41
Radical cation and dication of a 4H-dithieno[2,3-b:3',2'-e][1,4]thiazine Arno Schneeweis, a Andreas Neidlinger, b Guido J. Reiss, c Walter Frank, c Katja Heinze, b and Thomas J. J. Müller* ,a a Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany b Institut für Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany c Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany Email: [email protected] Table of contents 1 General Considerations ................................................................................................................ 2 2 Preparation of starting materials ................................................................................................... 4 2.1 Bis(phenylsulfonyl)sulfide.............................................................................................................. 4 2.2 3,3’-Dibromo-2,2’-dithienylsulfide (3) ............................................................................................ 4 3 1 H, 13 C and HSQC NMR spectra of 4-(4-(tert-butyl)phenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (5) .................................................................................................................................................. 6 4 1 H NMR of 5 2+ ∙ 2 [SbCl 6 ] - ............................................................................................................. 9 5 Crystal Structure determination of 5............................................................................................ 10 6 UV/Vis spectra of 5 + and 5 2+ ....................................................................................................... 12 7 Computed xyz-coordinates and computed UV/Vis spectra of TD-DFT calculated structures .... 14 7.1 XYZ-coordinates for of the S 0 state of the intra conformer of 5 (RB3LYP/6-311G(d)) ............... 14 7.2 XYZ-coordinates for of the S 0 state of the intra conformer of 5 (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 15 7.3 XYZ-coordinates for of the S 0 state of the extra conformer of 5 (RB3LYP/6-311G(d)) .............. 17 7.4 XYZ-coordinates for of the S 0 state of the extra conformer of 5 (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 18 7.5 XYZ-coordinates for of the S 0 state of the extra conformer of 5 and TD DFT calculation (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ............................................................................. 20 7.6 XYZ-coordinates for of the D 0 state of 5 + and TD DFT calculation (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 23 7.7 XYZ-coordinates for of the S 0 state of 5 2+ (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) .......... 29 7.8 XYZ-coordinates for of the T 0 state of 5 2+ (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) .......... 40 Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

)URQWLHUV 7KLV MRXUQDOLV …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Radical cation and dication of a 4H-dithieno[2,3-b:3',2'-e][1,4]thiazine

Arno Schneeweis,a Andreas Neidlinger,b Guido J. Reiss,c Walter Frank,c Katja Heinze,b and

Thomas J. J. Müller*,a

aInstitut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

bInstitut für Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany

cInstitut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

Email: [email protected]

Table of contents 1  General Considerations ................................................................................................................ 2 

2  Preparation of starting materials ................................................................................................... 4 

2.1  Bis(phenylsulfonyl)sulfide .............................................................................................................. 4 

2.2  3,3’-Dibromo-2,2’-dithienylsulfide (3) ............................................................................................ 4 

3  1H, 13C and HSQC NMR spectra of 4-(4-(tert-butyl)phenyl)-4H-dithieno[2,3-b:3',2'-e][1,4]thiazine (5) .................................................................................................................................................. 6 

4  1H NMR of 52+ ∙ 2 [SbCl6]- ............................................................................................................. 9 

5  Crystal Structure determination of 5 ............................................................................................ 10 

6  UV/Vis spectra of 5+ and 52+ ....................................................................................................... 12 

7  Computed xyz-coordinates and computed UV/Vis spectra of TD-DFT calculated structures .... 14 

7.1  XYZ-coordinates for of the S0 state of the intra conformer of 5 (RB3LYP/6-311G(d)) ............... 14 

7.2  XYZ-coordinates for of the S0 state of the intra conformer of 5 (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 15 

7.3  XYZ-coordinates for of the S0 state of the extra conformer of 5 (RB3LYP/6-311G(d)) .............. 17 

7.4  XYZ-coordinates for of the S0 state of the extra conformer of 5 (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 18 

7.5  XYZ-coordinates for of the S0 state of the extra conformer of 5 and TD DFT calculation (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ............................................................................. 20 

7.6  XYZ-coordinates for of the D0 state of 5+ and TD DFT calculation (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) ................................................................................................................ 23 

7.7  XYZ-coordinates for of the S0 state of 52+ (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) .......... 29 

7.8  XYZ-coordinates for of the T0 state of 52+ (UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM) .......... 40 

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers.This journal is © the Partner Organisations 2017

2

1 General Considerations

All reactions were conducted in heat gun-dried glassware under an argon atmosphere.

Solvents for reactions were directly used from a MB-SPS 800 solvent drying system (Firma

MBraun) or dried according to literature. Commercially available reagents and catalysts were

purchased and employed without further purification.

All reactions were monitored by TLC (silica gel 60, F254, Merck KGaA). The spots were

detected with UV light at λmax,exc = 254 nm and treated with iodine vapour. The crude mixtures

were absorbed on Celite® 545 (0.02-0.10 mm, Carl Roth GmbH Co.KG) prior to

chromatographic purification. Preparative flash column chromatography was conducted with

silica gel (0.04 to 0.063 mm, Macherey-Nagel) and a pressure of 1.0 bar (nitrogen) was

employed. 1H, 13C and 135-DEPT NMR spectra were recorded on Bruker Avance III 600, Bruker Avance

DRX 500, or Bruker Avance III 300 in acetone-d6 (1H δ 2.05, 13C δ 29.8) and in CDCl3 (

1H δ

7.26, 13C δ 77.0). As an internal standard for the 1H NMR the signal of the remaining protons

of the deuterated solvent was used. As internal standard for the 13C NMR the signal of CDCl3

(δ 77.0) or acetone-d6 (δ 29.8) was used. The conventional abbreviations were used as

follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet).

The EI mass spectra were recorded on a Finnigan MAT 8200 apparatus and ESI mass

spectra on a Finnigan TSQ 7000 apparatus.

IR spectra were recorded on a Shimadzu IRAffinity-1 apparatus (ATR). The intensities of

the absorption bands are indicated by s (strong), m (medium), and w (weak).

UV/VIS spectra were recorded with a Hewlett-Packard HP8452 diode array.

Melting points were measured by using a Büchi B545 apparatus.

Elemental analyses were carried out with Elementar vario MICRO cube at the Institut für

Pharmazeutische und Medizinische Chemie at the HHU Düsseldorf.

