STRUCTURAL ANALYSIS Matrix Structural Analysis

Embed Size (px)

Citation preview

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    1/14

    This document is part of the notes written by Terje Haukaas and posted at www.inrisk.ubc.ca.The notes are revised without notice and they are provided as is without warranty of any kind.

    You are encouraged to submit comments, suggestions, and questions to [email protected].

    It is unnecessary to print these notes because they will remain available online.

    Matrix StructuralAnalysis

    This document presents the computational stiffness method. In the classicalstiffnessmethod,handcalculationsarecentral.Inthatapproach,thestiffnessmatrix

    isestablishedcolumn-by-columnbysettingthestructuraldegreesoffreedomequal

    toone,oneatatime.Theloadvectorisalsoestablishedbyhand.Incontrast,the

    ultimateobjectiveinthisdocumentiscomputerimplementation.Thus,genericand

    programmable procedures are emphasized. In this document, the concept of

    transformation matrices between element configurations is central. In another

    documentonthefiniteelementmethodthestiffnessmethodisfurthergeneralized

    tootherelementtypes.

    ConfigurationsThewordconfigurationisusedthroughoutthisdocument.Itreferstoanelementsdegreesoffreedomandtheirdirectionsrelativetoacoordinatesystem.Itmayalso

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    2/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 2

    describetheentirestructuresdegreesoffreedom.Fiveelementconfigurationsare

    identifiedinthisdocument:

    Basic:InthisconfigurationtheelementhastheminimumnumberofDOFstodescribeanyelementdeformationbutnotrigid-bodymotion

    Local:ThisconfigurationhasenoughDOFstofullydescribedeformationand

    rigid-bodymotion,buttheDOFsareinthelocalcoordinatesystem

    Global:ThiselementconfigurationisthesameastheLocal,buttheDOFsarenowalignedwiththeglobalcoordinatesystem

    All: This is a structural configuration, in which absolutely all DOFsof thestructureareincluded,eventhoseassociatedwithboundaryconditions

    Final: In this structural configuration the boundary conditions, aswell asotherrestraintsanddependenciesareintroduced

    AnalysisProcedure

    Theanalysisprocedureofthecomputationalstiffnessmethodis:1. kb:Setupthestiffnessmatrixinthebasicconfiguration2. Kf:Assemblethefinalstiffnessmatrixforthestructurebythetransformation

    matricesthataredescribedshortly

    3. Fl:Iftherearedistributedelementloadsthensetuptheloadvectorinthebasicorlocalconfiguration,whicheverismoreconvenient.Asintheclassical

    stiffnessmethod,thefixed-endforcesarefirstcomputedandthenmultiplied

    by(-1)toobtaintheloadvectortobeusedintheanalysis.

    4. Ff:Iftherearedistributedelementloadsthenassemblethefinalloadvectorfor the structure from Fb or Fl by the transformation matrices that are

    describedshortly.ForconcentratednodalloadsinthedirectionoftheDOFs,

    Ff is established by inserting the nodal loads in the correct position in Ffwithoutmodificationofthesign.

    5. uf:SolvethesystemofequationsKfuf=Ff6. ub: Calculate the deformations in the basic element configuration by

    employingthetransformationmatricesthataredescribedshortly7. Fb: Calculate the forces in the basic element configuration by the basic

    stiffnessrelationship,whichyieldsthehomogeneoussolutionofthesection

    forcediagrams

    8. Add the particular solution to the section force diagrams, i.e., thecontribution from distributed element loads. Contrary to the moment

    distributionmethod and the slope-deflectionmethod, the structure is still

    considered fully clamped after the stiffness method analysis is completed.

    Hence, the particular solution is the section forcediagrams for fixed-fixed

    beams.

