11
The Myth of Diversification DAVID B. CHUA, MARK KRITZMAN, AND SÉBASTIEN PAGE DAVID B. CHUA is an a.ssistant vice president at State Street Associates in Cambridge, MA. dbchua ©.statestreetcom MARK KRITZMAN is president & CEO at Windham Capital Management in Cambridge. MA. [email protected] SÉBASTIEN PAGE is a senior managing director at State Street Associates in Cambridge, MA. spage@sUitestreetconi P erhaps the most universally accepted precept of prudent investing is to diver- sify, yet this precept grossly oversim- plifies the challenge of portfolio construction. Consider a typical investor who relies on domestic equities to drive portfolio growth. This investor will seek to diversify this exposure by including assets that have low cor- relations with domestic equities. Yet the corre- lations, as typically measured over the full sample of returns, often belie an asset's diversification properties in market environments when diver- sification is most needed, for example, when domestic equities perform poorly. Moreover, upside diversification is undesirable; investors should seek unification on the upside. Ideally, the assets chosen to complement a portfoho's main engine of growth should diversify this asset when it performs poorly and move in tandem with it when it performs well. In this article, we will first describe the mathematics of conditional correlations assuming returns are normally distributed. Then, we will present empirical results across a wide variety of assets, which reveal that, unlike the theoretical profiles, empirical correlations are significandy asymmetric. We are not the first to uncover cor- relation asymmetries, but our empirical investi- gation updates prior research and extends the analysis to a much broader set of assets. Finally, we will show that a portfolio construction tech- nique caÜed full-scale optimization produces portfolios in which the component assets exhibit relatively lower correlations on the downside and higher correlations on the upside than mean- variance optimization. CORRELATION MATHEMATICS It has been widely observed that corre- lations estimated from subsamples comprising volatile or negative returns differ from corre- lations estimated from the full sample of returns.' These differences do not necessarily imply that returns are non-normal or gener- ated by more than a single regime. Consider a joint normal distribution with equal means of 0%, equal volatilities of 15%, and an uncondi- donal (flill-sample) correlation of 50%. Suppose we condition correlations on both assets, as illustrated in Exhibit 1, mathematically, \cotr(x, y\x>e,y>e) if Ö > 0 [corrix, y\x<e,y<e) if 0 < 0 where the variables x and y are observed values for each asset, p(ö) is the conditional correla- tion, and 6is the threshold. Longin and Solnik [2001] labeled these conditional correlations exceedance correlations. Exhibit 2 shows the exceedance correla- tion profile for X and y. We generated this pro- file using the closed-form solution presented in the appendix. The profile's peak shows that when we truncate the sample to include only observations w^hen both x and y return a positive value (or when they both return a negative value), the correlation decreases fiom 26 THE MYTH OF DIVERSIFICATION FALL 2009

Myth of diversification

Embed Size (px)

Citation preview

Page 1: Myth of diversification

The Myth of DiversificationDAVID B . CHUA, MARK KRITZMAN, AND SÉBASTIEN PAGE

DAVID B . CHUA

is an a.ssistant vice presidentat State Street Associatesin Cambridge, MA.dbchua ©.statestreetcom

M A R K K R I T Z M A N

is president & CEOat Windham CapitalManagement inCambridge. [email protected]

SÉBASTIEN P A G E

is a senior managingdirector at State StreetAssociates in Cambridge,MA.spage@sUitestreetconi

Perhaps the most universally acceptedprecept of prudent investing is to diver-sify, yet this precept grossly oversim-plifies the challenge of portfolio

construction. Consider a typical investor whorelies on domestic equities to drive portfoliogrowth. This investor will seek to diversify thisexposure by including assets that have low cor-relations with domestic equities. Yet the corre-lations, as typically measured over the full sampleof returns, often belie an asset's diversificationproperties in market environments when diver-sification is most needed, for example, whendomestic equities perform poorly. Moreover,upside diversification is undesirable; investorsshould seek unification on the upside. Ideally, theassets chosen to complement a portfoho's mainengine of growth should diversify this asset whenit performs poorly and move in tandem with itwhen it performs well.

In this article, we will first describe themathematics of conditional correlations assumingreturns are normally distributed. Then, we willpresent empirical results across a wide variety ofassets, which reveal that, unlike the theoreticalprofiles, empirical correlations are significandyasymmetric. We are not the first to uncover cor-relation asymmetries, but our empirical investi-gation updates prior research and extends theanalysis to a much broader set of assets. Finally,we will show that a portfolio construction tech-nique caÜed full-scale optimization producesportfolios in which the component assets exhibitrelatively lower correlations on the downside

and higher correlations on the upside than mean-variance optimization.

