges project in China on Yang-Yang river is the largest power station in the world having installed capacity of around 22,500 MW.  Max. annual Power production is 84.37TWHr.

Which is the largest Operating Hydro Power Station in the World? The world’s Largest Hydro Electric Power Station is ITAIPU with installed capacity of 12600 MW and a reliable output of 75,000 MU in a year.  It is located at the Border of Brazil and Paraguay.   Max. annual Power production is  94.70 TWHr.

Which is the oldest Hydropower Plant in India? SIDRAPONG plant is the oldest Hydropower Power Project in Darjeeling District in West Bengal, having total installed capacity of (2*65) 130 kW. It was commissioned in the year 1897.  

Why hydropower is called renewable source of energy?Hydropower is called renewable source of energy because it uses and not consumes the water for generation of electricity & hydropower leaves this vital resource available for other uses. 

What was the Hydro potential of India at the time of independence in 1947?It was 500 MW. 

Page 75: Hydro Energy Technology

How much of the total Hydro power potential has been exploited so far in India? Around 19.9% of Hydropower potential has been exploited in India. What are the different types of dams? Different types of dams are conventional concrete dam, Roller compacted concrete dam, rock fill dam, Concrete Faced Rock fill Dam(CFRD), Earth fill dam, arch dam, barrages etc. 

What is the record completion period of a Hydro Power Station in India of more than 100MW ? Chamera – II HE Project (300 MW) in Distt. Chamba, HP. has been completed in a record period is Four & Half years. Which Hydro Station has been completed recently which has the lowest tariff rate? Teesta HE Project-V (510 MW) in the State of Sikkim was completed in April, 2008. The sale rate of this project is @Rs.1.53 / Kwh(approx.) to beneficiary states of Eastern Region as per the petition filed in Central Electricity Regulatory Commission.(For FY 2008-09). 

What are the different types of Hydro Schemes? Different types of Hydro Schemes are :i.        Purely Run - of -  River Power Station.ii.       Storage type Power Station.iii.       Run – of – River Stations with Pondage.            

Why Hydropower stations are preferred solution for meeting peak loads in grids? Due to its unique capabilities of quick starting and closing, hydropower stations are found to be economical choice to meet peak load in the grid. 

Page 76: Hydro Energy Technology

What is the standard debt equity ratio for financing a hydropower project? Standard Debt Equity Ratio is 70:30 

How much Return on Equity is allowed to Hydro Generating Stations?Return on Equity is allowed on pre tax basis at the base rate of 15.5%. Rate of pre tax return on equity = 15.5 

 (1-t) t = applicable tax rate.

What are the ‘pass through’ components in the tariff of Hydro Generating Stations?The pass through componants are only Foreign Exchange Rate Variations (FERV) as per prevailing tariff w.e.f 01.04.2009.

How many rivers are there in J&K?There are 6 rivers in J&K (Chenab, Jhelum, Indus, Zanskar, Suru, Nubra & Shyok)out of which, the flow of water of first 3 rivers is controlled by Pakistan as per Indo-Pak International river treaty (western rivers) and of latter 3 rivers is controlled by India as per same treaty (Eastern rivers). 

Page 77: Hydro Energy Technology

Thank you!