44
Structural analysis UC0213- AMRITA GHOSHAL, UC1113-ARSHIT DHRUV, UC1813-KESHAV SHARMA, UC3213-CHINTAN PATEL, UC5013-HARSH SHAH, UC5713-JIL SHETH, UC5813 SIDDHANT PATNI

Structural analysis

Embed Size (px)

Citation preview

Page 1: Structural analysis

Structural analysisUC0213- AMRITA GHOSHAL, UC1113-ARSHIT DHRUV, UC1813-KESHAV SHARMA,UC3213-CHINTAN PATEL, UC5013-HARSH SHAH, UC5713-JIL SHETH, UC5813 SIDDHANT PATNI

Page 2: Structural analysis

STRUCTURES ANALYSED

RESIDENTIAL BUILDING : BUNGALOW BY ARCHITECT AND STRUCTURAL DESIGNER RUCITA ARCHITECTS.

PUBLIC USE STRUCTURE:SHETH MANGALDAS GIRDHARDAS MEMORIAL HALL

(TOWN HALL AHMEDABAD) BY ARCHITECT CLAUDE BARTELY

Page 3: Structural analysis

RESIDENTIAL BUILDING

• The structure we have selected is composite structure.

• It is a residential bungalow.

• It comprises of two floors.

• Height of structure 20 feet(approx).

• Ground floor has height 8.5 feet based on presence of false ceiling.

• Area of bungalow is 2700 sq. feet.

• Fsi is 1.5

• It has two balconies on first floor.

IT HAS STEEL REINFORCEMENT.

Page 4: Structural analysis
Page 5: Structural analysis

ANALYSIS OF GROUND FLOOR

• NO OF COLUMNS : 8 RECTANGULAR SHAPED COLUMNS

• NO OF COLUMN IN COMPOUND WALL : 2 CYLINDRICAL SHAPED COLUMNS

• TOTAL NO OF BEAMS : 11

• MAJOR BEAMS : 5 (HAVING GRETATER SPAN)

• SMALL BEAM : 1 (HAVING SMALLER SPAN)

• INVERTED BEAMS : 4 (TRANSFERS LOAD IN UPWARD DIRECTION)

• NO STORAGE LEVELS BENEATH SLAB : 5

• THERE ARE 5 ROOMS ON GROUND FLOOR AND RESPECTIVE PARTITION WALLS

• THERE IS 1 ONE WAY SLAB AND ONE CANTILEVER BEAM,

Page 6: Structural analysis

1ST FLOOR

• STRUCTURE HAS 2 BALCONIES SUPPORTED BY LINTELS

• THERE ARE 2 TYPES OF SLABS : ONE WAY AND TWO WAY

• SHORT SPAN : 6.5 FEET

• LONGER SPAN : 7.5 FEET

• LINTEL IS CONTINUOUS ON WALL AND IT IS STEEL BAR SHEAR REINFORCEMENT

Page 7: Structural analysis

TERRACE LEVEL

• THE SLAB HAS 11 BEAMS BENEATH

• IT HAS EXTRA TOP STEEL SUPPORT FOR STRUCTURAL STABILITY

Page 8: Structural analysis

Structural elements

Page 10: Structural analysis
Page 11: Structural analysis

LOADS ACTING ON THIS STRUCTURE

• dead load

• live load

• live roof load

• wind load

• earthquake load

• rainwater load or water load

• effect of material & temperature

• hydraulic loads from soil

• hydraulic loads from fluids

Page 12: Structural analysis
Page 13: Structural analysis

LOADS on building

• Dead Loads

• Dead loads consist of the permanent construction material loads

• comprising the roof, floor, wall, and foundation systems, including claddings,

• finishes, and fixed equipment.

Page 14: Structural analysis

LOADS ON BUILDING

• 1 Gravity loads

• Dead loads due the weight of every element within the structure as well as

• live loads that are acting on the structure when in service constitute gravity loads.

• The dead loads are calculated from the member sizes and estimated material

• densities. Live loads prescribed by codes are empirical and conservative based

• on experience and accepted practice. The equivalent minimum loads for office

• and residential buildings as per IS 875 are as specified in Table -1 .

Page 15: Structural analysis

Live load magnitudes [IS: 875 - 1987 Part -II]

Page 16: Structural analysis

ACCORDING TO IS CODE SPECIFICATION:

• A floor should be designed for the most adverse effect of uniformly

• distributed load and concentrated load over 0.3 m by 0.3 m as specified in Table-

• 3.1, but they should not be considered to act simultaneously. All other structural

• elements such as beams and columns are designed for the corresponding

• uniformly distributed loads on floors.

Page 17: Structural analysis

SUGGESTION:

Reduction in imposed (live) load may be made in designing columns, load

bearing walls etc., if there is no specific load like plant or machinery on the floor.

