willy sansen CT filters

Embed Size (px)

Citation preview

  • 7/25/2019 willy sansen CT filters

    1/71

    Willy Sansen 10-05 191

    Continuous-time filters

    Willy Sansen

    KULeuven, ESAT-MICAS

    Leuven, Belgium

    [email protected]

  • 7/25/2019 willy sansen CT filters

    2/71

    Willy Sansen 10-05 192

    Applications and problems

    Applications

    Anti-aliasing filters

    Video and HF filters : hard-disk drives

    Channel select filters

    Low-power filters

    Problems: Tuning for high precision: mismatch < 5 %

    Distortion : THD < -60 dB

    Low power supply voltages High quality factors : Q > 50 ?

  • 7/25/2019 willy sansen CT filters

    3/71

    Willy Sansen 10-05 193

    Table of contents

    Active RC filters

    MOSFET-C filters

    GmC filters

    Comparison

    Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993

    J. Silva-Martinez, Kluwer 1993,

    W. Dehaene, JSSC, July 1997, 977-988

  • 7/25/2019 willy sansen CT filters

    4/71

    Willy Sansen 10-05 194

    Active RC filters

    Opamps and passive components (R, C)

    +

    -

    C2

    R1vINvOUT

    C1

    Cn

    Disadvantages :

    Opamps :

    only for low frequenciesErrors on R, C 20 %

    >> tune Cs

    Advantages :

    S/N up to 100 dB

    THD very low < - 90 dB

  • 7/25/2019 willy sansen CT filters

    5/71

    Willy Sansen 10-05 195

    Table of contents

    Active RC filters MOSFET-C filters

    GmC filters Comparison

    Ref.: Silva-Martinez, Dehaene, ..

  • 7/25/2019 willy sansen CT filters

    6/71

    Willy Sansen 10-05 196

    MOST resistors

    VDS0

    IDSlinear

    saturation

    VGS-VT

    On-resistance :

    Ron =

    VDS > VGS-VT

    1

    (VGS-VT)

    = KPWL

    iDS = KP [(vGS-vT)vDS - ]W

    L

    vDS2

    2

    HD2

  • 7/25/2019 willy sansen CT filters

    7/71

    Willy Sansen 10-05 197

    Examples of differential MOST-Rs

    partial cancellation of even nonlincancellation of even

    and odd nonlinearities

    Ref. Tsividis JSSC Feb.86, 15-30; Ma.94, 166-176

  • 7/25/2019 willy sansen CT filters

    8/71

    Willy Sansen 10-05 198

    From active RC to MOSFET-C filter

    Ref. Tsividis JSSC Feb.86, 15-30

  • 7/25/2019 willy sansen CT filters

    9/71

    Willy Sansen 10-05 199

    Large RON values at high frequencies

    KP W/L (VGS-VT)

    For low-frequency low-pass filter with f-3dB

    f-3dB = 2 RonC

    1

    2 C

    For f-3dB = 4 kHz; KP= 60 A/V2; VGS-VT = 1 V; W = 2 m; C = 10 pF

    Ron= 4 M. For matching W = 2 m: L 500 m ! The area is 10-5 cm2

    For Cox = 5.10-7 F/cm2 (0.35 m); CGS = 5 pF;

    High-frequency limit at 8 kHz or fT8 kHz !!!!!!

  • 7/25/2019 willy sansen CT filters

    10/71

    Willy Sansen 10-05 1910

    LC ladder filter

    Ref. Banu

    JSSC Dec.85,

    1114-1121

  • 7/25/2019 willy sansen CT filters

    11/71

    Willy Sansen 10-05 1911

    Fifth-order low-pass filter

    Ref. Tsividis, JSSC Feb.86, 15-30

    -vINvIN

    v

  • 7/25/2019 willy sansen CT filters

    12/71

    Willy Sansen 10-05 1912

    Fifth-order elliptic low-pass filter

    Ref. Tsividis

    JSSC Feb.86,

    15-30

  • 7/25/2019 willy sansen CT filters

    13/71

    Willy Sansen 10-05 1913

    PLL tuning

    Ref.

