21
1 Supplementary Information Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic Routes, Characterization, Crystal Structure and Luminescence Studies Bhavesh Parmar, a,b Parth Patel, c,d Vishnu Murali, b Yadagiri Rachuri, a,b Rukhsana I. Kureshy, a,c,d Noor-ul H. Khan, a,c,d and Eringathodi Suresh a,b * a Academy of Scientific and Innovative Research (AcSIR), b Analytical and Environmental Science Division and Centralized Instrument Facility, c Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364 002, Gujarat, India. d Charotar University of Science & Technology, Changa-388 421, Anand, Gujarat, India. E-mail: [email protected]; [email protected] X-ray Crystallography The crystal and refinement data and selected bond lengths/angles, H-bonding interactions for MOF 1 and 2 are summarized in Table S1-S3. In both cases, a crystal of appropriate size was selected from the mother liquor and immersed in paratone oil and then it was mounted on the tip of a glass fiber and cemented using epoxy resin. Single crystal X-ray data were collected at 150 K on a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo-K α radiation (0.71073 Å). The linear absorption coefficients, scattering factors for the atoms and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. The data integration and reduction were processed with SAINT 1 software. Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

)URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

1

Supplementary Information

Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II)

MOFs for Knoevenagel Condensation Reaction: Adaptable

Synthetic Routes, Characterization, Crystal Structure and

Luminescence StudiesBhavesh Parmar,a,b Parth Patel,c,d Vishnu Murali,b Yadagiri Rachuri,a,b Rukhsana I. Kureshy,a,c,d Noor-ul

H. Khan,a,c,d and Eringathodi Suresha,b*

aAcademy of Scientific and Innovative Research (AcSIR), bAnalytical and Environmental Science Division and

Centralized Instrument Facility, cInorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals

Research Institute, G. B. Marg, Bhavnagar-364 002, Gujarat, India.dCharotar University of Science & Technology, Changa-388 421, Anand, Gujarat, India.

E-mail: [email protected]; [email protected]

X-ray Crystallography

The crystal and refinement data and selected bond lengths/angles, H-bonding interactions for

MOF 1 and 2 are summarized in Table S1-S3. In both cases, a crystal of appropriate size was

selected from the mother liquor and immersed in paratone oil and then it was mounted on the

tip of a glass fiber and cemented using epoxy resin. Single crystal X-ray data were collected at

150 K on a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo-Kα

radiation (0.71073 Å). The linear absorption coefficients, scattering factors for the atoms and

the anomalous dispersion corrections were taken from International Tables for X-ray

Crystallography. The data integration and reduction were processed with SAINT1 software.

Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.This journal is © the Partner Organisations 2018

Page 2: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

2

Table 1. Crystal Data and Refinement Parameters for Compounds 1 and 2.

Identification code 1 2

Chemical formula ZnC26H32N4O7 CdC26H32N4O7

Formula weight (g/mol) 577.92 624.95

Crystal Color Colourless Colourless

Crystal Size (mm) 0.14 x 0.13 x 0.09 0.06 x 0.03 x 0.02

Temperature (K) 150 (2) 150 (2)

Crystal System Triclinic Triclinic

Space Group P1̅ P1̅

a(Å ) 9.4511 (9) 9.851 (3)

b(Å ) 12.3922 (12) 12.171 (4)

c(Å ) 12.6894 (12) 13.126 (4)

(º) 64.8290 (10) 64.387 (6)

(º) 72.1130 (10) 68.719 (6)

(º) 77.227 (2) 73.025 (6)

Z 2 2

V(Å3) 1273.0 (2) 1305.2 (7)

Density (Mg/m3) 1.508 1.590

μ(mm-1) 1.019 0.890

F(000) 604 640

Reflections Collected 9820 10860

Independent Reflections 4924 5578

Rint 0.0203 0.0751

Number of parameters 355 355

GOF on F2 1.059 1.070

Final R1/wR2 (I ≥2(I) 0.0623/0.1797 0.0786/0.1366

Weighted R1/wR2 (all data) 0.0662/0.1841 0.1173/0.1509

CCDC number 1850036 1850037

Page 3: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

3

An empirical absorption correction was applied to the collected reflections with SADABS using

XPREP.2 The structure was solved by the direct method using SHELXTL3 and was refined on F2 by

full-matrix least-squares technique using the SHELXL-20144 program package. For both the

cases non-hydrogen atoms were refined anisotropically till convergence is reached. Hydrogen

atoms of the ligand moiety is either stereochemically fixed or located from the difference

Fourier map. Topological analysis of both compounds has been determined using the program

TOPOS5.

