45
What can DLAs and the gas around galaxies tell us about galaxy forma9on? Simeon Bird, CMU arXiv:1407.7858, 1405.3994 with Mar9n Haehnelt, Marcel Neeleman, Kate Rubin, Mark Vogelsberger, Shy Genel, Lars Hernquist

Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

What  can  DLAs  and  the  gas  around  galaxies  tell  us  about  

galaxy  forma9on?  

Simeon  Bird,  CMU  arXiv:1407.7858,  1405.3994  

with  Mar9n  Haehnelt,  Marcel  Neeleman,  Kate  Rubin,  Mark  Vogelsberger,  Shy  Genel,  Lars  Hernquist  

Page 2: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

What  are  DLAs?  

DLAs:  neutral  hydrogen  reservoirs  at  z=4-­‐2  

HI   6 Ellison et al.

Figure 3. Voigt profile models to the Lyα line for the absorbers in our sample are shown as red curves. The dashed lines indicate the uncertainties given in thepanel captions.

data were obtained in TIME-TAGmode with at least two exposuresper target, each in a different FP-POS position. Total exposure timesand central wavelength settings are given in Table 4.

The COS spectra were homogeneously reduced using CAL-COS v2.15.4 and custom routines for background estimationand co-addition of individual exposures in the Poisson limit(e.g. Worseck et al. 2011). The data were flat-fielded, deadtime-corrected, doppler-corrected and wavelength-calibrated using thedefault CALCOS calibration files as of September 2011. For 1-dextraction we adjusted the source extraction window to a rectangu-lar box (height 17 pixels, corresponding to 5× the spatial FWHM)to preserve integer extracted counts in the Poisson regime, andto maximise the signal-to-noise ratio (S/N) for our well-centredpoint sources. Likewise, the background extraction windows weremaximised (150 pixels each), and background smoothing by thepipeline turned off to investigate spectral variations of the back-ground. After visual inspection, the smoothed background was de-termined by a 51-pixel running average in wavelength. Individualexposures were co-added by adding the integer source counts andthe non-integer mean background per pixel on the homogeneousNUV wavelength grid, accounting for individual pixel exposure

times induced by offsets in dispersion direction. The counts werethen flux-calibrated with the NUV flux calibration curve and thepixel exposure times. The S/N ratios per pixel (in the continuum oneither side of the Lyα absorption) of the final combined spectra aregiven in Table 4.

The Starlink package DIPSO was used to model a Voigt-profile absorption to the normalised spectra. To normalise the spec-tra, a cubic spline was fit through unabsorbed regions of the QSOcontinuum and the data then divided by the polynomial fit. Despitethe relatively low S/N, the N(H i) could usually be determined towithin ± 0.1 dex, which is typical for moderate resolution spec-tra of low S/N (e.g. Russell, Ellison & Benn 2006). The dominantsource of error in N(H i) is from uncertainty in the continuum place-ment. This is a particular issue for the proximate DLA towardsB0105−008 where the Lyα absorption lies on top of the QSO’sLyα emission. Nonetheless, errors on N(H i) are less ! 0.15 dex forall the bona-fide DLAs (log N(H i) " 20.3) in our sample. Table 4lists the measured N(H i) column densities for both the COS andSTIS data and Figure 3 presents the Lyα fits to the absorbers in oursample.

From Table 4 it can be seen that 4/6 absorbers in our sample

c⃝ 0000 RAS, MNRAS 000, 000–000

NHI  >  2x1020    cm-­‐2  

Prochaska+  2008  

Page 3: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

What  are  DLAs?  

Dense  neutral  self-­‐shielded  regions  HI  Density:  0.01  cm-­‐3    or  10%  star  forma9on  

threshold  

Page 4: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Why  are  we  interested  in  DLAs?    

1.  Several  problems  making  them  –  Velocity  width  –  Bias  

2.  Direct  probe  of  nearly  star-­‐forming  gas  around  galaxies  

Page 5: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Why  are  we  interested  in  gas  around  galaxies?    

•  We  know  star  forma9on  changes  overall  galaxy  evolu9on  

•  People  tune  sub-­‐grid  models  to  stellar  mass  func9on  

•  Gas  provides  an  independent  model  check  

Page 6: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Why  are  we  interested  in  gas  around  galaxies?    

