333
Came from 242.6 in Bi 204 from 2010 oct

Bp219 04-13-2011

Embed Size (px)

Citation preview

Page 1: Bp219 04-13-2011

Came from 242.6 in Bi 204 from 2010 oct

Page 2: Bp219 04-13-2011

• Protein Crystallography BP 219, 2 units, Robert Stroud 3/31-4/15, M-F (no Tue), 10-Noon, GH S 261, and 1:30-4:30 lab in S-176

• Natalia Khuri

• David Paquette

• Hai Tran

• Andrew Lyon

• Stefan Isaac

• Lea Gemmel Room for 4 late adds

Page 3: Bp219 04-13-2011

B1 219 ROBERT M. STROUD

• Understanding crystallography and structures

• Interactive – Bring conundra –

• Laboratory course:

– Crystallize a protein

– Determine structure

– Visit ‘Advanced Light Source’ (ALS) for data

Page 4: Bp219 04-13-2011

Determining Atomic Structure• X-ray crystallography = optics ~ 1.5Å (no lenses)

• Bond lengths ~1.4Å

• Electrons scatter X-rays; ERGO X-rays ‘see electrons’

• Resolution –Best is /2 Typical is 1 to 3 Å

• Accuracy of atom center positions ±1/10 Resolution

2

Page 5: Bp219 04-13-2011

Where do X-rays come from?=accelerating or decelerating electrons

Page 6: Bp219 04-13-2011

Resources:

Crystallography accessible to no prior knowledge of the field or its mathematical basis. The most comprehensive and concise reference Rhodes' uses visual and geometric models to help readers understand the basis of x-ray crystallography.

http://www.msg.ucsf.eduComputingCalculation software-all you will ever needOn line course for some items:http://www-structmed.cimr.cam.ac.uk/course.html

http://bl831.als.lbl.gov/~jamesh/movies/

Dr Chris Waddling msg.ucsf.edu

Dr James Holton UCSF/LBNL

Page 7: Bp219 04-13-2011

Optical image formation, - without lenses

Page 8: Bp219 04-13-2011

TopicsSummmary: Resources1 Crystal lattice

optical analoguesphotons as waves/particles

2 Wave additioncomplex exponential

3. Argand diagram4. Repetition ==sampling

fringe function5. Molecular Fourier Transform

Fourier Inversion theoremsampling the transform as a product

6. Geometry of diffraction7. The Phase problem

heavy atom Multiple Isomorphous Replacement) MIRAnomalous Dispersion Multi wavelength Anomalous Diffraction MAD/SAD

8. Difference Maps and Errors9. Structure (= phase) Refinement

Thermal factorsLeast squaresMaximum likelihood methods

10. Symmetry –basis, consequences

Page 9: Bp219 04-13-2011

Topics11. X-ray sources: Storage rings, Free Electron Laser (FELS)12. Detector systems

13. Errors, and BIG ERRORS! –RETRACTIONS

14. Sources of disorder15. X-ray sources: Storage rings, Free Electron Laser (FELS)

Page 10: Bp219 04-13-2011

If automated- why are there errors?What do I trust? Examples of errors

trace sequence backwards,mis assignment of helices

etc

The UCSF beamline 8.3.1

UCSF mission bay

Page 11: Bp219 04-13-2011

NH3 sites and the role of D160 at 1.35Å Resolution

Page 12: Bp219 04-13-2011

Data/Parameter ratio is the same for all molecular sizes at the same resolution dmin

ie. quality is the same!

30S 50S

Page 13: Bp219 04-13-2011

Growth in number and complexity of structures versus time

Macromolecular Structures

Page 14: Bp219 04-13-2011

The universe of protein structures: Our knowledge about protein structures is increasing..

• 65,271 protein structures are deposited in PDB(2/15/2010).

• This number is growing by > ~7000 a year• Growing input from Structural Genomics HT structure

determination (>1000 structures a year)

Page 15: Bp219 04-13-2011

X-Ray Crystallography for Structure Determination

Goals: 1. How does it work2. Understand how to judge where errors may lurk3. Understand what is implied, contained in the Protein Data Bank PDB http://www.pdb.org/pdb/home/home.do

Resolution: - suspect at resolutions >3 ÅR factor, and Rfree : statistical ‘holdout test’Wavelength ~ atom sizeScattering from electrons = electron densityAdding atoms? howObservations Intensity I(h,k,l) = F(hkl).F*(hkl)Determine phases (hkl)Inverse Fourier Transform === electron densityJudging electron density- How to interpret?Accuracy versus Reliability

Page 16: Bp219 04-13-2011

A Typical X-ray diffraction pattern

~100 microns

Page 17: Bp219 04-13-2011

max=22.5 if =1ÅResolution 1.35Åmax=45

Page 18: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

calculated I(h,k,l)

Page 19: Bp219 04-13-2011

Resolution dmin = /2 sin ( max)differs from Rayleigh criterion

dmin = /2 sin ( max) is the wavelength of theshortest wave used to construct the density map

Page 20: Bp219 04-13-2011

The Rayleigh Criterion

• The Rayleigh criterion is the generally accepted criterion for the minimum resolvable detail - the imaging process is said to be diffraction-limited when the first diffraction minimum of the image of one source point coincides with the maximum of another.

compared withsin ( max) = /2 dmin

Page 21: Bp219 04-13-2011

How do we judge the Quality of structure?