Cyclic voltammetry experiments (EG & G potentiostatic instrumentation) were performed

under argon in dry and degassed CH2Cl2 at room temperature and at scan rates of 100, 250,

500 and 1000 mVs-1. The electrolyte was nBu4NPF6 (0.1 M). The working electrode was a

1 mm platinum disk, the counter electrode was a platinum wire, and the reference electrode

was an Ag/AgCl electrode. The potentials were corrected to the internal standard of

decamethylferrocene in CH2Cl2 (E00/+1 = -95 mV vs. ferrocene E0

0/+1 = 450 mV).1

Spectroelectrochemistry measurements were done with a quartz cuvette of the company

GAMEC Analysentechnik (thickness: 1 mm). The cell was equipped with a platinum net

working electrode, a platinum counter electrode and an Ag/AgNO3 reference electrode. As

electrolyte 0.1 M solution of [nBu4N][B(C6F5)4] in CH2Cl2 was used. All potentials are stated

1 P. Zanello, Ferrocenes, eds. A. Togni, T. Hayashi, VCH, Weinheim, 1995, 317-430.

3

versus the oxidation potential of ferrocene. The potentiostat/galvanostat was a BioLogic SP-

50 apparatus. The UV-Vis-NIR spectra were measured with a Varian Cary 5000

spectrometer.

The X-band CW-ESR spectra were measured with a Miniscope MS 300 at room

temperature. The corresponding settings were as follows: center field = 3349.03 G; sweep =

77.56 G; modulation amplitude = 100 mG; receiver gain = 0.5; microwave attenuation = 10

dB; sweep time = 120 s. As a reference Mn2+ in ZnS was used (g = 2.118, 2.066, 2.027,

1.986, 1.946, 1.906). The simulation was done with EasySpin (v. 4.5.1)2 for MatLab

(R2007b).

2 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42.

4

2 Preparation of starting materials

2.1 Bis(phenylsulfonyl)sulfide3

28 g (170 mmol) sodium benzenesulfinate were suspended in 250 mL dry diethyl ether. A

solution of 9.3 g (90 mmol) sulfur dichloride4 and 50 mL diethyl ether was added dropwise.

After that the reaction mixture was heated to 40 °C and stirred for 3 h. Then after a short rest

without heating water was added and the colourless solid was filtered of. The solid was

washed several times with water and recrystallized from acetone to give colourless crystals

(20 g, 65 mmol, 72%).

Mp 133 °C. 1H-NMR (300 MHz, CDCl3): δ 7.63 – 7.53 (m, 4 H), 7.74 – 7.66 (m, 2 H), 8.07 –

7.96 (m, 4 H). 13C-NMR (75 MHz, CDCl3): δ 128.2 (CH), 129.5 (CH), 135.0 (CH), 144.5

(Cquart). EI-MS (m/z (%)): 250 ([C12H10S3]+, 14), 141 ([C6H5O2S]+, 78), 125 ([C6H5OS]+, 16),

109 ([C6H5S]+, 9), 77 ([C6H5]+, 100).

2.2 3,3’-Dibromo-2,2’-dithienylsulfide (3)5

90 mL dry toluene and 9.0 mL (64 mmol) diisopropylamine were filled in a dry Schlenk vessel

with septum. The solution was cooled to -78 °C and then 39 mL (62 mmol) of a 1.6 M n-

butyllithium solution in n-hexane were added. The reaction mixture was stirred for 2 h at

0 °C. In the meantime a second dry Schlenk vessel was prepared by filling it with 10 g (61

mmol) 3-bromthiophene and dry toluene. The content was also cooled to 0 °C. After the time

is up the 3-bromthiophene solution is transferred to the reaction vessel and the stirring

continues for 2 h. Then the reaction mixture was cooled to -78 °C before 9.2 g (29 mmol) of

bis(phenylsulfonyl)sulfide was added. The suspension was stirred for additional 8 h at -78 °C.

The reaction was concluded by the addition of water at -78 °C. After reaching room

temperature the organic phase was extracted three times with diethyl ether. The combined

organic layers were dried with anhydrous magnesium sulfate and the solvent was removed

under vacuum. The crude product was absorbed on Celite® and purified chromatographically

3 F. Allared, J. Hellberg and T. Remonen, Tetrahedron Lett., 2002, 43, 1553. 4 Synthesized according to: G. Brauer (ed.): Handbuch der Präparativen Anorganischen Chemie, Stuttgart: Ferdinand-Enke Verlag, 3rd revised edition 1954, p. 280. 5 M. Miyasaka and A. Rajca, J. Org. Chem., 2006, 71, 3264.

5

on silica gel with n-hexane as mobile phase. On this way product 3 was obtained as a

colorless to pale yellow solid (6.9 g, 19 mmol, 66%).

Mp 53 °C. 1H-NMR (300 MHz, CDCl3): δ 7.00 (d, 3J = 5.5 Hz, 2 H), 7.34 (d, 3J = 5.5 Hz, 2 H). 13C-NMR (75 MHz, acetone-d6): δ 118.2 (Cquart), 130.3 (Cquart), 131.8 (CH), 132.1 (CH). EI-MS

(m/z (%)): 358 ([C8H481Br2S3]

+, 12), 356 ([C8H479Br81BrS3]

+, 21), 354 ([C8H479Br2S3]

+, 10), 196

([C8H4S3]+, 100), 82 ([C4H2S]+, 5).

6

3 1H, 13C and HSQC NMR spectra of 4-(4-(tert-butyl)phenyl)-4H-

dithieno[2,3-b:3',2'-e][1,4]thiazine (5)

1H NMR spectra of 5 (acetone-d6/CS2, 300 MHz, 293 K).

7

1H-NMR spectra of 5 (acetone-d6, 300 MHz, 293 K).

13C NMR spectra of 5 (acetone-d6/CS2, 75 MHz, 293 K).

8

HSQC spectra of 5 (benzene-d6, 300/75 MHz, 293 K).

9

4 1H NMR of 52+ ∙ 2 [SbCl6]-

1H NMR spectra of 52+ ∙ 2 [SbCl6]- (acetone-d6, 300 MHz, 293 K).

10

5 Crystal Structure determination of 5

Identification code 5 (exp_1123)

Empirical formula C18 H17 N S3

Formular weight [g/mol] 343.51

Crystal description and colour needle, yellow

Crystal size 0.400 x 0.150 x 0.070

Crystal system triclinic

Space group 1

Unit cell dimiensions a = 12.112 (3) Å α = 113.51 (2)°

b = 13.064 (3) Å β = 114.37 (2)°

c = 13.586 (3) Å γ = 96.715 (18)°

Volume [Å3] 1690.6 (8)

Formula units Z 4

Calculated density [Mg/m3] 1.350

Temperature [K] 295

Measurment device type Xcalibur (Oxford Diffraction)

Radiation and wavelength [Å] Mo-Kα, λ = 0.71073

Absorption coefficient [1/mm] 0.434

F (000) 720.0

Teta range for data collection [°] 2.7933 to 28.6374

Index ranges

-15 ≤ h ≤ 15

-16 ≤ k ≤ 16

-17 ≤ l ≤ 17

Reflections collected 42642

Independent reflections 6998 [Rint = 0.107]

Observed reflections [I > 2σ(I)] 4740

Refinement method Full matrix least square on F2

Absorption correction multi scan : Tmin = 0.616, Tmax: 1.000:

Data / restraints / parameters 6998 / 0 / 407

Final R indices [I > 2σ(I)][a,b] R1 = 0.0668, wR2 = 0.1532

Goodness-of-fit on F2[c] 1.198

Largest diff. Peak and hole (max.,min.) [e.Ǻ-3] 0.54 und -0.42

Completeness [%] 99.9

[a] R1 = Σ ││F0│-│Fc││ / Σ│F0│

[b] wR2 = {Σ[w(F02-Fc

2)2] / Σ[w(F02)2]}1/2, w = 1/(σ2(F0

2)+(a·P)2+b·P) (P = [max(0,F02)+2Fc

2]1/3

[c] GooF = S = {[Σw(F02-Fc

2)2] / (m-n)}1/2, m = number of reflections, n = number of parameters

11

Ellipsoid plot

12

6 UV/Visspectraof5+and52+

UV/Vis spectrum of 5+ in dichloromethane (c = 7.4 ∙ 10-5 mol/L; T = 293 K)

UV/Vis spectrum of 5+ in acetone (T = 293 K)

13

UV/Vis spectrum of 52+ in acetone (c = 4.7 ∙ 10-4 mol/L; T = 293 K)

14

7 Computed xyz-coordinates and computed UV/Vis spectra of TD-

DFT calculated structures

7.1 XYZ-coordinates for of the S0 state of the intra conformer of 5

(RB3LYP/6-311G(d))

C -2.833690 1.300494 0.200729

C -1.475611 1.207511 0.016217

N -0.768734 -0.000023 0.215152

C -1.475673 -1.207525 0.016249

C -2.833760 -1.300416 0.200753

S -3.839631 0.000073 0.869945

C -0.908864 -2.438602 -0.444894

C -1.841165 -3.420430 -0.604594

S -3.443010 -2.870888 -0.233595

S -3.442848 2.870975 -0.233713

C -1.840972 3.420400 -0.604754

C -0.908730 2.438522 -0.445011

C 0.664708 -0.000037 0.143693

C 1.331743 -0.000288 -1.079664

C 2.725838 -0.000289 -1.123575

C 3.494886 -0.000017 0.045852

C 2.802688 0.000246 1.266915

C 1.413598 0.000231 1.320225

C 5.033621 -0.000027 0.033503

C 5.608674 -0.000656 -1.393903

C 5.553809 1.261367 0.759507

C 5.553784 -1.260790 0.760616

H 0.145831 -2.580091 -0.637536

15

H -1.684974 -4.440241 -0.923148

H -1.684722 4.440185 -0.923362

H 0.145971 2.579924 -0.637684

H 0.758303 -0.000476 -2.001085

H 3.206412 -0.000495 -2.093882

H 3.352765 0.000454 2.201787

H 0.896067 0.000423 2.273464

H 6.700851 -0.000478 -1.350475

H 5.305927 -0.886434 -1.959019

H 5.305666 0.884469 -1.959900

H 6.647930 1.277907 0.759796

H 5.224000 1.301219 1.800010

H 5.203898 2.172046 0.265800

H 5.203918 -2.171899 0.267672

H 6.647905 -1.277313 0.760994

H 5.223903 -1.299750 1.801132

SCF Done: E(RB3LYP) = -1945.66152717 A.U. after 1 cycles

E(RB3LYP) = -5108333.6 kJ/mol

Sum of electronic and zero-point Energies= -1945.358781

Sum of electronic and thermal Energies= -1945.338439

Sum of electronic and thermal Enthalpies= -1945.337495

Sum of electronic and thermal Free Energies= -1945.409542

7.2 XYZ-coordinates for of the S0 state of the intra conformer of 5

(RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM)

C -2.833690 1.300494 0.200729

C -1.475611 1.207511 0.016217

N -0.768734 -0.000023 0.215152

C -1.475673 -1.207525 0.016249

C -2.833760 -1.300416 0.200753

S -3.839631 0.000073 0.869945

C -0.908864 -2.438602 -0.444894

C -1.841165 -3.420430 -0.604594

S -3.443010 -2.870888 -0.233595

16

S -3.442848 2.870975 -0.233713

C -1.840972 3.420400 -0.604754

C -0.908730 2.438522 -0.445011

C 0.664708 -0.000037 0.143693

C 1.331743 -0.000288 -1.079664

C 2.725838 -0.000289 -1.123575

C 3.494886 -0.000017 0.045852

C 2.802688 0.000246 1.266915

C 1.413598 0.000231 1.320225

C 5.033621 -0.000027 0.033503

C 5.608674 -0.000656 -1.393903

C 5.553809 1.261367 0.759507

C 5.553784 -1.260790 0.760616

H 0.145831 -2.580091 -0.637536

H -1.684974 -4.440241 -0.923148

H -1.684722 4.440185 -0.923362

H 0.145971 2.579924 -0.637684

H 0.758303 -0.000476 -2.001085

H 3.206412 -0.000495 -2.093882

H 3.352765 0.000454 2.201787

H 0.896067 0.000423 2.273464

H 6.700851 -0.000478 -1.350475

H 5.305927 -0.886434 -1.959019

H 5.305666 0.884469 -1.959900

H 6.647930 1.277907 0.759796

H 5.224000 1.301219 1.800010

H 5.203898 2.172046 0.265800

H 5.203918 -2.171899 0.267672

H 6.647905 -1.277313 0.760994

H 5.223903 -1.299750 1.801132

SCF Done: E(RB3LYP) = -1945.46481809 A.U. after 1 cycles

E(RB3LYP) = -5107817.1 kJ/mol

Sum of electronic and zero-point Energies= -1945.161095

Sum of electronic and thermal Energies= -1945.140781

Sum of electronic and thermal Enthalpies= -1945.139837

Sum of electronic and thermal Free Energies= -1945.212116

17

7.3 XYZ-coordinates for of the S0 state of the extra conformer of 5

(RB3LYP/6-311G(d))