 1.  Gas  provides  an  independent  model  check  

– Few  systema9cs:  sensi9ve  to  one  ion  – Hard  to  get  sta9s9cs:  Quasars  are  rarer  than  galaxies  

Page 7: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Basic  Results  

1.  Column  Density  

2. Metallicity  

Page 8: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Column  Density  at  z=3  N    CDD

F  

Page 9: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Stellar  Feedback  

Ouclows  with  velocity  propor9onal  to  halo  circular  velocity  (high  mass  loading  to  suppress  star  forma9on  in  dwarfs)  

 Mass  loading:    Wind  velocity:  

 Ouclows  in  small  halos  SLOWER  but    push  out  more  mass  

⌘ / v�2w

vw = 3.7�1D

Page 10: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Stellar  Feedback  

Four  different  models:  1.  NOSN:  No  (effec9ve)  feedback  2.  ILLUS:  Illustris  model  3.  2xUV:  Illustris  model  with  2xUVB  amplitude  4.  HVEL:  Constant  velocity  winds:  600  km/s  

Blue  is  my  favourite  Green  is  my  least  favourite  

Page 11: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Column  Density  at  z=3  N    CDD

F  

Page 12: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Basic  Results  

1.  Column  Density  •  2xUV  is  ok  at  z=3!  

2. Metallicity  

Page 13: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Neutral  Hydrogen  Abundance  

Data:  Noterdaeme+  2012  

Page 14: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Neutral  Hydrogen  Abundance  

•  At  z=2  larger  halos  are  forming  •  Here  supernova  winds  are  not  as  effec9ve  •  Too  much  cold  gas  

Page 15: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Basic  Results  

1.  Column  Density  •  Ok  at  z>3!  •  Too  much  at  z=2  

2. Metallicity  

Page 16: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Basic  Results  

1. Column  Density  •  Ok  at  z>3!  •  Too  much  at  z=2  

2.  Metallicity  

Page 17: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Metallicity:  z=3  

Page 18: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Metallicity:  z=4,2  

Change  in  mean  metallicity  due  to  change  in  mean  halo  size  

Page 19: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Basic  Results  

1. Column  Density  •  Ok  at  z>3!  •  Too  much  at  z=2  

2.  Metallicity  •  Ok!  

Page 20: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Less  Basic  Results  

1.  Velocity  Width  

2. Edge-­‐leading  Spectra  

3. Bias  

Page 21: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Measuring  DLA  Velocity  Structure  

Use  metal  lines:  Lyman-­‐α  saturated  

Velocity  width:  90%  of  total  op9cal  depth    

Correlates  with  halo  virial  velocity  

Page 22: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Stellar  Feedback  

New  models:  1.  NOSN:  No  (effec9ve)  feedback  2.  DEF:  Illustris  model  and  2xUV  3.  FAST:  Same  as  DEF  with  50%  faster  winds  4.  HVEL:  Constant  velocity  winds:  600  km/s  5.  (SMALL:  As  DEF  but  10  Mpc  box)  

Page 23: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Velocity  Widths  

Velocity  Width  (km/s)  

Velocity  W

idth  pdf  

 Data:  Neeleman+  2013  

Page 24: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Run  cosmological  hydro  simula9on  (box:  25  &  10  Mpc)  

Sample  snapshot  randomly  for  5000  DLA  spectra  

How  did  we  do  this?  

Page 25: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Two  Important  Ingredients  

1.   Make  metal  (SiII)  cover  larger  region  of  halo  2.  Make  halos  (a  bit)  larger  

How  did  we  do  this?  

Page 26: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Shielding  

Rahma9+  2013  

On the evolution of the HI CDDF 11

Figure 3. The hydrogen neutral fraction (left) and the photoionization rate (right) as a function of hydrogen number density do notchange by varying the simulation box size or mass resolution. This is shown for different simulations at z = 3 in the presence of the UVBand recombination radiation. Purple solid, blue dashed and red dot-dashed lines show, respectively, the results for L12N256, L06N128

and L06N256. The green dotted line indicates the results for the L06N128 simulation if the gas is assumed to be optically thin tothe UVB radiation (i.e., no RT calculation is performed). The deviation between the optically thin hydrogen neutral fractions and RTresults at n

H! 10−2 cm−3 shows the impact of self-shielding. The lines show the medians and the shaded areas indicate the 15%− 85%

percentiles. At the top of each panel we show HI column densities corresponding to each density.

