66
ARMY STTR 17.A PROPOSAL SUBMISSION INSTRUCTIONS The approved FY17.A Broad Agency Announcement (BAA) topics for the Army Small Business Technology Transfer (STTR) Program are listed below. Offerors responding to this BAA must follow all general instructions provided in the Department of Defense (DoD) Program BAA. Specific Army STTR requirements that add to or deviate from the DoD Program BAA instructions are provided below with references to the appropriate section of the DoD BAA. The STTR Program Management Office (PMO), located at the United States Army Research Office (ARO), manages the Army’s STTR Program. The Army STTR Program aims to stimulate a partnership of ideas and technologies between innovative small business concerns (SBCs) and research institutions (RIs) through Federally-funded research or research and development (R/R&D). To address Army needs, the PMO relies on the collective knowledge and experience of scientists and engineers across nine Army organizations to put forward R/R&D topics that are consistent with their mission, organization, and STTR program goals. More information about the Army STTR Program can be found at https://www.armysbir.army.mil/sttr/Default.aspx . See DoD Program Announcement Section 4.15 for Technical questions and Topic Author communications. Specific questions pertaining to the Army STTR Program should be submitted to: Dr. Bradley E. Guay US Army Research Office Army STTR Program Manager P.O. Box 12211 [email protected] Research Triangle Park, NC 27709 (919) 549-4200 PHASE I PROPOSAL GUIDELINES Phase I proposals should address the feasibility of a solution to the topic. The Army anticipates funding two STTR Phase I contracts to small businesses with their research institution partner for each topic. The Army reserves the right to not fund a topic if the proposals received have insufficient merit. Phase I contracts are limited to a maximum of $150,000 over a period not to exceed six ARMY - 1

Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

  • Upload
    dokhanh

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

ARMY STTR 17.APROPOSAL SUBMISSION INSTRUCTIONS

The approved FY17.A Broad Agency Announcement (BAA) topics for the Army Small Business Technology Transfer (STTR) Program are listed below. Offerors responding to this BAA must follow all general instructions provided in the Department of Defense (DoD) Program BAA. Specific Army STTR requirements that add to or deviate from the DoD Program BAA instructions are provided below with references to the appropriate section of the DoD BAA.

The STTR Program Management Office (PMO), located at the United States Army Research Office (ARO), manages the Army’s STTR Program. The Army STTR Program aims to stimulate a partnership of ideas and technologies between innovative small business concerns (SBCs) and research institutions (RIs) through Federally-funded research or research and development (R/R&D). To address Army needs, the PMO relies on the collective knowledge and experience of scientists and engineers across nine Army organizations to put forward R/R&D topics that are consistent with their mission, organization, and STTR program goals. More information about the Army STTR Program can be found at https://www.armysbir.army.mil/sttr/Default.aspx.

See DoD Program Announcement Section 4.15 for Technical questions and Topic Author communications. Specific questions pertaining to the Army STTR Program should be submitted to:

Dr. Bradley E. Guay US Army Research OfficeArmy STTR Program Manager P.O. Box [email protected] Research Triangle Park, NC 27709

(919) 549-4200

PHASE I PROPOSAL GUIDELINES

Phase I proposals should address the feasibility of a solution to the topic. The Army anticipates funding two STTR Phase I contracts to small businesses with their research institution partner for each topic. The Army reserves the right to not fund a topic if the proposals received have insufficient merit. Phase I contracts are limited to a maximum of $150,000 over a period not to exceed six months. Army STTR uses only government employee reviewers in a two-tiered review process. Awards will be made on the basis of technical evaluations using the criteria described in this DoD BAA (see section 6.0) and availability of Army STTR funds.

The DoD SBIR/STTR Proposal Submission system (https://sbir.defensebusiness.org/) provides instruction and a tutorial for preparation and submission of your proposal. Refer to section 5.0 at the front of this BAA for detailed instructions on Phase I proposal format. You must include a Company Commercialization Report (CCR) as part of each proposal you submit. If you have not updated your commercialization information in the past year, or need to review a copy of your report, visit the DoD SBIR/STTR Proposal Submission site. Please note that improper handling of the CCR may have a direct impact on the review and evaluation of the proposal (refer to section 5.4.e of the DoD BAA). The Army requires your entire proposal to be submitted electronically through the DoD-wide SBIR/STTR Proposal Submission Web site (https://sbir.defensebusiness.org/). STTR Proposals consist of four volumes: Proposal Cover Sheet, Technical Volume, Cost Volume and Company Commercialization Report. Army has established a 20-page limitation for Technical Volumes submitted in response to its topics. This does not include the Proposal Cover Sheets (pages 1 and 2, added electronically by the DoD

ARMY - 1

Page 2: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

submission site), the Cost Volume, or the CCR. The Technical Volume includes, but is not limited to: table of contents, pages left blank, references and letters of support, appendices, key personnel biographical information, and all attachments. The Army requires that small businesses complete the Cost Volume form on the DoD Submission site versus submitting it within the body of the uploaded Technical Volume. It is the responsibility of submitters to ensure that the Technical Volume portion of the proposal does not exceed the 20-page limit. Any pages submitted beyond the 20-page limit will not be read or evaluated. If you experience problems uploading a proposal, call the DoD SBIR/STTR Help Desk at 1-800-348-0708 (9:00 am to 6:00 pm ET).

Companies should plan carefully for research involving animal or human subjects, biological agents, etc (see sections 4.7 - 4.9). The short duration of a Phase I effort may preclude plans including these elements unless coordinated before a contract is awarded. If the offeror proposes to employ a foreign national, refer to sections 3.5 and 5.4.c (8) in the DoD BAA for definitions and reporting requirements. Please ensure no Privacy Act information is included in this submittal.

If a small business concern is selected for an STTR award they must negotiate a written agreement between the small business and their selected research institution that allocates intellectual property rights and rights to carry out follow-on research, development, or commercialization (section 10).

PHASE II PROPOSAL GUIDELINES

Commencing with the STTR FY13.A cycle, all Phase I awardees may apply for a Phase II award for their topic ‒ i.e., no invitation required. Please note that Phase II selections are based, in large part, on the success of the Phase I effort, so it is vital for SBCs to discuss the Phase I project results with their Army Technical Point of Contact (TPOC). Army STTR does not currently offer a Direct to Phase II option. Each year the Army STTR Program Office will post Phase II submission dates on the Army SBIR/STTR web page at https://www.armysbir.army.mil/. The submission period in FY17 will be 30 calendar days starting on or about 10 February 2017. The SBC may submit a Phase II proposal for up to three years after the Phase I selection date, but not more than twice. The Army STTR Program cannot accept proposals outside the Phase II submission dates. Proposals received by the Department of Defense at any time other than the prescribed submission period will not be evaluated. Phase II proposals will be evaluated for overall merit based upon the criteria in section 8.0 of this BAA.  STTR Phase II proposals have four Volumes:  Proposal Cover Sheet, Technical Volume, Cost Volume and Company Commercialization Report.  The Technical Volume has a 38-page limit including: table of contents, pages intentionally left blank, technical references, letters of support, appendices, technical portions of subcontract documents (e.g., statements of work and resumes) and any attachments.  However, offerors are instructed to NOT leave blank pages, duplicate the electronically generated cover pages or put information normally associated with the Technical Volume in others sections of the proposal submission as these will count toward the 38-page limit.  ONLY the electronically generated Cover Sheets, Cost Volume and CCR are excluded from the 38-page limit.  As instructed in section 5.4.e of the DoD Program BAA, the CCR is generated by the submission website based on information provided by you through the “Company Commercialization Report” tool. Army Phase II proposals submitted containing a Technical Volume over 38 pages will be deemed NON-COMPLIANT and will not be evaluated.

ARMY - 2

Page 3: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

Small businesses submitting a proposal are also required to develop and submit a technology transition and commercialization plan describing feasible approaches for transitioning and/or commercializing the developed technology in their Phase II proposal. 

Army Phase II Cost Volumes must contain a budget for the entire 24 month period not to exceed the maximum dollar amount of $1,000,000.  Costs for each year of effort must be submitted using the Cost Volume format (accessible electronically on the DoD submission site).  The total proposed amount should be indicated on the Proposal Cover Sheet as the Proposed Cost. Phase II projects will be evaluated after the base year prior to extending funding for the option year. Phase II proposals should be structured as follows: the first 10-12 months (base effort) should be approximately $500,000; the second 10-12 months of funding should also be approximately $500,000. The entire Phase II effort should not exceed $1,000,000. The Phase II contract structure is at the discretion of the Army’s Contracting Officer, and the PMO reserves the option to reduce an annual budget request > $500,000 if program funds are limited.

DISCRETIONARY TECHNICAL ASSISTANCE (DTA)

In accordance with section 9(q) of the Small Business Act (15 U.S.C. 638(q)), the Army use DTA authority to provide technical assistance services to small businesses engaged in STTR projects through a network of scientists and engineers engaged in a wide range of technologies. The Army has stationed ten Technical Assistance Advocates (TAAs) across the Army to provide technical assistance to small businesses that have Phase I/II projects with the participating Army organizations. Details related to DTA are described in section 4.22 of the DoD BAA. For more information go to: https://www.armysbir.army.mil/sbir/TechnicalAssistance.aspx

NOTIFICATION SCHEDULE OF PROPOSAL STATUS AND DEBRIEFS

Once the selection process is complete, the Army STTR Program Manager will send an email to the “Corporate Official” listed on the Proposal Coversheet with an attached notification letter indicating selection or non-selection. Small Businesses will receive a notification letter for each proposal they submitted. The notification letter will provide instructions for requesting a proposal debriefing. The Army STTR Program Manager will provide written debriefings upon request to offerors in accordance with Federal Acquisition Regulation (FAR) Subpart 15.5.

DEPARTMENT OF THE ARMY PROPOSAL CHECKLIST

Please review the checklist below to ensure that your proposal meets the Army STTR requirements. You must also meet the general DoD requirements specified in the BAA. Failure to meet all the requirements may result in your proposal not being evaluated or considered for award. Do not include this checklist with your proposal.

1. The proposal addresses a Phase I effort (up to $150,000 for up to six-month duration).

2. The proposal is addressing only ONE Army BAA topic.

3. The technical content of the proposal includes the items identified in section 5.4 of the BAA.

4. STTR Phase I Proposals have four volumes: Proposal Cover Sheet, Technical Volume, Cost Volume and Company Commercialization Report.

5. The Cost Volume has been completed and submitted for Phase I effort. The total cost should match the amount on the Proposal Cover Sheet.

ARMY - 3

Page 4: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

6. Requirement for Army Accounting for Contract Services, otherwise known as CMRA reporting is included in the Cost Volume (offerors are instructed to include an estimate for the cost of complying with CMRA – see website at https://cmra.army.mil/).

7. If applicable, the Bio Hazard Material level has been identified in the Technical Volume.

8. If applicable, include a plan for research involving animal or human subjects, or requiring access to government resources of any kind.

9. The Phase I Proposal describes the "vision" or "end-state" of the research and the most likely strategy or path for transition of the STTR project from research to an operational capability that satisfies one or more Army operational or technical requirement in a new or existing system, larger research program, or as a stand-alone product or service.

10. If applicable, Foreign Nationals are identified in the proposal. Include country of origin, type of visa/work permit under which they are performing, and anticipated level of involvement in the project.

ARMY - 4

Page 5: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

ARMY STTR 17.A Topic Index

A17A-T001 Atomic Layer Deposition of Highly Conductive MetalsA17A-T002 High Efficient Flexible Perovskite Photovoltaic Modules for Powering Wireless Sensor

Nodes and Recharging BatteriesA17A-T003 Photonic Nanostructures for Manipulation of High Energy Coherent BeamsA17A-T004 Functional Additive Manufacturing for Printable & Networkable Sensors to Detect

Energetics and Other Threat MaterialsA17A-T005 Mid-Infrared Chip-scale Trace Gas SensorsA17A-T006 Mid-wave Infrared Laser Beam SteeringA17A-T007 High Dynamic Range Heterodyne Terahertz ImagerA17A-T008 3D Tomographic Scanning Microwave Microscopy with Nanometer ResolutionA17A-T009 Mechancochemical Sensing and Self Healing Solution to Detecting Damage in Composite

StructuresA17A-T010 Scientific Data Management via Fast Dynamic SummarizationA17A-T011 Synthetic Biology Toolkit for Bioconversion of Food WasteA17A-T012 High Performance Armor via Additive Advanced CeramicsA17A-T013 Scalable Manufacturing of Functional Yarns for Textile-based Energy StorageA17A-T014 Biosensor for Detection of Synthetic CannabinoidsA17A-T015 Sealed Container Content IdentificationA17A-T016 Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and

AgingA17A-T017 Dismounted Soldier Positioning, Navigation and Timing (PNT) System InitializationA17A-T018 Novel Robust IR Scene Projector TechnologyA17A-T019 Artificial Intelligence/Machine Learning to Improve Maneuver of Robotic/Autonomous

SystemsA17A-T020 Bioaerosol Detector Wide Area NetworkA17A-T021 Anticipatory Analytics for Environmental StressorsA17A-T022 Biomechanical Rat Testing Device to Validate Primary Blast Loading Conditions for Mild

Traumatic Brain InjuryA17A-T023 Field Verification of Micro/Ultra FiltrationA17A-T024 Additive Manufactured Smart Structures with Discrete Embedded Sensors

ARMY - 5

Page 6: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

ARMY STTR 17.A Topic Descriptions

A17A-T001 TITLE: Atomic Layer Deposition of Highly Conductive Metals

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: Atomic Layer Deposition (ALD) techniques have established the ability to grow conformal, defect free films over large areas, atomic layer by atomic layer. While many dielectric, semiconductor, and metal materials have been deposited with ALD, the metals with the highest electrical conductivity have not been demonstrated in a reproducible manufacturing environment. The objective of this solicitation is to demonstrate ALD deposition of a very thin (<10 nm thick), highly conductive, continuous layer of silver, copper, gold, or aluminum on a dielectric substrate.

DESCRIPTION: Atomic layer deposition (ALD) is used extensively in the semiconductor industry for the growth of high permittivity, ultra-thin dielectrics [1]. In addition to precise control of the film thickness, ALD provides conformal deposition on extremely high aspect ratio geometries [2]. This combination of features has motivated research in other nontraditional applications of ALD, in particular electromagnetic designer surfaces consisting of multilayers of different materials for specific applications [3]. For example, optical filters composed of multilayers of dielectrics with a large contrast in the index of refraction have been fabricated for bandpass filters and antireflection coatings [4]. The ability to coat arbitrary surface geometries with ultrathin films and laminates will allow for specified electromagnetic properties from the visible to microwave and has enormous potential for military and commercial applications.

While ALD has been very successful at depositing nearly one hundred different materials it has been difficult to deposit metals having the highest electrical conductivity. The significant problem is the nucleation sites on the surface in which the metal deposition process starts with small metal islands. These islands grow in size as the deposition process continues and eventually the islands coalesce at the percolation threshold and the metal film experiences a huge increase in the conductivity. Ultrathin films of silver, copper, gold, and aluminum have a percolation threshold on the order of 10 nm for traditional sputter, thermal, and electron beam deposition techniques. While post annealing dielectric films at high temperatures tends to increase the uniformity of the films, annealing has a negative result on metal films due to the surface tension of metals [5].

Metal/dielectric multilayers have been used to make what has been termed transparent metals [6, 7]. The photonic band gap approach to metal/dielectric multilayers allows for a specific passband to be opened at a desired frequency range and for all other regions of the spectrum to be blocked. This type of material has wide ranging application for laser protection, sensor protection, and microwave shielding while retaining the ability to have high transparency in a spectral region of choice. The ability to achieve extremely high transparency depends on the ability to make continuous metal films of 10 nm thickness or less. For applications in the visible, silver and gold are the preferred metals due to the low losses in that spectral range. Copper and aluminum work well for longer wavelengths. Of these four metals, gold is the most robust to environmental factors and contamination. Oxide and sulfide formation can be problematic for copper, silver, and aluminum and these issues will need separate attention in the ALD process.

There has been some success in ALD deposition of copper especially on metallic surfaces [8]. However, depositing copper on an oxide surface has nucleation problems similar to other techniques such as sputtering [9]. Recently, innovative surface chemistry in conjunction with plasma assisted ALD was demonstrated to produce gold films on borosilicate substrates [10].

PHASE I: Demonstrate the ability to grow a single continuous film of silver, copper, gold, or aluminum on a dielectric substrate with a percolation threshold of less than 10 nm thickness. The measured properties of the film should include optical transmittance, four point probe conductivity, and direct measurement of the film thickness.

ARMY - 6

Page 7: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

PHASE II: Demonstrate the ability to grow a multilayer metal/dielectric laminate containing at least 3 metal layers that have individual thicknesses of 10 nm or less. The measured properties of the film should include optical transmittance, four point probe conductivity, and microwave transmittance, and a direct measurement of the film thickness.

PHASE III DUAL USE APPLICATIONS: Demonstrate a working ALD system that can deposit single or multilayer metal/dielectric films onto dielectric substrates including 3D printed materials for applications in filtering, shielding, conductive surfaces, and electromagnetic signature control.

REFERENCES:1. S.M. George, "Atomic Layer Deposition: An Overview," Chem. Rev., 110, p. 111 (2010), DOI: 10.1021/cr900056b110.