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    3/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 3

    TransformationMatricesA transformation matrix defines the relationship between the DOFs in two

    configurations.DenotingbyuthevectorofDOFstherelationshipsarewritten

    ub= T

    blu

    l (1)

    ul = Tlgug (2)

    ug= T

    gaua (3)

    ua = Tafuf (4)

    The subscripts are selected by the first letter of the name of the configuration it

    refersto.Inthisway,Tblreferstothetransformationmatrixbetweenthebasicandlocalconfigurations.Noticethatthebasic-mostconfigurationappearson theleft-

    handsideinthedisplacementrelationshipsinEqs.(1)to(4).Theprincipleofvirtual

    workisinvokedtodeterminetheassociatedforcerelationships.Whenanelement

    orthestructuredeformsthenthevirtualworkinanyoftheconfigurationsmustbe

    equal.Considerthebasicandlocalconfigurationsasanexample.Bytheprincipleof

    virtualdisplacements,equalityofvirtualworkinthetwoconfigurationsrequires:

    FgT!ug " Fl

    T!ul = 0 (5)

    Introducingthetransformationmatrixbetweenthetwoconfigurationsyields:

    FgT!ug " Fl

    TTlg!ug = Fg

    T" Fl

    TTlg( )!ug = 0 (6)

    Since ug is an arbitrary virtual displacementpattern, the parenthesis in Eq. (6)

    mustbezeroforEq.(6)toholdtrue.Consequently,becausetheparenthesisinEq.

    (6)isarowvector:

    FgT! Fl

    TTlg = 0 " Fg !Tlg

    TFl = 0 " Fg = Tlg

    TFl (7)

    Itisthusobservedthattheforcestransformaccordingtothetransposedversionoftheearliertransformationmatrices,withthefinal-mostconfigurationontheleft-

    handside.

    Next,therelationshipbetweentheforcesanddisplacementsineachconfigurationis

    investigated.Initially,thisrelationshipmayseemobvious:inthestiffnessmethod

    the forces are related to the displacement by the stiffness matrix. However, the

    question is how the stiffness matrix in each configuration is established. First,

    assumethatthestiffnessmatrixinthebasicconfigurationisknown.Thisrepresents

    themateriallawatthebasiclevel.

    CombinedwiththeknownequilibriumandkinematicsrelationshipsinFigure1the

    stiffnessmatrixinthelocalconfigurationis:

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    4/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 4

    Fl= T

    bl

    TF

    b

    = Tbl

    Tk

    bu

    b

    = Tbl

    Tk

    bT

    bl

    kl

    !"# $#

    ul

    (8)

    Thatis,thestiffnessmatrixinanaboveconfigurationisobtainedbypre-andpost-

    multiplyingthestiffnessmatrixinthebelowconfigurationbythetransformationmatrixbetweenthetwoconfigurations,schematicallywritten:

    K = TTkT (9)

    Thisissometimesreferredtoasacontragradienttransformation.Noticealsothat

    the load vector also transforms according to the transformation matrix. With

    reference to the left-hand side of Figure 1, the load vector in an above

    configuration is obtained by pre-multiplying the load vector from the below

    configuration by the transpose of the transformation matrix between the twoconfigurations.

    Figure1:EquilibriumandkinematicsbetweentheBasicandLocalconfigurations.

    Figure2providesanoverviewofalltheconfigurationsandmatrixrelationships.In

    thefollowingsectionsthetransformationmatricesareexplicitlyestablished,for2D

    trussandframeelements.Itturnsoutthatthetransformationmatricesaresetupinamanner similar to the creation of the stiffnessmatrix in the classical stiffness

    method;DOFsatsetequaltounity,oneatatime.Forsomeofthetransformationsit

    ispossibletoestablishcomputeralgorithmsthatarefarmoreefficientthanusing

    transformationmatricesforestablishingthestiffnessmatrixandloadvector.Thisisparticularly the case with the transformation from Global to All, and the

    introduction of boundary conditions when going from the All to the Finalconfiguration.While the use of transformation matrices is a pedagogical way to

    ubFb Fb=kbub

    ub=T

    blulFl=T

    TFb

    ul

    Fl

    Equilibrium Kinematics

    bl

    Local

    Basic

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    5/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 5

    establish a consistent methodology, the more efficient algorithms are also

    mentioned.

    StiffnessMatrixandLoadVectorintheBasicConfiguration

    Beforeinvokingthetransformationmatrices,thestartingpointoftheanalysisistoestablishthefundamentalstiffnessmatrixandloadvectorfortheelement.Forthe

    frameelementinFigure2thebasicstiffnessmatrixis

    kb=

    EA

    L0 0

    04EI

    L

    2EI

    L

    02EI

    L

    4EI

    L

    !