CORRELATION MATHEMATICS

It has been widely observed that corre-lations estimated from subsamples comprisingvolatile or negative returns differ from corre-lations estimated from the full sample ofreturns.' These differences do not necessarilyimply that returns are non-normal or gener-ated by more than a single regime. Consider ajoint normal distribution with equal means of0%, equal volatilities of 15%, and an uncondi-donal (flill-sample) correlation of 50%. Supposewe condition correlations on both assets, asillustrated in Exhibit 1, mathematically,

\cotr(x, y\x>e,y>e) if Ö > 0

[corrix, y\x<e,y<e) if 0 < 0

where the variables x and y are observed valuesfor each asset, p(ö) is the conditional correla-tion, and 6is the threshold. Longin and Solnik[2001] labeled these conditional correlationsexceedance correlations.

Exhibit 2 shows the exceedance correla-tion profile for X and y. We generated this pro-file using the closed-form solution presented inthe appendix. The profile's peak shows thatwhen we truncate the sample to include onlyobservations w^hen both x and y return apositive value (or when they both return anegative value), the correlation decreases fiom

26 THE MYTH OF DIVERSIFICATION FALL 2009

Page 2: Myth of diversification

E X H I B I T 1

Stylized Illustrations of Exceedance Correlations

Full Sample

b! ^" I

X

E X H I B I T 2Correlation Profile for Bivariate NormalDistribution

-30% -15% 0% 15% 30% 45%Threshold used to partition returns (Ö)

50% to 27%. Moving toward the tails of the distribution,the correlation decreases further. For example, if we focuson observations when x and y both return —15% or less,the correlation decreases to 18%. This effect, which iscalled the conditioning bias, may lead us to concludefalsely that diversification increases during extreme marketconditions.

To avoid the conditioning bias in our empiricalanalysis, we compared empirical correlation profiles withthose expected ñx)m the normal distribution. Our goal wasto determine whether correlations shift because returns aregenerated fi-oni more than a single distribution or if theydiffer simply as an artifact of correlation mathematics.

EMPIRICAL CORRELATION PROFILES

Prior studies have shown that exposure to differentcountry equity markets offers less diversification in down

markets than in up markets.^ The same istrue for global industry returns (Ferreira andGama [2004]); individual stock returns (Ang,Chen, and Xing [2002], Ang and Chen[2002], and Hong, Tu, and Zhou [2007]);hedge fund returns (Van Royen [2002b]);and international bond market returns (Cap-piello, Engle,and Sheppard [2006]).The onlyconditional correlations that seem toimprove diversification when it is mostneeded are the correlations across assetclasses. Kritzman. Lowry, and Van Royen[2001] found that asset class correlationswithin countries decrease during periods of

market turbulence.^ Similarly, Gulko [2002J found thatstocks and bonds decouple during market crashes.

We extended the investigation of correlation asym-metries to a comprehensive dataset comprising equity, style,size, hedge fund, and fixed-income index returns. Exhibit 3shows the complete list of the data series we investigated.For most asset classes, we generated correlation profiles withthe U.S. equity market because it is the main engine of growthfor most institutional portfolios. We also generated correla-tion profiles for large versus small stocks, value versus growthstocks, and various combinations of fixed-income assets.

To account for differences in volatilities, we stan-dardized each time series as follows: {x — mean)/standarddeviation. We then used the closed-form solution out-lined in the appendix to calculate the correspondingnorinal correlation profiles.

Exhibit 4 shows the correlation profile between theUS. (Russell 3000) and MSCI World Ex-U.S. equity mar-kets, as well as the corresponding correlations we obtainedby partitioning a bivariate normal distribution with the samemeans, volatilities, and unconditional correlation. Observedcorrelations are higher than normal correlations on thedownside and lower on the upside; in other words, interna-tional diversification works during good times—when it isnot needed—and disappears during down markets. Whenboth markets are up by more than one standard deviation,the correlation between them is—17%. When both marketsare doum more than one standard deviation, the correlationbetween them is +76%. And in times of extreme crisis, whenboth markets are down by more than two standard devia-tions, the correlation rises to +93% compared to +14% forthe corresponding bivariate normal distribution.

We investigated the pervasiveness of correlationasymmetry across several asset classes. For each correlation

2009 THE JOURNAL OF PORTFOLIO MANAGEMENT 2 7

Page 3: Myth of diversification

E X H I B I T 3Data Sources

Equity MarketsU.S.U.K.FranceGermanyJapanWorld Ex-U.S.