    Banu JSSC Dec.85,

    1114-1121

    Krummenacher, JS

    SC June 88, 750-758

    Khoury, JSSC

    Dec.91, 1988-1997

    Problems:

    Master/slave for

    each pole/zero

    VCO + PLL at fc

    Signal feedthrough

    at fc

    Filter

  • 7/25/2019 willy sansen CT filters

    14/71

    Willy Sansen 10-05 1914

    Table of contents

    Active RC filters

    MOSFET-C filters GmC filters

    Transconductors Tuning

    Comparison

    Ref.: Silva-Martinez, Dehaene, ..

  • 7/25/2019 willy sansen CT filters

    15/71

    Willy Sansen 10-05 1915

    Some GmC filters

    Single-ended GmC filters

    Fully-differential ...

  • 7/25/2019 willy sansen CT filters

    16/71

    Willy Sansen 10-05 1916

    GmC filter definition

    Operational

    amplifier

    Opamp OTA

    Operational

    Transconduct.

    amplifier

    +

    -+

    -

    Av =vOUT

    vINAg =

    iOUT

    vIN

    Av = = Ag RL

    +

    -vIN

    Ag or Gm (Ibias)

    Ibias

    vOUT

    C

    Disadv.: Distortion

    Mismatch errors

    Parasitic Cs (low Q)

    Adv.: High freq. operation

    Easy tuning

    iOUT

  • 7/25/2019 willy sansen CT filters

    17/71

    Willy Sansen 10-05 1917

    Simple GmC filters

    +-ZIN

    +

    -vIN1vOUT

    C

    gm

    +

    -vIN

    C

    vIN2

    R

    vOUT

    vOUT

    vIN1- vIN2

    =gm

    sC

    vOUT

    vIN =

    gmR

    1+ sRC

  • 7/25/2019 willy sansen CT filters

    18/71

    Willy Sansen 10-05 1918

    Simple GmC filters

    +-

    gm2

    +

    -vIN

    C

    vOUT

    vOUT

    vIN =

    gm1

    gm2 + sC

    gm1

    f

    gm1gm2

    gm1

    2

    C

    gm22C

  • 7/25/2019 willy sansen CT filters

    19/71

    Willy Sansen 10-05 1919

    Simple fully-differential GmC filters

    -

    vIN CL

    +

    Gm1 Gm2

    -

    +

    Cp

    CpResistorIntegrator Lossy integrator

    Sensitive toparasitic capacitancesvOUT

    -

    vIN C1

    +

    Gm1 Gm1 C2 Gm2 Gm1

    +

    -

    vOUT

    Biquadratic cell

  • 7/25/2019 willy sansen CT filters

    20/71

    Willy Sansen 10-05 1920

    Voltage-mode & current-mode filters

  • 7/25/2019 willy sansen CT filters

    21/71

    Willy Sansen 10-05 1921

    A differential pair as a transconductor

    M1Vid/2 -Vid/2

    Ibias

    -ioutiout

    M1

    VId

    VGS

    - VT

    U =

    IM3 = 3HD3 = U2

    U is the relative current swing

    3

    32

    IP3 3.3 (VGS - VT)

    Max. Vidptp 2 2 (VGS - VT)

    HD3 = - 60 dB for Vid = 1 V requires VGS-VT = 6 V !!!

  • 7/25/2019 willy sansen CT filters

    22/71

    Willy Sansen 10-05 1922

    Amplifier or transconductor ?

    vod

    vind

    slope gm

    RLIB

    -RLIB

    2 (VGS -VT)0

    bipolarMOST transconductor

    Transconductor :Wide input range : low distortion

    Small gain gm

  • 7/25/2019 willy sansen CT filters

    23/71

    Willy Sansen 10-05 1923

    Table of contents

    Active RC filters

    MOSFET-C filters

    GmC filters

    Transconductors

    use of transconductors

    local feedback

    parallel differential pairs

    others

    Tuning

    Comparison

  • 7/25/2019 willy sansen CT filters

    24/71

    Willy Sansen 10-05 1924

    Increasing the IP3 by feedback

    M1Vid/2 -Vid/2

    2Ibias

    -ioutiout

    M1 M1Vid/2 -Vid/2

    Ibias

    -ioutiout

    M1

    Ibias

    R R 2R

    IP3 3.3 (VGS-VT)(1+gm1R)2 HD3/n

    2 n= 1+gm1R

    HD3 = - 60 dB for Vid = 1 V requires VGS-VT = 0.38 V and gm1R = 3 !!!