N -0.748068 0.006841 -0.520526

S -2.985077 -0.011834 1.588674

C -1.528196 1.192904 -0.432529

C -1.510331 -1.190936 -0.434552

C -2.556259 1.295958 0.470041

C -2.536828 -1.311060 0.467735

C -1.417333 -2.320836 -1.308351

C -1.451711 2.325953 -1.303793

C -2.400201 3.263312 -1.026663

C -2.351740 -3.272798 -1.033121

S -3.461144 2.767550 0.258712

S -3.419825 -2.795446 0.253300

C 0.654755 0.018157 -0.320966

C 1.367797 1.218704 -0.213860

C 1.385229 -1.176413 -0.214237

C 2.762352 -1.153964 -0.040039

C 2.750077 1.218410 -0.039648

C 3.493278 0.038737 0.045050

C 5.017966 0.007626 0.240018

C 5.355936 -0.717725 1.562314

C 5.626262 1.419808 0.300715

18

C 5.676417 -0.747229 -0.936891

H -0.683849 -2.407153 -2.099247

H -0.719206 2.425098 -2.094064

H -2.550145 4.223173 -1.498387

H -2.487595 -4.233689 -1.507018

H 0.848679 2.167748 -0.239546

H 0.878353 -2.132047 -0.240561

H 3.273046 -2.108327 0.040337

H 3.241304 2.180748 0.039541

H 4.989700 -1.747154 1.567703

H 6.439013 -0.751799 1.717923

H 4.907683 -0.203552 2.416781

H 5.444393 1.984610 -0.617978

H 5.232118 1.999837 1.139688

H 6.709612 1.352097 0.432473

H 5.461192 -0.253961 -1.888823

H 6.763535 -0.781897 -0.812503

H 5.320553 -1.777593 -1.010930

SCF Done: E(RB3LYP) = -1945.66075886 A.U. after 1 cycles

E(RB3LYP) = -5108331.6 kJ/mol

Sum of electronic and zero-point Energies= -1945.357583

Sum of electronic and thermal Energies= -1945.337530

Sum of electronic and thermal Enthalpies= -1945.336586

Sum of electronic and thermal Free Energies= -1945.407120

ΔEintra-extra = - 2.0 kJ/mol

7.4 XYZ-coordinates for of the S0 state of the extra conformer of 5

(RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM)

N -0.750191 0.005936 -0.511806

S -3.023653 -0.010525 1.572702

C -1.528192 1.195009 -0.426845

C -1.511318 -1.194172 -0.427438

19

C -2.571046 1.298753 0.463380

C -2.552406 -1.313010 0.463108

C -1.400371 -2.331887 -1.294798

C -1.432006 2.334991 -1.292922

C -2.379605 3.279052 -1.023521

C -2.334457 -3.289366 -1.025399

S -3.460973 2.783231 0.248162

S -3.421721 -2.809539 0.247267

C 0.654695 0.017239 -0.315402

C 1.367311 1.221289 -0.201811

C 1.387342 -1.180019 -0.215809

C 2.767407 -1.156454 -0.041210

C 2.752116 1.221393 -0.027177

C 3.497777 0.039277 0.052425

C 5.024321 0.008294 0.241806

C 5.369042 -0.743138 1.549764

C 5.628779 1.422523 0.326197

C 5.677842 -0.726008 -0.953152

H -0.655742 -2.421433 -2.075779

H -0.687282 2.435820 -2.072438

H -2.517550 4.242874 -1.493245

H -2.459361 -4.254606 -1.495859

H 0.848403 2.171009 -0.231935

H 0.883262 -2.137227 -0.257313

H 3.281524 -2.110713 0.029814

H 3.244001 2.184083 0.054678

H 5.000445 -1.773292 1.535858

H 6.454766 -0.779951 1.694032

H 4.927728 -0.240885 2.417013

H 5.442800 2.000765 -0.584942

H 5.229148 1.985861 1.175818

H 6.713411 1.352408 0.457119

20

H 5.462278 -0.209779 -1.894645

H 6.765948 -0.765300 -0.828419

H 5.315703 -1.754470 -1.044377

SCF Done: E(RB3LYP) = -1945.46354748 A.U. after 1 cycles

E(RB3LYP) = -5107813.8 kJ/mol

Sum of electronic and zero-point Energies= -1945.159371

Sum of electronic and thermal Energies= -1945.139362

Sum of electronic and thermal Enthalpies= -1945.138418

Sum of electronic and thermal Free Energies= -1945.208890

ΔEintra-extra = -3.3 kJ/mol

7.5 XYZ-coordinates for of the S0 state of the extra conformer of 5 and

TD DFT calculation (RB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM)

N -0.75019100 0.00593600 -0.51180600

S -3.02365300 -0.01052500 1.57270200

C -1.52819200 1.19501000 -0.42684500

C -1.51131800 -1.19417200 -0.42743800

C -2.57104700 1.29875300 0.46338000

C -2.55240700 -1.31301000 0.46310800

C -1.40037100 -2.33188800 -1.29479800

C -1.43200600 2.33499100 -1.29292200

C -2.37960500 3.27905200 -1.02352100

C -2.33445700 -3.28936600 -1.02539900

S -3.46097300 2.78323100 0.24816200

21

S -3.42172200 -2.80953900 0.24726700

H -0.68728200 2.43582000 -2.07243900

H -0.65574200 -2.42143300 -2.07577900

H -2.51755000 4.24287400 -1.49324500

H -2.45936100 -4.25460600 -1.49585900

C 0.65469500 0.01723900 -0.31540200

C 1.36731100 1.22128900 -0.20181100

C 1.38734200 -1.18001900 -0.21580900

C 2.76740700 -1.15645400 -0.04121000

C 2.75211700 1.22139300 -0.02717700

C 3.49777700 0.03927700 0.05242500

H 0.88326200 -2.13722800 -0.25731300

H 0.84840400 2.17101000 -0.23193500

H 3.28152400 -2.11071300 0.02981400

H 3.24400100 2.18408300 0.05467800

C 5.02432100 0.00829400 0.24180600

C 5.36904300 -0.74313800 1.54976400

H 5.00044600 -1.77329200 1.53585800

H 6.45476700 -0.77995100 1.69403200

H 4.92772800 -0.24088500 2.41701400

C 5.62877900 1.42252300 0.32619700

H 5.44280000 2.00076500 -0.58494200

H 5.22914800 1.98586100 1.17581800

H 6.71341200 1.35240900 0.45711900

C 5.67784300 -0.72600800 -0.95315200

H 5.46227900 -0.20977900 -1.89464500

H 6.76594900 -0.76530000 -0.82841900

H 5.31570400 -1.75447000 -1.04437700

SCF Done: E(RB3LYP) = -1945.46354748 A.U. after 1 cycles

After PCM corrections, the SCF energy is -1945.46692415 a.u.