2. G. Pardon, H. Gatty, G. Stemme, W. van der Wijngaart and N. Roxhed, “Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores," Nanotechnology, 24, p. 11 (2013).

3. D. Riihel, M. Ritala, R. Matero, M. Leskel, "Introducing atomic layer epitaxy for the deposition of optical thin films," Thin Solid Films, 289, p. 250 (1996), DOI:10.1016/S0040-6090(96)08890-6.

4. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. G'sele, and M. Knez, "Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings," Applied Optics, Vol. 48, p. 1727 (2009).

5. R. J. Warmack and S. L. Humphrey, "Observation of two surface-plasmon modes on gold particles,” Phys. Rev. B 34, 2246 (1986).

6. M.J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gap," Appl. Phys. Lett. 72, 1676 (1998

7. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling,C. M. Bowden, and A. S. Manka "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 83, 2377 (1998).

8. L.C. Kalutarage, S.B. Clendenning, and C.H. Winter, "Low-Temperature Atomic Layer Deposition of Copper Films Using Borane Dimethylamine as the Reducing Co-reagent," Chem. Mater., 26, p. 3731 (2014), DOI: 10.1021/cm501109r.

9. Z. Li, A. Rahtu, and R.G. Gordon, "Atomic Layer Deposition of Ultrathin Copper Metal Films from a Liquid Copper(I) Amidinate Precursor," Journal of The Electrochemical Society, 153, p.787 (2006).

10. M.B.E. Griffiths, P.J. Pallister, D.J. Mandia, S.T. Barry, "Atomic layer deposition of gold metal," Chem. Mater. 44 (2016).

KEYWORDS: atomic layer deposition, ultrathin film, transparent metal, metal/dielectric multilayers, thin film laminates, nucleation, metal island film

A17A-T002 TITLE: High Efficient Flexible Perovskite Photovoltaic Modules for Powering Wireless Sensor Nodes and Recharging Batteries

ARMY - 7

Page 8: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: Design, fabricate, and demonstrate flexible perovskite solar modules (12"x12") providing efficiency greater than 20% under AM 1.5G standard solar spectrum with stability under up to 50ºC of temperature and up to 80% of humidity. Demonstrate the modules for direct powering of wireless sensor nodes and battery recharging operation for wearable electronics relevant to defense platforms.

DESCRIPTION: Wireless sensor nodes are becoming ubiquitous in the battlefield environment for the detection of chemical and biological agents, acoustic waves, etc. as well as for electronic health monitoring and tracking inventory of remotely deployed weapons systems. However, the finite capacity of exiting energy sources has become a major limitation in deploying them for unattended operations for a long duration. Therefore, it has led to an increasing demand for harvesting energy from the environment. However, diffused light spectrum is the only environmental energy source available for efficiently powering the nodes. Diffused light becomes a promising source in this case for powering the sensors and transferring the data to a workstation. Furthermore, field infantry electronics such as radios, GPS, night vision systems, and fire light require soldiers to carry a lot of spare batteries in addition to the body armor, weapons, food, and water. A tremendous impact on the total load can be made if a soldier uniform can be designed to harvest the freely available energy from the environment such as solar energy to continuously recharge the main battery. Although foldable solar blankets currently used in the battlefield provide the capability to charge the batteries under sunlight, they often take hours to collect enough power for charging.The current market for photovoltaic devices is dominated by crystalline silicon solar panels with typical efficiencies of ~15 - 20%, and the fragile properties of silicon solar panels limit their application on wearables and complex curved surfaces, especially in diffused low light conditions such as in cloudy weather. Flexible solar modules based upon amorphous Si (a-Si), CuInxGa1-xSe2 (CIGS), and GaAs materials are commercially available, but with limited efficiencies (~10 - 15%). The complex growth conditions of these materials not only lead to high cost but also present a significant challenge in their large-scale production. Furthermore, slight increase in temperature also tends to reduce the bandgap of the semiconductor materials leading to significant degradation of performance. Therefore, the flexible photovoltaics needed for the defense platforms that meet the deployment and operational requirements demand new technologies. The emergence of organometal perovskite solar cells (OPSC) fabricated by solution-casting light absorbers has provided the opportunity for the development of low cost and high performance flexible modules. The typical structure for OPSC is similar to a p-i-n heterojunction solar cell with several unique features:

(i) Small bandgap and large light absorption coefficient yields large amount of photo-generated electrons and holes.

(ii) Short light absorption length (~200 nm) requires only very thin layers of perovskite for light harvesting.

(iii) High electron-hole mobility and large electron-hole diffusion lengths make them excellent candidates for photovoltaic applications.

(iv) The low-temperature solution-based processes to prepare the perovskite allow the integration with flexible plastic substrates and other photovoltaic devices.

At present only limited results have been reported in the literature on performance of perovskite solar modules. All studies have focused on small lab-scale (~0.1 cm2) prototypes. Translating the lab-scale perovskite solar cells into low-cost large-scale production process is one of the major challenges in the development of perovskite solar modules. Therefore, the objective is to address this technology gap in the design and fabrication of perovskite photovoltaic modules for the intended integration.

Flexible modules may need to incorporate re-designed cell architecture to make them compatible with the synthesis process required for the flexible substrates (eg. 3D printing processes). Printing and casting processes may need to be developed for perovskites to allow layering with precise dimensions and desired interfacial characteristics. Investigations may also need to be conducted on multiple compositions under various environmental conditions to determine the optimum window for the module operation relevant to the wireless sensors and wearable electronics applications. Field testing may also need to be conducted to determine the failure and aging mechanisms of the

ARMY - 8

Page 9: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

modules, and strategies should be proposed to resolve the environmental degradation issues.

PHASE I: Complete the design of the architecture for a flexible perovskite module with an efficiency greater than 20% for wearable energy harvesting and wireless sensor nodes application and develop the fabrication procedures. Designs should include realistic material parameters. The flexible photovoltaic fabrication technique should be based on a low-temperature process. Analyze cost-competitive roll-to-roll printing process for mass fabrication of the flexible photovoltaic module. Provide preliminary experimental results on the feasibility of the proposed module architecture including bandgap-voltage offsets.

PHASE II: Develop a low-cost inorganic p-type semiconductor to replace the spiro-OMeTAD and integrate with the module architecture developed in Phase I. Address the hysteresis, thermal and humidity challenges and demonstrate a method to improve the lifetime. In addition to the heterojunction-induced built-in electric field as driving force to separate and transport the photo-excited electron-hole pairs, demonstrate the role of other effects in improving the efficiency. Demonstrate the wireless sensor node operation utilizing adequate size modules for a specific targeted defense application. Integrate the fabricated module up to 12 x12 area with a wearable and demonstrate the battery recharging capability under normal environmental conditions.

PHASE III DUAL USE APPLICATIONS: Demonstrate continuous roll-to-roll manufacturing of the developed modules and integration with the wearables and sensor nodes. Optimize the power conversion efficiency for flexible perovskite solar modules, the module geometries (such as stripe width, gap size, module length), and stability under various environmental conditions and strain. Develop packaging layers to provide adequate protection over the intended lifetime of the application. Focus should be on integrated product development and not on just the power source.

REFERENCES:1. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science, Vol. 347, pp. 967-970 (2015).

2. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Gr’tzel, and L. Han, Science, Vol. 350, 944-950 (2015).

3. M. Yang, Y. Zhou, Y. Zeng, C.-S. Jiang, N.P. Padture, and K. Zhu, Adv. Mater., Vol. 27, 6363-6070 (2015).

4. X. Zheng, B. Chen, C. Wu, and S. Priya, Nano Energy, 17, 269-278 (2015).

KEYWORDS: energy harvesting, wireless sensor nodes, perovskite solar module

A17A-T003 Photonic Nanostructures for Manipulation of High Energy Coherent Beams

TECHNOLOGY AREA(S): Materials/Processes

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 5.4.c.(8) of the Announcement.

OBJECTIVE: This STTR effort seeks to investigate novel approaches using multilayered hybrid 2-dimensional nanostructures as passive coatings and evaluate their interactions with high energy lasers.

DESCRIPTION: As part of the continuous transformation of the US Armed forces to be endowed with new, advanced and effective military capabilities it is an unequivocal paradigm to eradicate, minimize and mitigate vulnerabilities from them as well. The development of protection and hardening mechanisms against directed energy

ARMY - 9

Page 10: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

weapons such as high energy lasers are necessarily critical requirements for the progression of effective countermeasures [1]. High energy lasers (HELs) possess certain unique attributes such as speed of light response, precision strikes, reduced collateral damage, and potentially low cost per kill. They have the potential to cause damage or disable electronic components, sensors, optics, and structural components of advanced armaments, thereby disabling their effectiveness in completing intended missions. Many approaches, including chemical lasers, fiber lasers, solid state lasers, and free electron lasers, are available to build HELs, and many impediments to their deployment are steadily being overcome. Commensurate with the advances in HELs as directed energy weapons, it is imperative that parallel advances are required for protection against them, as well as to achieve an asymmetrical advantage over the adversaries. This topic endeavors, in particular, to research schemes for understanding fundamental high energy laser interactions with exploratory photonic material structures and designs.

PHASE I: Investigate novel approaches using multilayered hybrid 2-dimensional nanostructures as passive coatings and evaluating their interactions with high energy lasers. In particular, the aim is to design photonic designs of 2D metallic/inorganic/organic materials wherein disorder in the structure may be used to affect significant extinction and/or reflection of high energy coherent beams. In this regard, photonic glass with and without self-similar structures (fractals) could be advantageous as an additional variable to manipulate the incident radiation. At the end of Phase I, areas for further detailed investigation during Phase II should be identified.

PHASE II: Detailed physics based models will be developed for understanding the material interactions with high energy radiation using disorder in multilayered hybrid 2-dimensional nanostructures. Non-linear materials, photonic band structure designs, nanoporous compositions, self-similar structures, etc., can be considered as part of the design space. The design will also consider the effects of variables such as the angle of incidence, beam quality and polarization effects, if any, of the incident radiation. It can be assumed that the radiation is in the visible to near IR wavelength range with target irradiances in the range of tens to hundreds of kilowatts per cm2. Thin film material structures may be supported on appropriate substrates that take into account mechanical, thermal and other constraints. Fundamental material attributes will be developed for comparing the efficacy of the various nanostructure designs. Designs should be driven by final implementable solutions. The deliverables at the conclusion of the Phase II effort would include a fundamental understanding of the material interactions with high energy lasers.

PHASE III DUAL USE APPLICATIONS: Phase III will entail further research and refinement of the designs of Phase II along with modeling and simulation towards advancing the knowledge of material interactions with high energy lasers. The effort through all the phases will be coordinated with the stakeholders in all the three services which will facilitate definition of the requirements and transition of the technology. Strategic partnerships will be developed to further the commercialization potential of the technology.

REFERENCES:1. Defense Science Board Task Force on Directed Energy Weapons, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, Washington D.C. Dec. 2007.

2. A. F. Koenderink and W. L. Vos, “Optical properties of real photonic crystals: anomalous diffuse transmission,” J. Opt. Soc. Am. B, 22, 1075-1083, 2005.

3. J.A. Bossard, L.Lin and D.H. Werner ”Evolving random fractal Cantor superlatttices for the infrared using a genetic algorithm,” J. R. Soc. Interface 13, 0975, 2015.

4. V.M. Shalaev, ed. Optical properties of nanostructured random media. Vol. 82. Springer Science & Business Media, 2002.

KEYWORDS: Low nanostructures, photonic designs of 2D metallic/inorganic/organic materials, self-similar structures, material interactions with high energy lasers

ARMY - 10

Page 11: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

A17A-T004 TITLE: Functional Additive Manufacturing for Printable & Networkable Sensors to Detect Energetics and Other Threat Materials

TECHNOLOGY AREA(S): Chemical/Biological Defense

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 5.4.c.(8) of the Announcement.

OBJECTIVE: Explosive & chem-bio (CB) sensors are necessary to provide situational awareness and early warning against threat events from homemade explosives and weapons of mass destruction (WMD), to protect personnel and assets in missions ranging from integrated base defense to forward operating bases and reconnaissance. The Department of Defense is interested in reducing costs, labor, and footprint while enhancing situational awareness and early warning to compress the time from threat event to commander decision. Small, low-cost, autonomous sensors are needed for modular, self-scaling, persistent, “layered" surveillance networks. There is a desire to develop a sensor in a functional form similar to a smoke alarm. A smoke alarm exists in a small package and can run for more than a year on a single 9 volt battery. Low power and low profile are very desirable characteristics.

Recent innovations in additive manufacturing and smart materials are expected to enable innovative sensor concepts and designs that enhance sensitivity, selectivity, increase monitoring performance and coverage at reduced costs, size, weight, power, with integrated printed communication architecture. Integrated printed communication hardware will provide a path forward to inexpensive networking of energetic & CB sensors, with sensors and communications hardware integrated onto a single monolithic structure.

A design in which the sensor and communications are printed or placed onto a monolithic structure will provide “surge" capabilities. Currently, threat sensors, along with communications and power supplies, are stockpiled in advance, adding to an already overburdened logistical stream. The ability to rapidly manufacture “on-demand" will provide rapid, reliable replacement of sensing elements to DoD personnel without the need for large stockpiles of materiel. There may even be the possibility of providing manufacturing capabilities in the field. Some current technologies that detect and identify explosive & CB threats involve technologies that are expensive and difficult to maintain. Examples include LIDARS, FTIR (Fourier transform infrared spectrometers), Ion Mobility Spectrometers (IMS), molecular assays. Alarm (presumptive) states can be given by sensors that provide element analysis (AP2C), M8 paper, colorimetric arrays and immunoassays. IMS technology has been incorporated into a handheld ion mobility spectrometer that has seen recent improvements in size/weight reduction, but still requires logistics support for lithium ion battery replacements. The initial outlay for M8 paper is very low, but when used to monitor an area over time, has a high labor load for replacement and visual inspection.

DESCRIPTION: Explosive & chem-bio (CB) sensors are necessary to provide situational awareness and early warning against threat events from homemade explosives and weapons of mass destruction (WMD) to protect personnel and assets in missions ranging from integrated base defense to forward operating bases and reconnaissance. The Department of Defense is interested in reducing costs, labor, and footprint while enhancing situational awareness and early warning to compress the time from threat event to commander decision. Small, low-cost, autonomous sensors are needed for modular, self-scaling, persistent “layered" surveillance networks. There is a desire to develop a sensor in a functional form similar to a smoke alarm. A smoke alarm exists in a small package and can run for more than a year on a single 9 volt battery. Low power and low profile are very desirable characteristics.

Recent innovations in additive manufacturing and smart materials are expected to enable innovative sensor concepts and designs that enhance sensitivity, selectivity, increase monitoring performance and coverage at reduced costs, size, weight, power, with integrated printed communication architecture. Integrated printed communication hardware will provide a path forward to inexpensive networking of energetic & CB sensors, with sensors and communications hardware integrated onto a single monolithic structure.

A design in which the sensor and communications are printed or placed onto a monolithic structure will provide

ARMY - 11

Page 12: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

“surge" capabilities. Currently, threat sensors, along with communications and power supplies, are stockpiled in advance, adding to an already overburdened logistical stream. The ability to rapidly manufacture “on-demand" will provide rapid, reliable replacement of sensing elements to DoD personnel without the need for large stockpiles of materiel. There may even be the possibility of providing manufacturing capabilities in the field. Some current technologies that detect and identify explosive & CB threats involve technologies that are expensive and difficult to maintain. Examples include LIDARS, FTIR (Fourier transform infrared spectrometers), Ion Mobility Spectrometers (IMS), molecular assays. Alarm (presumptive) states can be given by sensors that provide element analysis (AP2C), M8 paper, colorimetric arrays and immunoassays. IMS technology has been incorporated into a handheld ion mobility spectrometer that has seen recent improvements in size/weight reduction, but still requires logistics support for lithium ion battery replacements. The initial outlay for M8 paper is very low, but when used to monitor an area over time, has a high labor load for replacement and visual inspection.

PHASE I: Use additive manufacturing to develop an energetic & CB threat sensor that has a very small profile and can operate using very little power. The system should be able to run for an entire year using a single 9 volt battery, similar to a smoke detector. Develop five (5) printable sensor designs using additive manufacturing methods and materials that can detect and discriminate between homemade explosives such as triacetone triperoxide (TATP) and hexamethylenetriperoxidediamine (HMTD) or simulants thereof, such as ditertiarybutylperoxide, and CB threats such as methyl salicylate, ethanol, ammonia, and acetic acid. Design concepts can include one fiber/patch/print per analyte or can include multiple detection capabilities within a single fiber/patch/print. A design concept may include using printed structures and materials to exclude and narrow selections through pathways down or along the sensor to enhance selectivity. The design concepts should also be developed to address sensing sensitivity and selectivity. Designs should address rapid, on-demand-type additive manufacturing that has the potential to reduce stockpiling of sensor elements while still maintaining the ability to rapidly respond to a “surge" in demand. Monolithic designs that incorporate sensing elements, communications, and power are desirable.