    "

    #######

    $

    %

    &&&&&&&

    (10)

    Theentriesinthismatrixareobtainedbysolvingthedifferentialequationforthe

    element, or equivalent methods to determine element deformations. If there aredistributedelementloadsthentheloadvectorisestablishedbyenteringthefixed-

    end forces into the basic or local force vector, whichever is more convenient.

    Thereafter,thesignofthevectorisflippedandthefinalloadvectorisestablishedbyutilizingthetransformationmatricesthataredescribedinthefollowing.

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    6/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 6

    Figure2:Overviewofconfigurationsandmatrixrelationships.

    Basic-LocalTransformationTheobjectiveinthissectionistoestablishthetransformationmatrixTblinEq.(1).This is accomplished by setting the local DOFs equal to one, one at a time. By

    observingtheresultingdeformationsinthebasicconfigurationthisestablishesthe

    correspondingrowofTbl.Asanexample,considerthe2DframeelementinFigure2.SettingthefirstlocalDOFequaltounity,andallothersequaltozero,impliesaunit

    shorteningoftheelement.ThusthevalueofthefirstDOFinthebasicconfiguration

    is-1,whilethebendingDOFsarezero.ThisformsthefirstrowofTbl,whichinits

    entiretyreads

    ubFbkb

    BASIC

    ub=TblulFl=TblFb

    ulFlkl=TblkbTbl

    ul=TlgugFg=TlgFl

    ugFg kg=TlgklTlg

    ug=TgauaFa=TgaFg

    uaFa

    ua=TafufFf=TafFa

    ufFfKf=TafKaTaf

    LOCAL

    GLOBAL

    ALL

    FINAL

    T

    T

    T

    T

    T

    T

    T

    2

    1

    3

    4

    6

    5

    31

    2

    3

    1

    2

    4 6

    5

    1

    2

    3

    4

    5

    6

    7

    8

    910

    11

    12

    1

    2

    3

    4

    5

    6

    Ka =

    Tga

    Tk

    gT

    ga

    Num. el.

    !

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    7/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 7

    Tbl=

    !1 0 0 1 0 0

    0 !1 / L 1 0 1 / L 0

    0 !1 / L 0 0 1 / L 1

    "

    #

    $$$

    %

    &

    '''

    (11)

    Thesecondandfifthcolumnofthismatrixareconfusingatfirst;ithelpstodrawthe

    deformed shape of the element in the local configuration and identify the endrotationscomparedwiththestraightlinefromoneelementendtotheother.

    Local-GlobalTransformationThe transformationinto the globalcoordinatesystem isa functionoftheelement

    orientation.For2Delements,theorientationisrepresentedbytheanglebetweenthe localelement axisandthehorizontal axis.The columnsofthe transformation

    matrixareestablishedbysettingtheglobalDOFsequaltounity,oneatatime.Forthe2DframeelementinFigure2theresultis

    Tlg =

    cos(!) sin(!) 0 0 0 0

    "sin(!) cos(!) 0 0 0 0

    0 0 1 0 0 0

    0 0 0 cos(!) sin(!) 0

    0 0 0 "sin(!) cos(!) 0

    0 0 0 0 0 1

    #

    $

    %%%%%%%%

    &

    '

    ((((((((

    (12)

    Tlgcanberegardedasamatrixofdirectioncosines,whichisaconceptfromthe

    moregeneral fieldofcoordinate transformations,described inthemath-notes on

    geometry.Thedirectioncosinesaredefinedas

    cx !dx

    L, cy !

    dy

    L, cz !

    dz

    L (13)

    Hence,Tlgcanalsobewritten

    Tlg =

    cx cy 0 0 0 0

    !cy cx 0 0 0 0

    0 0 1 0 0 0

    0 0 0 cx cy 0

    0 0 0 !cy cx

    0

    0 0 0 0 0 1

    "

    #

    $$$$$$

    $$

    %

    &

    ''''''

    ''

    (14)

    Fora3DframeelementwithsixDOFsateachendthetransformationmatrixfrom

    thelocaltotheglobalcoordinatesystemreads

    Tlg =R 0

    0 R

    !

    "#

    $

    %& (15)

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    8/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 8

    where0isathree-by-threesub-matrixofzerosand Ristherotationmatrixthathas

    threeorthogonalvectorsasrows:

    R =

    x

    y

    z

    !