Sum of electronic and zero-point Energies= -1945.159371

Sum of electronic and thermal Energies= -1945.139362

Sum of electronic and thermal Enthalpies= -1945.138418

Sum of electronic and thermal Free Energies= -1945.208890

HOMO -5.1065 eV

LUMO -0.7195 eV

22

Relevant excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.6206 eV 342.44 nm f=0.0044

90 -> 92 0.69035

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.7369 eV 331.78 nm f=0.1613

90 -> 91 0.67922

Excited State 3: Singlet-A 4.4105 eV 281.11 nm f=0.0177

87 -> 94 0.12205

90 -> 93 0.66906

Excited State 4: Singlet-A 4.5915 eV 270.03 nm f=0.0351

89 -> 91 0.43417

89 -> 92 0.16703

90 -> 94 0.43327

90 -> 95 -0.20503

90 -> 96 0.10786

Excited State 5: Singlet-A 4.5970 eV 269.71 nm f=0.0479

89 -> 91 0.19698

89 -> 92 -0.38571

89 -> 95 0.12574

90 -> 94 0.18552

90 -> 95 0.46069

90 -> 98 0.12050

Excited State 6: Singlet-A 4.6927 eV 264.21 nm f=0.0675

88 -> 91 -0.11350

89 -> 91 0.10913

89 -> 92 0.50804

90 -> 94 -0.10294

90 -> 95 0.42981

Excited State 7: Singlet-A 4.7013 eV 263.72 nm f=0.2274

23

88 -> 92 -0.11002

89 -> 91 0.45746

89 -> 92 -0.11172

90 -> 94 -0.45321

90 -> 95 -0.10729

Excited State 8: Singlet-A 5.0321 eV 246.39 nm f=0.1111

90 -> 94 -0.10269

90 -> 96 0.59928

90 -> 97 0.31016

7.6 XYZ-coordinates for of the D0 state of 5+ and TD DFT calculation

(UB3LYP/6-31G(d,p), SCRF(IEFPCM, DCM)

N 0.79028300 -0.00002300 0.00910700

S 4.00073800 0.00009900 -0.00749900

C 1.46598000 -1.20680100 0.00492600

C 1.46587800 1.20680000 0.00493900

C 2.86266900 -1.31014700 -0.00257900

C 2.86256100 1.31024900 -0.00251600

C 0.83096200 2.48991300 0.00780000

C 0.83115000 -2.48995900 0.00778800

C 1.73269100 -3.50898000 0.00247200

C 1.73242600 3.50900300 0.00248500

S 3.38532300 -2.96836900 -0.00613700

S 3.38510600 2.96850600 -0.00608500

H -0.24024700 -2.63118000 0.01355600

24

H -0.24044600 2.63106900 0.01351500

H 1.53035500 -4.57097700 0.00305700

H 1.53002400 4.57098600 0.00305700

C -0.66193600 -0.00010300 0.01608700

C -1.34369400 -0.00023900 1.22948500

C -1.35570900 -0.00007500 -1.19472100

C -2.74728200 -0.00013500 -1.17552800

C -2.73992600 -0.00028200 1.22634200

C -3.47259200 -0.00019800 0.03038800

H -0.81310700 -0.00004700 -2.13432500

H -0.79315800 -0.00032800 2.16449600

H -3.27272700 -0.00014000 -2.12447100

H -3.25118100 -0.00040200 2.18073100

C -5.01127600 -0.00001700 -0.00209800

C -5.50485700 1.26407900 -0.74600600

H -5.13690900 1.30379100 -1.77533700

H -6.59916600 1.27305800 -0.78351700

H -5.17568200 2.17426100 -0.23426400

C -5.62564900 -0.00098300 1.41025000

H -5.33667400 -0.88900900 1.98174600

H -5.33699700 0.88641500 1.98287600

H -6.71678800 -0.00108200 1.33109600

C -5.50540200 -1.26276700 -0.74788400

H -5.17646200 -2.17387600 -0.23764400

H -6.59971800 -1.27128600 -0.78519000

H -5.13775400 -1.30102600 -1.77737500

SCF Done: E(UB3LYP) = -1945.30043619 A.U. after 1 cycles

After PCM corrections, the SCF energy is -1945.30630762 a.u.

Sum of electronic and zero-point Energies= -1944.995593

Sum of electronic and thermal Energies= -1944.975504

Sum of electronic and thermal Enthalpies= -1944.974560

Sum of electronic and thermal Free Energies= -1945.047397

25

The percentage contributions of a transition to the excited state were calculated by using the following equation6:

% ∑

100

Relevant excitation energies and oscillator strengths: Excited State 1: ?Spin -A 2.0849 eV 594.68 nm f=0.0139 89B -> 90B 0.99629 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: ?Spin -A 2.4470 eV 506.69 nm f=0.0263 90A -> 91A 0.15322 85B -> 90B -0.10229 86B -> 90B -0.44651 88B -> 90B 0.86716 Excited State 3: ?Spin -A 2.4547 eV 505.09 nm f=0.0855 90A -> 91A -0.26684 85B -> 90B 0.14635 86B -> 90B 0.77558 87B -> 90B -0.22114 88B -> 90B 0.49204 Excited State 4: ?Spin -A 2.6299 eV 471.45 nm f=0.0096 85B -> 90B -0.11936 86B -> 90B 0.26331 87B -> 90B 0.95460 Excited State 5: ?Spin -A 2.7079 eV 457.87 nm f=0.0090 86A -> 92A -0.15293 90A -> 91A 0.93082 81B -> 91B 0.10870 85B -> 90B -0.13514 86B -> 90B 0.27407 86B -> 93B 0.19442 87B -> 90B -0.10257 Excited State 6: ?Spin -A 3.0544 eV 405.92 nm f=0.0327 90A -> 91A 0.15884 85B -> 90B 0.96523 87B -> 90B 0.14512 Excited State 7: ?Spin -A 3.4226 eV 362.25 nm f=0.0197 81A -> 92A -0.11273 86A -> 91A -0.41045 86A -> 99A 0.10332 88A -> 92A -0.21196 90A -> 92A 0.71507 81B -> 90B 0.17872

6 R. A. Vogt, T. G. Gray, C. E. Crespo‐Hernández, J. Am. Chem. Soc. 2012, 134, 14808‐14817. 

26

81B -> 93B 0.14298 86B -> 91B 0.59581 89B -> 93B 0.19009 Excited State 8: ?Spin -A 3.7370 eV 331.78 nm f=0.0000 78A ->107A 0.10010 87A -> 91A 0.16670 87A -> 94A -0.11563 87A -> 95A -0.49760 89A -> 93A -0.49084 89A -> 94A 0.38309 87B -> 91B 0.16742 87B -> 94B -0.19920 87B -> 95B -0.46154 88B -> 92B 0.55313 88B -> 94B -0.28194 Excited State 9: ?Spin -A 3.8430 eV 322.62 nm f=0.0014 85A -> 92A 0.18011 86A -> 92A 0.25445 88A -> 91A 0.68854 88A -> 99A -0.11099 90A -> 91A 0.10746 85B -> 93B -0.20592 86B -> 93B -0.21328 89B -> 91B -0.63937 89B -> 99B 0.11723 Excited State 10: ?Spin -A 3.8895 eV 318.77 nm f=0.0000 90A -> 93A 0.76367 90A -> 94A 0.60554 90A -> 95A -0.13527 90A -> 98A 0.14718 Excited State 11: ?Spin -A 4.1420 eV 299.33 nm f=0.0120 85A -> 91A 0.24166 86A -> 91A 0.39744 87A -> 91A 0.15132 88A -> 92A 0.42617 90A -> 92A 0.56083 80B -> 90B 0.15864 81B -> 90B -0.14443 84B -> 90B 0.11368 85B -> 91B -0.25599 86B -> 91B -0.17005 87B -> 91B 0.11257 89B -> 93B -0.36509 Excited State 12: ?Spin -A 4.2752 eV 290.01 nm f=0.0151 85A -> 91A -0.25639 86A -> 91A 0.21609 88A -> 92A -0.20528 90A -> 92A 0.20628 80B -> 90B 0.22013 81B -> 90B 0.68930 84B -> 90B 0.20983 85B -> 91B 0.16306 86B -> 91B -0.44361 89B -> 93B 0.13644

