65
1- - Vibration 3 2DOF and Multiple DOF systems

Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

1-

-

Vibration 3

2DOF and Multiple DOF systems

Page 2: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

2

-

Chapter 4 Multiple Degree of Freedom Systems

Extending the first 3 chapters to more then one degree of freedom

Rao’s textbook: Chap 5

Page 3: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

3

-

Two Degrees of Freedom (4.1)

x1 x2

k1m1 m2

k2

Page 4: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

4

-

Free-Body Diagram

x1 x2

m1 m2k1 x1

k2(x2 -x1)

Page 5: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

5

-

Equations of Motion

( )( )

0)()()(0)()()()(

:gRearrangin)()()(

)()()()(

221222

2212111

12222

1221111

=+−=−++

−−=−+−=

txktxktxmtxktxkktxm

txtxktxmtxtxktxktxm

&&

&&

&&

&&

Page 6: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

6-

-

Initial Conditions

• Two coupled, second -order, ordinary differential equations with constant coefficients

• Needs 4 constants of integration to solve• Thus 4 initial conditions on positions and

velocities

202202101101 )0(,)0(,)0(,)0( xxxxxxxx &&&& ====

Page 7: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

7

-

Solution by Matrix Methods

0KxxM

KM

xxx

=+

⎥⎦

⎤⎢⎣

⎡−

−+=⎥

⎤⎢⎣

⎡=

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

&&

&&

&&&&

&

&&

22

221

2

1

2

1

2

1

2

1

,0

0

)()(

)(,)()(

)(,)()(

)(

kkkkk

mm

txtx

ttxtx

ttxtx

t

Page 8: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

8

-

Initial Conditions

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡=

20

10

20

10 )0( ,)0(xx

xx

&

&&xx

Page 9: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

9

-

Solution:

Let x(t) = ue jωt

j = −1, u / = 0, ω unknown

⇒ -ω2M + K( )ue jωt = 0

⇒ -ω2M + K( )u = 0

Page 10: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

10

-

Changes ODE into algebraic equation

-ω2M + K( )u = 0 ⇒

two algebraic equation in 3 uknowns

u =u1

u2

⎣ ⎢ ⎤

⎦ ⎥ , and ω

Page 11: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

11

-

Condition for Solution:

inv -ω2 M + K( ) exists ⇒ u = 0

Require u / = 0 ⇒ -ω2 M + K( )−1 does not exist

or det -ω2M + K( )= 0

One equation in one unknown w

Page 12: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

12

-

Back to our specific system: the characteristic equation

det -ω2M + K( )= 0 ⇒

det−ω2m1 + k1 + k2 −k2

−k2 −ω2m2 + k2

⎣ ⎢ ⎤

⎦ ⎥ = 0 ⇒

m1m2ω4 − (m1k2 + m2k1 + m2k2)ω2 + k1k2 = 0

Quadratic in ω2 so four solutionsω2

1 and ω22 or +ω1 and + ω2

Page 13: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

13

-

Calculating the corresponding vectors u1 and u2

(−ω12M + K)u1 = 0

(−ω22M + K)u2 = 0

A vector equation for each square frequency

And:

4 equations in the 4 unknowns (eachvector has 2 components, but...

Page 14: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

14

-

Numerical examples

• m1=9 kg,m2=1kg, k1=24 N/m and k2=3 N/m• Characteristic equation becomes

ω4-6ω2+8=(ω2-2)(ω2-4)=0ω2 =2 and ω2 =4 or

ω1,3 = ± 2 rad/s, ω2,4 = ±2 rad/s

Each value of ω2 yields an expression or u:

Page 15: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

15

-

Computing the vectors u

For ω12 = 2, let u1 =

u11

u12

⎡ ⎣ ⎢

⎤ ⎦ ⎥ then we have

(-ω12M + K)u = 0 ⇒

27 − 9(2) −3−3 3 − (2)

⎡ ⎣ ⎢

⎤ ⎦ ⎥

u11

u12

⎣ ⎢ ⎤

⎦ ⎥ =00

⎡ ⎣ ⎢

⎤ ⎦ ⎥

9u11 − 3u12 = 0 and − 3u11 + u12 = 0

2 equations, 2 unknowns but DEPENDENT!