ΓPhot is the total photoionization rate. Moreover, the self-shielding density threshold, nH,SSh, is given by equation (13)and is thus a function of ΓUVB and σνHI

which vary withredshift. As explained in more detail in Appendix A1, thenumerical parameters representing the shape of the pro-file are chosen to provide a redshift independent best fitto our RT results. In addition, the parametrization is basedon the main RT related quantities, namely the intensity ofUVB radiation and its spectral shape. It can therefore beused for UVB models similar to the Haardt & Madau (2001)model we used in this work (e.g., Faucher-Giguere et al.2009; Haardt & Madau 2012). For a given UVB model, oneonly needs to know ΓUVB and σνHI

in order to determine thecorresponding nH,SSh from (13) (see also Table 2). Then, af-ter using equation (14) to calculate the photoionization rateas a function of density, the equilibrium hydrogen neutralfraction for different densities, temperatures and redshiftscan be readily calculated as explained in Appendix A1.

We note that the parameters used in equation (14)are only accurate for photoionization dominated cases. Aswe show in §3.5, at z ∼ 0 the collisional ionization rateis greater than the total photoionization rate around theself-shielding density threshold. Consequently, equation (13)does not provide an accurate estimate of the self-shieldingdensity threshold at low redshifts. In Appendix A1 we there-fore report the parameters that best reproduce our RT re-sults at z = 0. Our tests show that simulations that useequation (14) reproduce the f(NHI, z) accurately to within10% for z ! 1 where photoionization is dominant (see Ap-pendix A1).

Although using the relation between the median pho-toionization rate and the gas density is a computationallyefficient way of calculating equilibrium neutral fractions inbig simulations, it comes at the expense of the informa-tion encoded in the scatter around the median photoioniza-tion rate at a given density. However, our experiments show

that the error in f(NHI, z) that results from neglecting thescatter in the photoionization rate profile is negligible forNHI ! 1018 cm−3 and less than " 0.1 dex at lower columndensities (see Appendix A1).

3.4 The roles of diffuse recombination radiation

and collisional ionization at z = 3

To study the interplay between different ionizing processesand their effects on the distribution of HI, we compare theirionization rates at different densities. We start the analysisby presenting the results at z = 3 and extend it to otherredshifts in §3.5.

The total photoionization rate profiles shown in theright panel of Figure 3 are almost flat at low densitiesand decrease with increasing density, starting at densitiesn

H∼ 10−4 cm−3. Just below n

H= 10−2 cm−3 self-shielding

causes a sharp drop, but the fall-off becomes shallower forn

H> 10−2 cm−3 and the photoionization rate starts to in-

crease at nH> 10 cm−3. As shown in Figure 4, the shallower

fall-off in the total photoionization rate with increasing den-sity is caused by RR. The increase in the photoionizationrate with density at the highest densities on the other hand,is an artifact of the imposed temperature for ISM particles(i.e., T = 104 K) which produces a rising collisional ioniza-tion rate with increasing density. As the comparison betweenthe UVB and RR photoionization profiles shows (see Figure4), RR only starts to dominate the total photoionizationrate at n

H> 10−2 cm−3, where the UVB photoionization

rate has dropped by more than one order of magnitude andthe gas is no longer highly ionized. RR reduces the totalHI content of high-density gas by ≈ 20%. Although ion-ization rates remain non-negligible at higher densities, theycannot keep the hydrogen highly ionized. For instance at

c⃝ 0000 RAS, MNRAS 000, 000–000

Photo-­‐ioniza9on  rate  reduced  by  self-­‐shielding  

neutral    

 ionised  

 

Page 27: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Shielding  for  Metals  Same  self-­‐shielding  for  E  >  1  Rydberg  SiII  at  lower  density  than  HI  (16.3  eV  >  13.6  eV)  