27

Excited State 13: ?Spin -A 4.2976 eV 288.50 nm f=0.0055 90A -> 92A -0.10313 81B -> 90B -0.18630 84B -> 90B 0.95933 86B -> 91B 0.11864 Excited State 14: ?Spin -A 4.3954 eV 282.08 nm f=0.0000 90A -> 93A -0.63848 90A -> 94A 0.73255 90A -> 95A -0.16204 90A -> 98A 0.13705 Excited State 15: ?Spin -A 4.4037 eV 281.54 nm f=0.0000 90A -> 96A 0.98786 Excited State 16: ?Spin -A 4.5071 eV 275.09 nm f=0.0005 87A -> 93A -0.13584 89A -> 91A 0.73969 89A -> 95A -0.27859 83B -> 90B 0.42476 87B -> 92B -0.18151 88B -> 91B -0.23234 88B -> 94B 0.10369 88B -> 95B 0.24582 Excited State 17: ?Spin -A 4.5147 eV 274.62 nm f=0.0016 89A -> 91A -0.35846 89A -> 95A 0.12497 83B -> 90B 0.88384 88B -> 91B 0.11634 88B -> 95B -0.12371 Excited State 18: ?Spin -A 4.5731 eV 271.11 nm f=0.0011 85A -> 91A 0.20906 86A -> 91A -0.17747 87A -> 91A 0.44780 87A -> 94A -0.10986 87A -> 95A -0.25623 89A -> 93A 0.26508 89A -> 94A -0.17446 90A -> 92A -0.19190 81B -> 90B 0.42425 83B -> 90B 0.10874 85B -> 91B -0.19536 86B -> 91B 0.11073 87B -> 91B 0.27978 87B -> 94B -0.13893 87B -> 95B -0.23376 88B -> 92B -0.29344 88B -> 94B 0.10500 89B -> 93B -0.12527 Excited State 19: ?Spin -A 4.6354 eV 267.47 nm f=0.0018 85A -> 91A 0.35622 86A -> 91A -0.15121 87A -> 91A -0.18347 87A -> 94A 0.14738 87A -> 95A 0.28571

28

88A -> 92A 0.19061 89A -> 93A -0.22988 89A -> 94A 0.12969 89A -> 95A -0.13137 90A -> 92A -0.18337 81B -> 90B 0.42719 85B -> 91B -0.32576 86B -> 91B 0.10541 87B -> 92B -0.11123 87B -> 94B 0.18115 87B -> 95B 0.26638 88B -> 92B 0.26746 88B -> 95B 0.14588 89B -> 93B -0.24005 Excited State 20: ?Spin -A 4.6422 eV 267.08 nm f=0.0000 78B -> 90B -0.11869 82B -> 90B 0.99008 Excited State 21: ?Spin -A 4.6513 eV 266.56 nm f=0.0101 88A -> 91A -0.11362 90A -> 94A 0.21600 90A -> 95A 0.94350 90A -> 99A 0.10500 89B -> 91B -0.15486 Excited State 22: ?Spin -A 4.7029 eV 263.63 nm f=0.0012 87A -> 93A 0.36355 87A -> 94A -0.22914 87A -> 95A 0.17304 89A -> 91A 0.53330 89A -> 94A 0.11995 89A -> 95A 0.25703 87B -> 92B 0.30677 87B -> 95B 0.16444 88B -> 91B 0.48032 88B -> 94B -0.15138 88B -> 95B -0.24937 Excited State 23: ?Spin -A 4.7574 eV 260.61 nm f=0.3633 86A -> 92A -0.24129 88A -> 91A 0.66823 88A -> 99A 0.10611 90A -> 95A 0.17954 90A -> 99A -0.21260 86B -> 93B 0.15197 89B -> 91B 0.54733

29

7.7 XYZ-coordinates for of the S0 state of 52+ (UB3LYP/6-31G(d,p),

SCRF(IEFPCM, DCM)

N 0.79476700 -0.00063900 0.00637000

S 3.95159000 0.00161500 -0.00326600

C 1.44323900 -1.20100000 -0.03019300

C 1.44184600 1.20075200 0.03640900

C 2.87380300 -1.30536600 -0.01880300

C 2.87203200 1.30714000 0.01573000

C 0.81622200 2.47854700 0.11883700

C 0.81913500 -2.47975000 -0.11168100

C 1.73576600 -3.48338100 -0.13780600

C 1.73148600 3.48368700 0.13688700

S 3.39625800 -2.95076100 -0.07938600

S 3.39245900 2.95350100 0.07019900

H -0.24834300 -2.63756100 -0.14866100

H -0.25125600 2.63506700 0.16125200

H 1.54216900 -4.54655500 -0.19421500

H 1.53660900 4.54672800 0.19145000

C -0.66289600 -0.00208800 0.01334600

C -1.33566400 -0.50179700 1.12740600

C -1.34960500 0.49807800 -1.09612600

C -2.73815300 0.48045200 -1.07659600

C -2.72856500 -0.48642800 1.12721300

C -3.46269900 -0.00324900 0.03132200

H -0.81157100 0.86529500 -1.96303300

30

H -0.78747700 -0.86912700 1.98789400

H -3.26316600 0.84793000 -1.95095000

H -3.23874000 -0.85646600 2.00708200

C -4.99834100 -0.00153600 0.00054300

C -5.50716200 1.43277200 -0.28237500

H -5.15552900 1.81600400 -1.24432300

H -6.60127400 1.43564200 -0.30673900

H -5.18372500 2.12700500 0.49962500

C -5.60917100 -0.47806100 1.33112500

H -5.32719300 -1.50889200 1.56766800

H -5.31420600 0.16348300 2.16774200

H -6.69995700 -0.44603600 1.25959600

C -5.47396200 -0.95025800 -1.12771000

H -5.13739200 -1.97601300 -0.94679000

H -6.56772400 -0.95398300 -1.16948200

H -5.10338600 -0.63880500 -2.10860400

SCF Done: E(UB3LYP) = -1945.07461541 A.U. after 1 cycles

After PCM corrections, the SCF energy is -1945.08535247 a.u.