Catalyst Recyclability

After each catalytic cycle, both MOF (1 or 2) catalyst were recovered by centrifugation, then

washed with ethyl acetate/water, acetone, and dried in vacuum at 100°C for the next catalytic

reaction under the same reaction conditions up to 4 recycle. Chemical stability of recovered

catalyst analysed by PXRD, FTIR and FE-SEM analysis technique. For 1: Elemental analysis (%) C,

54.03; H, 5.58; N, 9.69; found (After 4th Catalytic cycle): C, 52.12; H, 5.18; N, 9.13; IR cm-1 (KBr):

3463 (br), 3416 (br), 2899 (m), 2842 (w), 1681 (m), 1603 (s), 1559 (s), 1415 (m), 1346 (w), 1287

(m), 1143 (w), 1069 (w), 1018 (w), 950 (w), 828 (w), 755 (w), 697 (w), 542 (w). For 2: Elemental

analysis (%) Cal.: C, 49.97; H, 5.16; N, 8.96; found (After 4th Catalytic cycle): C, 49.62; H, 5.03; N,

8.77; IR cm-1 (KBr): 3480 (br), 3414 (br), 2926 (m), 2849 (w), 1683 (m), 1616 (w), 1555 (s), 1409

(m), 1360 (w), 1290 (m), 1149 (w), 1067 (w), 1017 (w), 949 (w), 825 (w), 754 (w), 697 (w), 537

(w).

Page 4: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

4

1H & 13C NMR analysis of benzylidenemalononitrile products

The benzylidenemalononitrile products involve in this work are all known compounds. 1H and

13C NMR spectra of products matched well with reported in the literature.S6-S8 1H and 13C NMR

data of the cyclic carbonate products are as follows.

OCN

CN

2-benzylidenemalononitrile: 1H NMR (600 MHz, CDCl3) δ = 7.92 (s, 2H), 7.79 (s, 1H), 7.59 (d,

3H). 13C NMR (151 MHz, CDCl3) δ = 159.93, 134.57, 130.85, 130.66, 129.56, 113.64, 112.49,

82.74.

OCN

CNF F

2-(2-fluorobenzylidene)malononitrile: 1H NMR (600 MHz, CDCl3), δ = 8.28 (t, J = 7.6 Hz, 1H),

8.10 (s, 1H), 7.65 (dd, J = 13.8, 6.7 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.23 (t, J = 15 Hz, 1H). 13C

NMR (151 MHz, CDCl3) δ = 162.27, 160.56, 151.43, 136.87, 128.65, 125.43, 119.52, 116.58,

113.49, 112.33, 84.61.

OCN

CNO O

2-(2-ethoxybenzylidene)malononitrile: 1H NMR (600 MHz, CDCl3) δ = 8.33 (s, 1H), 8.20 (d, J =

8.0 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.09 – 6.92 (m, 2H), 4.13 (s, 2H), 1.48 (t, J = 7.0 Hz, 3H). 13C

Page 5: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

5

NMR (151 MHz, CDCl3) δ = 158.51 (s), 154.72 (s), 136.59 (s), 128.90 (s), 121.09, 120.25, 114.56,

113.16, 112.31, 81.21, 64.70, 14.71.

OCN

CN

O O

2-(3-methoxybenzylidene)malononitrile: 1H NMR (600 MHz, ) δ 7.81 (s, 1H), 7.55 (s, 1H), 7.53 –

7.46 (m, 2H), 7.24 (d, J = 7.5 Hz, 1H), 3.93 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 160.21, 160.06,

132.13, 130.69, 124.01, 121.44, 114.21, 113.78, 112.72, 82.97 55.63.

NO

N

CN

CN

2-(pyridin-4-ylmethylene)malononitrile: 1H NMR (600 MHz, CDCl3), δ = 8.98 – 8.81 (m, 2H),

7.79 (s, 1H), 7.73 – 7.66 (m, 2H). 13C NMR (151 MHz, CDCl3) δ = 157.51, 151.57, 137.09, 122.66,

112.54, 111.38, 88.74.

