15
Electrostática Campo eléctrico. GETTYS, W.E.; KILLER, F.J. Y SKOVE, M.J. "Física para ciencias e ingeniería", Tomo II. Ed. McGraw-Hill. 2005. SERWAY R. A. BEICHNER R. J. “Física para ciencias e ingeniería”. Tomo II, quinta edición, Editorial Mc. Graw Hill. 2000 SEARS, F.W. ZEMANSKY, M. YOUNG, H. “Física Universitaria”. Vol 2, Ed. Pearson Educacion. 2004.

Electrostática 2

Embed Size (px)

Citation preview

Page 1: Electrostática 2

ElectrostáticaCampo eléctrico.

GETTYS, W.E.; KILLER, F.J. Y SKOVE, M.J. "Física para ciencias e ingeniería", Tomo II. Ed. McGraw-Hill. 2005.SERWAY R. A. BEICHNER R. J. “Física para ciencias e ingeniería”. Tomo II, quinta edición, Editorial Mc. Graw Hill. 2000SEARS, F.W. ZEMANSKY, M. YOUNG, H. “Física Universitaria”. Vol 2, Ed. Pearson Educacion. 2004.

Page 2: Electrostática 2

4. CAMPO ELÉCTRICO La fuerza eléctrica supone una acción a distancia. Ejemplo: carga A y carga B

La carga A causa una modificación de las propiedades del espacio en torno a ella.

La carga (prueba) B percibe esta modificación y experimenta una fuerza

Consideremos que B puede estar en cualquier punto y tener cualquier valor

La fuerza es ejercida sobre la carga prueba por el campo

La fuerza eléctrica sobre un cuerpo cargado es ejercida por el campo eléctrico creado por otros cuerpos cargados

AA EqF

Claudia González Cuervo. Ph. D.

ABAB

BAAB r

r

qqF ˆ

2

ABAB

AA r

r

qqF ˆ

2

Page 3: Electrostática 2

4.1 CAMPO ELÉCTRICO CARGAS PUNTUALES

Carga positiva = fuente

Carga negativa = sumidero

-+

rr

qkrE

3

)( rr

qkrE

3

)(

RadialesProporcionales a la cargaInversamente proporcionales al cuadrado de la distancia Claudia González Cuervo. Ph. D.

Page 4: Electrostática 2

4.2 CAMPO ELÉCTRICO. SISTEMA DE CARGAS

Principio de superposición de campos: El campo neto creado por un sistema de cargas es la suma vectorial de los campos creados por cada una de las cargas del sistema.

Cargas discretas

i

ii

i

iiTotal r

r

qkEE

3 dq

r

rkEdETotal

3

Distribución continua de carga

Claudia González Cuervo. Ph. D.

Page 5: Electrostática 2

4.3 LÍNEAS DE CAMPO ELÉCTRICO

Campo = deformación del espacio causada por un cuerpo cargado.

Se puede representar mediante líneas. El vector campo en un punto es tangente a la

línea de campo Dos líneas de campo nunca pueden cruzarse.

La densidad de líneas es proporcional a la intensidad del campo eléctrico.

A grandes distancias las líneas son las de una carga puntual.

Claudia González Cuervo. Ph. D.

Page 6: Electrostática 2

LÍNEAS DE CAMPO EN ESFERAS Y PLANOS

Esfera con carganegativa Plano positivo

Simetría esférica Simetría planar

Claudia González Cuervo. Ph. D.

Page 7: Electrostática 2

Dos cargas positivas

Carga positiva y carga negativaDipolo eléctrico

LÍNEAS DE CAMPO PARA DIPOLOS

Claudia González Cuervo. Ph. D.

Page 8: Electrostática 2

Tres cargas puntuales están ordenadas como se ve en la figura.a) Encuentre el vector de campo eléctrico que crean en el origen

las cargas de 6.0nC y -3.0nC b) Encuentre el vector de fuerza sobre la carga de 5.0nC

6.0nC5.0nC

-3.0nC

0.3m

0.1m

Page 9: Electrostática 2

Ejemplo 1.

Tres cargas de igual magnitud q se encuentran en las esquinas de un triángulo equilátero de longitud de lado a. a) Encuentre la magnitud y dirección del campo eléctrico en el

punto pb) Dónde debe situarse una carga -4q de manera que cualquier

carga localizada en p no experimentará fuerza eléctrica neta?(deje que p sea el origen y que la distancia entre la carga +q y p sea 1.0m).+q

-q-qp a/2

a

Page 10: Electrostática 2

Ejemplo 3.

Una partícula con carga 5.8nC está ubicada en el origen de coordenadas. Determine las componentes cartesianas del campo eléctrico producido en los puntos: (15cm,0,0); (15cm,15cm,0) y (15cm,15cm,15cm)

Ejemplo 2.

Dada la siguiente figura, determine el campo eléctrico en: a) Centro del cuadradob) Esquina vacante.

q q

q

d

d

Page 11: Electrostática 2

5. MOVIMIENTO DE CARGAS EN PRESENCIA DE CAMPOS ELÉCTRICOS

Supongamos que una partícula cargada que está en una región donde hay un campo eléctrico. Ésta experimentará una fuerza igual al producto de su carga por la intensidad del campo eléctrico

Fe=q·E

Si la carga es positiva, experimenta una fuerza en el sentido del campo

Si la carga es negativa, experimenta una fuerza en sentido contrario al campo

Page 12: Electrostática 2

Consideremos que la fuerza eléctrica es la única que afecta apreciablemente a la partícula; por tanto el producto q·E. será la fuerza neta y de acuerdo con la segunda ley de Newton se obtiene:

maqE m

qEa

Considerando dos casos individuales: i) una partícula que en su inicio está en reposo dentro de un campo uniforme y ii) una partícula que es lanzada con una velocidad v0 en un campo uniforme E perpendicular a v0

Page 13: Electrostática 2

Caso i

una partícula cargada que se libera desde el reposo dentro de un campo eléctrico uniforme, se moverá con una aceleración constante a lo largo de una línea paralela a E. de la misma manera que una piedra soltada en un campo gravitatorio uniforme cae en forma vertical siguiendo una línea paralela a g.

Tomando el origen en el punto inicial del movimiento, y el eje x en la dirección de E y ajustando t = 0 para x = 0, a partir de los procedimientos de cinemática se obtiene:

,

.

Page 14: Electrostática 2

Caso ii.considerando una partícula con velocidad v0 que se encuentra en una región de campo uniforme E con v0 perpendicular a E. El movimiento es similar al de una bola lanzada en forma horizontal en el campo gravitatorio uniforme de la tierra.

Tomando el campo E en dirección del eje y y la partícula con carga positiva y velocidad v0i situada en el origen para t = 0, y utilizando los procedimientos de cinemática se obtiene:

Page 15: Electrostática 2

Ejemplo 1:

Determine la velocidad que adquiere un e- que atraviesa una distancia de 8.3mm en un campo eléctrico uniforme de 4.0x103 N/C después de arrancar del reposo.

Ejemplo 2:Un e- que viaja horizontalmente con una velocidad de 3.4x106 m/s entra en un campo eléctrico uniforme dirigido hacia arriba, de valor E = 520N/C. el campo se extiende en forma horizontal una distancia de 45mm. Determine a) del desplazamiento vertical y la velocidad del electrón cuando sale de la región del campo.