Sum of electronic and zero-point Energies= -1944.768626 Sum of electronic and thermal Energies= -1944.748997 Sum of electronic and thermal Enthalpies= -1944.748053 Sum of electronic and thermal Free Energies= -1944.816853

HOMO -8.0464 eV

LUMO -5.8861 eV

Excitation energies and oscillator strengths:

Excited State 1: Triplet-A 1.2498 eV 992.06 nm f=0.0000

87A -> 90A 0.42719

89A -> 90A -0.63881

87B -> 90B -0.42719

89B -> 90B 0.63881

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

31

Excited State 2: Triplet-A 1.5695 eV 789.97 nm f=0.0000

86A -> 90A 0.83527

86B -> 90B -0.83527

Excited State 3: Triplet-A 1.6195 eV 765.59 nm f=0.0000

87A -> 90A 0.59357

88A -> 90A -0.21567

89A -> 90A 0.36759

87B -> 90B -0.59357

88B -> 90B 0.21567

89B -> 90B -0.36759

Excited State 4: Singlet-A 1.6531 eV 750.00 nm f=0.1041

88A -> 90A -0.11479

89A -> 90A 0.66058

88B -> 90B -0.11479

89B -> 90B 0.66058

Excited State 5: Triplet-A 1.7020 eV 728.45 nm f=0.0000

87A -> 90A 0.22169

88A -> 90A 0.67582

87B -> 90B -0.22169

88B -> 90B -0.67582

Excited State 6: Singlet-A 1.7613 eV 703.92 nm f=0.0099

88A -> 90A 0.69159

89A -> 90A 0.10030

88B -> 90B 0.69159

89B -> 90B 0.10030

Excited State 7: Singlet-A 1.9805 eV 626.02 nm f=0.0000

87A -> 90A 0.67013

32

87B -> 90B 0.67013

Excited State 8: Triplet-A 2.4630 eV 503.39 nm f=0.0000

84A -> 90A -0.71654

84B -> 90B 0.71654

Excited State 9: Singlet-A 2.6704 eV 464.28 nm f=0.0182

84A -> 90A 0.59282

86A -> 90A -0.32502

84B -> 90B 0.59282

86B -> 90B -0.32502

Excited State 10: Singlet-A 2.9072 eV 426.48 nm f=0.2363

84A -> 90A 0.33684

86A -> 90A 0.51972

87A -> 91A -0.15363

89A -> 91A 0.10192

84B -> 90B 0.33684

86B -> 90B 0.51972

87B -> 91B -0.15363

89B -> 91B 0.10192

Excited State 11: Triplet-A 3.0692 eV 403.96 nm f=0.0000

85A -> 90A 0.70215

85B -> 90B -0.70215

Excited State 12: Singlet-A 3.0796 eV 402.60 nm f=0.0043

85A -> 90A 0.70127

85B -> 90B 0.70127

Excited State 13: Triplet-A 3.3401 eV 371.19 nm f=0.0000

82A -> 90A -0.37531

33

83A -> 90A 0.58739

82B -> 90B 0.37531

83B -> 90B -0.58739

Excited State 14: Singlet-A 3.3627 eV 368.70 nm f=0.0008

82A -> 90A -0.45058

83A -> 90A 0.53633

82B -> 90B -0.45058

83B -> 90B 0.53633

Excited State 15: Triplet-A 3.3815 eV 366.66 nm f=0.0000

82A -> 90A 0.58946

83A -> 90A 0.36991

82B -> 90B -0.58946

83B -> 90B -0.36991

Excited State 16: Singlet-A 3.4054 eV 364.08 nm f=0.0000

82A -> 90A 0.53733

83A -> 90A 0.45385

82B -> 90B 0.53733

83B -> 90B 0.45385

Excited State 17: Triplet-A 3.5341 eV 350.82 nm f=0.0000

66A -> 90A 0.10273

84A -> 92A -0.16694

86A -> 91A -0.13450

86A -> 92A 0.15418

87A -> 91A 0.52759

89A -> 91A -0.42492

66B -> 90B -0.10273

84B -> 92B 0.16694

86B -> 91B 0.13450

34

86B -> 92B -0.15418

87B -> 91B -0.52759

89B -> 91B 0.42492

Excited State 18: Triplet-A 3.5390 eV 350.34 nm f=0.0000

77A -> 90A -0.29828

77A -> 92A -0.10786

80A -> 90A 0.24171

86A -> 91A -0.53274

87A -> 91A -0.13626

87A -> 92A -0.23783

89A -> 91A 0.10117

89A -> 92A 0.14178

77B -> 90B 0.29828

77B -> 92B 0.10786

80B -> 90B -0.24171

86B -> 91B 0.53274

87B -> 91B 0.13626

87B -> 92B 0.23783

89B -> 91B -0.10117

89B -> 92B -0.14178

Excited State 19: Triplet-A 3.7565 eV 330.05 nm f=0.0000

70A -> 90A -0.13235

77A -> 90A -0.43852

80A -> 90A 0.16456

84A -> 91A 0.11556

86A -> 91A 0.39738

88A -> 91A 0.13709

88A -> 96A 0.19519

89A -> 93A 0.13487

89A -> 95A -0.19851

35

70B -> 90B 0.13235

77B -> 90B 0.43852

80B -> 90B -0.16456

84B -> 91B -0.11556

86B -> 91B -0.39738

88B -> 91B -0.13709

88B -> 96B -0.19519

89B -> 93B -0.13487

89B -> 95B 0.19851

Excited State 20: Triplet-A 3.7829 eV 327.75 nm f=0.0000

77A -> 90A 0.22513

80A -> 90A -0.11611

86A -> 91A -0.18247

88A -> 91A 0.16028

88A -> 94A -0.14208

88A -> 96A 0.41806

89A -> 93A 0.29053

89A -> 94A 0.10975

89A -> 95A -0.42045

77B -> 90B -0.22513

80B -> 90B 0.11611

86B -> 91B 0.18247

88B -> 91B -0.16028

88B -> 94B 0.14208

88B -> 96B -0.41806

89B -> 93B -0.29053

89B -> 94B -0.10975

89B -> 95B 0.42045

Excited State 21: Singlet-A 3.9507 eV 313.83 nm f=0.0574

89A -> 91A 0.69247

36

89B -> 91B 0.69247

Excited State 22: Triplet-A 3.9681 eV 312.45 nm f=0.0000

87A -> 91A -0.43335

89A -> 91A -0.54507

87B -> 91B 0.43335

89B -> 91B 0.54507

Excited State 23: Triplet-A 4.1229 eV 300.72 nm f=0.0000

80A -> 90A -0.21057

84A -> 91A 0.23438

87A -> 92A -0.13757

88A -> 91A 0.57162

89A -> 93A -0.13010