2. Overall quality criteria:agreement of observations

with diffraction calculated from the interpreted structure.

3. Since we refine the structureTo match the Ihkl overfitting ?

Define Rfree for a ‘hold-out ‘ set of observations.

4. OK? R < 20%, R free< 25%

5. But the experimental errors in measuring Fo are ~ 3%.inadequate models of solvent, atom motion, anharmonicisity

6 Accuracy ~ 0.5*res*R

Page 22: Bp219 04-13-2011

Crystal lattice is made up of many ‘Unit Cells’Unit cell dimensions are 3 distances a,b,c and angles between them

Repetition in ‘Real space’

Causes Sampling in‘scattering space’

A ‘section’ throughScattering patternof a crystal l=0Note symmetry,Absences for h=even k=even

h

k

Page 23: Bp219 04-13-2011

Crystal lattice is made up of many ‘Unit Cells’Unit cell dimensions are 3 distances a,b,c and angles between them

Repetition in ‘Real space’

Causes Sampling in‘scattering space’

Vabc = |a.(bxc)|Vabc = |b.(cxa)|Vabc = |c.(axb)|

Page 24: Bp219 04-13-2011

Scattering

Adding up the scattering of Atoms:‘interference’ of waves

Waves add out of phaseby 2 [extra path/ ]

Page 25: Bp219 04-13-2011

In general they add up to somethingamplitude In between -2f and +2f.For n atoms

Page 26: Bp219 04-13-2011

Just 2 atoms…

Page 27: Bp219 04-13-2011

Many atoms add by the same rules.

Different in every direction.

Page 28: Bp219 04-13-2011

Summary of the Process from beginningto structure..

Page 29: Bp219 04-13-2011

Optical Equivalent: eg slide projector; leave out the lens..Optical diffraction = X-ray diffraction

Image of the object

Remove the lens= observe scatteringpattern

object

film

object

object

object

Page 30: Bp219 04-13-2011
Page 31: Bp219 04-13-2011

Scattering

Adding up the scattering of Atoms:‘interference’ of waves

Page 32: Bp219 04-13-2011

vectors revisited…• Vectors have magnitude and direction• Position in a unit cell

– r = xa + yb + zc where a, b, c are vectors, x,y,z are scalars 0<x<1– a.b = a b cos ( ) projection of a onto b -called ‘dot product’– axb = a b sin ( ) a vector perpendicular to a, and b proportional to area in

magnitude -- called cross product– volume of unit cell = (axb).c = (bxc).a = (cxa).b = -(bxa).c = -(cxb).a – additivity: a + b = b + a– if r = xa + yb + zc and s = ha* + kb* + lc* then

• r.s = (xa + yb + zc ).(ha* + kb* + lc* ) • = xh a.a* + xka.b* + xla.c* +yhb.a* + ykb.b* + ylb.c* + zhc.a* +zhc.a* + zkc.b* + zlc.c*

– as we will see, the components of the reciprocal lattive can be represented in terms of a* + b* + c*, where a.a* = 1, b.b*=1, c.c*=1

– and a.b*=0, a.c*=0 etc..r.s = (xa + yb + zc ).(ha* + kb* + lc* ) • = xh a.a* + xka.b* + xla.c* +yhb.a* + ykb.b* + ylb.c* + zhc.a* +zhc.a* + zkc.b* + zlc.c*• = xh + yk + zl

Page 33: Bp219 04-13-2011

Adding up the scattering of Atoms:‘interference’ of waves

2 r.S

Page 34: Bp219 04-13-2011

Adding up the scattering of Atoms:‘interference’ of waves

2 r.S

F(S)

Page 35: Bp219 04-13-2011

Revisit..

Page 36: Bp219 04-13-2011
Page 37: Bp219 04-13-2011
Page 38: Bp219 04-13-2011
Page 39: Bp219 04-13-2011
Page 40: Bp219 04-13-2011

Revision notes on McClaurin’stheorem.

It allows any function f(x) to be definedin terms of its value at some x=a valueie f(a), and derivatives of f(x) at x=a,namely f’(a), f’’(a), f’’’(a) etc

Page 41: Bp219 04-13-2011
Page 42: Bp219 04-13-2011
Page 43: Bp219 04-13-2011

Extra Notes on Complex Numbers(p25-28)

Page 44: Bp219 04-13-2011
Page 45: Bp219 04-13-2011
Page 46: Bp219 04-13-2011
Page 47: Bp219 04-13-2011

Wave representation

Page 48: Bp219 04-13-2011

2 r.S

F(S)Argand Diagram.. F(S) = |F(s)| ei

Intensity = |F(s)|2

How to represent I(s)?

I(s) = |F(s)|2 F(S) .F*(S)

proof?

Where F*(S) is defined to be the ‘complex conjugate’ of F(S) = |F(s)| e-i

so |F(s)|2 |F(s)|[cos( ) + isin( )].|F(s)|[cos( ) - isin( )]|F(s)|2 [cos2 ( ) + sin2 ( )]|F(s)|2 R.T.P.