Page 16: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

16

-

0u0u

u0u

u

=+−⇔=+−

=+−

=+−

=⇒=

1211

21

1121

1

21

121112

11

)()(

:arbitrary , does so ,)(

satisfies Suppose arbitrary. is magnitude The.0)(det :because is This

!determined becan magnitude not the direction, only the

:equationsboth from 31

31

KMaKM

aaKM

KM

uuuu

ωω

ω

ω

continued

Page 17: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

17

-

Likewise for the second value of ω2:

For ω22 = 4, let u2 =

u21

u22

⎣ ⎢ ⎤

⎦ ⎥ then we have

(-ω12M + K)u = 0 ⇒

27 − 9(4) −3−3 3 − (4)

⎡ ⎣ ⎢

⎤ ⎦ ⎥

u21

u22

⎣ ⎢ ⎤

⎦ ⎥ =00

⎡ ⎣ ⎢

⎤ ⎦ ⎥

−9u21 − 3u22 = 0 or u21 = −13

u22

Note that the other equation is the same

Page 18: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

18-

-

What to do about the magnitude!

⎥⎦

⎤⎢⎣

⎡−=⇒=

⎥⎦

⎤⎢⎣

⎡=⇒=

11

11

31

222

31

112

u

u

u

u

Several possibilities, here we just fix one element:

Choose:

Choose:

Page 19: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

19

-

Thus the solution to the algebraic matrix equation is:

ω1,3 = ± 2, u1 =13

1⎡ ⎣ ⎢

⎤ ⎦ ⎥

ω2,4 = ±2, u2 =−13

1⎡ ⎣ ⎢

⎤ ⎦ ⎥

Page 20: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

20

-

Return now to the time response:

x(t) = u1e− jω1t ,u1e

jω1t ,u2e− jω2t ,u2e

jω2t ⇒

x(t) = au1e− jω1t + bu1e

jω1t + cu2e− jω2t + du2e

jω2t

⇒ x(t) = ae− jω1t + be jω1t( )u1 + ce− jω2t + de jω2t( )u2

= A1 sin(ω1t + φ1)u1 + A2 sin(ω2t + φ2 )u2

where A1, A2 ,φ1, and φ2 are constants of integration

We have four solutions:

Since linear we can combine as:

determined by initial conditions

Page 21: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

21

-

Physical interpretation of all that math!

• Each of the TWO masses is oscillating at TWO natural frequencies ω1 and ω2

• The relative magnitude of each sine term, and hence of the magnitude of oscillation of m1 and m2 is determined by the value ofA1u1 and A2u2

• The vectors u1 and u2 are calledmode shapes

Page 22: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

22

-

What is a mode shape?

• First note that A1,A2, φ1 and φ2 are determined by the initial conditions

• Choose them so that A2 = φ1 = φ2 =0• Then:

• Thus each mass oscillates at (one) frequency ω1with magnitudes proportional to u1 the 1st mode shape

x(t) =x1(t)x2 (t)

⎡ ⎣ ⎢

⎤ ⎦ ⎥

= A1

u11

u12

⎡ ⎣ ⎢

⎤ ⎦ ⎥ sinω1t

Page 23: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

23

-

Mode shapes:

Mode 1:

Mode 2:

1/3

-1/3

1

1

m1

m2

m2

m2

Page 24: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

24

-

Example (continue on)

( ) ( )( ) ( )

( ) ( )( ) ( ) ⎥

⎢⎢

+++

+−+=⎥

⎤⎢⎣

⎥⎥

⎢⎢

+++

+−+=⎥

⎤⎢⎣

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

2211

22

11

2

1

2211

22

11

2

1

2cos22cos2

2cos23

2cos23)(

)(

2sin2sin

2sin3

2sin3)(

)(

00

)0( mm, 01

=(0)consider

φφ

φφ

φφ

φφ

tAtA

tAtA

txtx

tAtA

tAtA

txtx

&

&

&xx

Page 25: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

25

-

( ) ( )( ) ( )

( ) ( )( ) ( ) ⎥

⎢⎢

+

−=⎥

⎤⎢⎣

⎥⎥

⎢⎢

+

−=⎥⎦

⎤⎢⎣

2211

22

11

2211

22

11

sin2sin2

sin3

2sin230

0

sinsin

sin3

sin30

mm 1

φφ

φφ

φφ

φφ

AA

AA

AA

AA

At t=0 we have

Page 26: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

26

-

3 = A1 sin φ1( )− A2 sin φ2( )0 = A1 sin φ1( )+ A2 sin φ2( )0 = A1 2 cos φ1( )− A2 2cos φ2( )0 = A1 2 cos φ1( )+ A2 2cos φ2( )