  • 7/25/2019 willy sansen CT filters

    25/71

    Willy Sansen 10-05 1925

    Increasing the IP3 by FB and high loop gain

    Additional local FB

    2R

    More FB with opamps

    2R

  • 7/25/2019 willy sansen CT filters

    26/71

    Willy Sansen 10-05 1926

    Tuneable resistances

  • 7/25/2019 willy sansen CT filters

    27/71

    Willy Sansen 10-05 1927

    By tuneable feedback

    M2Vid/2 -Vid/2

    IbiasIbias

    ~ 2Ibias -ioutiout

    M1

    IP3 3.3 (VGS - VT)n2

    n= 1+

    HD3

    n2

    gm1

    gm2

    Ref.Torrance etal CAS Nov.85, 1097-1104

  • 7/25/2019 willy sansen CT filters

    28/71

    Willy Sansen 10-05 1928

    By nonlinear feedback (input)

    M2Vid/2 -Vid/2

    IbiasIbias

    -ioutiout

    M1

    IP3 3.3 (VGS1 - VT) n2

    Ref. Krummenacher JSSC June 88, 750-758

    n = 1+HD3

    n2

    1

    42

    No extra currentNo extra CM node !

    But limited VGS-VT !

    gmtot =Ibias

    n (VGS1

    - VT

    )

  • 7/25/2019 willy sansen CT filters

    29/71

    Willy Sansen 10-05 1929

    By nonlinear feedback (as load)

    M2

    M1

    Ref. Menolfi JSSC July 97, 968-976

    Vid/2

    Voutd

    -Vid/2M3 Av =

    n gm3gm1

    n = 1+ 3

    42

    2Rind2 n

    gm1

  • 7/25/2019 willy sansen CT filters

    30/71

    Willy Sansen 10-05 1930

    Low-distortion combination : power !

    M2Vid/2 -Vid/2

    IbiasIbias

    iout

    M1

    M2

    Ibias

    -iout

    M1

  • 7/25/2019 willy sansen CT filters

    31/71

    Willy Sansen 10-05 1931

    Reduced distortion by cross-coupling

    M2Vid/2 -Vid/2

    IbiasIbias

    iout

    M1

    Ibias

    -iout2Ibias

    M3

    Ref. Silva-Martinez JSSC July 91,946-955

  • 7/25/2019 willy sansen CT filters

    32/71

    Willy Sansen 10-05 1932

    Comparison (simulations)

  • 7/25/2019 willy sansen CT filters

    33/71

    Willy Sansen 10-05 1933

    Measured THD for transconductor

    THD

    - 60 dB

    2.4 Vptp

    Input Voltage

    Ref. Silva-Martinez JSSC July 91,946-955

  • 7/25/2019 willy sansen CT filters

    34/71

    Willy Sansen 10-05 1934

    Linear transconductor with opamps

    Ref. Chang JSSC March 97,388-397

  • 7/25/2019 willy sansen CT filters

    35/71

    Willy Sansen 10-05 1935

    Table of contents

    Active RC filters

    MOSFET-C filters

    GmC filters

    Transconductors

    use of transconductors

    local feedback

    parallel differential pairs

    others

    Tuning

    Comparison

  • 7/25/2019 willy sansen CT filters

    36/71

    Willy Sansen 10-05 1936

    Parallel differential pairs with offset Voltages

    M2avid/2 -vid/2

    IBIB

    -ioutiout

    M1a

    Ref. Gilbert, JSSCDec. 82, 1179-1191

    Voorman ECCTD 83

    Tanimoto, .. JSSC

    July 91, 937-945

    M2b M1b+ +--

    VGG VGG VGG 1.3 kT/q

    34 mV

  • 7/25/2019 willy sansen CT filters

    37/71

    Willy Sansen 10-05 1937

    Transfer characteristics of parallel diff. pairs

    iCE

    IB

    vId

    iCE1a iCE2a

    1

    0.5

    0

    0

    VGG = 34 mV

    0.2

    0.8

    iCE =IB

    1 + exp(-qvId/kT)