Page 49: Bp219 04-13-2011

-2 r.S

F*(S)

F*(S) is the complex conjugate of F(S), = |F(s)| e-i

(c+is)(c-is)=cos2 - c is + c is + sin2

so |F(s)|2 F(S) .F*(S)

Page 50: Bp219 04-13-2011
Page 51: Bp219 04-13-2011

Origin Position is arbitrary..proof..

So the origin is chosen by choice of:

a) conventional choice in each space group-eg Often on a major symmetry axis- BUT for strong reasons—see ‘symmetry section’.

Even so there are typically 4 equivalent major symmetry axes per unit cell..

b) chosen when we fix the first heavy metal (or Selenium) atom position, -all becomes relative to that.

c) chosen when we place a similar moleculefor ‘molecular replacement’ = trial and errorsolution assuming similarity in structure.

Page 52: Bp219 04-13-2011

Adding waves from j atoms…F(S)= G(s) =

Page 53: Bp219 04-13-2011

and why do we care?

How much difference will it make to the average intensity? average amplitude?

if we add a single Hg atom?

Page 54: Bp219 04-13-2011

The ‘Random Walk’ problem? (p33.1-33.3)

What is the average sum of n steps in random directions?

(What is the average amplitude<|F(s)|> from an n atom structure?)

-AND why do we care?!........

How much difference from adding amercury atom (f=80).

Page 55: Bp219 04-13-2011

The average intensity for ann atom structure, each of f electronsis <I>= nf2

The average amplitude is Square rootof n, times f

Page 56: Bp219 04-13-2011

and why do we care?

How much difference will 10 electrons make to the average intensity? average amplitude?

average difference in amplitude?average difference in intensity?

if we add a single Hg atom?

Page 57: Bp219 04-13-2011

and why do we care?

How much difference will 10 electrons make to the average intensity? 98,000 e2

average amplitude? 313

average difference in amplitude?average difference in intensity?

if we add a single Hg atom?

Page 58: Bp219 04-13-2011

and why do we care?

How much difference will 10 electrons make to the average intensity? 98,000 e2

average amplitude? 313 e

average difference in amplitude?2.2% of each amplitude!

average difference in intensity?98,100-98000=100 (1%)

if we add a single Hg atom?

Page 59: Bp219 04-13-2011

and why do we care?

How much difference will 80 electrons make to the average intensity? 98,000 e2

average amplitude? 313 e

average difference in amplitude?18 % of each amplitude!

average difference in intensity?104,400-98000=6400 (6.5%)

or Hg atom n=80e

Page 60: Bp219 04-13-2011

WILSON STATISTICS

What is the expectedintensity of scattering versus the observedfor proteins of i atoms,?

on average versus resolution |s|?

Page 61: Bp219 04-13-2011
Page 62: Bp219 04-13-2011

Bottom Lines:

This plot should provide The overall scale factor(to intercept at y=1)

The overall B factor

In practice for proteins it has bumpsin it, they correspond to predominantor strong repeat distances in the protein.For proteins these are at 6Å (helices)3Å (sheets), and 1.4Å (bonded atoms)

Page 63: Bp219 04-13-2011

Topic: Building up a Crystal

1 Dimension

Scattering from an array of points, is the same as scattering from one point,SAMPLED at distances ‘inverse’ to the repeat distance in the object

The fringe function

Scattering from an array of objects, is the same as scattering from one object,SAMPLED at distances ‘inverse’ to the repeat distance in the object eg DNA

Page 64: Bp219 04-13-2011

Scattering from a molecule is described by

F(s)= i fi e(2 ir.s)

Page 65: Bp219 04-13-2011
Page 66: Bp219 04-13-2011
Page 67: Bp219 04-13-2011
Page 68: Bp219 04-13-2011
Page 69: Bp219 04-13-2011

Consequences of being a crystal?

• Repetition = sampling of F(S)

34Å 1/34Å-1

Page 70: Bp219 04-13-2011

Object repeated 1/2/

Page 71: Bp219 04-13-2011
Page 72: Bp219 04-13-2011

Consequences of being a crystal?

• Sampling DNA = repeating of F(S)

34Å 1/34Å-1

3.4Å 1/3.4Å-1

Page 73: Bp219 04-13-2011
Page 74: Bp219 04-13-2011

Transform of two hoizontal lines defined y= ± y1

F(s) = Int [x=0-inf exp{2 i(xa+y1b).s} + exp{2 i(xa-y1b).s}dVr ]=2 cos (2 y1b).s * Int [x=0-inf exp{2 i(xa).s dVr]

for a.s=0 the int[x=0-inf exp{2 i(xa).s dVr] = total e content of the linefor a.s≠0 int[x=0-inf exp{2 i(xa).s dVr] = 0

hence r(r) is a line at a.s = 0 parallel to b, with F(s) = 2 cos (2 y1b).s -along a vertical line perpendicular to the horizontal lines.

This structure repeats along the b direction thus peaks occur at b.s = k (where k is integer only)

Transform of a bilayer..

b=53Å

Page 75: Bp219 04-13-2011

4.6Å

b = 53Å Repeat distance 40Å inter bilayer spacing

Page 76: Bp219 04-13-2011

4.6Å

53Å Repeat distance

40Å inter bilayer spacing

Page 77: Bp219 04-13-2011

The Transform of a Molecule

Page 78: Bp219 04-13-2011
Page 79: Bp219 04-13-2011

How to calculate electron density?