A1 = 1.5 mm, A2 = −1.5 mm,φ1 = φ2 =π2

rad

4 equations in 4 unknowns:

Yields:

Page 27: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

27

-

Solution:

x1(t) = 0.5cos 2t + 0.5cos2tx2 (t) = 1.5cos 2t −1.5cos2t

0 5 10 15 20

4

2

2

4

x1 t

x2 t

t

mm

seconds

Page 28: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

28

-

Solution as a sum of modes

x(t) = u1 cosω1t + u2 cosω2t

Determines how the first frequency contributes to theresponse

Determines how the second frequency contributes to theresponse

Page 29: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

29

-

Things to note

• Two degrees of freedom implies twonatural frequencies

• Each mass oscillates at with these two frequencies present in the response

• Frequencies are not those of two component systems

ω1 = 2 ≠k1

m1

= 1.63 , ω 2 = 2 ≠k 2

m 2

= 1.732

Page 30: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

30

-

Motor-pump system on springs

Figs.5.1

Page 31: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

31

-

Packaging of an instrument (portable electronics)

Figs.5.2

Page 32: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

32

-

• As is evident from the systems shown in Figs.5.1 and 5.2, the configuration of a system can be specified by a set of independent coordinates termed as generalized coordinates, such as length, angle, or some other physical parameters.

• Principle coordinates is defined as any set of coordinates that leads a coupled equation of motion to an uncoupledsystem of equations.

Principle coordinates

Page 33: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

33

-

)2.5()()()1.5()()(

2232122321222

1221212212111

FxkkxkxccxcxmFxkxkkxcxccxm

=++−++−=−++−++

&&&&

&&&&

)3.5( )()(][)(][)(][ tFtxktxctxmrr&r&&r =++

Equations of Motion for 2DOF System

where [m], [c], and [k] are called the mass, damping, and stiffness matrices, respectively, and are given by

Page 34: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

34

-

⎥⎦

⎤⎢⎣

⎡+−

−+=⎥

⎤⎢⎣

⎡=

322

221

2

1

][ 0

0 ][

kkkkkk

km

mm

][][],[][ kkmm TT ==

where the superscript T denotes the transpose of the matrix.

Matrices [m] and [k] are symmetric:

Properties of M & K Matrices

Page 35: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

35

-

Solution: For the given data, the eigenvalueproblem, Eq.(5.8), becomes

Ex 5.3 Free Vibration Response of a Two Degree of Freedom System

).0()0()0( ,1)0( 2211 xxxx && ===

Find the free vibration response of the system shown in Fig.5.3(a) with k1 = 30, k2 = 5, k3 = 0, m1= 10, m2 = 1 and c1 = c2 = c3 = 0 for the initial conditions

(E.1)00

55- 5 3510

00

2

12

2

2

1

322

22

2212

1

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

+−

−+−

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

++−−

−++−

XX

XX

kkmk

kkkm

ω

ω

ω

ω

or

Page 36: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

36

-

from which the natural frequencies can be found as

By setting the determinant of the coefficient matrix in Eq.(E.1) to zero, we obtain the frequency equation,

Example 5.3 Solution

(E.2)01508510 24 =+− ωω

E.3)(4495.2,5811.10.6,5.2

21

22

21

====

ωωωω

The normal modes (or eigenvectors) are given by

E.5)(5

1

E.4)(21

)2(1)2(

2

)2(1)2(

)1(1)1(

2

)1(1)1(

XX

XX

XX

XX

⎭⎬⎫

⎩⎨⎧−

=⎪⎭

⎪⎬⎫

⎪⎩

Page 37: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

37

-

By using the given initial conditions in Eqs.(E.6) and (E.7), we obtain

The free vibration responses of the masses m1and m2 are given by (see Eq.5.15):

(E.7))4495.2cos(5)5811.1cos(2)(

(E.6))4495.2cos()5811.1cos()(

2)2(

11)1(

12

2)2(

11)1(

11

φφ

φφ

+−+=

+++=

tXtXtx

tXtXtx

(E.11)sin2475.121622.3)0(

(E.10)sin4495.2sin5811.10)0(

(E.9)cos5cos20)0(

(E.8)coscos1)0(

2)2(

1)1(

12

2)2(

11)1(

11

2)2(

11)1(

12

2)2(

11)1(

11

φ

φφ

φφ

φφ

XXtx

XXtx

XXtx

XXtx

+−==

−−===

−===

+===

&

&

Example 5.3 Solution

Page 38: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

38

-

while the solution of Eqs.(E.10) and (E.11) leads to

The solution of Eqs.(E.8) and (E.9) yields

(E.12)72cos;