  • 7/25/2019 willy sansen CT filters

    38/71

    Willy Sansen 10-05 1938

    Parallel diff.pairs with different transistor sizes

    vid/2 -vid/2

    IBIB

    -ioutiout

    Bipolar : n 4

    1 : nn : 1

    Ref. in bipolar :Gilbert, JSSC, Dec. 82,

    1179-1191

    Voorman, ECCTD 83

    ESSCIRC 85

    JSSC, Aug.00, 1097-1108Tanimoto, .. JSSC

    July 91, 937-945

    De Veirman, JSSC

    March 92, 324-331

    M2aM1a M2b M1b

  • 7/25/2019 willy sansen CT filters

    39/71

    Willy Sansen 10-05 1939

    Paralleling four differential pairs

    Ref. Tanimoto,.. JSSC July 91, 937-945

    Input range 160 mVptp (1% THD)

    5th order filter

    9 kHz

  • 7/25/2019 willy sansen CT filters

    40/71

    Willy Sansen 10-05 1940

    Dual-input transconductor

    Ref. De Veirman, JSSC, March 92, 324-331

    7th order filter

    2 10 MHz

    Input range

    96 mVptp (1% THD)

  • 7/25/2019 willy sansen CT filters

    41/71

    Willy Sansen 10-05 1941

    Parallel diff.pairs with different transistor sizes

    vid/2 -vid/2

    IB2IB1

    -ioutiout

    MOST : n 5

    1 : nn : 1

    Ref. in CMOS :

    Nedungadi, CASOct 84, 891-894

    Voorman, JSSC

    Aug.00, 1097-1108

    Luh, ESSCIRC 00

    M2aM1a M1b M2b

    Parameters :

    = IB2

    / IB1

    v = VGST1/ VGST2

    VGST = VGS-VT

    n = v2

  • 7/25/2019 willy sansen CT filters

    42/71

    Willy Sansen 10-05 1942

    Cross-coupling for linearity and swing

    Ref. Luh, USC, ESSCIRC 2000, 72-75

  • 7/25/2019 willy sansen CT filters

    43/71

    Willy Sansen 10-05 1943

    Multiplier or Amp. with distortion cancellation

    vid/2 -vid/2

    IB2IB1

    iout

    M1

    iout

    M2M1

    Parameters :

    = IB2/ IB1

    v = VGST1/ VGST2

    VGST = VGS-VT

    Ref. Gilbert, JSSC Dec. 68, 365-373

  • 7/25/2019 willy sansen CT filters

    44/71

    Willy Sansen 10-05 1944

    Cross-coupling and source resistors

    Ref. Prodanov, ESSCIRC 2001, 488-491

    M2

    vid/2

    -vid/2

    Ibias

    -ioutiout

    M3 M3M2

    M1 M1

  • 7/25/2019 willy sansen CT filters

    45/71

    Willy Sansen 10-05 1945

    Cross-coupling and source followers

    M2

    vid

    /2-vid/2

    Ibias

    -ioutiout

    M3 M3

    M2

    Ref. Van Engelen, JSSC Dec.99, 1753-1764

    M1 M1

    iout

    =vid

    Vg/2 -Vg/2

    gm1

    gm21 -

    gm3

    =

    vid gm1

    gm21 -

    vg 1

  • 7/25/2019 willy sansen CT filters

    46/71

    Willy Sansen 10-05 1946

    Table of contents

    Active RC filters

    MOSFET-C filters

    GmC filters

    Transconductors

    use of transconductors

    local feedback

    parallel differential pairs

    others

    Tuning

    Comparison

  • 7/25/2019 willy sansen CT filters

    47/71

    Willy Sansen 10-05 1947

    Linearity CMOS amplifier

    vout

    IDS

    M1

    M2

    vin

    CL

    VDD

    Vin = Vout =2

    VDD

    Ln

    Wn

    Lp

    Wpif Kn = Kp

    vout

    vin

    VDD

    VDD0 VTn VTp

    QVDD/2

    VDD/2

    very linear !

  • 7/25/2019 willy sansen CT filters

    48/71

    Willy Sansen 10-05 1948

    Linearized transconductors

    Ref. Voorman, JSSC, Aug.2000, 1097-1108

    CMFB

  • 7/25/2019 willy sansen CT filters

    49/71

    Willy Sansen 10-05 1949

    Transconductor for High Frequencies (2 nodes)

    Ref. Nauta JSSC Febr.92,142-146

    Iod = Io1 - Io2 = gmd VidTuning with Vdd

    RDM1 =1

    gm5-gm6

    RDM2 =1

    gm4-gm3

    RCM2 =1

    gm4+gm3

    RCM1 =1

    gm5+gm6

    i i OS

  • 7/25/2019 willy sansen CT filters

    50/71

    Willy Sansen 10-05 1950

    Transconductors with linear MOSTs

    VDS1 = RDID0.2 V

    IDS1 = 1VDS1(VGS1-VT)

    gm1 = 1VDS1 is constant

    over wide range !