Proof of the Inverse Fourier Transform:

Page 80: Bp219 04-13-2011
Page 81: Bp219 04-13-2011
Page 82: Bp219 04-13-2011

Definitions:

Page 83: Bp219 04-13-2011
Page 84: Bp219 04-13-2011

Build up a crystal from Molecules…

First 1 dimension,a direction

Page 85: Bp219 04-13-2011
Page 86: Bp219 04-13-2011
Page 87: Bp219 04-13-2011
Page 88: Bp219 04-13-2011
Page 89: Bp219 04-13-2011
Page 90: Bp219 04-13-2011

b.s=k

a.s=h

Page 91: Bp219 04-13-2011

hkl=(11,5,0)

Measure I(hkl)F(hkl)= √I(hkl)Determine (s) = (hkl)

Calculate electron density map

Page 92: Bp219 04-13-2011
Page 93: Bp219 04-13-2011

The density map is made up of interfering density waves through the entire unit cell…

Page 94: Bp219 04-13-2011

Geometry of Diffraction

Page 95: Bp219 04-13-2011
Page 96: Bp219 04-13-2011

A Typical X-ray diffraction pattern

~100 microns

Page 97: Bp219 04-13-2011
Page 98: Bp219 04-13-2011
Page 99: Bp219 04-13-2011
Page 100: Bp219 04-13-2011
Page 101: Bp219 04-13-2011

A Typical X-ray diffraction pattern

~100 microns

Page 102: Bp219 04-13-2011
Page 103: Bp219 04-13-2011
Page 104: Bp219 04-13-2011
Page 105: Bp219 04-13-2011

=2dhklsin( )

Page 106: Bp219 04-13-2011
Page 107: Bp219 04-13-2011
Page 108: Bp219 04-13-2011
Page 109: Bp219 04-13-2011

Compute a Transform of a series of 50%b/50%w parallel lines

• Ronchi ruling:

Page 110: Bp219 04-13-2011
Page 111: Bp219 04-13-2011
Page 112: Bp219 04-13-2011

F(S) = j fj e(2 irj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r) = F(S) e(-2 ir.S)

FT

FT-1

FT-1

FT

This is all there is? YES!!

a

b

1/a

1/b

Page 113: Bp219 04-13-2011

F(S) = j fj e(2 irj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r) = F(S) e(-2 ir.S)

FT

FT-1

FT-1

FT

But we observe |F(S)|2 and there are ‘Phases’

a

b

1/a

1/b

Where F(S) has phaseAnd amplitude

Page 114: Bp219 04-13-2011

F(S) = j fj e(2 irj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r) = F(S) e(-2 ir.S)

FT

FT-1

FT-1

FT

This is all there is?

a

b

1/a

1/bF(h,k,l) = j fj e(2 i (hx+ky+lz))

x,y,z) = F(h,k,l) e(-2 ir.S)

S

Sh=15, k=3,

Page 115: Bp219 04-13-2011

Relative Information in Intensities versus phases

r) = F(S) e(-2 ir.S)

r) duck r) cat

F(S) = j fj e(2 irj.S)F(S) duck

|F(S)|

(s)

F(S) cat

|F(S)|duck

(s) cat

Looks like a …..

Page 116: Bp219 04-13-2011

Relative Information in Intensities versus phases

r) = F(S) e(-2 ir.S)

r) duck r) cat

F(S) = j fj e(2 irj.S)F(S) duck

|F(S)|

(s)

F(S) cat

|F(S)|duck

(s) cat

Looks like a CATPHASES DOMINATE:-Incorrect phases = incorrect structure-incorrect model = incorrect structure-incorrect assumption = incorrect structure

Page 117: Bp219 04-13-2011

Measure I(hkl)

Page 118: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 119: Bp219 04-13-2011

Phase determination by any means, ends up as a probabilty distribution. So Fh,k,l, (h,k,l)

Then what to use for the best map?r) = F(S) e

(-2 ir.S) ?

the signal towards some F true will beIntegral P(F(S)) cos ( (h,k,l) – true)and the ‘noise ‘ will be Integral P(F(S)) sin ( (h,k,l) – true)

The map with the least noise will haveF(s) = center of mass of P(F(S))

Page 120: Bp219 04-13-2011

Phase determination by any means, ends up as a probabilty distribution. So Fh,k,l, (h,k,l)

Then what to use for the best map?r)best = F(S) e

(-2 ir.S) ?The map with the least noise will haveF(s) = center of mass of P(F(S))= Int P F sin( (best))is a minimum. Then m = Int P F cos ( (best))/Fie m|F(s)| (best) =Int P.Fwhere m = figure of merit = Int P(F) F(s) noise = Int F(s) sin

Page 121: Bp219 04-13-2011

If a map is produced with some (hkl)

The probability of it being correct is (hkl)P(hkl) ( (hkl)

Maximum value of P(hkl) ( (hkl) gives the ‘Most probable’ map

Map with the least mean square error, is when noise is minimum, Int find (best) such that Q= Int [|F| P(hkl) ( (hkl) exp (i (hkl) Fbest (best))]

2d is minimum.

is minimum when dQ/dFbest = 0so Fbest (best) = |F| P(hkl) ( (hkl) exp (i (hkl) d

Fbest (best) = m|F| center of ‘mass’ of the Probability distribution

m = Int P(hkl) ( (hkl) cos( - (best))consider errors from one reflection, and its complex conjugate<( )2> = 2/V2

Then F= Int Fcos( - (best))/ FNoise = 1/V Int F sin ( - (best))/F = F(1-m2)

mF where

Page 122: Bp219 04-13-2011

Adding up the scattering of Atoms:‘interference’ of waves

2 r.S

s0sss

s0

s1 S

radius = 1/

I(S)= F(S).F(S)*

F(S)

Page 123: Bp219 04-13-2011

How to be ‘UNBIASED’

• The Observations are constant F(hkl)

• The phases change according to presumptions..