This is allowed to account for reduced probability of full loading being applied

over larger areas. The supporting members of the roof of the multi-storeyed

building is designed for 100% of uniformly distributed load; further reductions of

10% for each successive floor down to a minimum of 50% of uniformly distributed

load is done. The live load at a floor level can be reduced in the design of beams,

girders or trusses by 5% for each 50m2

area supported, subject to a maximum

reduction of 25%. In cases where the reduced load of a lower floor is less then the reduced load of the upper floor

should be adopted in the lower floor also.

Page 18: Structural analysis

1.WIND LOAD

The wind loading is the most important factor that determines the design

of tall buildings over 10 storeys, where storey height approximately lies between

2.7 – 3.0 m. Buildings of up to 10 storeys, designed for gravity loading can

accommodate wind loading without any additional steel for lateral system.

Usually, buildings taller than 10 storeys would generally require additional steel

for lateral system. This is due to the fact that wind loading on a tall building acts

over a very large building surface, with greater intensity at greater heights and

with a larger moment arm about the base.

Page 19: Structural analysis

As the bungalow is G + 1, wind load would not be considered as it would be negligible based on its location.

Page 20: Structural analysis

2 Earthquake load

Seismic motion consists of horizontal and vertical ground motions, with the

vertical motion usually having a much smaller magnitude. Further, factor of safety

provided against gravity loads usually can accommodate additional forces due to

vertical acceleration due to earthquakes. So, the horizontal motion of the ground

causes the most significant effect on the structure by shaking the foundation

back and forth. The mass of building resists this motion by setting up inertia

forces throughout the structure.

Page 21: Structural analysis
Page 22: Structural analysis

• The magnitude of the horizontal shear force F depends on the mass of the

• building M, the acceleration of the ground a, and the nature of the structure. If a

• building and the foundation were rigid, it would have the same acceleration as

• the ground as given by Newton’s second law of motion, i.e. F = Ma. However, in

practice all buildings are flexible to some degree.

Page 23: Structural analysis

4.Soil Lateral Loads

The most common method of determining lateral soil loads on residential

foundations follows Rankine’s (1857) theory of earth pressure and uses what is

known as the Equivalent Fluid Density (EFD) method.

Page 24: Structural analysis

Building Durability

Roof overhangs increase uplift loads on roof tie-downs and the framing

members that support the overhangs. They do, however, provide a reliable means

of protection against moisture and the potential decay of wood building materials.

The designer should therefore consider the trade-off between wind load and

durability, particularly in the moist, humid climate zones associated with

hurricanes.

Page 25: Structural analysis

For buildings that are exposed to salt spray or mist from nearby bodies of

salt water, the designer should also consider a higher-than-standard level of

corrosion resistance for exposed fasteners and hardware. Truss plates near roof

vents have also shown accelerated rates of corrosion in severe coastal exposures.

The building owner, in turn, should consider a building maintenance plan that

includes regular inspections, maintenance, and repair.

Page 26: Structural analysis

margin

Page 27: Structural analysis
Page 28: Structural analysis

Maximum permissible FSI

Page 29: Structural analysis

Norms by govt.

Page 30: Structural analysis

Safety norms

Page 31: Structural analysis

TOWN HALL

Page 32: Structural analysis
Page 33: Structural analysis
Page 34: Structural analysis

• NAME OF STRUCTURE : SHETH MANGLADAS GIRDHARDAS MEMORILAL HALL

• ARCHITECT AND STRUCTURE DESIGN : CLAUDE BARTELY

• YEAR OF INCEPTION : 1938

• IT IS RENOVATEED THRICE SINCE IT IS MADE

• IT IS OCTAGONAL DOMED STRUCTURE

• IT IS BRICK MASONARY STRUCTURE

• ORNACE GRILLS IN STRUCTURE SHOWS INDIAN ARCHITECTURE

Page 35: Structural analysis

• CURRENT STATE OF CONSTRUCTION IS STABLE BUT WE CAN SEE DEFECTS LIKE CORROSION, CRACKS IN WALLS AN EFFLOROSENCE IN STRUCTURE

• THE WALLS ARE COVERED BY SOUND ABSORBING MATERIALS

• IT WAS LAST RENOVATED BECAUSE OF PROBLEMS WITH ACOUSTICS OF STRUCTURE

• IT IS OWNED BY AMC AND IS FULLY AIR CONDITION

Page 36: Structural analysis

Norms for town hall

Page 37: Structural analysis
Page 38: Structural analysis
Page 39: Structural analysis
Page 40: Structural analysis
Page 41: Structural analysis

• Also there are fire safety norms to be followed.

Page 42: Structural analysis

Norms for parking

Page 43: Structural analysis
Page 44: Structural analysis

THANK YOU