OCN

CNBr Br

2-(4-bromobenzylidene)malononitrile: 1H NMR (600 MHz, CDCl3) δ = 7.77 (t, J = 5.5 Hz, 2H),

7.73 (s, 1H), 7.71 – 7.68 (m, 2H). 13C NMR (151 MHz, CDCl3) δ = 158.55, 133.17, 131.90, 130.02,

129.73, 113.54, 112.42, 83.56.

OCN

CN

Page 6: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

6

2-(3,4-dimethylbenzylidene)malononitrile: 1H NMR (600 MHz, CDCl3) δ = 7.70 – 7.64 (m, 3H),

7.31 – 7.25 (m, 1H), 2.35 (d, 6H). 13C NMR (151 MHz, CDCl3) δ = 154.72, 153.61, 135.86, 131.53,

115.05, 114.72, 113.57, 74.00, 68.39, 66.15.

Figure S1. Guest water molecules situated in 2D layer of MOF 2.

Page 7: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

7

Figure S2. FTIR recorded for 1 & 2 (synthesized by different routes and recovered after 4th catalytic recycle) dispersed in KBr pellets.

Page 8: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

8

Figure S3. TGA plot for the compounds 1, 1G, 2 and 2G.

Figure S4. VT-PXRD spectra recorded for 1 and 2 from room temperature to 300 ⁰C.

Page 9: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

9

Figure S5. N2 adsorption isotherm at 78 K for 1 and 2.

Page 10: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

10

Figure S6. CO2 adsorption isotherm at 273 K for 1 and 2.

Page 11: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

11

Figure S7. UV-vis Absorbance Spectra and Diffuse Reflectance Spectra (DRS) Spectra of L, H2CHDC, 1, 1G,

2 and 2G.

Figure S8. Proposed plausible catalytic mechanism for Knoevenagel condensation of benzaldehyde

derivatives with active methylene compound malononitrile to form benzylidenemalononitrile

derivatives catalyzed by MOF 2.

Page 12: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

12

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.97

0.97

2.00

0.00

7.55

7.64

7.79

7.92

Figure S9. 1H-NMR of the isolated 2-benzylidenemalononitrile.

-20-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

76.7

977

.00

77.2

182

.74

112.

4911

3.64

129.

5613

0.66

130.

8513

4.57

159.

93

Figure S10. 13C-NMR of the isolated 2-benzylidenemalononitrile.

Page 13: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

13

5.65.86.06.26.46.66.87.07.27.47.67.88.08.28.48.68.89.0f1 (ppm)

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.91

0.96

0.93

0.90

0.92

7.22

7.24

7.25

7.33

7.34

7.36

7.63

7.64

7.66

7.67

8.10

8.27

8.28

8.30

Figure S11. 1H-NMR of the isolated 2-(2-fluorobenzylidene)malononitrile.

707580859095100105110115120125130135140145150155160165170175f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

76.9

577

.16

77.3

7

84.6

1

112.

3311

3.49

116.

5811

6.73

119.

4811

9.55

125.

4212

5.44

128.

65

136.

8413

6.90

151.

4015

1.46

160.

5616

2.27

Figure S12. 13C-NMR of the isolated 2-(2-fluorobenzylidene)malononitrile.

Page 14: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

14

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0f1 (ppm)

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

3.00

2.01

2.00

0.98

0.94

0.85

0.00

1.47

1.48

1.50

4.13

6.95

6.96

7.04

7.05

7.06

7.26

7.54

7.56

7.57

8.19

8.20

8.33

Figure S13. 1H-NMR of the isolated 2-(2-ethoxybenzylidene)malononitrile.

0102030405060708090100110120130140150160170180f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

14.7

1

64.7

0

76.9

077

.12

77.3

381

.21

112.

3111

3.16

114.

5612

0.25

121.

09

128.

90

136.

59

154.

7215

8.51

Figure S14. 13C-NMR of the isolated 2-(2-ethoxybenzylidene)malononitrile.

Page 15: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

15

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5f1 (ppm)

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

3.00

0.91

1.78

0.87

0.88

0.06

3.93

7.23

7.24

7.48

7.49

7.50

7.51

7.52

7.55

7.81

Figure S15. 1H-NMR of the isolated 2-(3-methoxybenzylidene)malononitrile.