Style and Size IndicesU.S. ValueU.S. GrowthU.S. Large CapU.S. Small + Mid Cap

Hedge FundsEvent DrivenRelative Value ArbitrageConvertible ArbitrageEquity Market NeutralMerger ArbitrageGlobal Hedge Fund

Fixed-Income IndicesU.S. BondsGovernmentHigh YieldMortgage-Backed SecuritiesCredit BAA

Source

Russell 3000 or MSCIMSCIMSCIMSCIMSCIMSCI

Russell 3000 ValueRussell 3000 GrowthS&P 500Russell 2500

HFRHFRHFRHFRHFRHFR

Lehman AggregateLehmanLehmanLehmanLehman

Start Date

1/31/19701/30/19701/30/19701/30/19701/30/19701/30/1970

1/31/19791/31/19791/29/19881/31/1979

4/30/20034/30/20034/30/20034/30/20034/30/20034/30/2003

Í/31/19791/31/19791/31/19791/31/19791/31/1979

End Date

2/29/20082/29/20082/29/20082/29/20082/29/20082/29/2008

2/29/20082/29/20082/29/20082/29/2008

2/29/20082/29/20082/29/20082/29/20082/29/20082/29/2008

2/29/20082/29/20082/29/20082/29/20082/29/2008

profile, we calculate the average differencebetween observed and normal exceedance cor-relations.

We calculate these average differencesfor up and down markets, as follows:

Vö,<0

Vö >0(2)

E X H I B I T 4Correlation Profile between U.S. and World Ex-U.S., January1979-February 2008

100%

60%

40%

Threshold used to define return exceedances

• Nomial Correlations Observed Correlations

The variables /d^^^ and ß are theaverage differences for clown and up mar-kets, respectively; p(ÖJ is the observedexceedance correlation at threshold d:, andp(6) is the corresponding normal correla-tion. For up and down markets, we use nthresholds (Ö. > 0 and 6. < 0, respectively)equally spaced by intervals of 0.1 standarddeviations.•* Exhibit 5 summarizes our resultsin detail and Exhibit 6 shows the corre-sponding ranking of correlation asymme-tries defined as U, -Li . We find that

• all ' up

correlation asymmetries prevail across avariety of indices. The correlation profilefor equity-market-neutral hedge fijnds raisesquestions about such claims of market neu-trality. Only a few asset classes offer desirable

downside diversification, or decoupling. And unfor-tunately, most of these asset classes—MBS, highyield, and credit—failed to diversify each otherduring the recent subprime and credit-crunchcrisis of 2007-2008.

The last column of Exhibit 5 shows the per-centage of paths—fiom a block bootstrap of all pos-sible 10-year paths—for which asymmetry {/¿̂^̂ — /a)has the same sign as the full-sample result shown inthe third column. We find a reasonable degree ofpersistence in the directionality of correlation asym-metries, which suggests historical correlation pro-files should be usefiil in constructing portfolios.

PORTFOLIO CONSTRUCTIONWITH ASYMMETRIC CORRELATIONS

How should we construct portfolios if down-side correlations are higher than upside correla-tions? Research on conditional correlations has led

28 THE MYTH OF DIVERSIFICATION FAU.2009

Page 4: Myth of diversification

E X H I B I T SAverage Excess Correlations versus Normal Distribution (%)

Downside Upside Difference Prob. ofSame Sign

Average excesscorrelations ofU.S. Equities(RusseU 3000) with

Equity MarketsU.K.FranceGermanyJapanWorld Ex-U.S.

Hedge FundsEvent DrivenRelative Value ArbitrageConvertible ArbitrageEquity Market NeutralMerger ArbitrageGlobal Hedge Fund

Fixed-Income IndicesU.S. BondsGovemmentHigh YieldMortgage-Backed SecuritiesCredit BAA

38.8847.0615.636.80

53.49

24.2665.76

-24.9666.44

^0.5214.60

10.3326.08

-14.0624.44-4.36

-23.18-21.33-15.1523.44^ . 2 6

-0.14-30.786.69

-18.41^5 .66-31.87

6.68^ . 2 1-17.67-0.7115.19

62.0568.3930.78

-16.6557.75

24.1296.54

-31.6584.855.13

46.47

3.6530.303.62

25.16-19.56

78.3574.46

100.0059.7495.67

- .. .