Concept and design simulations should demonstrate a detection Objective (O) of 5-10 parts per billion (ppb), detection Threshold (T) 5-10 parts per million (ppm), time to detection of 1-5 seconds from time analyte contacts the presenting surface face, low power requirements that would enable 9v battery life of at least one year, a payload weight (including battery) of less than 5-10 grams (suitable for micro-UAS paylod or helmet/uniform patch), an integrated reporting communication capability (e.g., a printed RFID tag). A low cost testing apparatus should also be developed to characterize sensor performance against challenge analytes. Concepts that include self-calibration approaches for autonomous, low/no power, self-check are desirable. Offerings that include novel, non-commercial materials (e.g., specialty inks) should include an assessment for maturity and availability of the materials (technical and procurement risk assessment). Offerings that include the predictive design simulations and/or an early feasibility print with preliminary characterization test data are considered of high value. Proposals offering to do a “market survey" as the sole Phase I task to identify candidate technologies for down selection and a design developed in Phase II will be considered non-responsive.

PHASE II: Fabricate prototype sensors based on the Phase I design and findings. Characterize the sensors and demonstrate performance metrics listed in Phase I. Identify key performance metrics needed that can be used to guide further sensor development. Some example metrics may include, but are not limited to, rheological properties, viscosity, dielectric properties, resistance/impedance.

The Final Report should include (1) engineering and materials designs (2) methods and processes used to make materials, (3) fabrication/printing methods used, (4) test report, testing methods, data collection and data analysis, (5) approaches and risks for manufacturing scale-up, maturity and technical risks, (6) anticipated production costs for sensors and the relevant component materials and inks, (7) lessons learned.

Deliverables should include 5 complete sensor sets and Final Report.

PHASE III DUAL USE APPLICATIONS: Further research and development during Phase III efforts will be directed towards refining deployable sensors based on results from modeling and testing conducted during the Phase II effort and integrating them into Army and Joint Service persistent surveillance networks and layered sensing networks. Improvements to communications features will be a focus so that the sensors can meet U.S. Army

ARMY - 12

Page 13: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

CONOPS and end-user requirements.

REFERENCES:1. Michael G. Campbell, Sophie F. Liu, Timothy M. Swager, and Mircea Dinc, “Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks," J. Am. Chem. Soc., 2015, 137 (43), pp 13780-13783

2. Srikanth Ammu, Vineet Dua, Srikanth Rao Agnihotra, Sumedh P. Surwade, Aksah Phulgirkar, Sanjaydumar Patel, and Sanjeev K. Manohar, “Flexible, All-Organic chemiresistor for Detecting Chemically Aggressive Vapors," Journal of the American Chemical Society, 2012, 134, pp 4553-4556

3. E. Skotadis, Jun Tang, V. Tsouti, D. Tsoukalas, “Chemiresistive sensor fabricated by the sequential ink-jet printing deposition of a gold nanoparticle and polymer layer," Microelectronic Engineering, 2010, 87, pp 2258-2263

4. Valery R.Marinov, Yuriy A. Atanasov, Adeyl Khan, Dustin Vaselaar, Aaron Halvorsen, Doughlase L. Schulz, Douglas B.Chrisey, “Direct-write vaport sensors on FR4 plastic substrates," IEEE Sensors Journal, June 2007, VOL 7, No. 6, pp 937-944

5. Richard J. Roush and Susan L. Roush, “Airborne hazard detector", U.S. Patent Number 6895889, May 24, 2005

6. S.Y.H. Tang and J.T.S. Chan, “A review article on nerve agents", Hong Kong Journal of Emergency Medicine, Volume 9 Number 2, pages 83-89, April 2002.

7. Kimberly A. Barker and Christina Hantsch Bardsley, “Blister Agents, in Toxico-terrorism: Emergency Response and Clinical Approach to Chemical, Biological, and Radiological Agents," Robin McFee and Jerrold Leikin (editors), pages 261-268, McGraw-Hill Companies, 2007.

8. Michael Schwenk, Stefan Kluge and Hanswerner Jaroni, “Toxicological aspects of preparedness and aftercare for chemical-incidents", Toxicology, Volume 214, Issue 3, Pages 232-248, October 2005.

9. C.K. Cowan and P.D. Kovesi, “Automatic sensor placement from vision task requirements" in IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 10, Issue 3, pages 407-416, May 1988.

10. R.R. Brooks, C. Griffin, and D.S. Friedlander, “Self-organized distributed sensor network entity tracking", International Journal of High Performance Computing Applications, Volume 16, number 3, pages 207-219, 2002.

KEYWORDS: Chemical Biological Warfare Agent, homemade explosives (HMEs), vapor, aerosol, sensor, detection, identification, selectivity, sensitivity, low cost sensors, additive manufacture, 3D printing, conducting polymers, 2D materials, graphene, colorimetric, molecular printing.

A17A-T005 TITLE: Mid-Infrared Chip-scale Trace Gas Sensors

TECHNOLOGY AREA(S): Chemical/Biological Defense

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 5.4.c.(8) of the Announcement.

OBJECTIVE: To develop trace gas sensors on a chip with mid-infrared laser based spectroscopy techniques such as absorption spectroscopy with a broad wavelength span of 3-15 microns and sub-ppm sensitivity.

ARMY - 13

Page 14: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

DESCRIPTION: Mid-infrared trace-gas sensing in the molecular fingerprint region is a rapidly developing field with a wide range of applications including detection of explosives and hazardous chemicals, control of industrial processes and emissions, breath analysis for medical diagnostics, and environmental and atmospheric monitoring. Mid-infrared spectral range (3-15 micron wavelength) hosts fundamental vibrational-rotational transitions of virtually any chemical compound. These transitions are strong and characteristic of molecular structure which allows performing chemical detection and identification of chemical and biological compounds with high sensitivity and specificity. Quantum cascade lasers (QCLs) have dramatically affected the field of trace-gas sensing by providing narrowband tunable continuous-wave room-temperature emission in the entire mid-infrared spectral range [1,2].

Currently, mid-infrared trace gas sensing systems based on based on ring-down spectroscopy, absorption spectroscopy, or photoacoustic spectroscopy are developed around bulky gas cells and free-space optics [3]. However, these systems require relatively large and expensive optical elements. These systems have significant size and weight that place constraints on their applications in the field, particularly for airborne or handheld platforms. Additionally, the use of free-space optics makes these systems inevitably sensitive to stress and vibration.Recently, several groups demonstrated integration of QCLs, photodetectors, and optical cells on the same solid-state platform [4,5] using plasmonic [4] or dielectric [5] waveguides. Unlike systems based around free-space optics, integrated-photonics gas sensors are expected to be light, highly compact, and inherently robust to vibrations and physical stress. Dielectric platforms based on silicon or germanium materials [7] may offer low optical loss and high effective propagating distances for mid-infrared light to produce an equivalent of a multi-pass cell within a solid-state platform. Slow-light-enhanced mid-infrared sensing has been demonstrated recently in silicon-on-sapphire platform with 10 ppm sensitivity using an 800 micron long photonic crystal waveguide [6]. However, silicon-on-sapphire system is not suitable for operation in the entire mid-infrared band (3-15 microns) and monolithic integration of light sources and detectors with the passive photonics platform is required to enable a compact trace gas sensing system that is robust to vibrations and physical stress. Suitable approaches therefore need to be developed to integrate sources, detectors, and waveguides on a single photonic platform and enable monolithic mid-infrared chip-scale trace gas sensors operable in the entire 3-15 microns spectral range for the detection of chemical warfare agents, explosives, narcotics and other chemicals of interest to Army. All electronics, while not necessarily on the same chip, must be packaged into a compact handheld, or field-portable unit.

PHASE I: Propose a packaged design that can detect a selected gaseous substance or substances of interest to Army at sub-ppm levels by mid-infrared absorption spectroscopy in the 3-15 micron wavelength range, with all components including light source, detector and sensor transducer integrated on the same chip. Two example analyte gases desired to sense in Phase I would be methane and ammonia gas (3.3 and 6.1 micron absorption lines) for dual-use Army and civilian sensing applications. Preliminary experimental data showing the feasibility of the proposed approach will be needed to validate transition to Phase 2.

PHASE II: Deliver a packaged handheld prototype mid-infrared spectrometer, with the integrated light source, detector and sensor, to Army detecting at least 3 selected substances of interest to sub-ppm levels by mid-infrared absorption spectroscopy in the 3-15 micron wavelength range. The gaseous analyte examples given for Phase I (methane and ammonia) should be expanded upon to demonstrate feasibility across the entire range. Examples of substances desirable to detect includes (or simulants of the substances) nerve and blister agents such as Tabun (GA), Sarin (GB), Soman (GD), Vx (VX), S-Mustard (HD), etc. and explosives such as RDX, PETN, TNT, HMX, Ammonium Nitrate, etc.

PHASE III DUAL USE APPLICATIONS: Further research and development during Phase III efforts will be directed towards a final deployable design, incorporating design modifications based on results from tests conducted during Phase II, and improving engineering/form-factors, equipment hardening, and manufacturability designs to meet the U.S. Army and end-user requirements. Potential commercial applications include detection of dangerous and greenhouse gases in the environment, contraband and narcotics for use in Homeland Security applications.

REFERENCES:

ARMY - 14

Page 15: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

1. Y. Yao, A.J. Hoffman, and C.F. Gmachl, "Mid-infrared quantum cascade lasers," Nature Photon. 6, 432 (2012).

2. J.M. Wolf, S. Riedi, M.J. Suess, M. Beck, and J. Faist, "3.36 µm single-mode quantum cascade laser with a dissipation below 250 mW," Opt. Express 24, 662 (2016).

3. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R.F. Curl, "Application of quantum cascade lasers to trace gas analysis," Appl. Phys. B 90, 165 (2008).

4. D. Ristanic, B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A.M. Andrews, W. Schrenk, and G. Strasser, "Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback," Appl. Phys. Lett. 106, 041101 (2015).

5. Y. Zou, K. Vijayraghavan, P. Wray, S. Chakravarty, M.A. Belkin, R. T. Chen, "Monolithically integrated quantum cascade lasers, detectors and dielectric waveguides at 9.5 µm for far-infrared lab-on-chip chemical sensing, “CLEO Technical Digest, paper STu4I.2 (2015).

6. Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F.K. Tittel, "Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks," Sensors 15, 7596 (2015).

7. J. P. Waclawek, H. Moser, and B. Lendl, "Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide," Opt. Express 24, 6559 (2016).

8. Y. Zou, S. Chakravarty, P. Wray, R. T. Chen, "Mid-Infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection," Sensors and Actuators B 221, 1094 (2015).

9. R. Soref, "Mid-infrared photonics in silicon and germanium," Nat. Photon. 4, 495 (2010)

KEYWORDS: mid-infrared, absorption spectroscopy, integrated photonics, trace gas sensing

A17A-T006 TITLE: Mid-wave Infrared Laser Beam Steering

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: The development of a monolithic beam steerable mid-wave infrared laser with average power output exceeding 10W.

DESCRIPTION: Current infrared countermeasures systems are advancing in terms of utilization of more compact mid-IR lasers known as quantum cascade lasers. However, such systems are still somewhat bulky in their use of gimbaled mounts requiring mechanical beam steering. Opportunities exist to explore the development of a midwave-IR (3-5 micron) monolithic beam steering laser chip which would be many orders of magnitude more compact, less expensive, and have higher performance. Monolithic beam steering is coming of age with wide-spread interest of beam steerable ladar using silicon photonics, but those have been directed to wavelengths in the near infrared. Mid-wave infrared lasers are advancing in terms of power output and reliability to over 1 W per laser (room temperature, continuous wave). In addition, some applications only require pulsed formats which allow for significant laser cooling between pulses, aiding in reliability. Also, integrated photonics is producing results in silicon based systems for ladars on chip for future collision avoidance for automobiles. The development of Sb-based type I diode lasers and III-V quantum cascade lasers has progressed to the point that such monolithic arrays can be pursued to achieve much faster and agile beam steering for several applications [1, 2]. Several approaches should be possible to achieve the results from wafer bonded lasers [3, 4] to silicon or germanium integrated photonics platforms to directly steerable arrays in III-V materials. High power single mode VCSELs could also be made from mid-IR laser

ARMY - 15

Page 16: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

heterostructures [5]. One such approach has been demonstrated with significant beam steering using tunable photonic crystal effects [6].

PHASE I: Using a proposed monolithic design, show evidence of feasibility of all major elements including both the laser sources and the proposed beam steering photonics. Rudimentary demonstration of mid-wave IR lasers useful for reaching 10 W average power should be made along with designs and feasibility studies showing wide-angle and high-speed electronic beam steering of up to +/- 90 degrees at scan rates exceeding 1 kHz.

PHASE II: Fabrication and testing of the full monolithic beam steering microchip system. Optimization of the laser sources power and coupling efficiency to the beam steering apparatus should be pursued along with the design, implementation, and testing of the wide-angle beam steering devices. Goals for this phase include the achievement of up to +/- 90 degrees and 10 W average power (pulse length should be no shorter than 1 ms) at scan rates over 10 kHz.

PHASE III DUAL USE APPLICATIONS: Mid-infrared lasers have uses in many military applications and advanced beam steering capabilities with high-speeds add to the potential application areas. Examples include surveillance, imaging, communications, and countermeasures. Dual use applications may include the remote sensing of chemicals, explosives, narcotics, and other warfare agents.

REFERENCES:1. Leon Shterengas, Rui Liang, Gela Kipshidze, Takashi Hosoda, Gregory Belenky, Sherrie S. Bowman, and Richard L. Tober, Applied Physics Letters, 105, 161112 (2014).

2. J. D. Kirch,1 C.-C. Chang,1 C. Boyle,1 L. J. Mawst,1 D. Lindberg III,2 T. Earles,2 and D. Botez, Applied Physics Letters, 106, 061113 (2015).

3. D. Ristanic, B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A.M. Andrews, W. Schrenk, and G. Strasser, "Monolithically integrated mid-infrared sensor using narrow mode operationand temperature feedback," Appl. Phys. Lett. 106, 041101 (2015).

4. Y. Zou, K. Vijayraghavan, P. Wray, S. Chakravarty, M.A. Belkin, R. T. Chen, "Monolithically integrated quantum cascade lasers, detectors and dielectric waveguides at 9.5µm for far-infrared lab-on-chip chemical sensing," CLEO Technical Digest, paper STu4I.2 (2015).

5. Kazuyoshi Hirose, Yong Liang, Yoshitaka Kurosaka1, Akiyoshi Watanabe, Takahiro Sugiyama and Susumu Noda, Nature Photonics, Vol. 8, 406-411, May (2014).

6. Yoshitaka Kurosaka, Seita Iwahashi, Yong Liang, Kyosuke Sakai1, Eiji Miyai, Wataru Kunishi, Dai Ohnishi, and Susumu Noda, Nature Photonics, Vol. 4, 447-450, July (2010).

KEYWORDS: mid-wave infrared, laser beam steering, integrated photonics

A17A-T007 TITLE: High Dynamic Range Heterodyne Terahertz Imager

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Design, construct, and deliver an imager operating in the 1-5 THz region with a frequency tunable source, a high dynamic range heterodyne receiver, and wavelength-scale spatial resolution.

DESCRIPTION: The Army has a need for high spatial resolution non-destructive evaluation (NDE) of non-conductive materials that cannot be effectively imaged with ultrasound or x-ray technology [1-3]. The use of

ARMY - 16

Page 17: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

terahertz frequencies (0.3 THz to 10 THz) for NDE is desirable because it allows non-contact, operator-safe, high-resolution imaging of materials that would otherwise be opaque to visible and infrared frequencies: polymers, ceramics, semiconductors and electrical insulators. While there are many suppliers of time domain terahertz NDE imagers, these systems are relatively complex due to the optical down conversion from infrared to terahertz frequencies. The inefficient down conversion process is ameliorated by coherent detection resulting in peak signal to noise ratios of 60 dB. While these systems produce pulses with frequency content from 50 GHz to 3 THz, the lossy samples act as low pass filters effectively limiting pulses to < 500 GHz of frequency content, which reduces spatial resolution. As an alternative, high-power far-infrared gas lasers, which produce ~50 mW of average power at 2.5 THz, have been demonstrated in heterodyne imaging using Schottky diode detectors [4]. Using a source laser and a second, local-oscillator laser resulted in signal to noise ratios of 110 dB. The drawbacks to this system are the cost, the complexity of the optical alignment, and the constraint to operate at discrete frequencies of the lasing gas.

A promising alternative approach to terahertz imaging involves the use of terahertz Quantum-Cascade Lasers (QCL), which may be combined with a Schottky diode detector for heterodyne imaging. For heterodyne imaging, two semiconductor QCLs, which have demonstrated power levels of 10's of mW [5-7], are required to emit at slightly offset frequencies, with one serving as local oscillator (LO) and the other as the Signal. The Signal and LO are combined in a reference detector and offset frequency locked. In a separate beam path, the Signal is passed through an object, and then is combined with the LO on a second Schottky detector. Further down-conversion of the intermediate frequency (IF) signal allows lock-in detection, amplification, and recovery of the phase and magnitude of the reference and transmission/reflection through the object. Because of the dual requirements for high dynamic range and wavelength-scale spatial resolution, the focused Signal may be raster scanned through the object quickly, with the objective of rendering a near video frame rate scene (30 frames per sec (fps)) that captures the imagery of the target object in real time. Cryogenic operation of the QCLs is acceptable, preferably if cooled by a closed cycle system not requiring the supply of external cryogens.