75cos 2

)2(11

)1(1 == φφ XX

(E.13)0sin,0sin 2)2(

11)1(

1 == φφ XX

Equations (E.12) and (E.13) give

(E.14)0,0,72,

75

21)2(

1)1(

1 ==== φφXX

Example 5.3 Solution

Page 39: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

39

-

Thus the free vibration responses of m1 and m2are given by

(E.16)4495.2cos7

105811.1cos7

10)(

(E.15)4495.2cos725811.1cos

75)(

2

1

tttx

tttx

−=

+=

Example 5.3 Solution

Page 40: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

40

-

which upon rearrangement become

5.4 Torsional System

22312222

11221111

)(

)(

ttt

ttt

MkkJ

MkkJ

+−−−=

+−+−=

θθθθ

θθθθ&&

&&

Consider a torsional system as shown in Fig.5.6. The differential equations of rotational motion for the discs can be derived as

)19.5()(

)(

22321222

12212111

tttt

tttt

MkkkJ

MkkkJ

=++−

=−++

θθθ

θθθ&&

&&

For the free vibration analysis of the system, Eq.(5.19) reduces to

Page 41: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

41

-

From

dynami

)20.5(0)(

0)(

2321222

2212111

=++−

=−++

θθθ

θθθ

ttt

ttt

kkkJ

kkkJ&&

&&

Figure 5.6: Torsional system with discs mounted on a shaft

5.4 Torsional System

Page 42: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

42

-

Find the natural frequencies and mode shapes for the torsional system shown in Fig.5.7 for J1 = J0 , J2 = 2J0 and kt1 = kt2 = kt .

Solution: The differential equations of motion, Eq.(5.20), reduce to (with kt3 = 0, kt1 = kt2 = kt, J1 = J0 and J2 = 2J0):

Ex 5.4 Natural Frequencies of a Torsional System

(E.1) 02

02

2120

2110

=+−

=−+

θθθ

θθθ

tt

tt

kkJ

kkJ&&

&&Fig.5.7:Torsional system

Page 43: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

43

-

The solution of Eq.(E.3) gives the natural frequencies

gives the frequency equation:

Example 5.4 Solution

(E.2)2,1);cos()( =+Θ= itt ii φωθ

(E.3)052 20

220

4 =+− tt kkJJ ωω

0t0t

02

01

/k5102.1/k0.4682

(E.4))175(4

and)175(4

JJ

Jk

Jk tt

==

+=−= ωω

Rearranging and substituting the harmonic solution:

Page 44: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

44

-

Equations (E.4) and (E.5) can also be obtained by substituting the following in Eqs.(5.10) and (5.11).

The amplitude ratios are given by

Example 5.4 Solution

(E.5)2808.04

)175(2

7808.14

)175(2

)2(1

)2(2

2

)1(1

)1(2

1

−=+

−=ΘΘ

=

=−

−=ΘΘ

=

r

r

0and2,,,

3022011

2211

=========

kJJmJJmkkkkkk tttt

Page 45: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

45

-

Generalized coordinates are sets of n coordinates used to describe the configuration of the system.Equations of motion for a lathe Using x(t) and θ(t)

5.5 Coordinate Coupling and Principal Coordinates

Page 46: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

46

-

and the moment equation about C.G. can be expressed as

)21.5()()( 2211 θθ lxklxkxm +−−−=&&

From the free-body diagram shown in Fig.5.10a, with the positive values of the motion variables as indicated, the force equilibrium equation in the vertical direction can be written as

)22.5()()( 2221110 llxkllxkJ θθθ +−−=&&

Eqs.(5.21) and (5.22) can be rearranged and written in matrix form as

5.5 Coordinate Coupling and Principal Coordinates

Page 47: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

47

-

The lathe rotates in the vertical plane and has vertical motion as well, unless k1l1 = k2l2. This is known as elastic or static coupling.

From Fig.5.10b, the equations of motion for translation and rotation can be written as

)23.5(00

)( )(

)( )(

00

22

212211

221121

0 21 ⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

+−−

−−++

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡θθx

lklklklk

lklkkkxJ

m&&

&&

•Equations of motion Using y(t) and θ(t).