• Remove all assumptions about any questionable region as early as possible

• Re-enforce the observations at each cycle and try to improve the phases without bias

• It is an objective method (prone to human aggressive enthusiasm.

Page 124: Bp219 04-13-2011

AXIOM: Forward FT Back FT-1 are Truly Inverse

Amplitudes F(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 125: Bp219 04-13-2011

Change one side Change the other

Amplitudes F(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 126: Bp219 04-13-2011

Amplitudes F(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Fhkl

Compare the ‘Observations’, with the Calculation-that depends on assumptions. =Difference Mapping!

Where Bias creeps in: 1. No Assumptions = no changes

Page 127: Bp219 04-13-2011

Amplitudes F(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Fhkl

Compare the ‘Observations’, with the Calculation-that depends on assumptions. =Difference Mapping!

Where Bias creeps in: 1. Errors of Overinterpretation

Solvent FlatteningAverage multiple copies

Page 128: Bp219 04-13-2011

2 r1.S

f1=6 electrons

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

A reminder: Each individual F(hkl) has its own Phase (hkl)

(S)

Page 129: Bp219 04-13-2011

2 r1.S

f1=6 electrons

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

In reality, maybe 3 atoms are missing.How to see what is missing?

Suppose we interpret 7 atoms; but 3 remain to be found in density

Page 130: Bp219 04-13-2011

2 r1.S

f1=6 electrons

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

In reality, maybe 3 atoms are missing.How to see what is missing?

phase (S)

|F(S)|observed

Observed F(hkl) will contain a part of that information..

Page 131: Bp219 04-13-2011

F(S)

In reality The missing component isThe Difference F(S) obs - F(S)calc

It has all the missing information.Transform it= all missing parts.

But all we know is |F(S)|observed |F(S)|calc

and current (biased) phase (S)

So what if we take the Difference we

know ||F(S)|obs- |F(S)|calc| and (S)

e(i ) = cos( ) + i sin( )

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

In reality, maybe 3 atoms are missing.How to see what is missing?

phase (S)

|F(S)|observed

Page 132: Bp219 04-13-2011

F(S)

In reality The missing component isThe Difference F(S) obs - F(S)calc

It has all the missing information.Transform it= all missing parts.

But all we know is |F(S)|observed |F(S)|calc

and current (biased) phase (S)

So what if we take the Difference we

know ||F(S)|obs- |F(S)|calc| and (S)

= F and (S)

e(i ) = cos( ) + i sin( )

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

phase (S)

|F(S)|observed

It contains a component of the truth F cos( ), and an error component F sin( )

F

The BEST WE CAN DO…IS F, (S)

Page 133: Bp219 04-13-2011

F(S)

So what if we transform the Difference we

know F =||F(S)|obs- |F(S)|calc| and (S)

On average F = ftrue cos( )so On average towards the truth is

F cos( ) = ftrue cos2( )What is the average value of cos2( )?= ½ ( cos 2

phase (S)

|F(S)|observed

It contains a component of the truth F cos( )

and an error component F sin( )

Fftrue

 

f cos2(q)0

2p

ò

= ½ 0[ -f sin2= ½ fie transform F, (S) = ½ true density for 3 missing atoms

+ 11/2

What contribution to the ‘missing truth’?

/2d /2

/2/2

Page 134: Bp219 04-13-2011

F(S)

phase (S)

|F(S)|observed

Fftrue

ie transform F, (S) = ½ true density for 3 missing atoms+ noise from error components F sin( )

So transform 2 F, (S) = true density for 3 missing atoms+ 2*noise from error components F sin( )

This Difference map containsmore of the ‘missing’ truth than the 7 atomsplus some (small) noise.

Unbiased by any assumptionof the three missing atoms.

Page 135: Bp219 04-13-2011

F(S)

USES: 1. Finding the missing parts of a model.The Transform of |F(S)|calc (S) = 7 atoms assumed

F (S) = density for 3 missing atoms + ‘noise’(|F(S)|calc + 2 F) (S) = all 10 atoms

Since F =||F(S)|obs- |F(S)|calc| this is

2|F(S)|obs- |F(S)|calccalled a ‘2F0-Fc map’

phase (S)

|F(S)|observed

Fftrue

It is unbiased as to where the missingcomponents are

Page 136: Bp219 04-13-2011

F(S)

USES: 2. Add a substrate, Grow a new crystalMeasure New |F(S)|obs+substrate Compare with the apo-protein.

Transform F =||F(S)|obs+substrate- |F(S)|obs| (S)

or[2|F(S)|obs+substrate- |F(S)|obs ] (S)

= a ‘2F0-Fo map’

phase (S)

|F(S)|observed

Fftrue

It is unbiased as to where the missingsubstrate is.