PHASE I: Design a heterodyne terahertz imager with high dynamic range (> 90 dB) frequency tunable in the 1-5 THz region with wavelength-scale spatial resolution and capable of near video frame rate operation (30 fps). The source need not span the entire spectral region, but it must be frequency tunable. The design must specify the source, detector, and image acquisition technologies, the spectral tuning range, the anticipated dynamic range, the imager's field of view, the spatial resolution, and the expected frame rate. The ideal imager will operate in both transmission and reflection modes.

PHASE II: Construct, characterize, and optimize the performance of the heterodyne terahertz imager designed in Phase I, exhibiting high dynamic range (> 90 dB) frequency tunability in the 1-5 THz region with wavelength-scale spatial resolution and capable of near video frame rate operation (30 fps). The complete, proof-of-concept imager will be delivered at the end of Phase II along with a working graphical user interface for displaying, manipulating, and enhancing the image.

PHASE III DUAL USE APPLICATIONS: Advance the technology readiness level of the proof-of-concept delivered in Phase II to an affordable, packaged, marketable, high resolution imager that may be used by a broad commercial market for non-destructive testing of non-conducting objects. In addition, frequency tunability and a sensitive heterodyne receiver will allow the development of depth-resolving three-dimensional imagers using frequency modulation continuous wave (FMCW) radar techniques.

REFERENCES:1. "Advanced Photonix Awarded $1.4 Million Contract for Handheld Terahertz Scanner," (Advanced Photonix, 2015), http://www.prnewswire.com/news-releases/advanced-photonix-awarded-14-million-contract-for-handheld-terahertz-scanner-300021296.html.

2. N. Palka, and D. Miedzinska, "Detailed non-destructive evaluation of UHMWPE composites in the terahertz range," Optical and Quantum Electronics 46, 515-525 (2014).

ARMY - 17

Page 18: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

3. C.-P. T. Chiou, F. J. Margetan, D. J. Barnard, D. K. Hsu, T. C. Jensen, and D. J. Eisenmann, "Nondestructive characterization of UHMWPE armor materials," (2011).

4. P. Siegel, and R. Dengler, "Terahertz Heterodyne Imaging Part II: Instruments," International Journal of Infrared and Millimeter Waves 27, 631-655 (2006).

5. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "High-power terahertz quantum-cascade lasers," Electronics Letters 42, 89 - 91 (2006)

6. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides," Optics Letters 32, 2840 - 2842 (2007).

7. M. Wienold et al., Real-time terahertz imaging through self-mixing in a quantum-cascade laser. Appl. Phys. Lett. 109, 011102 (2016

KEYWORDS: Terahertz imaging, heterodyne receiver, quantum cascade laser

A17A-T008 TITLE: 3D Tomographic Scanning Microwave Microscopy with Nanometer Resolution

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Develop near-field scanning microwave microscopy hardware and software to enable 3D tomographic imaging of the structural and electromagnetic properties of electronic and biological materials with nanometer spatial resolution.

DESCRIPTION: Near-field scanning microwave microscopy (SMM) is a new atomic-scale scanning probe capable of penetrating below the sample surface up to one micrometer in depth. Compared to optical, x-ray or electron microscopy, SMM is highly non-invasive because the energy of microwave photons is only on the order of 10 µeV. Therefore, the technique can potentially be very useful in imaging the structural and electromagnetic properties for a wide range of electronic and biological materials with high electrical and spatial resolution, and provide unique insights into their fundamental characteristics. To date, sophisticated probes and complete systems have been offered, and different probe calibration and data analysis approaches have been proposed, and promising results have been demonstrated. For example, SMM has been used to image the quantum Hall edge states in graphene and topological insulators, and for biological applications, to investigate the effect of fullerene nanoparticles on breast cancer cells. The high sensitivity of SMMs can also potentially enable direct imaging of ion channel and nanoporation in a cell membrane. Furthermore, recent demonstration of SMM operating in liquid environment will open up even more opportunities in biology and medical science.

In addition to the aforementioned advances, SMM offers the unique capability of penetrating into the sample-under-test in a non-invasive and non-contacting manner. This feature allows imaging of sub-surface structures, and open the possibility for 3D tomography with nanometer resolution. The tomographic potential of SMM has been demonstrated in proof-of-principle experiments. In these experiments, broadband or multi-frequency microwave radiation was used to probe different sample depths. Despite these promising results, 3D tomographic SMM systems for consistent and reproducible characterization are still not available. The goal of this project is to develop reliable and user-friendly SMM systems with 3D tomography capability. This will still require major improvements in both hardware and software.

PHASE I: Define system architecture both in hardware and software which shows feasibility of obtaining 10 nm resolution in all three spatial dimensions. Include determination of optimum system frequency, bandwidth, and data analysis in frequency domain vs. time domain. Determine advantages of operating at higher frequencies such as

ARMY - 18

Page 19: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

millimeter-wave and terahertz frequencies for improving system performance. Perform 3D electromagnetic designs of the probe structures to be integrated with system. At least one of the probe designs should be compatible with liquid environment. Investigate innovative micro-machining techniques for realizing the probe designs. Explore new software algorithms for 3D image reconstruction.

PHASE II: Implement designs including both hardware and software from Phase I to construct an SMM with 3D tomography capability. Demonstrate reproducible characterization of biological or electronic samples with 3D resolution 10 nm or less. Collaborate with biomedical or electronic researchers to demonstrate the 3D advantage of the technique. Modify the hardware and software as needed and document the modifications.

PHASE III DUAL USE APPLICATIONS: High-resolution and non-invasive 3D microscopic tools for biomedical and electronic scientific research, industry applications and defense systems. Applications include characterization of semiconductor, metal, organic films, etc., and detection of counterfeit integrated circuits. Beyond material characterization, it also provides unique capability for identification of chemical/bio agents and biomolecules.

REFERENCES:1. J. Lee, C. J. Long, H. Yang, X. D. Xiang, and I. Takeuchi, “Atomic resolution imaging at 2.5 GHz using near-field microwave microscopy," Appl. Phys. Lett., vol. 97, pp. 183111-1-183111-3, 2010.

2. K. Lai, W. Kundhikanjana, M. A. Kelly, Z.-X. Shen, J. Shabani, and M. Shayegan, “Imaging of Coulomb-driven quantum Hall edge states," Phy. Rev. Lett., vol. 107, no. 17, pp. 176809-1-176809-5, Nov. 2011.

3. M. Farina, F. Piacenza, F. De Angelis, D. Mencarelli, A. Morini, G. Venanzoni, T. Pietrangelo, M. Malavolta, A. Basso, M. Provinciali, J. C. Hwang, X. Jin, and A. Di Donato, "Broadband near-field scanning microwave microscopy investigation of fullerene exposure of breast cancer cells," IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, Jun. 2016, pp. 1-4.

4. M. Farina, A. Di Donato, D. Mencarelli, G. Venanzoni, and A. Morini, "High resolution scanning microwave microscopy for applications in liquid environment," IEEE Microw. Compon. Lett., vol. 22, no. 11, pp. 595-597, Nov. 2012

5. M. Farina, A. Di Donato, T. Monti, T. Pietrangelo, T. Da Ros, A. Turco, G. Venanzoni, and A. Morini, "Tomographic effects of near-field microwave microscopy in the investigation of muscle cells interacting with multi-walled carbon nanotubes," Appl. Phys. Lett., vol. 101, no. 20, pp. 203101-1-203101-4, Nov. 2012.

6. P. J. de Visser, R. Chua, J. O. Island, M. Finkel, A. J. Katan, H. Thierschmann, H. S. J. van der Zant, and T. M. Klapwijk, "Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy," 2D Mater., vol. 3, pp. 021002-1-021002-6, Mar. 2016.

7. L. You, J.-J. Ahn, Y. S. Obeng, and J. J. Kopanski, "Subsurface imaging of metal lines embedded in a dielectric with a scanning microwave microscope," J. Phys. D: Appl. Phys., vol. 49, pp. 045502-1-045502-11, 2016.

KEYWORDS: Sensors, Electronics; Battle space Environment

A17A-T009 TITLE: Mechanochemical Sensing and Self-Healing Solution to Detecting Damage in Composite Structures

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Engineer and utilize mechanochemical reactions to initiate a molecular response to macroscopic force and/or deformation in polymeric materials, and to provide an active reinforcement mechanism within composite

ARMY - 19

Page 20: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

materials for stress-sensing and self-healing capabilities.

DESCRIPTION: Lightweight materials such as laminated composites and polymer materials are being increasingly used in the aerospace industry mainly due to their high strength and high stiffness to weight ratios. In existing military helicopters, such as the UH-60, composites are used to build the main rotor blade, the tail rotor flexbeam spar, and several major airframe components [1]. Composite structures are susceptible to degradation due to prolonged use, exposure to severe service environment, fatigue, sand abrasion as well as operator abuse and neglect [2].

The failure of polymeric materials and composites begins on a molecular level when local strains contribute to chain slippage or rupture leading to a loss of structure or modulus. Polymers under repeated cycles of mechanical stress will eventually experience chain slippage and bond breakage, which can initiate micro-cracks that propagate and lead to mechanical failure. Conversely, in biological materials, where molecules and tissues are mechanochemically activated, a repeated cycle of mechanical load and/or molecular-scale damage causes muscle fibers to strengthen through active reinforcement and growth processes.

This topic calls for unique approaches to facilitate mechanochemical reactions induced by bonds bending, flexing, and/or rupturing within a polymer chain (i.e., either force-induced or damage-induced mechanisms) that will initiate stress sensing and damage resistance/mitigation. The goal is to have molecular mechanochemical responses facilitate a constructive response to a destructive force.

Recent studies have shown that fluorescent or photochromic dyes can highlight hard-to-detect damage in composite structures by chemically incorporating force-activated molecular units directly into the polymer, matrix, or interphase material. When sufficient force is applied in the proper orientation, strain responsive molecules respond with a change in chemical activity at the molecular scale (i.e., change in absorbance, light emission, change in charge, activation/deactivation of a catalyst, etc.) that is often reversible. This topic seeks a novel mechanochemical-based composite material design that is able to detect and actively mitigate early stages of microscopic damage such as delamination, fiber fracture, and interfacial debonding autonomously.

This topic seeks a mechanochemical solution to sensing and repairing macromolecular damage in polymer matrix materials. It is anticipated that this could be achieved through the use of mechanochemically active molecules to trigger chemical reactions in response to macroscopic stresses and strains, and also allow that these same molecules could initiate active reinforcement and self-healing to mitigate structural damage.

PHASE I: Design a mechanochemical-based composite material system that can detect molecular-scale damage prior to failure. Successful efforts are expected to: 1) characterize and predict the relationship between macromolecular and intermolecular forces, 2) leverage mechanochemical interactions and design composites to exploit these to respond to and mitigate the early stages of structural damage and mechanical deformation, 3) demonstrate and quantify the stress-sensing and/or self-healing response in novel stimuli-responsive composites, and 4) estimate the extent of damage detection and mitigation/healing under typical operating and loading conditions.

PHASE II: Fabricate a mechanochemical-based composite material system that can detect and mitigate sub-micron-scale damage. Successful efforts are expected to: 1) demonstrate the ability to detect and track damage at a length scale one order of magnitude smaller than complementary commercially available damage detection techniques (i.e., optical, ultrasonic, thermal, penetration, radiography, eddy current, microCT, etc.), and 2) manufacture test pieces or articles suitable for full-scale testing and demonstration.

PHASE III DUAL USE APPLICATIONS: Scale the manufacturing process for producing novel mechanochemical-based composites and products. An embedded materials solution capable of self-sensing and self-healing would be of great benefit to the U.S. Military and commercial aircraft platforms for increased reliability, reduced maintenance costs, and enhanced durability and resistance to damage.

REFERENCES:

ARMY - 20

Page 21: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

1. Smith HR (2013) Army adopts stronger, lighter composite materials. Available at: www.army.mil/article/107563/Army_adopts_stronger__lighter_composite_materials (accessed 25 April 2015)

2. Drwiega A (2013) Future Vertical Lift: An Overview. Available at:www.aviationtoday.com/rw/military/dod/Future-Vertical-Lift&thinspAn-Overview_79167.html#.VTvMsZPM-M4 (accessed 25 April 2015)

3. Gourley SR (2013) Joint Multi-Role (JMR): The Technology Demonstrator Phase Contenders. Available at: http://www.defensemedianetwork.com/stories/joint-multi-role-jmr-the-technology-demonstrator-phase-contenders/ (accessed 25 April 2015)

4. Hall A, Haile MA, Yoo JH, Haynes R and Coatney M, “Structural Health Sensing of Damage Precursors using Magnetostrictive Particles Embedded in Composite Structures", Proceedings for American Helicopter Society, 70th annual Forum and Technology Display, 20-22 May 2014, Montreal, Canada.

5. J. Larsen, et al., “Opportunities and Challenges in Damage Prognosis for Materials and Structures in Complex Systems," AFOSR Discovery Challenge Thrust (DCT) Workshop on Prognosis of Aircraft and Space Devices, Components and Systems, Cincinnati, Ohio, Feb 19-20, 2008.

6. Sun BN, Hou HS and Hsiao CC (1988) Analysis of crack-induced-craze in polymers. Engineering Fracture Mechanics 30(5):595-607.

7. Haile MA, Chen TK, Sediles F, Shiao M and Le D (2012) Estimating crack growth in rotorcraft structures subjected to mission load spectrum. International Journal of Fatigue 43:142-149

8. Makyla, K. Muller, C. Lorcher, S., Winkler, T., Nussbaumer, M., Eder, M., Bruns, N., “Fluorescent Protein Senses and Reports Mechanical Damage in Glass-Giver-Reinforced Polymer Composites", Advanced Materials, Vo. 25, N 19, (2013) 2701-2706.

KEYWORDS: embedded materials solution, early stages of damage detection, in-situ structural health monitoring

A17A-T010 TITLE: Scientific Data Management via Fast Dynamic Summarization

TECHNOLOGY AREA(S): Information Systems

OBJECTIVE: Develop new algorithms to accurately, compactly, and efficiently summarize large amounts of data on existing petascale and future exascale systems. These will be used to (i) minimize communication/data movement by passively coordinating statistical data compression across nodes, (ii) find anomalies in data in real time by supporting fast likelihood estimation for data as it is generated, and therefore, (iii) perform on-the-fly data curation, reduction, analysis and visualization across nodes.

DESCRIPTION: In both DoD and industry, unprecedented amounts of data are being generated from many sources, including sensors and simulations. In DoD-related R&D and on High Performance Computing (HPC) machines both owned by DoD and used in support of DoD R&D, data-driven discovery and data-management are critical areas requiring significant algorithmic developments and the creation of libraries and tools that can be used in a transformational way across many disciplines. Current big-data challenges are further exacerbated by the not-so-distant arrival of exascale scientific computing, which promises both capabilities for study in new data regimes, but also increased technical challenges in scientific data management.

Improvements in data management will do more than enable better utilization of exascale machines, they may help make exascale machines feasible. Power requirements to operate HPC machines generally increase as processor and

ARMY - 21

Page 22: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

memory density increase; algorithmic methods for data summarization may reduce the amount of memory required per processor core, decreasing density requirements and thus power requirements. To support the type of massive parallelism desired for exascale systems, new global mechanisms for managing data movement and overall data summarization must be developed. In addition, the quantity of data generated by such a system requires that those new mechanisms be efficient with respect to memory usage, data movement, and computational complexity. In particular, all data management algorithms must efficiently process, analyze, and then summarize/reduce the supplied data in a single pass, while simultaneously minimizing data movement in the process.

We seek real-time algorithmic techniques, incorporated in new algorithms capable of accurately, compactly, and efficiently summarizing large amounts of data on existing petascale and future exascale systems. Recent fundamental understanding has been achieved in parallel methods for constructing multiscale data partition trees [1], fast estimation of network state performance [2], reduced basis methods applicable to data compression [3,4], and data movement costs at the device level [5]. Summarizations that are now possible with this understanding hold the possibility of helping (i) minimize communication and data movement by passively coordinating statistical data compression across nodes, (ii) find anomalies in data in real time by supporting fast likelihood estimation for data as it is generated, and therefore, (iii) serve as a general platform for real time data summarization, reduction, analysis, and visualization across nodes.

The developed data summarization and related algorithms will form the basis of a library/middleware layer that can be practically used on existing petascale and future exascale systems. This library will: (i) help developers utilize fast statistical estimation and summarization algorithms within next-generation computer software that is likely to have a reduced amount of memory available per core; (ii) provide real-time summarizations of data, possibly non-intrusively, so that a re-searcher can interact directly with simulations performed using existing software; (iii) allow fast statistical analysis of total system data (with error estimates); and (iv) facilitate summarization of data with minimal communication costs.

We anticipate that in this project, the library described above will be developed within the context of one or several application areas. This/these application area(s) are at the discretion of the proposer.

PHASE I: In Phase I, the following shall be accomplished:

a) Survey existing fast parallel methods for constructing multiscale data partition trees across system cores. Investigate suitability for implementation on different hardware architectures, such as Intel Xeon Phi, Nvidia GPU, and other processors.b) Investigate and recommend efficient algorithms for merging local data summarizations into a single accurate global data summarization of all simulation data on the system, with minimal data movement.c) Investigate and recommend appropriate fast compression technique(s), with error estimates/guarantees.d) Investigate and recommend appropriate fast methods for data reduction, anomaly detection, and visualization which will enable user monitoring of data summarization (and thus of the simulation) in real time.e) Conduct proof-of-concept computations of each of the above within an application area of the proposer's choice, to demonstrate the general suitability of the recommended approaches.