    Ref. Alini, JSSC, Dec.92, pp.1905-1915

    Al i l i

  • 7/25/2019 willy sansen CT filters

    51/71

    Willy Sansen 10-05 1951

    Alternative solutions

    Larger tuning range

    Controls VDSVDSmin0

    Vtuning down to 0

    Vtuning

    Vtuning

    VIN

    VIN

    Smaller tuning range

    Controls VGS -VTVGSTmin limited by linearity

    Vtuning from VT up

    P d diff ti l t ith li MOST

  • 7/25/2019 willy sansen CT filters

    52/71

    Willy Sansen 10-05 1952

    Ref. Alini, JSSC, Dec.92, pp.1905-1915

    No rejection of

    CM signals

    (CMRR = 0 dB)

    Biasing

    imposed by

    previous circuit !

    Pseudodifferential transc. with linear MOSTs

    T d t ith li MOST

  • 7/25/2019 willy sansen CT filters

    53/71

    Willy Sansen 10-05 1953

    gm1 = 1VDS1

    is constantover wide range !

    Ref. Laber, JSSC, April 93, 462-470

    Transconductors with linear MOSTs

    T bl f t t

  • 7/25/2019 willy sansen CT filters

    54/71

    Willy Sansen 10-05 1954

    Table of contents

    Active RC filters

    MOSFET-C filters GmC filters

    Transconductors

    Tuning

    Comparison

    Ref.: Silva-Martinez, Dehaene, ..

    Gm R C versus Gm C filters

  • 7/25/2019 willy sansen CT filters

    55/71

    Willy Sansen 10-05 1955

    Gm-R-C versus Gm-C filters

    -

    vIN vOUTCL

    +Gm Gm

    -

    +

    Cp

    Cp

    -

    vIN CL

    +Gm

    Cp

    Cp

    R

    fo foQ Q

    vOUT

    -

    +

    Gm R C filters

  • 7/25/2019 willy sansen CT filters

    56/71

    Willy Sansen 10-05 1956

    Gm-R-C filters

    if fo

  • 7/25/2019 willy sansen CT filters

    57/71

    Willy Sansen 10-05 1957

    Tunable R to tune Q

    ROUT

    ROUT 1

    KP1 (VC-VGS2)W1

    L1

    Tuning systems : transconductance tuning

  • 7/25/2019 willy sansen CT filters

    58/71

    Willy Sansen 10-05 1958

    Tuning systems : transconductance tuning

    +

    -+

    -gm

    Cint

    Iref = Vref/ R

    Iref = gmVref

    gm = 1/ R

    vOUT = vtune

    R

    -

    +

    VrefIref

    Tuning systems : frequency tuning

  • 7/25/2019 willy sansen CT filters

    59/71

    Willy Sansen 10-05 1959

    Tuning systems : frequency tuning

    +

    -+

    -gm

    vtuneC

    fc

    vOUT

    Ref. Viswanathan, JSSC Aug.82, 775-778

    Silva, JSSC Dec. 92, 1843-1853

    -

    +

    Vref

    R = 1/ Cfc

    Iref = Cfc Vref

    Iref = gmVref

    gm = Cfc

    Cint

    Fully-differential tuning system realization

  • 7/25/2019 willy sansen CT filters

    60/71

    Willy Sansen 10-05 1960

    Fully-differential tuning system realization

    Ref. Chang, JSSC March 1997, 388-397

    Tuning systems : frequency tuning with low f

  • 7/25/2019 willy sansen CT filters

    61/71

    Willy Sansen 10-05 1961

    Tuning systems : frequency tuning with low fc

    +

    -

    IB

    +

    -

    IB/N

    gm

    vtune

    C

    t

    vOUT Qgm = C IB/gm

    QIBN = IB/N Tc

    fc

    gm= Nfc

    CTc

    Charge

    balancing :