Page 28: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Ionisa9on  state  

Blue:  SiII  traces  HI    n(SiII)/n(Si)  =  n(HI)/n(H)  

Page 29: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Velocity  width  approx  virial  velocity  

DEF:  Illustris  model    NOSN:  No  feedback  Disc:  A  semi-­‐analy9c  model  of  DLAs  as  discs  HSR98:  Haehnelt+98  simula9ons  

Velocity  width  /  virial  velocity  

Page 30: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Two  Important  Ingredients  

1.  Make  metal  (SiII)  cover  larger  region  of  halo  2.   Make  halos  (a  bit)  larger  

How  did  we  do  this?  

Page 31: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Host  Virial  Velocity  

•  Feedback  suppresses  halos  <  40  km/s  •  Characteris9c  velocity  now  70  km/s  

Viria

l  velocity

 pdf  

Page 32: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Velocity  Widths  

Velocity  Width  (km/s)  

Velocity  W

idth  pdf  

 Data:  Neeleman+  2013  

Page 33: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Less  Basic  Results  

1. Velocity  Width  

2.  Edge-­‐leading  Spectra  

3. Bias  

Page 34: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Edge-­‐Leading  Spectra  

•  Edge-­‐leading  sta9s9c  

 •  Difference  between  posi9on  of  peak  and  midpoint  of  total  absorp9on  in  units  of  velocity  width  

vpk � vmean

�v/2

Page 35: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Edge-­‐Leading  Spectra  

Absorp9on  concentrated  at  edges:  marginally  significant    

Page 36: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Edge-­‐Leading  Spectra  

A  guess:  ouclows  have  a  special  velocity.  

Page 37: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Less  Basic  Results  

1. Velocity  Width    2. Edge-­‐leading  Spectra    3.  DLA  Bias  

Page 38: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

•  Bias  b  =  DLA  power  /  maper  power  •  Gives  host  halo  mass  

•  Observed  (Font-­‐Ribera  2012):    bias  (b)  =  2.4  =>  M  =  1011  –  1012  

 •  We  have  halos  M  =  1010  –  1010.5  

•  Evidence  for  larger  halos?  

Page 39: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

Data:  Font-­‐Ribera+2012  

Page 40: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

•  Two  reasons  we  get  higher  bias  than  expected:  – b  =  2.2  =>  M  =  1011  –  1012  assumes:  

– More  DLAs  in  large  galaxies  

�DLA = �0

✓M

1010

◆↵

↵ = 1 vs 1/2

Page 41: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

•  DLAs  are  an  integral  over  a  wide  range  of  halo  masses  

•  Non-­‐linear  effects  occur  at  the  non-­‐linear  scale  for  the  most  biased  objects,  not  objects  at  the  mean  bias    

•  Non-­‐linear  growth  is  faster,  so  larger  objects  contribute  more  

Page 42: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

Data:  Font-­‐Ribera+2012  

Non-­‐linear  effects  boost  DLA  power  spectrum  

H[b2P (k)]

H[P (k)]> b2

Page 43: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

DLA  Bias  

Data:  Font-­‐Ribera+2012  

Odd  scale  dependence  

Power  decrease  

Non-­‐linear  growth  faster,  more  power  on  small  scales  

Cross-­‐correla9on?  

Page 44: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Conclusions  

•  People  have  asked  whether  DLAs  are  large  milky-­‐way  discs  (1012)  or  small  dwarfs  (1010)  

•  They  are  both,  but  mostly  in  between  (1011).  

•  Can  reproduce  velocity  width  and  DLA  bias  

Page 45: Whatcan%DLAs%and%the%gas% … · Whatare%DLAs? % DLAs:%neutral%hydrogen%reservoirs%atz=4X2% HI 6 Ellison et al. Figure 3. Voigt profile models to the Ly α line for the absorbers

Conclusions  

•  Reducing  star  forming  gas  works  

•  A  model  tuned  to  the  stellar  mass  func9on  makes  a  decent  showing  on  DLAs.  

•  DLAs  sensi9ve  to  mass  of  gas  removed  and  return  9me  –  not  details  of  ouclows