PHASE II: In Phase II, the following shall be accomplished:

a) The fast parallel techniques for multiscale data partition trees investigated in Phase I will be developed and implemented for at least two different processor architectures.b) The data summarization algorithm(s) developed in Phase I will be implemented. Additional workload due to data movement will be measured and reported under various run-time tasks and conditions.c) The fast compression techniques investigated in Phase I will be developed and implemented. Performance under various run-time tasks and conditions will be measured and reported. Comparisons between actual and theoretical performance will be reported and sources of discrepancy will be investigated and explained..d) The fast methods for data reduction, anomaly detection, and visualization for user monitoring of data summarization investigated in Phase I will be developed and implemented.e) The final portable version of the software will be made available to interested government parties for assessment and use.

ARMY - 22

Page 23: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

f) Interested users in academia and private industry will receive access to the software under appropriate licensing agreements.g) Theoretical and numerical results of the study will be published in the peer-reviewed literature.h) A comprehensive set of software documentation will be prepared and made available to users.i) A long-term program for maintenance and subsequent improvement of the software will be created.j) The company will set up a support service for both existing and new users capable of addressing installation issues and correcting bugs. This will include creating a web site with the latest news, FAQs, user' forum, etc.

PHASE III DUAL USE APPLICATIONS: The technology developed under this topic will be provide an effective real time summarization capability for streaming data in the application area(s) selected. It will generate reduced bases that can be used to solve problems of interest of interest, enabling the potential reduction in memory-per-core for exascale systems. The firm will follow-up on appropriate marketing opportunities in industry and licensing opportunities in academia from collaborations and contacts developed during earlier phases. Government retains rights to the delivered product and will utilize on problems of interest in its DSRC-managed HPC systems.

The end state of this project will be exascale computers (industrial, university, govt-DSRC) whose existence have been enabled by the lower power densities at the component level, in turn enabled by improved, more efficient and reduced data movement from these data summarization techniques at the middle-ware level. The end state includes new sysadmin and user capabilities for calling and visualizing summaries of data and data movement during run time. The end state will include predictive and engineering design applications such as synthetic biological simulations and designs at multiscale levels, enabled through the faster and more efficient passing of summarized data at the component level.

REFERENCES:1. W. K. Allard, G. Chen, and M. Maggioni. Multi-scale Geometric Methods for Data Sets ii: Geometric multi-resolution analysis. Applied and Computational Harmonic Analysis, 32(3):435-462, 2012.

2. P. Balachandran, E. Airoldi, E. Kolaczyk, Inference of Network Summary Statistics Through Network Denoising, Statistical Machine Learning, arXiv:1310.0423, 2013

3. M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An 'empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris, Serie I, Vol. 339, 667-672, (2004)

4. D.B.P. Huynh, D.J. Knezevic, A.T. Patera. A static condensation reduced basis element method: Complex problems, Computer Methods in Applied Mechanics and Engineering, Vol 259, 197-216 (2013).

KEYWORDS: Scientific data management, Data summarization

A17A-T011 TITLE: Synthetic Biology Toolkit for Bioconversion of Food Waste

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Develop a Clostridium molecular toolkit that enable engineering of Clostridium species (spp.) to convert food waste to fuel or other intermediates of value to reduce waste removal costs and to improve sustainability in the field.

DESCRIPTION: The Army has an urgent need for low-energy, portable solutions for bioconversion in an end-deployment field. Bioconversion can be used to produce fuels and materials, or to remove waste. There is a clear demand for bioconversion: at forward military bases, basic commodities such as gasoline can cost up to $400 per gallon due to delivery costs [1]. In addition, significant waste is generated at forward bases of which 87% are

ARMY - 23

Page 24: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

carbon-sources convertible to energy, averaging approximately 7 pounds per day - conversion of this waste would save up to $3500 per year per soldier [1] and significantly reduce waste removal costs.

While waste-to-energy technologies are under development to conduct limited bioconversion, these technologies are typically combustion-based and suffer from high equipment needs and significant energy usage. In addition, waste-to-energy technologies are unable to efficiently handle sources of diluted carbon without pretreatment. Specifically, food waste composes the majority of solid waste generated (19%), but also has the highest moisture content (54%) [2].

Microbes can be used for bioconversion of food waste through fermentation technology [3] to either biofuels worth $200-400/ton converted or specialty chemicals and materials such as plastics or enzymes worth $1000/ton converted [4]. Species of Clostridium have been explored for bioconversion such as Clostridium acetobutylicum [3], Clostridium beijerinckii [5], and Clostridium tyrobutyricum [6], among others. Clostridium is a particularly attractive target for its ability to make butanol, hydrogen, and valuable intermediates. However, Clostridium species have been minimally engineered due to the lack of characterization on the organism's regulatory regions and genetics, and the difficulty of growing and genetically engineering the organism. This project seeks to further characterize parts (i.e. biologically functional units) to allow for the synthetic biological engineering of Clostridium, as has been done extensively for model organisms such as E. coli and yeast [7].

The ultimate goal of this project is to develop a toolkit for the engineering of Clostridium for the application of bioconversion of food waste. If successful, these toolkits will allow the construction of efficient Clostridium-powered fermentations.

PHASE I: Develop assays to isolate and test transcriptional and translational regulatory regions, such as promoters and ribosome binding sites in Clostridium spp. that can produce higher-order compounds (butanol, ethanol, hydrogen, or other valuable intermediates to the Soldier in the field) from carbohydrates (or food waste simulant). The assays should use host derived transcriptional and translational machinery and can be cellular, or cell-free extract based and should be easily extensible to other organisms. The Phase I effort should include a proof-of-principle of the functionality of the assays, and demonstrate expression of non-host derived enzymes using a subset of at least 5 native regulatory elements with differential responses. Native or recombinant multi-enzyme pathways shall be identified where improved transcriptional and translational control will allow for modulation of metabolic output based upon internal and/or external cues.

PHASE II: Demonstrate the functionality of the assays by producing an expanded parts list of tested functional regulatory regions which are responsive to external and/or internal cues, and construct two of the identified pathways in Phase I in Clostridium spp. using the information obtained from the toolkit. Demonstrate that the genetic elements and circuits function, as designed, in the organism through demonstration of altered protein expression. Demonstrate transcriptional and translational control (via protein expression levels or metabolic output) in the engineered Clostridium using internal or external cues. Demonstrate that engineered Clostridium strains are able to convert food waste into the desired final products more efficiently (>100%) than a non-engineered strain in batch fermentation at an equivalent residence time. Assess scalability and cost-effectiveness of the engineered conversion process and reproducibility as a function of relevant food waste composition and benchmark it against the existing chemical-based technologies. Determine feasibility for ancillary beneficial processes (e.g. generation of potable water and removal of organics from food waste) as a function of the bioconversion process. Assess waste-to-energy conversion in terms of processing parameters (e.g. food waste composition, residence/conversion time, bacterial wash-out/replenishment schedules, etc.). Demonstrate functionality of the engineering toolkit for one or more additional bacteria including but not limited to other Clostridia spp., spore forming bacteria and/or extremophiles. The final deliverable of this effort includes: 1) a list of functional regulator regions and synthetic circuits if used, 2) engineered Clostridium strains, 3) design specifications/parameters for the food waste batch fermenter, 4) scalability and cost analysis, and 5) lab-scale feasibility (as a function of altered protein expression or metabolic outputs) of extending engineering toolkit to at least one other relevant bacterial system.

PHASE III DUAL USE APPLICATIONS: The Phase III work will produce a refined genetic engineering toolkit for translation to a host of anaerobic/aerobic bacteria for engineered metabolic outputs based on variable food-derived

ARMY - 24

Page 25: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

waste inputs. The toolkit will support the commercially-viable, environmentally responsible design and development of a biologically-based food waste conversion process that can be integrated into an existing or new waste-to-energy conversion system for fielding within forward operating bases to mitigate complications in meeting fuel/energy and water demands. The waste-to-energy system will facilitate a cost-effective, efficient means for the conversion of food waste into higher-order compounds for generation of bioenergy (biofuels, biohydrogen, etc.) to operate generators, lights, vehicles, etc. in addition to other valuable co-products (e.g. potable water). Waste-to-energy systems also have dual-use applications within the civilian sector for efficient municipal waste products. Furthermore, the toolkit would be a basis for engineering other microorganisms, in addition to the novel Clostridium strain, that produce commercially-viable metabolic byproducts. The biologically-derived waste-to-energy solution must be cost effective and commercially competitive compared to existing chemical-based conversion systems.

REFERENCES:1. L. M. Powell, "Converting Army Waste to Fuel: Mobile Integrated Sustainable Energy Recovery," 13th Annual North American Waste-to-Energy Conference pp. 5-6, Jan. 2005.

2. "US Army Central (USARCENT) Area of Responsibility (AOR) Contingency Base Waste Stream Analysis (CBWSA)," pp. 1-53, Apr. 2013.

3. M. D. Servinsky, S. Liu, and E. S. Gerlach, "Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum," Microbial Cell Fact 13 2014.

4. E. Uckun Kiran, A. P. Trzcinski, W. J. Ng, and Y. Liu, "Bioconversion of food waste to energy: A review," Fuel, vol. 134, pp. 389-399, Oct. 2014.

5. H. Huang, V. Singh, and N. Qureshi, "Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution," Biotechnology for Biofuels 2015 8:1, vol. 8, no. 1, p. 1, Sep. 2015.

6. J. JO, D. LEE, D. Park, and J. PARK, "Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process," Bioresource Technology, vol. 99, no. 14, pp. 6666-6672, Sep. 2008.

7. C. A. Voigt, Synthetic Biology, Part A: Methods for Part/Device Characterization and Chassis Engineering. 2011.

KEYWORDS: clostridium, food waste, bioconversion, low energy, synthetic biology, bioengineering, fermentation, cell-free

A17A-T012 TITLE: High Performance Armor via Additive Advanced Ceramics

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: To develop, improve and demonstrate newly introduced additive manufacturing (AM) technology capable of producing advanced material components consisting of alumina, silicon carbide and/or boron carbide and validate its use in high performance applications such as armor components.

DESCRIPTION: The U.S. Army's initiative for body armor that can be tailored to the dismounted soldier in a short timeframe, as well as being a more cost effective solution, has placed increasing pressure on traditional manufacturers of advanced materials. Traditional custom armor manufacture requires specially fabricated tooling. Because of this, custom components in small quantities are cost prohibitive. In addition to the cost, long lead times on the order of several months are the norm. These large upfront costs and long lead times associated with

ARMY - 25

Page 26: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

traditional manufacturing has generated increasing interest for the AM market due to its low cost, customizable nature. With AM's many superior qualities there are drawbacks that still exist, which has limited its widespread adoption. Among these drawbacks, poor material performance is of primary concern. With the layer-by-layer building method used with AM processes, mechanical strength metrics such as density, flexural strength, and Knoop hardness are often very low in comparison with traditionally-manufactured armor ceramics. Also, materials used with AM processes must be engineered for use with a specific AM process which often results in long term research efforts. To address these material challenges, an AM process that can produce high geometric complexity parts with very high mechanical performance is of great interest. In order for the AM process to be commercially feasible, high deposition rates are required for fast component throughput. A solution of this nature has the possibility of expanding armor protection methods as well as allowing the dismounted soldier to fabricate custom armor articles from behind enemy lines, giving them a tactical advantage. The advanced materials that are of interest are alumina, silicon carbide, and boron carbide. Alumina ceramic (AL2O3), a general purpose material, will be the material initially used to compare parts fabricated via the AM process and traditional manufacturing due to its lower cost and ease of processing. Upon successful validation of the AL2O3 AM parts using metrics such as density, flexural strength, as well as dynamic analysis including Hugoniot shock response characterization, the silicon carbide (SiC) and boron carbide (B4C) materials will be investigated. The SiC and B4C materials, which are used in armor ceramic applications due to their excellent strength to weight properties, are the intended materials to be used for replacement of current traditionally manufactured armor components. Once initial feasibility is proven through the testing metrics mentioned above, comparison of these materials to traditional B4C armor will take place in the same manner as the testing of AL2O3.

The advanced materials developed under this effort will have a broad range of applications within the military and commercial sectors. The aerospace / defense industries, along with the nuclear sector are areas that could benefit from advances made within this project. Development of a high performance AM process for advanced materials would provide a solution to commercial markets seeking an equal performing replacement to traditional manufacturing. The AM process would also significantly lower cost for custom and short run production situations due to the elimination of tooling associated with traditional manufacturing methods.

PHASE I: Develop an additive manufacturing process for advanced materials which uses materials including alumina, silicon carbide, or boron carbide. The system should be capable of producing a near-net shape, highly dense unfired (green) advanced material preform. The green preform must not contain any type of infiltrant in order to maximum the mechanical performance of the fully sintered part. The requirements of the process are such that the deposition rate is 30 grams per minute of an advanced material feedstock to facilitate rapid part fabrication. The components fabricated will be subject to quasi-static, dynamic, and in-situ characterization and logged in an ARL armor mechanisms database. The AM components will be compared to traditionally manufactured armor ceramics on mechanical performance metrics such as density, flexural strength, and hardness. Successful completion of this phase is realized when the AM components performance metrics are within 5% of traditional manufactured armor. The deliverables for Phase I will include process development documentation as well as material development documentation and characterization.

PHASE II: Optimize the material development of boron carbide through further characterization and in-situ ballistic testing. The AM system shall be streamlined such that a degree of control over the microstructural properties of the fabricated component can be exhibited. Control of the material's microstructure is of importance as it can have a significant influence on the ballistic performance of the armor component. Manipulation of the microstructure may be accomplished through layer-to-layer orientation control and bonding parameters, printer feedstock powder particle distribution, as well as individual layer thickness. These parameters affect critical material properties such as density, flexural strength, and Hugoniot shock response characteristics which are the same metrics used to evaluate traditional armor components. Upon completion of Phase II, fully dense advanced material components should be capable of displaying similar mechanical and ballistic performance to that of traditionally manufactured advanced material ballistic protection. If the developed process warrants, a material integrity detection system shall be integrated to ensure fabricated component integrity. The AM components will be compared to traditionally manufactured armor ceramics on mechanical performance metrics such as density, flexural strength, hardness, as well as fragmentation behavior observed through low velocity impact testing. Upon matching or exceeding traditionally manufactured performance metrics, in-situ ballistic testing would take place to evaluate projectile erosion/fragmentation mechanics. Successful completion of this phase is realized when AM component performance

ARMY - 26

Page 27: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

meets or exceeds traditionally manufactured armor in both static analysis as well as in-situ ballistic testing. Deliverables for Phase II will include process development documentation, material development documentation including feedstock formulation, and a prototype additive manufacturing system capable of producing high performance advanced material components.

PHASE III DUAL USE APPLICATIONS: The AM advanced materials developed under this effort will be used in a broad range of applications within the military and commercial sectors. Immediate applications within the military sector include rapid manufacturing capability of ceramic plate inserts (also known as SAPI) on body armor and protective structures at forward operating bases. This capability will significantly reduce the lead times, potential collateral damage, and extremely high cost compared to traditionally manufactured ceramics. The developed process will have an impact in the commercial sector in areas such as aerospace, medical, and alternative energy due to the lower component cost coupled with higher design complexity. This technology would be adopted to industry through various industry researchers representing a number of commercial sectors, i.e. the automotive industry, that are seeking suitable technologies to complement or replace traditional advanced ceramic manufacturing. Finally, the AM ceramic materials, because of their lower barrier of entry in terms of cost, will be integrated additional markets which are currently unknown.

REFERENCES:1. Tyrone L. Jones, Jeffrey J. Swab, Benjamin Becker, "The First Static and Dynamic Analysis of 3D Printed Sintered Ceramics for Body Armor Applications," 40th International Conference on Advanced Ceramics and Composites, January 201

2. Benjamin Becker, "Additive Changes to Advanced Ceramics," Ceramic Industry, April 2014, pp. 12-14.

3. Lisa Roberson, "Local startup company uses 3-D printing for Armor," Chronicle Telegram, March 16, 2016, pp. D8.

4. Tyrone L. Jones, "Investigation of the Kinetic Energy Characterization of Advanced Ceramics," April 2015, ARL-TR-7263, APG, MD.

KEYWORDS: additive manufacturing, 3-D printing, rapid fabrication, advanced materials, body armor, alumina, silicon carbide, boron carbide

A17A-T013 TITLE: Scalable Manufacturing of Functional Yarns for Textile-based Energy Storage

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Design scalable manufacturing processes that produce yarns that can store energy and can be knit or woven into wearable textiles capable of storing energy.