    "

    ##

    #

    $

    %

    &&

    &

    (16)

    wherexisthethree-dimensionalrowvectorthatcontainsthedirectioncosinesof

    Eq.(13),whiletherowvectorsyandzareexpressedasthecrossproducts

    y = x ! v (17)

    z = x ! y (18)

    wherev isa user-definedvector thatorientsthe localz-axisoftheelementinthe

    globalcoordinatesystem.Asanexample,consideraframeelementthathasthelocalx-axis along the element length. Suppose the end nodes of this element are

    positionedintheglobalcoordinatesystemsothattheelementisorientedparallelto

    theglobalz-axis.Practically,thismeansthattheelementisaverticalcolumnifthe

    globalz-axisdefinestheupwarddirection.Toorientthelocalz-axisoftheelement

    alongtheglobalx-directionthevectorvisgivenas{100}.Conversely,toorientthe

    localz-axisalongtheglobaly-directionthevector visgivenas{010}.Giventhe

    element orientation it is impossible to orient the localz-axis along the globalz-

    direction.Whenprovidingthevectorvitissufficienttogiveadirectionintheglobal

    systemthatliesinthex-z-planeofthelocalelement.Thatis,thevectors{100}and

    {100}wouldworkfineeveniftheelementisnotorientedcompletelyverticalintheglobal system. Importantly, however, all the vectors v, y, and z must have unit

    length;xisalreadynormalizedbyitsdefinitionintermsofthedirectioncosines.

    Finally,asapracticalinterpretationofR,noticethatthevectorsx,y,andzrepresentorthogonalvectors intheglobalcoordinatesystem.For trussand frameelements

    the vector x is aligned with the longitudinal element axis,which is given by the

    direction cosines of the element. The y and z vectors are rotated around the

    longitudinalelementaxisbymeansoftheauxiliaryvectorvtoorienttheelements

    cross-sectionaxesintheglobalcoordinatesystem.

    Global-AllTransformationTheobjectiveofthistransformationistolinktheelementDOFswiththestructuralDOFs.The size of the transformationmatrix Tga is (numberof elementDOFs) by

    (numberofstructuralDOFs).Clearly,whenthenumberofstructuralDOFsislargethenthecontragradienttransformationinEq.(9)toobtaintheAllstiffnessmatrixis

    computationally expensive. Therefore, in addition to establishing Tga, it is an

    objective in this section to look for algorithms that are more efficient for

    establishingthestiffnessmatrixandloadvectorintheAllconfiguration.

    Tgaisestablishedbythesameprocedureasallothertransformationmatrices:one

    DOF at a time in the All configuration is set equal to unity. For the structure in

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    9/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 9

    Figure2,setDOFnumberfourequaltoone.ThisDOFcorrespondstoDOFnumber

    onefortheelementbelow.Hence,inthiscasethefourthcolumnofthematrixTga

    hasvalueoneinthefirstrow:

    Tga=

    0 0 0 1 0 0 0 0 0 0 0 0

    0 0 0 0 1 0 0 0 0 0 0 0

    0 0 0 0 0 1 0 0 0 0 0 0

    0 0 0 0 0 0 1 0 0 0 0 0

    0 0 0 0 0 0 0 1 0 0 0 0

    0 0 0 0 0 0 0 0 1 0 0 0

    !

    "

    #

    ######

    $

    %

    &

    &&&&&&

    (19)

    Thepresenceofonlyzerosandonesisageneralcharacteristicofthe Tgamatrix.Itis

    relatively straightforward to implement an algorithm that places the ones in the

    correctpositioninthematrix.Thisisdoneinthetransformationmatrixassembler

    in St. However, the computational cost increases rapidly with the number of

    structural DOFs. In the transformation matrix approach, one Tga matrix is

    established for each element followedby the followingmatrixmultiplication andsummation:

    Ka = Tga

    Tk

    gT

    ga( )Element 1

    + TgaTk

    gT

    ga( )Element 2

    + TgaTk

    gT

    ga( )Element 3

    +! (20)

    Similarly,theloadvectoris

    Fa = Tga

    TF

    g( )Element 1

    + TgaTF

    g( )Element 2

    + TgaTF

    g( )Element 3

    +! (21)

    Algorithmsthatarefarmoreefficient,albeitperhapslesspedagogical,exist.After

    all,theobjectiveissimplytoentercontributionsfromtheelementstiffnessmatrix

    andloadvectorintotheirstructuralcounterparts.Thisisachievedbyenteringsub-

    matricesfromkgintoKa,andbyenteringsub-vectorsfromFgintoFa:

    Ka=

    [ ] [ ]

    [ ] [ ]

    !