Page 137: Bp219 04-13-2011

Difference Maps: Errors and Signal

Page 138: Bp219 04-13-2011
Page 139: Bp219 04-13-2011
Page 140: Bp219 04-13-2011
Page 141: Bp219 04-13-2011
Page 142: Bp219 04-13-2011

Fo-Fc maps identify everything ordered that is 'missing'

mapmap

-Eliminate Bias

-Half electron content

-See electrons

Page 143: Bp219 04-13-2011
Page 144: Bp219 04-13-2011
Page 145: Bp219 04-13-2011
Page 146: Bp219 04-13-2011
Page 147: Bp219 04-13-2011
Page 148: Bp219 04-13-2011
Page 149: Bp219 04-13-2011
Page 150: Bp219 04-13-2011
Page 151: Bp219 04-13-2011
Page 152: Bp219 04-13-2011
Page 153: Bp219 04-13-2011
Page 154: Bp219 04-13-2011
Page 155: Bp219 04-13-2011
Page 156: Bp219 04-13-2011
Page 157: Bp219 04-13-2011
Page 158: Bp219 04-13-2011
Page 159: Bp219 04-13-2011
Page 160: Bp219 04-13-2011
Page 161: Bp219 04-13-2011
Page 162: Bp219 04-13-2011
Page 163: Bp219 04-13-2011
Page 164: Bp219 04-13-2011

Difference Maps: Errors and Signal

Page 165: Bp219 04-13-2011
Page 166: Bp219 04-13-2011
Page 167: Bp219 04-13-2011
Page 168: Bp219 04-13-2011

The Best Fourier: Minimizing errors in the density map.

Page 169: Bp219 04-13-2011
Page 170: Bp219 04-13-2011
Page 171: Bp219 04-13-2011
Page 172: Bp219 04-13-2011
Page 173: Bp219 04-13-2011
Page 174: Bp219 04-13-2011
Page 175: Bp219 04-13-2011
Page 176: Bp219 04-13-2011
Page 177: Bp219 04-13-2011

Seeing Single electrons:

Errors in Difference maps are much smaller than in protein maps.

~ | F0|/Volume of unit cellversus~ |F0|/Volume of unit cell

Peaks of atoms are seen in less and less noise as refinement progresses.

(rms errors)1/2 ~ | F0| Thus errors in|F(Protein+Substrate)| - |F(Protein)| areby far lower (like Rmerge ~5%Fo) than for |Fo-Fc| (like Rfactor~20% of Fo

Can easily see movement of <1/10resolution (<0.2Å)

Page 178: Bp219 04-13-2011
Page 179: Bp219 04-13-2011

A Dfference map shows 1/3 occupied NH3 sites and the role of D160 at 1.35Å Resolution. Here are 0.3 NH3 peaks!

Khademi..Stoud 2003

Page 180: Bp219 04-13-2011

Fo-Fc maps identify everything ordered that is 'missing'

mapmap

-Eliminate Bias-Half electron content-See electrons

Page 181: Bp219 04-13-2011

4/13/2011

Figure 3 The catalytic triad. (A) Stereoview displaying Model H superimposed on the 2Fo Fc (model H phases) at 1 (aqua) and 4 (gold). The densities for C and N in His 64 are weaker than in Asp 32. The Asp 32 CO2 bond at 4 is continuous, while the density for the C and O1 are resolved. (B) Schematic of the catalytic residues and hydrogen bonded neighbors with thermal ellipsoid representation countered at 50% probability (29). Catalytic triad residues Ser 221 and His 64 show larger thermal motion than the Asp 32. Solvent O1059 appears to be a relatively rigid and integral part of the enzyme structure. (C) Catalytic hydrogen bond (CHB). A Fo Fc (model H phases) difference map contoured at +2.5 (yellow) and 2.5 (red) and a 2Fo Fc (model H phases) electron density map contoured at 4 (gold). The position of the short hydrogen atom (labeled HCHB) in the CHB is positioned in the positive electron density present between His 64 N1 and Asp 32 O2.

Published in: Peter Kuhn; Mark Knapp; S. Michael Soltis; Grant Ganshaw; Michael Thoene; Richard Bott; Biochemistry 1998, 37, 13446-13452.DOI: 10.1021/bi9813983Copyright © 1998 American Chemical Society

The closer you get –the lower the noise. Can see single electrons!

|2Fo-Fc| c map

The structure showing‘thermal ellipsoids’ at50% Probability

|Fo-Fc| c map

Page 182: Bp219 04-13-2011

Difference Mapnoise ~20% of noise in the parent protein-and only two peaks!

Seeing small shifts-down to ±0.1Å

Page 183: Bp219 04-13-2011

4/13/2011

Figure 2 (A) Electron density for Asp 60. Fo Fc difference electron density map, contoured at +2.5 (yellow) and 2.5 (purple), is superimposed on a 2Fo Fc electron density map contoured at 1 (aqua) and 4 (gold), based on model H (Table 2). No hydrogen atoms were included for residues Asp 60, Gly 63, Thr 66, and solvent. At the 4 contour, the electron density between C and both O1 and O2 are equivalent as expected. (B) H2O hydrogen bonding in an internal water channel. Electron density; 2Fo Fc (model H phases) contoured at 4 (gold) level is superposed on Fo Fc (model H phases) difference electron density contoured at +2.5 (yellow) and 2.5 (purple) level. Peaks for both hydrogen atoms on solvent O1024 are seen along with hydrogen atoms of neighboring solvent and Thr 71 O1. A zigzag pattern of alternating proton donors and acceptors can be seen extending from Thr 71 O1 in the interior, through a chain of four solvent molecules ending at the surface of the enzyme (Figure 1).