DESCRIPTION: New high-performance electronic and 'smart' textile technologies with advanced functionalities (e.g., sensing, physical actuation) are being developed although many functional applications are limited by the availability of low cost, integrated energy storage technologies. Scalable, inexpensive manufacturing processes that produce yarns capable of storing energy are required for new breakthroughs within the wearable electronics sector. In addition to energy storage, functional yarns must also be knitted and woven into comfortable/wearable materials that are capable of wicking moisture and allowing full range of motion in ways that are similar to common athletic wear. Other desirable attributes for textile-based energy storage are that the technology solution(s) should be electrochemically stable, charge and discharge rapidly, and maintain requisite power density for thousands of duty cycles and/or for the life of the garment. To produce the requisite amount of functional yarn, manufacturing processes must be capable of producing kilometers of energy storage yarns that maintain desirable mechanical attributes both for knitting/weaving and, ultimately, yield sufficient yardage of wearable textile materials to be

ARMY - 27

Page 28: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

relevant for implementation. Finally, the energy storage technology should not leach toxic chemicals (e.g., electrolytes or nanomaterials such as carbon nanotubes) during normal wear, nor during laundering of fabrics. Furthermore, gentle laundering should not disable the energy storage device.

PHASE I: Develop manufacturing processes that are capable producing pounds of yarn (tens of kilometers of yarn) that are capable of storing energy a specific capacitance over 25 mF/cm. Additionally, yarns must have mechanical properties that allow them to be knitted and/or woven into flexible fabrics. Resultant fabrics must maintain mechanical properties suitable to be worn (e.g. textiles should withstand bending without major loss of performance).

PHASE II: Demonstrate manufacturing throughput produces enough yarn to produce at least one hundred square yards of fabric capable of store energy and a specific capacitance over 50 mF/cm. Energy storage yarns must have mechanical properties that are suitable for industrial knitting and weaving machinery. Resulting fabrics must be flexible and capable of crumpling without showing major loss of energy density. Fabrics should also be demonstrated to be capable of withstanding laundering without major loss of energy density.

PHASE III DUAL USE APPLICATIONS: This product would be used in a broad range of military and civilian applications where wearable textiles with integrated electrochemical power sources could power functionalities ranging from light emitting diode to sensors, and actuators.

REFERENCES:1. Kristy Jost, Genevieve Dion, and Yury Gogotsi, "Textile energy storage in perspective", J. Mater. Chem. A, 2014, 2, 10776-10787.

2. Shengli Zhai, H. Enis Karahan, Li Wei, Qihui Qian, Andrew T. Harris, Andrew I. Minett, Seeram Ramakrishna, Andrew Keong Ng, and Yuan Chen, "Textile energy storage: Structural design concepts, material selection and future perspectives" Energy Storage Materials, 2016, 3, 123-139.

3. Ruirong Zhang, Yanmeng Xu, David Harrison, John Fyson, Darren Southee & Anan Tanwilaisiri (2015) Fabrication and characterization of smart fabric using energy storage fibres, Systems Science & Control Engineering, 3:1, 391-396, DOI: 10.1080/21642583.2015.1049717

KEYWORDS: Electronic Textiles, Energy Storage, Functional Yarn, Capacitor

A17A-T014 TITLE: Biosensor for Detection of Synthetic Cannabinoids

TECHNOLOGY AREA(S): Chemical/Biological Defense

OBJECTIVE: Develop a drug identification kit that utilizes biomolecular receptor-ligand interactions to detect the presence of cannabinoids.

DESCRIPTION: Illicit drug use is a widespread problem within the U.S. Armed Forces and the Department of Defense is regularly tasked with identifying unknown illicit substances in difficult and demanding environments. There are devices currently available for detecting the presence of drugs in samples; however, these devices are typically bulky and require a high level of training, making them inoperable in field environments. Furthermore, current methods rely on identifying known compounds based on chemical structures, allowing new compounds to evade detection.

One illicit drug class that is becoming a significant problem in the U.S. Armed Forces is synthetic cannabinoids, which imitate the effects of the cannabis component THC (1). Synthetic cannabinoids pose a unique concern

ARMY - 28

Page 29: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

because there are many derivatives available; when one synthetic cannabinoid is identified and regulated, known chemicals can be modified to produce derivatives that are undetectable. Illicit drugs act as ligands for receptors within the human nervous system (2) and many classes of drugs, including synthetic cannabinoids, act on a single receptor type. The goal of this topic is to utilize biomolecular receptor-ligand binding interactions to produce a biosensor to determine whether any molecule with an affinity for a cannabinoid receptor (CB1 or CB2) is present in a sample (3-5). This solution has the potential to be able to detect multiple synthetic cannabinoid derivatives with the same biosensor. Furthermore, the solution would be based on a binding event as opposed to recognition of a specific chemical structure of a drug, eliminating structural dependency and allowing for the detection of emerging compounds.

The proposed solution should be portable (i.e., <5 pounds), easy-to-use, stable over a long period of time, inexpensive to operate, rugged, operable in a wide range of field conditions, and require minimal training to operate. The proposed solution must meet the performance (sensitivity and specificity) of currently available test methods and reduce the operator/analysis steps. Desired sensitivity is within "real world" range, detecting cannabinoid compounds at nanogram to milligram levels, with accuracy levels in the 90-95% range. Furthermore, the biosensor should require a small amount of sample and ensure environmentally safe disposal of any testing materials.

PHASE I: Develop, test, and/or demonstrate a biosensor platform utilizing a cannabinoid receptor (CB1 or CB2) that allows for detection of the presence of synthetic cannabinoids. Conduct preliminary testing of specificity and sensitivity. Develop a prototype concept capable of achieving the performance requirements listed in the description above.

PHASE II: Incorporate the biosensor platform from Phase I into the prototype design from Phase I. The prototype must be able to detect a minimum of three (3) synthetic cannabinoid derivatives (e.g., JWH-018, 5F-AMB) and a minimum of (3) natural cannabinoids (e.g., tetrahydrocannabinol, cannabinol). Demonstrate detection of cannabinoid compounds in the nanogram to milligram range with a minimum accuracy level of 90%. Determine the reproducibility and limits of detection of the system. Demonstrate reliable operation under a range of operating and storage conditions. Demonstrate the prototype in a realistic field environment.

PHASE III DUAL USE APPLICATIONS: The proposed technology has a broad range of potential uses in civilian and military settings. The biosensor platform can be transitioned to various other classes of drugs and can be used by intelligence operations, law enforcement, and first responders.

REFERENCES:1. Loeffler, G., Hurst, D., Penn, A., & Yung, K. (2012). Spice, bath salts, and the U.S. military: the emergence of synthetic cannabinoid receptor agonists and cathinones in the U.S. Armed Forces. Military Medicine, 1041-1048.

2. Lambert, D. (2004). Drugs and receptors. British Journal of Anaesthesia, 181-184.

3. Turner, A. (2013). Biosensors: sense and sensibility. Royal Society of Chemistry, 3184-3196.

4. Vigneshvar, S., Sudhakumari, C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications - An Overview. Frontiers in Bioengineering and Biotechnology.

5. Patel, S., Nanda, R., Sahoo, S., & Mohapatra, E. (2016). Biosensors in Health Care: the Milestones Achieved in Their Development towards Lab-on-Chip Analysis. Biochemistry Research International.

KEYWORDS: biosensor, cannabinoid, receptor

A17A-T015 TITLE: Sealed Container Content Identification

ARMY - 29

Page 30: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

TECHNOLOGY AREA(S): Chemical/Biological Defense

OBJECTIVE: To develop a compact and rugged, computer-aided device for use by chemical-biological defense forces that is capable of identifying the contents of liquid-filled containers while making contact with the container or at short stand-off without having to drill or otherwise penetrate the container.

DESCRIPTION: The Department of Defense (DoD) has the need for a ruggedized, handheld device supported by a compact (smartphone or similar) platform that will permit battlefield chemical-biological defense forces to rapidly and non-invasively assess the contents of liquid filled containers. These containers could include bottles, cans, artillery shells, industrial containers (to include 55 gallon drums), or storage barrels made of glass, plastic, or metal of various thicknesses. Research was conducted nearly two decades ago to address this need using a swept-frequency acoustic interferometry (SFAI) system among other approaches. Although testing of prototype units was encouraging, the technical approach never transitioned to operational or commercial usage. The DoD seeks to leverage research investments in nondestructive evaluation (NDE) and testing and other related fields over the past two decades to pursue a solution to this need. A parallel effort to the acoustic interferometry system resulted in the current commercial-off-the-shelf (COTS) Ortec instrument that utilizes a neutron spectroscopy approach. Solutions that utilize nuclear materials and/or nuclear radiation will not be considered under this topic. Solutions must be oriented on the development of automatic algorithms and related technologies so the user does not need to perform data interpretations in battlefield settings. Solutions will address challenges associated to varying wall thicknesses of the containers and mixtures contained within the containers. The portable device should be powered by existing, rechargeable batteries and capable of continuous operation for a minimum of one hour without having to change or charge the batteries.

PHASE I: Develop a computer-aided technology system design that meets the stated objectives listed above. Demonstrate a pre-prototype system on a laptop or smaller platform that can automatically identify at least six liquid chemicals (chemical agent simulants, explosive simulants, and common toxic industrial chemicals and fuels) within sealed containers within 1 minute and with a 90% probability of success. In addition, demonstrate proof-of-concept with a 2- or 3-component mixture. Identify additional automated algorithms and/or technologies that could be implemented in the Phase II prototype system.

PHASE II: Develop a prototype, computer-aided chemical identification system on a ruggedized, handheld device supported by a compact platform (smartphone or similar) that will meet the requirements defined above and permit usage in battlefield settings. Demonstrate the device to identify the 100 likely chemical agents and precursors along with over 20 common non-hazardous liquids in glass, plastic, and metal containers in less than 1 minute and with a 95% probability of success. In addition, potential surface interferents (dirt, corrosion, etc.) should be considered. IF the device must be ’trained’ for a library of chemicals, then the device should indicate with a 95% probability of success when it is tested on a liquid that is included in the 'trained' database and a 90% probability of success in identifying that the liquid is an unknown, not in the 'trained' database.

PHASE III DUAL USE APPLICATIONS: The proposed technology has potential use across the Department of Defense to assess the contents of sealed, liquid-filled containers and thus speeding the assessment of required responses. In addition to being highly valuable to the chemical and biological defense community, the same device can be utilized by first responders to evaluate and confirm container contents.

REFERENCES:1. Sinha, Dipen N., and Gregory Kaduchak (2001) Noninvasive Determination of Sound Speed and Attenuation in Liquids, Modern Acoustical Techniques for the Measurement of Mechanical Properties, Vol. 39. Academic Press, September 2001.

2. Ortec (2015) PINS3-CF Brochure, www.ortec-online.com/download/PINS3-CF.pdf.

3. Sinha, Dipen N., Kendall N. Springer, Wei Han, David C. Lizon, and Shulim Kogan (1997). Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare

ARMY - 30

Page 31: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

compounds, Los Alamos National Laboratory Report No. LA-UR-97-3113, December 1, 1997.

KEYWORDS: Ultrasound, Electromagnetics, Nondestructive Evaluation, Nondestructive Testing, Chemical Identification

A17A-T016 TITLE: Method for Locally Measuring Strength of a Polymer-Inorganic Interface During Cure and Aging

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Develop and demonstrate a method to locally measure quality of the interface in an adhesive system (metal substrate/polymeric resin) during resin curing and during aging under hot/wet conditions.

DESCRIPTION: Surface treatment processes dominate the durability of interfaces in adhesively bonded joints, fiber reinforced composites, and polymer encapsulated electronics in military and commercial applications.

1. These surface treatments may include abrasion (e.g., grit-blasting), chemical etching, polishing, chemical functionalization (e.g., with coupling agents), and they are used to control the wettability, chemical functionality, and morphology of the interface between an inorganic substrate (e.g., aluminum) and an adhesive/polymer encapsulant (e.g., an epoxy resin with a diamine curing agent). The wettability, chemical functionality and morphology all influence (1) the initial strength of the interface during curing of the polymer, and (2) the long-term durability of the bond under hot/wet conditions experienced in theatre. The durability of these bonds is often dictated by the ability of the interface of the cured polymer system to resist moisture infiltration and the corresponding degradation of the adhesion between the adhesive and substrate (e.g., bond breakage, corrosion).

2. Furthermore, local defects are known to provide points of stress concentration that can locally serve as the "weakest link" in the polymer system, leading to premature failure.

3. Despite the central importance of the surface treatment in these systems, there is currently no commercially available method for locally (<100µm) measuring the quality of the polymer-substrate interaction (1) during curing (initial strength) and (2) during aging under hot/wet conditions (e.g., in liquid water at 60ºC). There are, however, a few existing techniques that can likely be modified for such measurements including: modulated microscopy techniques, surface forces apparatus techniques, and small-scale mechanical testing techniques. Modulated scanning probe measurements using lock-in techniques[4] could potentially be used to monitor contact stiffness in situ. Additionally, the surface force apparatus technique[5] has been developed to the point that it can be used to monitor adhesive forces within various liquid environments, making it an option as well. Finally, micron-scale mechanical testing, which was developed for solder testing may be applicable as well. Thus, we seek development of novel techniques or novel use of existing instruments that can be used to measure the quality of the interface (e.g., adhesion, interfacial shear strength, contact stiffness, or some other acceptable metric) both during curing and over time (after cure) under hot/wet conditions. Such a method would allow for demonstration of the utility of new surface treatments, allow for simulation of local defects, and provide a means of evaluating strategies to mitigate defect formation.

PHASE I: The offeror(s) shall develop a technique to monitor the change in the interface quality during polymer curing. The offeror(s) shall demonstrate the use of this method to measure interface quality during room temperature and heated (>50ºC) curing of a model substrate/resin system. The suggested model substrate is aluminum oxide, and the suggested model resin is a stoichiometric cure of diglycidyl ether of bisphenol A and Jeffamine® D230 - see properties in Tables 3 and 4 of Lenhart et al [7]. The offeror(s) shall also develop a technique using the same instrument to measure the change in the quality of the interface of this same model substrate/resin system as a function of time in the presence of liquid water at the interface in separate tests at room temperature and at 60ºC for at least one week each.

ARMY - 31

Page 32: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

PHASE II: The offeror(s) shall implement the method developed in Phase I to investigate the influence of multiple factors on initial strength of the interface and the durability (hot/wet testing) using the chosen model system. These factors will include: (1) surface roughness (RMS roughnesses of ~10nm to ~1µm), (2) chemical treatment (e.g., etches in various acids), (3) functionalization (e.g., silane coupling agents like 3-aminopropyltriethoxysilane and 3-glycidoxypropyltriethoxysilane). The offeror(s) shall extend the use of the method to determine the influence of localized defects (e.g., large/sharp surface asperities or air bubbles). The offeror(s) will validate their results against lap-shear tests according to ASTM D1002-10 using the same resin and a comparable substrate. In addition, the offeror(s) will demonstrate the utility of the technique on substrates used in other systems of interest to the military that require polymer encapsulation. Examples include substrates similar to those encountered in glass-fiber reinforced composites (e.g., silicon oxide), and substrates in electronics applications (e.g., indium tin oxide).

PHASE III DUAL USE APPLICATIONS: The offeror is expected to aggressively pursue opportunities to market the method developed herein for use in evaluating and testing adhesives, surface treatments, coupling agents, passivation methods, and substrate preparation methods for adhesive systems, fiber reinforced composite applications, and electronic encapsulants in both military and commercial applications. Of particular interest is the establishment of an industry-wide standard method (e.g., ASTM or equivalent) for predicting the success or failure of proposed changes in surface preparation methods in meeting military specifications.

REFERENCES:1. Jensen, R. E.; McKnight, S. H.; Quesenberry, M. J. Strength and Durability of Glass Fiber Composites Treated with Multicomponent Sizing Formulations; Laboratory, U. S. A. R.2002.

2. Bradley, W. L.; Grant, T. S. The effect of the moisture absorption on the interfacial strength of polymeric matrix composites. Journal of Materials Science 30 (21), 5537-5542.

3. Hobbiebrunken, T.; Fiedler, B.; Hojo, M.; Tanaka, M. Experimental determination of the true epoxy resin strength using micro-scaled specimens. Composites Part A: Applied Science and Manufacturing 2007, 38 (3), 814-818.

4. Sills, S.; Overney, R. M.; Chau, W.; Lee, V. Y.; Miller, R. D.; Frommer, J. Interfacial glass transition profiles in ultrathin, spin cast polymer films. Journal of Chemical Physics 2004, 120 (11), 5334-5338.

5. Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H. Recent advances in the surface forces apparatus (SFA) technique. Reports on Progress in Physics 2010, 73 (3).

6. Kwon, S.; Lee, Y.; Han, B.; Asme. Advanced micro shear testing for solder alloy using direct local measurement; Amer Soc Mechanical Engineers: New York, 2003. p 537-542.

7. Bain, E. D.; Knorr, D. B.; Richardson, A. D.; Masser, K. A.; Yu, J.; Lenhart, J. L. Failure processes governing high-rate impact resistance of epoxy resins filled with core-shell rubber nanoparticles. Journal of Materials Science 2015, 51 (5), 2347-2370.

KEYWORDS: Surface treatments, composites, manufacturing processes, fabrication, surface chemistry, coupling agent, durability, adhesion

A17A-T017 TITLE: Dismounted Soldier Positioning, Navigation and Timing (PNT) System Initialization

TECHNOLOGY AREA(S): Sensors

The technology within this topic is restricted under the International Traffic in Arms Regulation (ITAR), which controls the export and import of defense-related material and services. Offerors must disclose any proposed use of

ARMY - 32

Page 33: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

foreign nationals, their country of origin, and what tasks each would accomplish in the statement of work in accordance with section 5.4.c.(8) of the Announcement.