    "

    ######

    $

    %

    &&&&&&

    , Fa=

    { }

    { }

    '

    (

    )))

    *

    )))

    +

    ,

    )))

    -

    )))

    (22)

    All-FinalTransformation

    Fixed boundary conditions are introduced by means of the Taf transformationmatrix. Thedimensions of thismatrix is given by the number of DOFs in theAllconfigurationandthenumberofDOFsinthefinalconfiguration.Theprocedureto

    establishTafisnotnew:eachDOFinthefinalconfigurationissetequaltounity,oneatatime.ForthestructureinFigure2,settingthefirstDOFinthefinalconfiguration

    equaltoonewiththeotherszeroimpliesthatthefourthDOFintheAllconfiguration

    isequaltooneandtheotherzero.Thus,thefirstrowin Tafhasaoneinthefourthposition:

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    10/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 10

    Taf =

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    1 0 0 0 0 0

    0 1 0 0 0 0

    0 0 1 0 0 0

    0 0 0 1 0 0

    0 0 0 0 1 0

    0 0 0 0 0 1

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    !

    "

    #####

    ##########

    $

    %

    &&&&&

    &&&&&&&&&&

    (23)

    Thefinalstiffnessmatrixandloadvectorare

    Kf = TafT

    KaTaf,

    Ff = TafT

    Fa (24)

    Depending on the number of DOFs in the structure, these matrix multiplicationoperations are unnecessarily computationally expensive, albeit pedagogically

    appealing.Therefore,insteadofcarryingouttheoperationsinEq.(24),considerthe

    effect of these operations. For the stiffness matrix, the row and column that

    correspondstothefixedDOFisremoved.Similarlyfortheloadvector,therowthat

    correspondstothefixedDOFisremoved.ThisistheeffectofEq.(24),andthiscanbeaccomplishedwithefficientalgorithms.

    ShearWallTransformationOne useful application ofmatrix structural analysis is shear wall analysis. Theobjectiveofthistypeofanalysisistodeterminetheforcesonindividualshearwalls

    duetoaglobalforce,F,onalateralforceresistingsystemconsistingofcolumnsand

    shearwalls. The analysisprocedure isdescribedearlier inthisdocumentand the

    stiffnessmatrix for a shearwall element is discussed in the document on frame

    elements. Figure 3 shows the plan view of a generic building and one of the

    supportingshearwalls.The relationshipbetween theDOFsofthe floor,ufloor,and

    theDOFsoftheshearwall,uwall,issoughtfortheanalysis.TheDOFsofthefloorarearbitrarilyselectedtooriginateinthelowerleftcorner.Settingthecomponentsof

    ufloor equal to one, one at a time, establishes the columns of the transformation

    matrix:

    Twf =

    1 0 b

    0 1 !a

    0 0 1

    "

    #

    $$$

    %

    &

    '''

    (25)

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    11/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 11

    Figure3:Rigidfloorwithshearwall.

    Theloadvectorfortheshownflooris:

    F =

    0

    F

    !c "F

    #

    $%

    &%

    '

    (%

    )% (26)

    SpecialTopics

    StaticCondensation

    Static condensation isa technique that ispossible in linear structural analysis toremoveDOFsfromthesystemofequationswithoutlockingthem.TheDOFsthatare

    removed remain free to translate or rotate, but the value of the translation orrotation remains unknown after the system of equations in solved. Static

    condensation is particularly useful in the development of super-elements. Asuper-element isone that isinitiallydevelopedwithmanyDOFs,someofwhich

    areremovedbystaticcondensation.Usually,onlytheDOFsattheboundaryofthe

    element are retained. To understand static condensation, consider the followingsortedsystemofequationsforanelementorastructure

    Kii

    Kio

    Koi

    Koo

    !