NANANANANANA

12.129.09

77.2759.3182.68

Other average Style and Sizeexcess correlations Value vs. Growth

Large vs. Smid

Fixed-Income IndicesGovemment vs. High YieldGovemment vs. MBSGovemment vs. Credit BAACredit BAA vs. MBSHigh Yield vs. MBS

3431

104872—524

.99

.03

.21

.04

.55

.86

.29

-16.22-21.84

48.1585.4183.0865.1323.37

51.2252.88

-37.93-37.37-10.52-70.99

0.92

100.00100.00

45.4548.9251.5240.2665.91

to several innovations in portfolio construction. In general,conditional correlations lead to more conservative portfo-lios than unconditional correlations. For example, Camp-bell, Koedijk, and Kofman [2002] presented two efficientfrontiers for the aUocation between domestic stocks (S&P500) and international stocks (FTSE 100). The first fhjn-tier uses the full-sample historical returns, volatilities, andcorrelation; the second substitutes the downside correla-tion for the fUll-sample correlation. Campbell, Koedijk, andKofrnan found that for the same level of risk the down-side-sensitive allocation to international stocks is 6% lowerand cash increases from 0% to 10.5%. We present similar e\ñ-dence of these shifts by deriving optimal allocations basedon downside, upside, and full-sample correlatioiK.

Exhibit 7 shows expectations and optimal portfo-lios for U.S. equities. World Ex-U.S. equities, and cash.Dovioiside correlations lead to an increase in cash allo-cation from 3% to 9% and a higher allocation to WorldEx-U.S. equities, while upside correlations lead to an all-equity portfolio with a higher allocation to the U.S. market.

Exhibit 7 also shows the impact of correlations onexpected utility. For example, the portfolio constructed ondownside correlations—holding everything else constant—has higher utility (0.0633) than the portfolios constructedon unconditional correlations (0.0630) and upside corre-lations (0.0627), if the downside correlations are realized.

Another approach for addressing correlation asym-metry is to dynamically change our correlation assumptions.

FALL 2009 THE JOURNAL OF PORTTOUO MANAGEMENT 2 9

Page 5: Myth of diversification

E X H I B I T 6

Correlation Asymmetries ißa„-fl„p) Ranked

U.S. Equities vs. Relative Value Arbitrage

U.S. Equities vs. Equity Market Neutral

U.S. Equities vs. France Equities

U.S. Equities vs. U.K. Equities

U.S. Equities vs. World Ex-U.S. Equities

Large vs. Smid

Value vs. Growth

U.S. Equities vs. Global Hedge Fund

U.S. Equities vs. Germany Equities

U.S. Equities vs. Government

U.S. Equities vs. MBS

U.S. Equities vs. Event Driven

U.S. Equities vs. Merger Arbitrage

U.S. Equities vs. U.S. Bonds

U.S. Equities vs. High Yield

High Yield vs. MBS

Government vs. Credit BAA

U.S. Equities vs. Japan Equities

U.S. Equities vs. Credit BAA

U.S. Equities vs. Convertible Arbitrage

Government vs. MBS

Government vs. High Yield

Credit BAA vs. MBS

UndesirableDownside

Unification

Desirable -17%Downside

Decoupling ~ "-32%

-71%

-150% -100% -50% 0% 50% 100% 150%

Previous research suggests that regime-switching modelsare ideally suited to handle correlation asymmetries insample.^ From a practitioner's perspective, the questionremains whether regime shifts are predictable. For example,Gulko [2002] suggested a mean-variance regime-switchingmodel that calls for the investor to switch to an all-bondportfolio for one month following a one-day crash. Unfor-tunately, the superiority of this strategy is unclear—the

authors model rehes on six events and assumes that bondsoutperform stocks for one month after a market crash.

Our goal was not to develop active trading strate-gies, thus we did not try to predict regime shifts. Instead,we focused on strategic asset allocation with the argu-ment that portfolios should be modeled after airplanes,which means they should be able to withstand turbulencew^henever it arises, because it is usually unpredictable.

30 THE MYTH OF DIVERSIFICATION FALL 2009

Page 6: Myth of diversification

E X H I B I T 7Mean-Variance Optimization with Conditional Correlations

InputsExpected ReturnVolatilityUnconditional CorrelationDown-Down CorrelationUp-Up Correlation

Optimal PortfoliosUnconditional CorrelationDown-Down CorrelationUp-Up Correlation

Expected UtilityUnconditional CorrelationDown-Down CorrelationUp-Up Correlation

U.S.8.00%15.08%

57.67.