89A -> 95A 0.17646

80B -> 90B 0.21057

84B -> 91B -0.23438

87B -> 92B 0.13757

88B -> 91B -0.57162

89B -> 93B 0.13010

89B -> 95B -0.17646

Excited State 24: Singlet-A 4.1734 eV 297.08 nm f=0.0109

88A -> 91A 0.69441

88B -> 91B 0.69441

Excited State 25: Triplet-A 4.2037 eV 294.94 nm f=0.0000

77A -> 90A 0.13193

78A -> 90A -0.11424

80A -> 90A 0.27820

81A -> 90A 0.59551

88A -> 91A 0.11036

37

77B -> 90B -0.13193

78B -> 90B 0.11424

80B -> 90B -0.27820

81B -> 90B -0.59551

88B -> 91B -0.11036

Excited State 26: Singlet-A 4.2133 eV 294.27 nm f=0.0032

81A -> 90A 0.69324

81B -> 90B 0.69324

Excited State 27: Triplet-A 4.2269 eV 293.32 nm f=0.0000

70A -> 90A 0.11501

76A -> 90A 0.12406

77A -> 90A 0.22937

79A -> 90A 0.13436

80A -> 90A 0.44957

81A -> 90A -0.35572

86A -> 91A 0.11086

88A -> 91A 0.19280

70B -> 90B -0.11501

76B -> 90B -0.12406

77B -> 90B -0.22937

79B -> 90B -0.13436

80B -> 90B -0.44957

81B -> 90B 0.35572

86B -> 91B -0.11086

88B -> 91B -0.19280

Excited State 28: Singlet-A 4.3143 eV 287.38 nm f=0.0361

79A -> 90A 0.23780

80A -> 90A 0.62696

79B -> 90B 0.23780

38

80B -> 90B 0.62696

Excited State 29: Triplet-A 4.3594 eV 284.41 nm f=0.0000

76A -> 90A -0.11798

77A -> 90A -0.20398

78A -> 90A -0.18819

84A -> 91A -0.49033

86A -> 91A -0.12569

87A -> 92A 0.28188

88A -> 91A 0.20775

89A -> 92A -0.11109

89A -> 95A 0.10542

76B -> 90B 0.11798

77B -> 90B 0.20398

78B -> 90B 0.18819

84B -> 91B 0.49033

86B -> 91B 0.12569

87B -> 92B -0.28188

88B -> 91B -0.20775

89B -> 92B 0.11109

89B -> 95B -0.10542

Excited State 30: Triplet-A 4.3901 eV 282.42 nm f=0.0000

76A -> 90A 0.17716

78A -> 90A 0.59336

81A -> 90A 0.12406

84A -> 91A -0.18710

87A -> 92A 0.11792

88A -> 91A 0.14095

88A -> 96A -0.11991

76B -> 90B -0.17716

78B -> 90B -0.59336

39

81B -> 90B -0.12406

84B -> 91B 0.18710

87B -> 92B -0.11792

88B -> 91B -0.14095

88B -> 96B 0.11991

Excited State 31: Singlet-A 4.4509 eV 278.56 nm f=0.0021

76A -> 90A 0.16339

78A -> 90A 0.66443

76B -> 90B 0.16339

78B -> 90B 0.66443

Excited State 32: Triplet-A 4.5266 eV 273.90 nm f=0.0000

79A -> 90A 0.66390

80A -> 90A -0.19388

79B -> 90B -0.66390

80B -> 90B 0.19388

Excited State 33: Singlet-A 4.5395 eV 273.12 nm f=0.0014

77A -> 90A 0.11282

79A -> 90A 0.65414

80A -> 90A -0.22908

77B -> 90B 0.11282

79B -> 90B 0.65414

80B -> 90B -0.22908

Excited State 34: Singlet-A 4.6020 eV 269.41 nm f=0.0151

77A -> 90A 0.59865

80A -> 90A 0.12823

84A -> 91A 0.12603

86A -> 91A -0.23623

77B -> 90B 0.59865

40

80B -> 90B 0.12823

84B -> 91B 0.12603

86B -> 91B -0.23623

Excited State 35: Singlet-A 4.6109 eV 268.89 nm f=0.6479

87A -> 91A 0.64908

87B -> 91B 0.64908

7.8 XYZ-coordinates for of the T0 state of 52+ (UB3LYP/6-31G(d,p),

SCRF(IEFPCM, DCM)

N -0.72820100 0.00008500 -0.44812300

S -3.39389200 -0.00122900 1.21182600

C -1.49872100 1.19940600 -0.43350800

C -1.49338900 -1.20325100 -0.42983000

C -2.64713100 1.29863400 0.35514300

C -2.63978800 -1.30233900 0.36301800

C -1.23916600 -2.38379500 -1.16102300

C -1.24344300 2.37755200 -1.16813500

C -2.16364700 3.36838500 -0.88036200

C -2.15561300 -3.37559900 -0.86530500

S -3.36163500 2.88739900 0.24926800

S -3.35012300 -2.89337900 0.26720900

41

H -0.44885400 2.49557500 -1.89220600

H -0.44988800 -2.50410000 -1.89040400

H -2.20273200 4.36332700 -1.30331000

H -2.19396100 -4.37219300 -1.28437800

C 0.64608600 0.00691500 -0.24599000

C 1.35750600 1.23607000 -0.08378500

C 1.38538400 -1.21082700 -0.14252500

C 2.74888500 -1.18181000 0.00026400

C 2.72499300 1.23936800 0.05819500

C 3.48135900 0.03922700 0.08557000

H 0.88612900 -2.16740100 -0.15390700

H 0.83146300 2.17795000 -0.04350000

H 3.27360500 -2.12702300 0.06683100

H 3.22213100 2.19298800 0.17485300

C 4.99200700 0.01397800 0.23402200

C 5.36270300 -0.79093400 1.51112100

H 5.01367000 -1.82582700 1.46951300

H 6.45196500 -0.81073400 1.60882300

H 4.94629700 -0.32124000 2.40667700

C 5.60274300 1.42268200 0.34104700

H 5.39773600 2.02745300 -0.54765900

H 5.23881400 1.95941300 1.22257000

H 6.68820500 1.33603800 0.43490500

C 5.59096700 -0.70131000 -1.01086600

H 5.35565500 -0.15641900 -1.92948800

H 6.67897600 -0.74010700 -0.90307900

H 5.22820000 -1.72704500 -1.11450700

Sum of electronic and zero-point Energies= -1944.723518 Sum of electronic and thermal Energies= -1944.703741 Sum of electronic and thermal Enthalpies= -1944.702797 Sum of electronic and thermal Free Energies= -1944.772729