    No crosstalk

    vOUT

    Ref. Silva

    Cint

    Fully-differential frequency tuning system

  • 7/25/2019 willy sansen CT filters

    62/71

    Willy Sansen 10-05 1962

    gm= Nfc

    C

    Fully differential frequency tuning system

    NIBIB

    IB NIB

    C

    C

    VfOTA OTA

    Ref. Silva, JSSC Dec. 92, 1843-1853

    Tuning systems : Q tuning

  • 7/25/2019 willy sansen CT filters

    63/71

    Willy Sansen 10-05 1963

    Tuning systems : Q tuning

    H(t) =

    1 -1

    4Q2exp( - ) sin( ot + )

    1 t.BW

    2 1 -

    1

    4Q2

    No HF PLL

    or VCO !Detection

    at fc !

    Unity-pulse response Biquad :

    Envelop

    Average

    Q tuning with active resistor

  • 7/25/2019 willy sansen CT filters

    64/71

    Willy Sansen 10-05 1964

    Q tuning with active resistor

    LPF

    Rtune

    AMP

    Comparison of 10.7 MHz filters

  • 7/25/2019 willy sansen CT filters

    65/71

    Willy Sansen 10-05 1965

    p

    SC OTA-C Gm-RC

    fc

    (BW = 250 kHz) 10.7 MHz 12.5 MHz 10.7 MHz

    Order filter 6 4 4

    Vin @ IM3= 1% 0.24 VRMS 0.32 VRMS 0.71 VRMS

    DR @ IM3= 1% 34 dB 51 dB 68 dB

    Power ( V) 500 mW( 5) 360 mW( 6) 220 mW( 2.5)

    Chip area 2 mm2 7.8 mm2 6 mm2

    Biquad for 7th-order Filter at 50 MHz

  • 7/25/2019 willy sansen CT filters

    66/71

    Willy Sansen 10-05 1966

    Ref. Dehaene JSSC July 97, 977-988

    Biquad with matched nodes

    C = Cparasitic

    gm2* = gm2 + go

    CC

    Av =gm3

    gm1 (2

    +1)

    gm1

    2

    (2+1)

    (2+1)fo =

    1

    2 =

    gm2* =

    gm2*C

    q

    Q =

    Tuning system for Q : conductance ratio

  • 7/25/2019 willy sansen CT filters

    67/71

    Willy Sansen 10-05 1967

    Ref. Dehaene JSSC July 97, 977-988

    gm1 =

    gm2*

    closed : tuning mode closed :offset calibration

    mode for all OTAs(Vref set to 0)

    gm1Vn+,n- = gOTA Vref = kVref gOTAgm2*1

    k

    gOTA gOTA

    =

    g y Q

    Tuning system for the ratio of time constants

  • 7/25/2019 willy sansen CT filters

    68/71

    Willy Sansen 10-05 1968

    Charge balancing :

    V1,int = V2,int or

    k12

    1

    Vref

    Cint

    gm1 = 2

    2

    Vref

    k12Cint

    gm

    2

    1

    2

    1

    = k122

    1

    g y

    Table of contents

  • 7/25/2019 willy sansen CT filters

    69/71

    Willy Sansen 10-05 1969

    Active RC filters

    MOSFET-C filters

    GmC filters

    Comparison

    Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993

    J. Silva-Martinez, Kluwer 1993,

    W. Dehaene, JSSC, July 1997, 977-988

    Signal to Noise + Distortion ratio

  • 7/25/2019 willy sansen CT filters

    70/71

    Willy Sansen 10-05 1970

    RC (GBW)dB

    f

    100

    80

    60

    40

    20

    10 k 100 k 1 M 10 M 100 M 1 GHz

    MOST-C (GBW)

    SC (settling)

    gmC (linearity)

    SI (mismatch)gmC

    + Disto - Tuning

    + Tuning - Disto

    + Tuning - HiFr

    + Power, Disto

    + Tuning - Disto

    + HiFr

    +HiFr - DR

    Table of contents

  • 7/25/2019 willy sansen CT filters

    71/71

    Willy Sansen 10-05 1971

    Active RC filters

    MOSFET-C filters

    GmC filters

    Comparison

    Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993

    J. Silva-Martinez, Kluwer 1993,

    W. Dehaene, JSSC, July 1997, 977-988