World Ex-U.S.10.00%16.45%

17%30%

44.60%

U.S.25%14%32%

Full Sample0.06430.06400.0642

World EX-U.S.72%77%68%

Down-DownMarket0.06300.06330.0627

Cash3.50%0.88%

• • ; -

Cash3%9%0%

Up-Up Market0.06590.06490.0661

investor requires a minimum level of wealth tomaintain a certain standard of living. Theinvestors lifestyle might change drastically ifthe fund penetrates this threshold. Or theinvestor may be faced with insolvency fol-lowing a large negative return, or a particulardecline in wealth may breach a covenant on aloan. In these and similar situations, a kinkedutility function is more likely to describe aninvestor's attitude toward risk than a utilityfunction that changes smoothly. The kinkedutility' function is defined as

U{x)=-if .v>

if

(3)

Strategic investors, such as pension plans, are just like air~line pilots—their goal is not to predict the unpredictable,but their portfolios should weather the storms.

FULL-SCALE OPTIMIZATION

Our approach, called full-scale opdmization (Cremers,Kritzman, and Page [2005] and Adler and Kritznian [2007]),identifies portfolios that are more resilient to turbulencebecause they have better correlation profiles. It does not seekto exploit correlation asymmetries directly, but instead max-imizes expected utility. By so doing, our approach constructsportfolios in which assets diversify each other more on thedownside and move together more on the upside than port-folios derived from mean-variance analysis.

In contrast to mean-variance analysis, whichassumes that returns are normally distributed or thatinvestors have quadratic utility, full-scale optimizationidentifies the optimal portfolio given any set of returndistributions and any description of investor preferences.It therefore yields the truly optimal portfolio in sample,whereas mean-variance analysis provides an approxi-mation to the in-sample truth.

We apply mean-variance and full-scale optimizationto identify optimal portfolios assuming a loss-averse investorwith a kinked utility function. This utility function changesabruptly at a particular wealth or return level and is rele-vant for investors who are concerned with breaching athreshold. Consider, for example, a situation in which an

where Vindicates the location of the kink andV the steepness of the loss aversion slope.

In Exhibit 8, we illustrate the Eill-scaleoptimization process with a sample of stock and bondreturns. We compute the portfolio return, x, each period asR^ XW^+ RyX W^. where R^ and R¡^ equal the stock andbond returns, respectively, and W^ and W^ equal the stockand bond weights, respectively. We use Equation 3 to com-pute utility in each period, with 6 = - 3 % and li = 3.

We then shifi: the stock and bond weights until we findthe combination that maximizes expected utility; which forthis example equals a 48.28% allocation to stocks and a51.72% allocation to bonds. The expected utility of theportfolio equals 0.991456. This approach implicitly takesinto account all features of the empirical sample, includingpossible skewness, kurtosis, and any other peculiarities ofthe distribution, such as correlation asymmetries.

To minimize the probability of breaching the threshold,full-scale optimization avoids assets that exhibit high down-side correlation, all else being equal. Exhibit 9 shows anexample using fictional distributions generated by MonteCarlo simulation. It shows an optimization between a fic-tional equity portfolio and a fictional market neutral hedgeflind. Mean-variance is oblivious to the hedge flind's highlyundesirable correlation profile because it focuses on theflill-sample correlation of 0% as a proxy for the hedge flind'sdiversification potential. It invests half the portfolio in thehedge fund and, as a consequence, doubles the portfolioexposure to losses greater than -10%. In contrast, full-scaleoptimization chooses not to invest in the hedge fund at all.*'

FALL 2009 THE JOURNAL OF PORTKILIO MANAGEMENT 3 1

Page 7: Myth of diversification

Using empirical data, we identified optimal countryportfolios by allocating across the U.S., U.K., France,Germany, and Japan, and we also optimized across theentire sample of 20 asset classes presented in Exhibit 3.'In each case, we evaluated the mean-variance efficientportfolio with the same expected return as the trueutility-maximizing portfolio. For purposes of illustration,we set the kink (Ö) equal to a one-month return of-4%.

Before we optimized, we scaled each oí the monthlyreturns by a constant in order to produce means that con-form to the implied returns of equally weighted portfo-lios. This adjustment does not affect our comparisons

E X H I B I T 8FuU-Scale Optimization

1993199419951996199719981999200020012002

ReturnsStocks10.06%1.32%

37.53%22.93%33.34%28.60%20.89%-9.09%

-11.94%-22.10%

Bonds16.16%-7.10%29.95%14.00%14.52%11.76%-7.64%16.14%7.26%

14.83%

WeightsStocks48.28%48.28%48.28%48.28%48.28%48.28%48.28%48.28%48.28%48.28%

Bonds51.72%51.72%51.72%51.72%51.72%51.72%51.72%51.72%51.72%51.72%

PortfoUoReturn13.21%

-3.03%33.61%18.31%23.61%19.89%6.13%3.96%

-2.01%-3.00%

Utility0.1241

-0.03150.28980.16820.21190.18140.05950.0388

-0.0203-0.0305

Utility 0.9915

because we apply it to both the mean-variance and ilill-scale optimizations; hence, the differences we find arisesolely from the higher moments of the distributions andnot their means.