    "##

    $

    %&&

    ui

    uo

    '

    (

    )

    *)

    +

    ,

    )

    -)=

    Fi

    Fo

    '

    (

    )

    *)

    +

    ,

    )

    -) (27)

    wheresubscriptiidentifiestheDOFsthatarekeptin,whilesubscriptoidentifiesthe

    DOFsthataretobetossedout.Next,writeoutthetwosub-systemsofequations

    K

    iiu

    i+K

    iou

    o= F

    i

    Koiu

    i+K

    oou

    o= F

    o

    (28)

    b

    c

    u1,floor

    u2,floor

    u3,floor

    u1,wall

    u2,wall

    u3,wall u

    1,wall

    u2,wall

    u3,wall

    F

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    12/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 12

    Solveforuointhesecondsub-systemtoobtain:

    uo= K

    oo

    !1F

    o!K

    oiu

    i( ) (29)

    Substitutionintothefirstsub-systemyields:

    K

    ii

    ui

    +Kio

    Koo

    !1F

    o

    !Koi

    ui( )( )

    = Fi (30)

    Re-arrangetoobtainthenewsystemofequationsintheunknownsui:

    Kii!K

    ioK

    oo

    !1K

    oi( )K

    ! "### $###

    ui= F

    i!K

    ioK

    oo

    !1F

    o

    F

    ! "## $##

    (31)

    where the new stiffness matrix, K, and load vector, F, for the super-element or

    super-structurewithouttheuoDOFsareidentified.

    SettlementsandImposedDeformations

    DOFs that experience settlementsand imposeddisplacements are not unknowns.

    Rather, it is the forces along those DOFs that are unknown. Consequently, thesystemofequationsisreducedbytheintroductionoftheseeffects.Tounderstand

    howthisishandled,considerthesortedsystemofequationsforthestructure

    K

    iiK

    is

    Ksi

    Kss

    !

    "

    ##

    $

    %

    &&

    ui

    us

    '()

    *)

    +,)

    -)=

    Fi

    Fs

    '()

    *)

    +,)

    -) (32)

    wheresubscriptiidentifiesthefreeDOFs,whilesubscriptsidentifiestheDOFsthat

    aresubjecttosettlementorimposeddisplacementorrotation.Next,writeoutthe

    twosub-systemsofequations

    Kiiu

    i+K

    isu

    s= F

    i

    Ksiu

    i+K

    ssu

    s= F

    s (33)

    The firstof thesetwosub-systemsisreadilysolvedbymovingthesecond termintheleft-handsideovertotheright-handside:

    Kiiu

    i= F

    i!K

    isu

    s (34)

    becauseusisavectorofknowndisplacements.Uponsolvingforui,thesecondsub-

    systemimmediatelyprovidesthevalueoftheforcesFsalongtheDOFswithimposed

    deformations.

    Springs

    Springs are concentrated stiffness values along selected DOFs. They typicallyrepresentflexiblefoundations,i.e.,theyaremeanttobeconnectedtoground.There

    aretwowaystoaddressconcentratedsprings.Oneapproachistointroduceextra

    axialbars,i.e.,trusselementsthatareattachedtothestructureatoneendandtoa

    fixednode at the otherend. This isa straightforward approach, inwhichthe bar

    stiffnessEA/L istuned tothe desired spring stiffness.Thisapproachalsohas the

    advantage that the force in the spring is read from the axial force in the truss

    member.Anotherapproachistointroduceaspecialoptiontoallowscalarstiffness

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    13/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 13

    values to be inserted into the diagonal of the structural stiffness matrix. This is

    perhapssimplerfortheanalystbecauseiteliminatestheneedtocreateanauxiliary

    nodeandtrusselement.

    DOFDependencies

    ADOF dependencymeans that oneDOF isequal toor linearlydependentonanother DOF. One example is when the axial deformation of a horizontal frame

    element is neglected; then both horizontal end displacements are the same, i.e.,dependent.Anotherexampleisaninclinedrollersupport,inwhichcasethevertical

    displacementis linearlyrelated tothehorizontal displacement. It isdangerousto

    addressthisproblembysettingamemberstiffness,e.g.,axialstiffness,tosomevery

    highnumber.Thismayleadtopoorconditioningofthestiffnessmatrixand,asa

    result,inaccuraciesinthesolutionofthesystemofequations.Abetterapproachis

    tointroduceDOFdependenciesbyaspecial-purposetransformationmatrix.Forthis

    purpose,considerthefollowingrelationshipbetweenDOFsintheAllconfiguration:

    u1

    u2

    u3

    !