OBJECTIVE: Develop and demonstrate techniques and algorithms to accomplish the initialization of Dismounted Navigation Systems while en route within a tactical vehicle permitting the transition from the vehicle to the fight completely without the need to manually calibrate or initialize the navigation system. Currently military Global Positioning System (GPS) receivers can take a few minutes to acquire satellites and the alignment of Inertial Measurement Units (IMU) up to four minutes, which must occur outside the vehicle, in plain sight, all while standing completely still.

DESCRIPTION: This topic will enable automatic initialization and calibration of the dismounted soldier PNT system to occur within the tactical vehicle while en route, by providing techniques and algorithms that make use of information available from the vehicle's navigation, GPS, IMU, vision and other systems, and by using collaborative navigation techniques using information from other vehicles and other dismounted soldiers' navigation systems. The developed algorithms and techniques will enable continued OPTEMPO (not delaying the mission) and will not add to the size, weight, power, or cost of the soldier system.

PHASE I: The vendor will develop a system architecture and conduct necessary tradeoff studies proposed by the vendor that contributes to the architecture and prove feasibility of the proposed approach. It is encouraged that the vendors demonstrate this technology using the CERDEC Warfighter's Integrated Navigation System (WINS) as a testbed for demonstration in Phase II.

PHASE II: Design and build the prototype modifications to a dismounted navigation system performance for demonstration in several varied environments (benign open terrain, wooded site, urban, and in GPS challenged environments). The prototype may include the use/modification of devices already installed on the vehicle or provision of a minimal set of equipment for installation within the vehicle for use while en route to the mission location. It is encouraged that the vendors demonstrate this technology using the CERDEC Warfighter's Integrated Navigation System (WINS) as a testbed for demonstration in Phase II.

PHASE III DUAL USE APPLICATIONS: The vendor will commercialize the system. Military application of this topic is directly applicable to the dismounted soldier via the Assured PNT program, subprogram Dismounted PNT. Commercial applications of this technology would be also directly applicable to First Responders (fire fighters, police, security, and other emergency units).

REFERENCES:1. Vision-aided Inertial Navigation with Unknown Camera-IMU Calibration, Tue-Cuong, Dong-Si and Anastasios I. Mourikis, Dept. of Electrical Engineering, University of California, Riverside, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems

2. Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination, Agostino Martinelli, IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

3. Patent Application, Number US8718935 B2, Navigational system initialization system, process, and arrangement

KEYWORDS: Positioning, Navigation, PNT, dismounted soldier, inertial, GPS, vision-aided

A17A-T018 TITLE: Novel Robust IR Scene Projector Technology

TECHNOLOGY AREA(S): Sensors

ARMY - 33

Page 34: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

OBJECTIVE: The IRSP system will project accurate, dynamic, realistic infrared scenes of various targets that will provide repeatable test and evaluation (T&E) of sensors employing state-of-the-art infrared imaging technology.

DESCRIPTION: Infrared scene projectors are a highly reliable and cost effective method for the laboratory and field testing of infrared sensors. As the field continues to mature, there is a need for more adaptable scene projectors, for operation in broadband, including all the IR wavelength regimes (SWIR, MWIR, and LWIR). A variety of new scene projection technologies are being developed that can provide a more efficient, robust alternative to resistive array projectors. The Sensors and Countermeasures labs at I2WD EWAGS Division require Scene projection technology to test and evaluate systems and develop new techniques for threat detection and countermeasure. Investment into further maturing these novel scene projector designs to meet our needs for a robust and ruggedized application is critical in enabling full capabilities for development, analysis and test.

Quantum Dots (QDs) are nanometer-sized particles, usually made of semiconductors, metals, or dielectrics with unique optical, electronic and chemical properties, depending on their size and shape. The small size of these particles is of the same size as the extent of the electron wave-function in the material, causing electrons to be localized/confined. This leads to an increase in bandgap energies of the materials. As a result, Quantum Dots exhibit a shift of optical absorption and emission properties to higher energies compared to their bulk values. This shift is tunable by controlling particle size. The localization of the electrons and holes in the QD increases the efficiency of these optical transitions making QDs more efficient optical materials. Quantum Dot materials can be suspended in various colloidal solutions and literally be "printed" onto a "color conversion layer" that can be attached to a COTS high performance LCD display. The quantum dot materials can be controlled such that the light emitted from the standard display causes the dots to emit in the Infrared Spectral bands of interest, which is a game changer for lower cost, and robust IR Scene Projection technology. This technology can be expanded to allow for multiple color MWIR displays, all tunable to specific wavelengths of interest. This highly supports future 2-color and multi-spectral scene projector technology which can support future sensor and countermeasure system laboratory efforts.

Light Emitting Diodes (LEDs) are light producing semiconductors. Super-lattice Light Emitting Diodes (SLEDs) is a periodic structure containing multiple layers of these diodes. SLEDs are grown using molecular beam epitaxy (MBE) on group III-V material substrates. They are fabricated into arrays with wet-chemical etching, gold metallization, and Silicon Nitride isolation. Selectivity of emission bandwidth and peak emission wavelength of SLEDs are achieved by bandgap engineering. These devices exhibit fast rise/fall time providing higher frame rates and have a high radiative efficiency, offering the potential for higher apparent temperatures. Improvements to the existing two color SLED technology would lead to multiple IR emission bands, higher apparent temperature, increased dynamic range, faster frame rates, and improved thermal performance. This also highly supports the future 2-color and multi-spectral scene projector technology progression efforts.

The combination of these two approaches bridges the gaps in the IR continuum, allowing for a more complete range of operation, which provides the basis for more thorough testing and less chance of technological gaps when facing forward technological progression.

PHASE I: Study feasibility of novel scene projection approaches, tuned specifically toward single and dual color MWIR scene projectors. Materials, efficiency, manufacturability, stability, and ruggedness on a flight motion table are all considerations. Specific designs and test results for mature implementation of new scene projector will result.

PHASE II: As informed by Phase I, build a prototype single or dual color MWIR scene projector. These prototypes would include any software items needed to test and develop IR models and scenes using this technology, which can then be used to stimulate IR sensors and countermeasure systems.

PHASE III DUAL USE APPLICATIONS: These projectors, once productionized, can support multiple Government test labs throughout DoD as well as Programs of Record.

REFERENCES:1. "TPE-II INAS/GASB SUPERLATTICE LEDS: APPLICATIONS FOR INFRARED SCENE PROJECTOR SYSTEMS", Dennis Thomas Norton, Jr. Physics in the Graduate College of The University of Iowa. December

ARMY - 34

Page 35: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

2013 http://ir.uiowa.edu/cgi/viewcontent.cgi?article=5031&context=etd

2. "MICRODISPLAYS: Infrared scene projector provides realistic threat scenarios". JULIA RENTZ DUPUIS. 07/25/2009. http://www.laserfocusworld.com/articles/2009/07/microdisplays-infrared-scene-projector-provides-realistic-threat-scenarios.html

KEYWORDS: infrared imaging, infrared imaging scene projector, threat detection, sensors, Quantum Dots

A17A-T019 TITLE: Artificial Intelligence/Machine Learning to Improve Maneuver of Robotic/Autonomous Systems

TECHNOLOGY AREA(S): Sensors

OBJECTIVE: The goal of this topic would be to improve off-road autonomous mobility in military environments as mentioned above using relatively low-cost or COTS sensors while combining them with novel memory techniques.

DESCRIPTION: Recent advancements in sensors and processing have significantly improved the capabilities of autonomous ground vehicles, particularly in the commercial market. The military environment poses several unique problems to Robotic Autonomous Systems (RAS) including incomplete or insufficient map data, dynamically changing terrains, and Global Positioning System (GPS)/communications denied environments that could increase the time to complete a mission or cause mission failure. Novel processing algorithms that include machine learning and artificial intelligence could increase the speed of ground RAS and decrease the likelihood of mission failure. They may require "training" of the RAS through either supervised or unsupervised techniques on a representative area.

PHASE I: The vendor will conduct necessary tradeoff studies/analyses of conventional versus proposed techniques of robotic maneuver to prove feasibility and capability of the proposed approach.

PHASE II: Design and build a prototype ground or air robotic navigation system with increased capability for demonstration in several varied environments (benign open terrain, wooded site, urban, indoor, and in GPS challenged environments).

PHASE III DUAL USE APPLICATIONS: The vendor will commercialize the system. Military application of this topic is directly applicable to Army robotics efforts via the Assured PNT program, subprogram Mounted PNT. Commercial applications of this technology would be also directly applicable to First Responders (fire fighters, police, security, and other emergency units), hobbyists, and for telecommunications/infrastructure inspection.

REFERENCES:1. Pieter Abbeel, Adam Coates, Timothy Hunter, Morgan Quigley and Andrew Ng, “Helicopters teach themselves to do aerial maneuvers", http://news.stanford.edu/news/2008/september10/helicopter-091008.html Proceedings of the 20th annual conference on Computer graphics and interactive techniques, p.73-80, August 2008

2. Sergey Levine, Peter Pastor, Alex Krizhevsky, Deirdre Quillen; Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, arXiv:1603.02199, http://arxiv.org/abs/1603.0219, Mar 2016.

KEYWORDS: Autonomy, Artificial Intelligence, Machine Learning, Positioning, Navigation, PNT

ARMY - 35

Page 36: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

A17A-T020 TITLE: Bioaerosol Detector Wide Area Network

TECHNOLOGY AREA(S): Chemical/Biological Defense

OBJECTIVE: Develop a novel real-time fusion approach for a bioaerosol detector network with emphasis on high value target protection.

DESCRIPTION: Persistent wide area early warning and threat localization for biological warfare agents (BWAs) represents a significant technology gap for DoD. Current biothreat monitoring capabilities are selective, but expensive and were designed to be relevant for small targeted areas. Network and communications technologies have advanced over past few decades to where it is feasible to foster more cost effective approaches to widen the effective surveillance area and to enhance Force and Asset Protection through early warning situational awareness across large geographical regions. The network communication architecture and software are being matured and advanced in Industry and Consumer Electronics as evidence by Google, Amazon, online gaming, and the DARPA SIGMA program. Turning disparate sensor data into actionable information for decision makers requires rapid, intelligent access to huge data sets of real-time information. This topic is soliciting a smart-data-fusion approach for Big Data problems comprised of a variety of data types from distributed BWA sensors, triggers, and security cameras. Sensors should be networked via a "self-discovery" network.

This topic is soliciting a data fusion approach to be applied to a distributed point bioaerosol detector network. Targets are aerosolized BWAs in the 10,000 ACPLA concentration range or less. The approach must demonstrate significant enhancements in confidence levels associated with lower cost, less sensitivity, and less specificity through the intelligent aggregation and usage of large detector data networks. Network level Pd of threat/non-threat should be greater than 90% with a MTBFA of 24 hours (threshold) and 168 hours (objective). The fusion architecture is ideally agnostic to bioaerosol detector datatype. However, the emphasis should be directed toward massive networking of inexpensive BWA sensors, including additional data from non-specific sensors such as surveillance cameras, etc. The anticipated deployment of the network includes forward operating bases, urban environments, large public gathering venues such as arenas or stadiums parts, and public transportation hubs. This topic addresses the new state-of-the-art in network/smart-ware communications electronics and software. This topic is a call for new mathematical algorithms and approaches to handle Very Large Disparate Data sets, and to produce actionable information in a timely and cost effective manner. An example of the approach requested can be seen in the DARPA Sigma program that requires immense, real-time data fusion from disparate sensor networks of 10,000+ sensors, along with input from crowd sourcing, and social media.

While BWA point detectors with sufficient sensitivity and specificity are currently available, wide area (high volume) distributed deployment of these sensors is currently prohibitive with regard to cost and logistics. In essence, these point detectors cannot be deployed with adequate density to enable wide area early warning. New approaches based on aggregating the data from an array of distributed low-cost, low-specificity point biological sensors in an intelligent fusion network has the potential to fill this technology gap.

PHASE I: Demonstrate the feasibility of the proposed network fusion approach using simulated and/or company furnished data. Data (simulated or real) should contain at least 3 different types of data with 100, 1000, 10,000, 100,000 simulated and/or collected data set inputs. Demonstrate Pd of threat/non-threat greater than 90% and MTBFA of at least 24 hours. Quantify performance as it scales with the number/density of detectors and with the use of orthogonal data (e.g. the non-specific sensors). Generate requirements for the sensor network infrastructure based on the demonstrated approach. Attractive features include low-cost, low-specificity biological sensors, intelligent fusion network, interoperability via IP addressing and XML messaging, along with new mathematical methods and algorithms.

PHASE II: Demonstrate the network fusion approach using a limited network of point bioaerosol detectors and non-specific sensors in a series of representative environments. Demonstrate that the approach can be scaled up to a large number of sensor inputs (greater than 10,000). Plug-in ports to the network should be sensor agnostic. A common device driver communication protocol should be established so that the network can accept any sensor in the future. A companion Software Development Kit should be developed to enable easy device driver development so that other sensors can “plug and play" into the sensor net. Validate achievement of Pd/MTBFA requirements. Deliver all

ARMY - 36

Page 37: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

hardware and software developed under this effort to the government including documented source code and manuals. Generate transition plans.

PHASE III DUAL USE APPLICATIONS: Research and development during Phase III efforts will be directed toward refining final deployable designs for the Bioaerosol Detector Wide Area Network. Design modifications based on results from tests conducted during Phase II will be incorporated. Manufacturability specific to the Joint Chemical and Biological Defense Program CONOPS and end-user requirements will be examined. Transition activities will include extensive field testing, sensor incorporation, and pre-production efforts, including vendor qualification and development of user documentation, manuals, and manufacturing processing and procedures. The network fusion capability, when combined with suitable low-cost point bioaerosol detectors, could be widely deployed in both DoD and DHS installations. The combined solution will not only detect but will also localize the bioaerosol, thereby providing key information for both evasion during and triage after the event. Transition activities will include extensive field testing and validation in a wide range of operational environments. If successful, the hardware and software developed under this topic could be deployed for high volume sensor networks (greater than 10,000) in both DoD and DHS installations. Installations could include forward operating bases, large public gathering venues such as arenas, stadiums, parks, and public transportation hubs. Low cost biodetection systems will have application in food safety and food processing.

REFERENCES:1. Dieter Fox, Jeffery Hightower, and Lin Liao, “Bayesian filters for location estimation"‚ IEEE Pervasive Computing, July-September 2003.

2. B.R. Cosofret, K. Shokhirev, M. King, B. Harris, R. Dubord, and M. Lusoto, “Centralized and Collaborative Algorithms for Detection and Localization of Radiological Threats in Urban Environments", International Symposium on Spectral Sensing Research, June 21-24, 2010.

3. M.J. King, B. Harris, M. Toolin, R. M. DuBord, V.J. Skowronski, M.A. LuSoto, R.J. Estep, S.M. Brennan, B.R. Cosofret, and K.N. Shokhirev, “An Urban Environment Simulation Framework for Evaluating Novel Distributed Radiation Detection Architectures", IEEE-HST 2010, Submission No. 28, September 2010.

4. http://nextbigfuture.com/2015/09/darpa-has-cheap-network-of-radiation.html

5. Zhang Honghai and Jennifer C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks", Ad Hoc & Sensor Wireless Networks, vol. 1, pp. 89-124, March 3, 2005.

6. Adwitiya Sinha and Daya Krishan Lobiyal, “Performance evaluation of data aggregation for cluster-based wireless sensor network"‚ Human-centric Computing and Information Sciences, vol. 3, no. 1, pp.1-17, 2013.

7. T.P. Lambrou, C.C. Anastasiou, C.G. Panayiotou, and M.M. Polycarpou, “A Low-Cost Sensor Network for Real-Time Monitoring and Contamination Detection in Drinking Water Distribution Systems", IEEE Sensors Journal, vol. 14, no. 8, pp 2765-2772, 2014.

KEYWORDS: Wide Area Network, Biothreat Detection, Large Data Sets, Large Sensor Network, Sensor Fusion

A17A-T021 TITLE: Anticipatory Analytics for Environmental Stressors

TECHNOLOGY AREA(S): Information Systems

OBJECTIVE: Develop a data analysis platform to explore linkages between environmental stress and security. The objective is to develop a platform that can integrate geospatial and temporal data for a range of environmental stressors while contextualizing them with information about local communities including properties such as coping

ARMY - 37

Page 38: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

capacity, adaptive capacity, and resilience. The platform should enable linkages between environmental stressors and security outcomes including conflict, political instability, and population displacement. This platform should be implementable as a community tool that can be easily integrated into existing Engineer Research and Development Center (ERDC) systems and analyses to support military reach-back, training, and planning within Combatant Commands and Army Service Component Commands.

DESCRIPTION: Environmental stresses such as droughts, floods, storms, earthquakes, wildfires, pest infestations, volcanic eruptions, and infectious disease vectors are often key contributing factors to defense interventions, including humanitarian response, counter insurgency, and border control. The frequency, severity, and co-occurrence of such stresses appear to be increasing relative to past experience. Phase I planning activities need to incorporate systematic monitoring and forecasting of environmental stress and their impacts on security outcomes over multiple time scales ranging from hours to decades. While data on environmental stresses and security outcomes (e.g., conflict, political instability, supply chain disruptions, internal displacement, and external migration) are improving, these data are from disparate sources, have widely varying formats and structures, and are updated on different schedules. Tools to analyze such data in an integrated manner for predictive purposes are also lacking. Those that exist are typically not available as shared community resources. To address these challenges, we require both conceptual and technical innovations. The conceptual innovations are to develop theoretical frameworks regarding linkages between environmental stressors and security outcomes that can be quantitatively tested in both forensic and predictive contexts. The technical innovations required are to build a data harvesting, integration, and analysis platform that can support the development and deployment of anticipatory models linking environmental stressors with security outcomes, and make this platform available as a shared community resource.