θθθ &&&& melyklykym −′+−′−−= )()( 2211

5.5 Coordinate Coupling and Principal Coordinates

Page 48: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

48

-

These equations can be rearranged and written in matrix form as

)24.5()()( 222111 ymellykllykJ P &&&& −′′+−′′−= θθθ

)25.5(00

)()(

)()(

22

2112211

112221

2 ⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡′+′′+′−

′−′++

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡θθy

lklklklk

lklkkkyJmemem

P&&

&&

If , the system will have dynamic or inertiacoupling only.

2211 lklk ′=′

Note the following characteristics of these systems:

5.5 Coordinate Coupling and Principal Coordinates

Page 49: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

49

-

1. In the most general case, a viscously damped 2DOF system has the equations of motions in the form:

)26.5(00

2

1

2221

1211

2

1

2221

1211

2

1

2221

1211

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡xx

kkkk

xx

cccc

xx

mmmm

&

&

&&

&&

2.The system vibrates in its own natural way regardless of the coordinates used. The choice of the coordinates is a mere convenience.

3.Principal or natural coordinates are defined as system of coordinates which give equations of motion that are uncoupled both statically and dynamically.

5.5 Coordinate Coupling and Principal Coordinates

Page 50: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

50

-

Ex 5.6 Principal Coordinates of Spring-Mass System

Determine the principal coordinates for the spring-mass system shown in Fig.5.4.

Page 51: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

51

-

We define a new set of coordinates such that

Approach: Define two independent solutions as principal coordinates and express them in terms of the solutions x1(t) and x2(t).

The general motion of the system shown is

Example 5.6 Solution

(E.1)3coscos)(

3coscos)(

22112

22111

⎟⎟⎠

⎞⎜⎜⎝

⎛+−⎟⎟

⎞⎜⎜⎝

⎛+=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+=

φφ

φφ

tmkBt

mkBtx

tmkBt

mkBtx

Page 52: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

52

-

Since the coordinates are harmonic functions, their corresponding equations of motion can be written as

Example 5.6 Solution

(E.2)3cos)(

cos)(

222

111

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

φ

φ

tmkBtq

tmkBtq

(E.3)03

0

22

11

=⎟⎠⎞

⎜⎝⎛+

=⎟⎠⎞

⎜⎝⎛+

qmkq

qmkq

&&

&&

Page 53: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

53

-

The solution of Eqs.(E.4) gives the principal coordinates:

From Eqs.(E.1) and (E.2), we can write

Example 5.6 Solution

(E.4))()()()()()(

212

211

tqtqtxtqtqtx

−=+=

(E.5))]()([21)(

)]()([21)(

212

211

txtxtq

txtxtq

−=

+=

Page 54: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

54

-

The equations of motion of a general 2DOF system under external forces can be written as

Consider the external forces to be harmonic:

Forced Vibration Analysis

)27.5(

2

1

2

1

2221

1211

2

1

2221

1211

2

1

2212

1211

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡FF

xx

kkkk

xx

cccc

xx

mmmm

&

&

&&

&&

)28.5(2,1,)( 0 == jeFtF tijj

ω

where ω is the forcing frequency. We can write the steady-state solutions as

)29.5(2,1,)( == jeXtx tijj

ω

Page 55: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

55

-

Substitution of Eqs.(5.28) and (5.29) into Eq.(5.27) leads to

Forced Vibration Analysis

)30.5(

)()(

)()(

20

10

2

1

22222221212122

1212122

1111112

⎭⎬⎫

⎩⎨⎧

=

⎭⎬⎫

⎩⎨⎧

⎥⎥⎦

⎢⎢⎣

++−++−

++−++−

FF

XX

kcimkcim

kcimkcim

ωωωω

ωωωω

We defined as in Section 3.5 the mechanical impedance Zre(iω) as

)31.5(2,1,,)( 2 =++−= srkcimiZ rsrsrsrs ωωω

Page 56: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

56

-

And write Eq.(5.30) as:

[ ] )32.5()( 0FXiZrr

=ωwhere

[ ]

⎭⎬⎫

⎩⎨⎧

=

⎭⎬⎫

⎩⎨⎧

=

=⎥⎦

⎤⎢⎣

⎡=

20

100

2

1

2212

1211 matrix Impedance)( )()( )(

)(

FF

F

XX

X

iZiZiZiZ

iZ

r

r

ωωωω

ω

Eq.(5.32) can be solved to obtain:

Forced Vibration Analysis

Page 57: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

57

-

where the inverse of the impedance matrix is given

Forced Vibration Analysis

[ ] )33.5()( 01 FiZXrr −= ω

[ ] )34.5()( )()( )(

)()()(1)(

1112

12222

122211

1⎥⎦

⎤⎢⎣

⎡−−

=−

ωωωω

ωωωω

iZiZi-ZiZ

iZiZiZiZ

Eqs.(5.33) and (5.34) lead to the solution

)35.5()()()(

)()()(

)()()()()()(

2122211

201110122

2122211

201210221

ωωωωωω

ωωωωωω

iZiZiZFiZFiZiX

iZiZiZFiZFiZiX

−+−

=

−−

=

Page 58: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

58

-

Find the steady-state response of system shown in Fig.5.13 when the mass m1 is excited by the force F1(t) = F10 cos ωt. Also, plot its frequency response curve.

Ex 5.8 Steady-State Response of Spring-Mass System

Page 59: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

59

-

The equations of motion of the system can be expressed as

Example 5.8 Solution

(E.1)0

cos2

2 0

0 10

2

1

2

1

⎭⎬⎫

⎩⎨⎧

=⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡+

⎭⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡ tFxx

k-k-kk

xx

mm ω

&&

&&

E.2)(2,1;cos)( == jtXtx jj ω

We assume the solution to be as follows.

Eq.(5.31) gives(E.3))(,2)()( 12

22211 kZkmZZ −=+−== ωωωω

Page 60: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

60

-

Example 5.8 Solution

(E.5)))(3()2(

)(

(E.4)))(3(

)2()2(

)2()(

2210

22210

2

2210

2

22210

2

1

kmkmkF

kkmkFX

kmkmFkm

kkmFkmX

+−+−=

−+−=

+−+−+−

=−+−

+−=

ωωωω

ωωω

ωωω

Eqs.(E.4) and (E.5) can be expressed as

Hence,

E.6)(

1

2

)(2

1

2

1

2

1

2

10

2

1

1

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=

ωω

ωω

ωω

ωω

ω

k

F

X

Page 61: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

61

-

Fig.5.14: Frequency response curves

Example 5.8 Solution

E.7)(

1

)(2

1

2

1

2

1

2

102

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛=

ωω

ωω

ωω

ω

k

FX

Page 62: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

62

-

Semidefinite Systems

)36.5(0)(0)(

1222

2111

=−+=−+

xxkxmxxkxm

&&

&&

Semidefinite systems are also known as unrestrained or degenerate systems. Two examples of such systems are shown in Fig.5.15. For Fig.5.15a, the equations of motion can be written as

For free vibration, we assume the motion to be harmonic:

)37.5(2,1),cos()( =+= jtXtx jjj φω

Page 63: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

63

-

Semidefinite Systems

)38.5(0)(

0)(

22

21

212

1

=+−+−

=−−−

XkmkX

kXXkm

ω

ω

Substituting Eq.(5.37) into Eq.(5.36) gives

Fig.5.15: Semidefinite Systems

Page 64: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

64

-

Semidefinite Systems

From which the natural frequencies can be obtained:

Such systems, which have one of the natural frequencies equal to zero, are called semidefinitesystems.

)40.5()(and 021

2121 mm

mmk +== ωω

We obtain the frequency equation as)39.5(0)]([ 21

221

2 =+− mmkmm ωω

Page 65: Vibration 3 - Eastern Mediterranean Universityopencourses.emu.edu.tr/pluginfile.php/4486/mod_resource... · 2013-06-21 · 6 -Initial Conditions •Two coupled, second -order, ordinary

65

-

)10.5())((4

)()(21

)()(21,

2/1

21

223221

2

21

132221

21

13222122

21

⎭⎬⎫

⎩⎨⎧ −++

⎢⎢⎣

⎭⎬⎫

⎩⎨⎧ +++

⎭⎬⎫

⎩⎨⎧ +++

=

mmkkkkk

mmmkkmkk

mmmkkmkk

m

ωω

{ }{ } )9.5(0))((

)()()(223221

1322214

21

=−+++

+++−

kkkkk

mkkmkkmm ωω

Frequency (characteristic) equation for 2DOF mass-spring system