We measure the degree of correlation asymmetry(^) in each of the optimal portfolios as

(4)

where w. is asset is weight in the portfoHo, p / ' is theweighted average of correlations between asset ) and theother assets in the portfolio when the portfolio is down,and P 7 is the weighted average of correlations betweenasset I and the other assets in the portfolio when the port-folio is up.

Exhibit 10 shows the correlation asymmetry forcountry allocadon portfolios using data from January 1970to February 2008. It reveals the following:

1. Downside correlations are significantly higher thanupside correlations.

2- Full-scale optimization provides more downsidediversification and less upside diversification thanmean-variance optimization.

3. Full-scale optimization reduces correlation asymmetryby more than half compared to mean-varianceoptimization.

E X H I B I T 9Impact of Correlation Asymmetries on Full-Scale and Mean-Variance Portfolios

Equity PortfolioHedge Fund

ExpectedReturn

8%8%

Volatility12%12%

UnconditionalCorrelation

2%

1 DownsideCorrelation

85%

UpsideCorrelation

-30%

Optimai PortfoliosMean-Variance Fnll-Scale

Asymmetry114%

Equity PortfolioHedge FundExposure to Loss (Prob. <-10%)

50%50%

0.250%

100%0%

0.125%

E X H I B I T 10Weighted-Average Correlations for Country Allocation, January 1970-February 2008

Weighted-Average Correlation Mean-Variance Optimal FuU-Scale OptimalÜpsíd¿ ' 9.34% 11.07%Downside 25.25% 17.96%Correlation Asymmetry (^ 15.91 % 6.89%

32 THE MYTH OF DIVERSIFICATION FAU. 2009

Page 8: Myth of diversification

E X H I B I T 1 1Full-Scale vs. Mean-Variance Optimization and Correlation Asymmetries (%)

Country AllocationFull SampleSubsamples

Multi-Asset ClassFull SampleSubsamples

1/1970-2/20081/1970-12/19791/1980-12/19891/1990-12/19991/1999-2/2008

2/1988-2/20082/1988-12/19981/1999-2/20084/2003-2/2008*

Correlation Asymmetry (Ç)MV15.9119.357.02

25.770.52

7.4558.4213.303.58

FS6.893.251.75

18.710.36

-0.4149.67-3.46-6.99

FS Advantage9.02

16.105.277.060.16

7.868.75

16.7710.58

UtilityGain (%)

4.339.96

23.401.573.59

29.1116.3537.62

254.11

TurnoverRequired (%)

14.8022.4722.4019.079.67

91.9119.5291.2164.97

Note: *Sample includes hedge funds.

Proxy for U.S. Equities is MSCI USA.

Exhibit 11 shows the utility gain obtained by movingfrom the mean-variance to the full-scale optimal portfolio,as well as the turnover required to do so. Also, it shows resultsfor subsamples and for the multi-asset optimization. In allcases, full-scale optimization improves correlation asym-metry when compared to mean-variance optimization. Insome cases, full-scale optimization turns correlation asym-metry from positive to negative, which means the portfoliohas lower downside correlations than upside correlations.Utility gains are highest for the multi-asset optimization.When hedge funds are included, the gain reaches 254.11%.

Note that utility gains are not perfectly correlatedwith improvements in correlation asymmetry—in somecases, large improvements in correlation asymmetry leadto a relatively small utility gain. For example, looking atcountry allocation, full-scale optimization improves cor-relation asymmetry by a greater amount in the 1970-1979subsample than in the 1980-1989 subsample (16.10%versus 5.27%), while the improvement in utility is lower(9.96% versus 23.40%). This result occurs because thekinked utility function puts a greater premium on down-side diversification than upside unification. Also, when wetake into account other features of the distribution, allasymmetry improvements are not created equal in termsof expected utility. For example, Statman and Scheid [2008]found that return gaps provide a better definition of diver-sification because they include volatility. Full-scale opti-mization addresses this issue by using the entire return

distribution. It is even possible to observe deteriorationin correlation asymmetry associated with an increase inutility. But overall, our results show that to the extent thatcorrelations are an important driver of utility—as opposedto volatilities, or returns, or other features of the joint dis-tribution—-an improvement in correlation asymmetry willlead to an improvement in utility.