PHASE I: Develop an analytical framework for tracing multiple environmental stressors through their impact on human activity and key security outcomes. Demonstrate ability to harvest and integrate multiple classes of data in order to anticipate any disruptions and likely outcomes in at least one of the following sectors: agriculture, energy or public health. Forecasts should be at least at the subnational level and over monthly time scales. Framework must be implemented in a proof of concept software tool, with a design for scaling analysis to both decadal and daily time scales and local (county-level) resolution.

PHASE II: Develop open-source framework for quantitative analysis of the impact of multiple environmental stressors on social vulnerability, potential for conflict, and mass migration. Framework must support anticipatory models for disruptions at local and national scales from weekly to seasonal time scales and include impacts in multiple sectors. Provide validation of the framework based on historical analyses of previous environmentally-driven disruption, social adaptation, and political change.

PHASE III DUAL USE APPLICATIONS: Corporations have many of the same needs to monitor and forecast environmental stressors as the military due to concerns about supply chains, market behavior, and political change. This provides significant commercial potential in addition to that of supplying the defense need.

REFERENCES:1. National Research Council (2013). Climate and Social Stress: Implications for Security Analysis. John D. Steinbruner, Paul C. Stern, and Jo L. Husbands, Editors; Committee on Assessing the Impact of Climate Change on Social and Political Stresses; Board on Environmental Change and Society; Division of Behavioral and Social Sciences and Education. DOI: 10.17226/14682

2. Defense Science Board (2011). Trends and Implications of Climate Change for National and International Security

KEYWORDS: environmental security, data analytics, socio-hydrology, climate change, vulnerability, conflict anticipation

A17A-T022 TITLE: Biomechanical Rat Testing Device to Validate Primary Blast Loading Conditions for

ARMY - 38

Page 39: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

Mild Traumatic Brain Injury

TECHNOLOGY AREA(S): Biomedical

OBJECTIVE: Develop a biomechanical surrogate of a rat model that can accurately measure shock overpressure conditions. This surrogate device will be used in live-fire testing as well as many different types of experimental shock tubes in laboratories to gauge the fidelity of the experimental technique in simulating field conditions. The device will also measure the actual biomechanical loading experienced by the experimental animals so that the research results of that particular laboratory can then be cross-correlated across different test conditions and research groups.

DESCRIPTION: Blast induced neurotrauma (BINT) has been recognized as a major medical problem among US service members. As high as 20% of the total 1.6 Million deployed members may be potentially suffering from TBI, especially mild TBI. This number is likely to grow significantly as the returning warfighters assimilate into the general population and experience the continuing long-term sequelae of mild TBI, ranging from post-concussion syndrome to possible neurodegenerative diseases. This blast type of loading is expected to continue in the near future due to the asymmetrical nature of warfare in urban conditions. DOD, VA and other government agencies have sponsored many projects to understand the origin of, to identify the mechanisms of, and to offer prognostic, diagnostic, therapeutic solutions to this blast induced mild TBI. Large volumes of data on experimental animal models (mostly rats) on BINT are being published with a range of biological, biochemical, and biomedical observations. However, the data cannot be collated or correlated with each other, since the biomechanical loading condition of the rodents are very different among the various laboratories and not consistent. Thus, despite the heavy investments from the DOD and significant research effort expended on the topic, no substantive progress has been made. Each of the results by themselves may be useful but collectively there is no progress, as cross-laboratory validation of input conditions is currently not possible. This proposed idea of developing a biomechanically accurate rat model, which can precisely measure the loading conditions for each and every experimental animal model will allow correlation and cross-validation of research outcomes of different studies (remove that deficit). Blasts during explosions generate shock waves that can be precisely measured in terms of blast overpressure-time loading pulse. Such a pulse is characterized by a very sharp increase in overpressure within a microsecond followed by an exponentially decaying pressure with duration of a few milliseconds. Using the right shock wave measuring pressure transducer with at least a 1 MHz frequency, the device can characterize the pulse. The pulse measured should be a pure shock wave described by a Friedlander wave with overpressures in the range of 30-450 kPa and duration of 3-7 msec. Outside of these ranges, even if it is a pure shock wave, it is not field-relevant to cause mild TBI. The device shall be anthropometrically accurate in terms of shape, size, weight and weight distribution. The device shall accurately measure both pressure and acceleration pulse at different points in the rat. The device shall also be capable of being placed in most of the experimental set ups used by different researcher as an assessment tool.Currently, blast experimental animal models are tested in: live-fire testing; compressed-gas blast tube; small explosion shock tube; and combustion shock tube. These tubes vary from about half an inch circular tubes to 29 in square sections-range from 3 feet in length to 40 feet. Experimental rats are placed in metallic or wired cages, hung in baskets, simply suspended from the top, or placed at the end of a long rod or securely placed on aerodynamic rigid plates and oriented in line with, or normal to or at angle to shock waves. The proposed surrogate device shall be able to be placed in all the above conditions and should be capable of repeated exposures to the range of pressure and durations along with possible jet winds.

PHASE I: Design a concept for a rat testing device that can measure the actual biomechanical loading conditions in experimental blast injury animal models. In this phase, various geometric, material and manufacturing constraints for the device will be defined to meet the test conditions for use in live-fire and shock tube experiments. The number and type of measurement tools (e.g. pressure sensors, their locations, attachment methods) and accompanying electronics (hardware, software, data acquisition devices, video images,) and software needed to achieve proper calibration of the device will be identified. The calibration procedure and the ability to identify non-ideal biomechanical blast conditions will be delineated.

Phase I deliverables will include:

- Development of the specification for the rat test device

ARMY - 39

Page 40: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

- Computer model (e.g. 3D CAD drawing) of the device showing various part drawings, measurement tools, locations and wiring diagram - Sample working model of the device (e.g. 3D printer) - Innovation points and the various methods to improve the use of the device under a variety of loading conditions

PHASE II: Fabricate the rat testing device using the actual specification developed in Phase I. Using the right number and type of pressure and acceleration sensors, correlate the measured values with those computed theoretically (e.g. ConWep). Conduct tests in a well-calibrated shock tube model where both static and dynamic pressures are known a priori. The tests shall span the range of pressure from 30 kPa to 450 kPa in increments of 30 kPa and duration of 3 msec, 5 msec and 7 msec. The rat model should be easily secured similar to the live rat model in experiments. The device should be rugged enough for repeated (multiple) testing and should allow for non-ideal jet wind loading conditions. Develop, test and demonstrate that the prototype rat test device can be deployed in actual conditions to measure and identify the right biomechanical loading conditions, or, at the very least, accurately determine what the conditions were that the animal models were subjected to thus facilitating cross-comparison of the results from (other) laboratories.

PHASE III DUAL USE APPLICATIONS: In this phase, funds may be sought from the private sector for further development and production of test devices for use in various laboratories as well as for shock tube manufacturers. The device can also be used by government, academic or commercial sector researchers in developing better shock tubes or fine tune their tubes based on test results. The device, along with the instrumentation, hardware/software and test protocols can be patented and commercially licensed for use. It is also expected that the awardees may extend this concept and device to other injury models.

REFERENCES:1. James H. Stuhmiller, Blast injury: Translating research into operational medicine, Borden Institute, https://blastinjuryresearch.amedd.army.mil/index.cfm?f=application.publications

2. Firas Kobeissy et. al, Assessing Neuro-Systemic and Behavioral Components in the Pathophysiology of Blast-Related Brain Injury, Frontiers in Neurology, 10.3389/feneur.2013.00186, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836009/

3. A. Sundaramurthy et. al, A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube, Frontiers in Neurology, 10.3389/fneur.2014.00253, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4251450/

4. R. K. Gupta et. al, Mathematical Models of blast-induced TBI: Current status, challenges and prospects, Frontiers in Neurology, 10.3389/fneur.2013.00059, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667273/

KEYWORDS: Blast injury, Shock tubes, Traumatic Brain injury, Animal models, Test devices, Assessment tools, Mechanical surrogates

A17A-T023 TITLE: Field Verification of Micro/Ultra Filtration

TECHNOLOGY AREA(S): Human Systems

OBJECTIVE: Design a novel approach and deliver a device that will verify micro/ultra filtration for expeditionary water purification systems.

ARMY - 40

Page 41: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

DESCRIPTION: The Army seeks a simplified, real-time, inline monitoring of product water from military mobile water treatment systems to verify low pressure water treatment processes to enable the Army to accomplish two operational energy mission objectives: 1) allow easy scale down of water treatment systems for use in expeditionary water supply operations, and 2) reduce the fuel required for water treatment of stable, fresh water sources (i.e. allow by-pass of the reverse osmosis treatment). Since the required application is process control, identification is not as important as the knowledge that potentially viable microorganisms made it through treatment processes that were designed first to exclude them by size and then to disinfect them. Objectively, a small size configuration would support special operations that may prefer to exploit water sources with limited or no purification, however, most purification equipment will have its own generator and not be of man-portable size. The technical approach must lead to a device that is rugged and supportable in remote areas worldwide. The best approach uses sensor measurements or measurement techniques that have not been applied to water monitoring. Real-time can be considered less than 1 hour, however, time and sensitivity are relative to the best available performance for the information the device will provide, for example, it is a significant achievement to certify less than 1 e. coli per 100ml in less than 8 hours.

PHASE I: Demonstrate feasibility of measurement algorithm comprising a statistically robust number of samples of tap water spiked with a pathogen surrogate relevant to your measurement method. Verify measurement precision and repeatability by comparing the results to analysis conducted using the appropriate reference method from the current edition of Standard Methods for the Examination of Water and Wastewater (i.e. send some duplicate samples out for individual analyses by a commercial water test lab). Analyze to estimate operating cost per hour assuming device used 20 hours per day. Perform analysis and test to address any fundamental environmental and transport durability issues for the proposed design. Perform analysis and test to determine expected precision/sensitivity and time per measurement.

PHASE II: Deliver a complete sensor prototype or a probe (subsystem) that can integrate into existing commercial and military sensor suites to complete a sensor prototype. The sensor prototype should be capable of communication with an external data logger. Delivered prototype must be suitable for 3rd party and Army laboratory testing and field demonstration, but design does not need to be finalized, nor is military standard durability required. Clear operational manuals do not require military format. If choosing to integrate the probe (subsystem) into an existing military sensor suite, assume the military will perform integration. Test integrated prototypes to the criteria of Phase I with standard preparations and collected water and with both surrogate materials and real pathogens.

PHASE III DUAL USE APPLICATIONS: Final solution is a quick-connect autonomous inline system but a kit that accepts batch samples may be suitable. The sensor platform should be self-calibrating with duration of at least one month before recalibration is needed. The most supportable design would utilize commonly available supplies, common communication protocols and not directly interface with the controls of the water purification system. The Army can integrate the technology developed under this STTR into the mobile water purification systems being developed to answer Acquisition requirements and upgrade current systems. Water utilities could insert the technology developed under this STTR in facilities to improve quality control.

REFERENCES:1. U.S. Army Public Health Command - TB MEDD 577 SANITARY CONTROL AND SURVEILLANCE OF FIELD WATER SUPPLIES http://phc.amedd.army.mil Note: This fully explains all field military operations that concern this topic author.

2. Standard Methods for the Examination of Water and Wastewater, a joint publication of the American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF). http://www.standardmethods.org/ Note: This reference is the benchmark for all analyses and source of approved methods for regulatory compliance.

3. “Complying with the Safe Drinking Water Act", US Army Public Health Command Technical Guide 179. Available to public online at: https://phc.amedd.army.mil/Pages/Library.aspx?Series=PHC+Technical+Information+Paper Note: section 4.4 Microbial Contaminants refers to military and

ARMY - 41

Page 42: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

civilian overlap.

4. “Filtration in the Use of Individual Water Purification Devices," US Army Public Health Command Technical Information Paper #31-004-0211. Available to public online at: https://phc.amedd.army.mil/Pages/Library.aspx?Series=PHC+Technical+Information+Paper Note: This is an excellent primer of filtration processes.

KEYWORDS: water, water quality monitoring, pathogen, filtration, water purification, sensor, microfiltration, ultrafiltration

A17A-T024 TITLE: Additive Manufactured Smart Structures with Discrete Embedded Sensors

TECHNOLOGY AREA(S): Materials/Processes

OBJECTIVE: Development of a hybrid additive manufacturing / 3D printing method capable of printing polymer and/or metallic smart structures with embedding electronic devices, such as sensors, accelerometers, antennas, tracking systems, etc.

DESCRIPTION: The Army desires to enhance the effectiveness and survivability of our ground systems by embedding sensors and electronics into both metallic and polymer structures. These sensors will be able to add health monitoring functionalities, threat detection, and improved communications. The goal is add these capabilities without no visual signatures, which would suggest that electronics devices are embedded. The purpose of this STTR is to explore the use of emerging Additive Manufacturing (AM) techniques to increase manufacturing flexibility and produce more effective metallic and polymer structures. Technology will support a wide range of military applications, such as autonomous vehicles and bridge structures.

Additive Manufacturing (AM) describes technologies that fabricate 3-dimensional objects by progressively building up material. Typically, successive layers of material are deposited under computer control to form an intended object. The term AM encompasses many approaches and includes the concepts of 3D Printing, Direct Digital Manufacturing (DDM), layered manufacturing, additive fabrication, and printed circuit boards. While these technologies are long established state-of-art fabrication technologies, little work has been done to look at interrupting the fabrication process and adding secondary operations such are machining, printed electronics and allowing pick & place of selected electronics. The technology will need to integrate temperature/vision sensors, closed feedback control, and precise CNC movement.

PHASE I: Perform proof-of-concept analysis and experiments that demonstrate the feasibility of a hybrid AM technology:

-Demonstrating the feasibility of using the AM technology to process the chosen structural materials by fabricating laboratory test coupons that possess the required material properties and represent a path to producing the target components.-Demonstrating the feasibility of producing simple polymer component geometries with embedded electronics-Identifying the key process parameters that need to be controlled and optimized in order to develop an effective method that can be transitioned into a qualified operation.-Develop process needed to manufacture metallic structures

PHASE II: Expand the scope of the Phase I exploration to study AM technologies suitable for manufacture of both large scale Metallic and Polymer structures with a wide range of internal electronics. A robust prototype AM system will be produced under the Phase II. Work should include a review of requirements and the development of the system design relevant to a chosen application. The project should then proceed to acquire or build the necessary components and fabricate the prototype AM system in line with the design. Method studies should be performed to explore the prototype system’s fabrication of test coupons and representative parts using the MMC. The prototype AM system should be improved in the course of the method studies to incorporate results of the research. Method

ARMY - 42

Page 43: Web viewDesired sensitivity is within "real world ... of that particular laboratory can then be cross-correlated across ... for the Examination of Water

development should be verified through materials analysis of test coupons that confirm and improve the theoretical basis for the method. Materials tests that are appropriate for the target application should be developed and used to validate the performance of the technology. Coupons will have a rough size of 12 inches wide, 12 inches long, and a height of 6 inches. Phase II deliverables include the prototype AM system, 6 test coupons and a detailed final report describing the testing implementation and results, and scale-up observations. The report must also contain detailed procedures for casing material synthesis/fabrication and scaling.

PHASE III DUAL USE APPLICATIONS: With a successful Phase II demonstration, the contractor shall determine the capabilities for process control and the development of a strategy for qualification. Additionally, the contractor shall integrate and test the solution on several vehicle platform and demonstrate a path to commercialization and certification. Initial applications focus on the deployment novel vehicle and bridging components. Commercial applications are widespread, including personal and medical devices. Focus will be on Structural health monitoring/sensing.

REFERENCES:1. Siggard, Erik J., et al. "Structurally embedded electrical systems using ultrasonic consolidation (UC)." Proceedings of the 17th solid freeform fabrication symposium. 2006.

2. Bourell, D. L., et al. "A brief history of additive manufacturing and the 2009 roadmap for additive manufacturing: looking back and looking ahead." Proceedings of RapidTech (2009): 24-25

3. Love, Lonnie J., et al. "The importance of carbon fiber to polymer additive manufacturing." Journal of Materials Research 29.17 (2014): 1893-1898.

4. D. Espalin, D. W. Muse, F. Medina, E. MacDonald, and R. B. Wicker, “3D Printing multi-functionality: structures with electronics," International Journal of Advanced Manufacturing Technology

5. MacDonald; R. Salas; D. Espalin; M. Perez; E. Aguilera; D. Muse; R. Wicker, "3D Printing for the Rapid Prototyping of Structural Electronics," Access IEEE, no.99, pp. 1-12, 2013.

KEYWORDS: Additive manufacturing, additive fabrication, 3D printing, Direct Digital Manufacturing, layered manufacturing, embedded sensors / electronics, Hybrid Additive Manufacturing, printed electronics.

ARMY - 43