Published in: Peter Kuhn; Mark Knapp; S. Michael Soltis; Grant Ganshaw; Michael Thoene; Richard Bott; Biochemistry 1998, 37, 13446-13452.DOI: 10.1021/bi9813983Copyright © 1998 American Chemical Society

2Fo-Fc maps (aqua and gold)Fo-Fc map in yellow and purple show individual hydrogen atoms!

Page 184: Bp219 04-13-2011
Page 185: Bp219 04-13-2011
Page 186: Bp219 04-13-2011
Page 187: Bp219 04-13-2011

What happens if we transform what we do know and can measure, namely I(S) = |F(S)|observed

P(r) = |F(S)|2 e(-2 ir.S)

Page 188: Bp219 04-13-2011

Transform of I(hkl) = Transform of F2(hkl)…

What happens if I transform what I do know and can measure, namely I(S) = |F(S)|observed

ie

P(r) = |F(S)|2 e(-2 ir.S)

= [F(S). F*(S)] e(-2 ir.S)

?

Page 189: Bp219 04-13-2011
Page 190: Bp219 04-13-2011
Page 191: Bp219 04-13-2011

Arthur Lindo Patterson (1902-1966), innovative crystallographer who devised the well-known Patterson method (Patterson function) used in crystal-structure determination.

Page 192: Bp219 04-13-2011
Page 193: Bp219 04-13-2011

Molecular Replacement

Page 194: Bp219 04-13-2011

Patterson map

Page 195: Bp219 04-13-2011

Intramolecular vectors before rotation

Page 196: Bp219 04-13-2011

Colour-coded Patterson map

Page 197: Bp219 04-13-2011

Intramolecular vectors after rotation

Page 198: Bp219 04-13-2011
Page 199: Bp219 04-13-2011

30e

20e

a

b

All vectors brought to a common origin.

Consider a structure of 2 atomsone 20 electrons, one 30 electrons-in a monoclinic ‘space group’ie. a two fold symmetry axis is present, symbolized by

Page 200: Bp219 04-13-2011
Page 201: Bp219 04-13-2011
Page 202: Bp219 04-13-2011
Page 203: Bp219 04-13-2011
Page 204: Bp219 04-13-2011
Page 205: Bp219 04-13-2011
Page 206: Bp219 04-13-2011
Page 207: Bp219 04-13-2011

Problem Set:

Interpret a Patterson mapin terms of heavy mercury atompositions

Page 208: Bp219 04-13-2011
Page 209: Bp219 04-13-2011
Page 210: Bp219 04-13-2011
Page 211: Bp219 04-13-2011
Page 212: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 213: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 214: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 215: Bp219 04-13-2011

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Density Modification: Solvent Flattening

Page 216: Bp219 04-13-2011

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Density Modification: Place expected atoms

Page 217: Bp219 04-13-2011

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Density Modification: Non-Crystal Symmetry

Page 218: Bp219 04-13-2011

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Density Modification: Non-Crystal Symmetry

Page 219: Bp219 04-13-2011

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Density Modification: Non-Crystal Symmetry

Page 220: Bp219 04-13-2011
Page 221: Bp219 04-13-2011
Page 222: Bp219 04-13-2011
Page 223: Bp219 04-13-2011
Page 224: Bp219 04-13-2011
Page 225: Bp219 04-13-2011
Page 226: Bp219 04-13-2011
Page 227: Bp219 04-13-2011
Page 228: Bp219 04-13-2011
Page 229: Bp219 04-13-2011
Page 230: Bp219 04-13-2011
Page 231: Bp219 04-13-2011

Addendum on Icosohedral virus structures

Page 232: Bp219 04-13-2011
Page 233: Bp219 04-13-2011

Triangulation numbers of icosohedral virusesThere are 60T copies of each protein (asymmetric unit) in the capsid.

T=h2 + k2 + hkwhere h, k are integers

T=1,3,4,7,9,12,13, 16, 21,25are all possible.

Page 234: Bp219 04-13-2011
Page 235: Bp219 04-13-2011
Page 236: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude F(S)phase (s)

Page 237: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude F(S)phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

Page 238: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

F(S) = f1 e(2 ir1.S) + f2 e(2 ir2.S) +….