In general, the stability of our results is not surprisinggiven the reasonable level of stability shown in the under-lying correlation profiles (Exhibit 5). Although our maingoal is to solve the problem of utility maximization insample, Adler and Kritzman [2007] provided a robustdemonstration that full-scale optimization outperformsmean-variance optimization out of sample. Our findingshelp explain their results. We suggest that a significantportion of this out-of-sample outperformance comes finmimprovements in correlation profiles. In other words, con-ditional correlations matter—and mean-variance opti-mization fails to take them into consideration.

CONCLUSION

We measured conditional correlations to assess theextent to which assets provide diversification in down mar-kets and allow for unification during up markets. We firstderived conditional correlations analytically under theassumption that returns are jointly normally distributedin order to measure the theoretical bias we should expect

FALL 2009 THE JOURNAL OF PORTTOLIO MANAGEMENT 3 3

Page 9: Myth of diversification

fiüm conditional correlations. We then measured conditionalcorrelations from empirical returns, which revealed that cor-relation asymmetry is prevalent across a wide range of assetpairs. Finally, we turned to portfolio construction. Weshowed that conventional approaches to portfolio con-struction ignore correlation asymmetry, while full-scaleoptimization, which directly maximizes expected utilityover a sample of returns, generates portfolios with moredownside diversification and upside unification than alter-native approaches to portfolio formation.

A P P E N D I X

Conditional Correlation for Bivariate NormalDistributions

Let X = {x, y) ~ N(0, £) be a bivariate normal randomvariahle, where x and y have unit variances and unconditionalcorrelation p. Then the correlation of-v and y conditional onX < h and y < kh given by

where (//(•), A(),and ;j;{-) are given by

, y<h)=cov(x, y\x<h,y<k)

•sjvaT{x\x<li, y<k) i, y<k)

The variances and covariance of these conditionalrandom variables can be written in terms of the momentsm.. = E{y^y'\x < h,y < k] as

var(.Y|

and

Let L(/(, k) denote the cumulative density of oiir bivariatenormal distribution.

, k) = exp-2pxy+y'

dxdy

As shown in Ang and Chen [2002], the first and secondmoments can be expressed as

L(h, k) , k ; p)

, hp)

and

Aih,k:p)=-

-A{h,k;p)

and 0() and O(-) are the PDF and CDF, respectively, of theunivariate standard normal distribution.

ENDNOTES

'See, for example, Longin and Solnik [2001], Kritzman,Lowry. and Van Royen [2001], and Van Royen [2002b].

-See, for example, Ang and Bekaert [2002], Kritzman,Lowry, and Van Royen [2001], Baele [2003], and Van Royen[2002al on regime shifts; Van Royen [2002a] and Hyde,Bredin,and Nguyen [2007] on financial contagion; and Ang and Bekaert[2002], Longin and Solnik [2001], Butler and Joaquin [2002],Campbell, Koedijk, and Kofman [2(102], Cappiello, Engle, andSheppard [2006], and Hyde, Bredin, and Nugyen [2007] oncorrelation asymmetries.

'Kritzman, Lowry, and Van Royen [2001] condition ona statistical measure of market turbulence rather than returnthresholds.

''Exceedance correlations are computed for any thresholdwith more than three events.

^See, for example, Ramchand and Susmel [1998], Angand Bekaert [2002], and Ang and Chen [2002].

^Note that fiill-scale optimization will not always pro-duce the most concentrated portfolio. It might invest a signif-icant proportion of a portfolio in an asset with high full-samplecorrelation, but negative downside correlation, while mean-variance might ignore the asset altogether.

'We exclude the World Ex-U.S. asset class because it isredundant with the country choices.

REFERENCES

Adler,T,and M. Kritzman. "Mean-Variance versus FuU-ScaleOptimisation; In and Out of Sample." Jourriiii of Asset Manage-ment, Vol. 7. No. 5 (2007), pp. 302-311.

Ang, A., and G. Bekaert. "International Asset AUocation withRegime Shifts." Review oJFinandal Studies, Vol. 15, No. 4 (2002),pp. 1137-1187.

34 THE MYTH OF DIVERSIHCATION FALL 2(H)9

Page 10: Myth of diversification

Ang, A., and J. Chen. "Asymmetric Correlations of EquityPortfolios."_/oMmti/ of Financial Economics, Vol. 63, No. 3 (2002),pp. 443-494.

Ang, A., J. Chen, and Y. Xing. "Downside Correlation andExpected Stock Returns." Working Paper, Columbia University,2002.

. "Downside Risk." Rmew of Financial Studies, Vol. 19, No. 4(2006), pp. 1191-1239.