    !

    "##

    $

    ##

    %

    #

    '

    ##

    ua

    "#$ %$

    =

    0 ( 00 1 0 &

    0 0 1

    ! '

    )

    *

    ++++

    ,

    -

    .

    .

    .

    .

    Td

    " #$$$ %$$$

    u1

    u2

    u3

    !

    !

    "##

    $

    ##

    %

    #

    '

    ##

    ua

    "#$ %$

    (35)

    where the transformation matrix Td (d stands for dependency) states that DOF

    numberoneisequaltotimesDOFnumberto,i.e.,

    u1=! "u

    2 (36)

    Inotherwords,u2istheindependentDOFandu1isthedependentDOF.Asusual,

    thenewstiffnessmatrixandloadvectorareobtainedby

    Ka= T

    d

    TK

    aT

    d, F

    a= T

    d

    TF

    a (37)

    wherethemodifiedstiffnessmatrixhasretaineditsdimensionbuthaszerosinthe

    rowandcolumnthatcorrespondtothedependentDOF.Similarly,themodifiedload

    vectorhasazeroentryinthecomponentthatcorrespondstothedependentDOF.

    Thus, the dependentDOFmust be removed from the system ofequationsby the

    transformationfromtheAllconfigurationtotheFinalconfiguration,i.e.,bythe Taftransformationmatrix.

    BucklingLoadsandModes

    Whenthestiffnessmatrixisamendedwithgeometricstiffnesstermsitispossibletocomputethebucklingloads,andassociateddisplacedshapes,i.e.,modes,ofthe

    structure.Therewill be as many buckling loads as there are DOFs, but only the

    smallest is relevant in practice because it is the governing buckling load. Thegeometric stiffness matrix for each element type is established in separate

    documents, while the procedure to compute the buckling loads and modes is

  • 7/30/2019 STRUCTURAL ANALYSIS Matrix Structural Analysis

    14/14

    Terje Haukaas University of British Columbia www.inrisk.ubc.ca

    Matrix Structural Analysis Page 14

    presented here. Upon assembling the final structural stiffness matrix, including

    geometricstiffnesscontributions,thesystemofequilibriumequationsiswritten

    K ! P "KG( )u = F (38)

    ThefactorizationoftheaxialforcelevelPasamultiplierofthegeometricstiffness

    matrixofthestructure isnoted.This ispossiblewhentheconsideredaxialforcesare fromonesource, such asgravity. It isalso necessary that the formulationbe

    basedonthesecond-orderlinearizedtheory.TheuseofexactLivesleyfunctions,

    i.e., the exact solutionof the differential equation, prevents the form inEq. (38).

    However,whentheforminEq.(38)ispossible,thebucklingloads, Pcr,ofthesystem

    canbecomputed.First,removetheotherloadsthatarerepresentedbytheexternal

    loadvector,i.e.,setF=0.Next,recognizethattheremainingsystemofequationsisaneigenvalueproblem;itishomogeneouswithnon-trivialsolutionsonlywhenthe

    determinantofthecoefficientmatrixiszero.Hence,theequation

    det K ! P "KG( ) = 0 (39)

    issolvedtoobtainthecriticalvaluesoftheaxialloadlevel,whicharethebuckling

    loads,Pcr.Therewillbeasmanybucklingloadsastherearedegreesoffreedom,but

    usually only the lowest value is relevant in design. Each buckling load has a

    corresponding bucklingmode.While the buckling loads are the eigenvalues, the

    bucklingmodesaretheeigenvectors.Themodesrepresentthedisplacedshapeof

    thestructurewhenitbucklesatthecorrespondingbucklingload.Theamplitudeof

    the deformation isnot uniquelydetermined,butthe shape isobtainedbysetting

    onecomponentofuequaltounityandsolvingfortheothers.Softwareapplications

    thatsolveeigenvalueproblemsdothisautomatically.

    ResponseSensitivityAnalysis

    (Notwrittenyet.)