Page 239: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Sum of 7 atoms scattering

Result is a wave of amplitude |F(S)|phase (S)

cos( )

sin( )

e(i ) = cos( ) + i sin( )

i = √(-1)

F(S) = j fj e(2 irj.S)

Page 240: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Sum of 7 atoms scattering

Page 241: Bp219 04-13-2011

2 r1.S

f1=6 electrons

f7=8 electrons

2 r7.S

F(S)

Page 242: Bp219 04-13-2011

F(S) = j fj e(2 irj.S)

e(i ) = cos( ) + i sin( )

Page 243: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 244: Bp219 04-13-2011

F(S) = j fj e(2 irj.S)

Scattering pattern is the Fourier transform of the structure

Structure is the ‘inverse’Fourier transform of the Scattering pattern

r) = F(S) e(-2 ir.S)

Page 245: Bp219 04-13-2011
Page 246: Bp219 04-13-2011
Page 247: Bp219 04-13-2011
Page 248: Bp219 04-13-2011
Page 249: Bp219 04-13-2011
Page 250: Bp219 04-13-2011
Page 251: Bp219 04-13-2011
Page 252: Bp219 04-13-2011

Rosalind Franklin and DNA

Page 253: Bp219 04-13-2011
Page 254: Bp219 04-13-2011
Page 255: Bp219 04-13-2011
Page 256: Bp219 04-13-2011
Page 257: Bp219 04-13-2011

Consequences of being a crystal?

• Repetition = sampling of F(S)

34Å

Page 258: Bp219 04-13-2011

Consequences of being a crystal?

• Repetition = sampling of F(S)

34Å 1/34Å-1

Page 259: Bp219 04-13-2011

Object repeated 1/2/

Page 260: Bp219 04-13-2011
Page 261: Bp219 04-13-2011

Object ScatteringBuild a crystal

Page 262: Bp219 04-13-2011

Early Definitions:

Page 263: Bp219 04-13-2011
Page 264: Bp219 04-13-2011
Page 265: Bp219 04-13-2011
Page 266: Bp219 04-13-2011

a.s=h

b.s=k

Page 267: Bp219 04-13-2011

hkl=(11,5,0)

Measure I(hkl)F(hkl)= √I(hkl)Determine (s) = (hkl)

Calculate electron density map

Page 268: Bp219 04-13-2011
Page 269: Bp219 04-13-2011

The density map is made up of interfering density waves through the entire unit cell…

Page 270: Bp219 04-13-2011

Appendix: Slides for recall

Page 271: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 272: Bp219 04-13-2011

The Process is re-iterative, and should converge-but only so far!

Intensities I(h,k,l) Electron density (x,y,z)

Phases (h,k,l)

Atom positions (x,y,z)

Known:Amino acid sequenceLigandsBond lengths anglesConstraints on geometry

Crystal

Experimentalheavy atom labelsselenium for sulfurTrial & error similar structure

Page 273: Bp219 04-13-2011
Page 274: Bp219 04-13-2011
Page 275: Bp219 04-13-2011
Page 276: Bp219 04-13-2011
Page 277: Bp219 04-13-2011
Page 278: Bp219 04-13-2011
Page 279: Bp219 04-13-2011
Page 280: Bp219 04-13-2011
Page 281: Bp219 04-13-2011

Anomalous Diffraction

Page 282: Bp219 04-13-2011
Page 283: Bp219 04-13-2011

Anomalous diffraction

Page 284: Bp219 04-13-2011

Friedel’s Law: F(hkl)=F(-h,-k,-l)

a(hkl)=-a F(-h,-k,-l)

Page 285: Bp219 04-13-2011
Page 286: Bp219 04-13-2011
Page 287: Bp219 04-13-2011

http://www.ruppweb.org/Xray/101index.htmlfor any/all elements..

Page 288: Bp219 04-13-2011
Page 289: Bp219 04-13-2011
Page 290: Bp219 04-13-2011
Page 291: Bp219 04-13-2011
Page 292: Bp219 04-13-2011

http://www.ruppweb.org/Xray/101index.html

Page 293: Bp219 04-13-2011
Page 294: Bp219 04-13-2011
Page 295: Bp219 04-13-2011
Page 296: Bp219 04-13-2011
Page 297: Bp219 04-13-2011
Page 298: Bp219 04-13-2011
Page 299: Bp219 04-13-2011
Page 300: Bp219 04-13-2011
Page 301: Bp219 04-13-2011
Page 302: Bp219 04-13-2011
Page 303: Bp219 04-13-2011
Page 304: Bp219 04-13-2011
Page 305: Bp219 04-13-2011
Page 306: Bp219 04-13-2011
Page 307: Bp219 04-13-2011
Page 308: Bp219 04-13-2011
Page 309: Bp219 04-13-2011
Page 310: Bp219 04-13-2011
Page 311: Bp219 04-13-2011
Page 312: Bp219 04-13-2011
Page 313: Bp219 04-13-2011
Page 314: Bp219 04-13-2011
Page 315: Bp219 04-13-2011
Page 316: Bp219 04-13-2011
Page 317: Bp219 04-13-2011
Page 318: Bp219 04-13-2011
Page 319: Bp219 04-13-2011
Page 320: Bp219 04-13-2011
Page 321: Bp219 04-13-2011
Page 322: Bp219 04-13-2011
Page 323: Bp219 04-13-2011
Page 324: Bp219 04-13-2011
Page 325: Bp219 04-13-2011
Page 326: Bp219 04-13-2011
Page 327: Bp219 04-13-2011
Page 328: Bp219 04-13-2011
Page 329: Bp219 04-13-2011
Page 330: Bp219 04-13-2011
Page 331: Bp219 04-13-2011
Page 332: Bp219 04-13-2011
Page 333: Bp219 04-13-2011