Bade, L. "Volatility Spillover Effects in European Equity Mar-kets: Evidence fi-om a Regime-Switching Model." WorkingPaper No. 33, United Nations University, institute for NewTechnologies, 2003.

Billio, M., R. Casarin, and G. Toniolo. "Extreme Returns in aShortfall Risk Framework." Working Paper No. 0204, GRETA,2002.

Butler, K.C., and D.C. Joaquin. "Are the Gains from Interna-tional Portfolio Diversification Exaggerated? The Influence ofDownside Risk in Bear Markets ."_/o«mii/ of International Moneyand Fimmce, Vol. 21, No. 7 (2002), pp. 981-1011.

Campbell, R., K. Koedijk, and P. Kofinan. "Increased Correla-tion in Bear Markets." Financial Analysts Journal, Vol. 58, No. 1(2002), pp. 87-94.

Cappiello, L., R.F. Engle, and K. Sheppard. "Asymmetric Dynamicsin the Correlations of Global Equity and Bond Returns."Jonnid/of Financial Econometrics, Vol. 4, No. 4 (2006), pp. 385-412.

Chow, G., E. jacquier, M. Kritzman, and K. Lowry. "OptimalPortfolios in Good Times and Bad." Financial Analysts Journal,Vol. 55, No. 3 (1999), pp. 65-73.

Cremers, J.-H., M. Kxitzman, and S. Page. "Optimal HedgeFund Allocations: Do Higher Moments Matter?"y[J»mii/ of Port-

foiio Management, Vol. 31, No. 3 (2005). pp. 70-81.

Ferreira. M.A., and P.M. Gama. "Correlation Dynamics of GlobalIndustry Portfolios." Working Paper, ISCTE Business School,Lisbon, 2004.

Gulko, L. "Decoupling."_/(íMrnti/o/'Por/̂ /ío Management,!?» (2002),pp. 59-66.

Hong, Y.,J. Tu, and G. Zhou. "Asymmetries in Stock Returns:Statistical Tests and Economic Evaluation." Review of FinancialStudies, Vol.20,No.5 (2007), pp. 1547-1581.

Hyde, S., D. Bredin, and N. Nguyen. "Corrélation Dynamicsbetween Asia-Pacific, EU and US Stock Returns." In Asia-PacificFinancial Market: Integration, Innovation and Challenges, Interna-tional Finaticc Review, 8 (2007), pp. 39-61.

Kritzman, M., K. Lowry, and A.-S. Van Royen. "Risk, Regimes,and Ovcrconñdcncc."Journal (f Derivatives, Vol. 8, No. 3 (2001),pp. 32-43. " - :

Lin, W-L., R.F. Engle, and T. Ito. "Do Bulls and Bears MoveAcross Borders? International Transmission of Stock Returnsand Volatility." Review of Financial Studies, Vol. 7, No. 3 (1994),pp. 507-538.

Longin, F., and B. Solnik. "Is the Correlation in InternationalEquity Returns Constant; \96{)-\99()?"Journal of ¡nternationalMoney and Finance, Vol. 14, No. 1 (1995), pp. 3-26.

. "Extreme Correlation of International Equity Markets."Journal of Finance, Vol. 56, No. 2 (2001), pp. 649-676.

Markowitz, H. "Portfolio Selection."_/t)Mm<i/ of Finance, Vol. 7,No. 1 (1952), pp. 77-91.

Marshal, R., and A. Zeevi. "Beyond Correlation: Extreme Co-Movements between Financial Assets." Working Paper,Columbia University, 2002.

Ramchand, L., and R. Susmel. "Volatility and Cross Correla-tion across Major Stock Markets." Jowma/ of Empirical Finance,Vol. 5, No. 4 (1998), pp. 397-416.

Solnik, B., C. Boucrelle, and Y Le Fur. "International MarketCorrelation and Volatility." financial Analysts Journal, Vol. 52,No. 5 (1996), pp. 17-34.

Statman, M., and J. Scheid. "Correlation, Return Gaps, andthe Benefits of Diversificad on."_/oMmii/ of Portfolio Management,Vol. 34, No. 3 (2008), pp. 132-139.

Van Royen, A.-S. "Financial Contagion and InternationalPortfolio Flows." Financial Analysts Journal, Vol. 58, No. 1(2002a), pp.

. "Hedge Fund Index Returns." Hedge Fund Strategies,36 (2002b), pp. 111-117.

To order reprints of this article, please contact Dewey Paltnieri [email protected] or 2Í2-224-3675. ^

FALL 2009 THE JOURNAL OF PORTTOUO MANAGEMENT 3 5

Page 11: Myth of diversification