0102030405060708090100110120130140150160170180190200f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.08

55.6

3

76.9

477

.15

77.3

682

.97

112.

7211

3.78

114.

21

121.

4412

4.01

130.

6913

2.13

160.

0616

0.21

Figure S16. 13C-NMR of the isolated 2-(3-methoxybenzylidene)malononitrile.

Page 16: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

16

6.06.57.07.58.08.59.09.5f1 (ppm)

0

1

2

3

4

5

6

7

8

9

10

1.94

0.84

2.06

7.26

7.79

8.87

8.87

8.88

8.89

8.90

Figure S17. 1H-NMR of the isolated 2-(pyridin-4-ylmethylene)malononitrile.

50556065707580859095100105110115120125130135140145150155160165170175180f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

76.8

977

.10

77.3

1

88.7

4

111.

3811

2.54

122.

66

137.

09

151.

57

157.

51

Figure S18. 13C-NMR of the isolated 2-(pyridin-4-ylmethylene)malononitrile.

Page 17: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

17

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

1.97

0.96

2.00

-0.0

0

1.59

7.27

7.68

7.69

7.70

7.73

7.76

7.77

7.78

Figure S19. 1H-NMR of the isolated 2-(4-bromobenzylidene)malononitrile.

-20-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.09

76.9

177

.12

77.3

383

.56

112.

4211

3.54

129.

7313

0.02

131.

9013

3.17

158.

55

Figure S20. 13C-NMR of the isolated 2-(4-bromobenzylidene)malononitrile.

Page 18: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

18

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0f1 (ppm)

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

6.30

1.15

2.90

0.00

2.33

2.36

7.26

7.28

7.30

7.66

7.68

7.69

Figure S21. 1H-NMR of the isolated 2-(3,4-dimethylbenzylidene)malononitrile.

0102030405060708090100110120130140150160170f1 (ppm)

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

19.8

820

.53

76.9

577

.16

77.3

780

.96

113.

0811

4.28

128.

6512

9.01

131.

0213

2.08

138.

41

145.

43

160.

10

Figure S22. 13C-NMR of the isolated 2-(3,4-dimethylbenzylidene)malononitrile.

Page 19: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

19

Table S3. Selected bond length and bond angle for 1 & 2:

1Zn(1)-O(4)#1 2.015(3) Zn(1)-N(4)#3 2.175(3)Zn(1)-O(3)#2 2.025(3) Zn(1)-N(1) 2.181(3)Zn(1)-O(1) 2.163(3) Zn(1)-O(2) 2.338(4)O(4)#1-Zn(1)-O(3)#2 119.69(14) N(4)#3-Zn(1)-O(2) 85.46(13)O(4)#1-Zn(1)-O(1) 146.80(13) N(1)-Zn(1)-O(2) 95.94(13)O(3)#2-Zn(1)-O(1) 93.24(14) C(15)-N(1)-Zn(1) 119.3(3)O(4)#1-Zn(1)-N(4)#3 86.48(13) C(19)-N(1)-Zn(1) 123.9(3)O(3)#2-Zn(1)-N(4)#3 88.64(13) C(24)-N(4)-Zn(2)#4 122.8(3)O(1)-Zn(1)-N(4)#3 90.53(12) O(25)-N(4)-Zn(1)#4 119.4(3)O(4)#1-Zn(1)-N(1) 93.59(13) C(1)-O(1)-Zn(1) 94.8(3)O(3)#2-Zn(1)-N(1) 90.11(13) C(1)-O(2)-Zn(1) 87.0(3)O(1)-Zn(1)-N(1) 90.18(12) C(14)-O(3)-Zn(1)#2 136.8(3)N(4)#3-Zn(1)-N(1) 178.60(12) C(14)-O(4)-Zn(1)#5 145.5(3)O(4)#1-Zn(1)-O(2) 89.10(12) O(2)-C(1)-O(1) 120.1(4)O(3)#2-Zn(1)-O(2) 150.20(14) O(3)-C(14)-O(4) 125.9(4)O(1)-Zn(1)-O(2) 57.70(13) ---- ----Symmetry transformation: #1 -1+x,+y,+z #2 1-x,1-y,1-z #3 1+x,1+y,-1+z#4 -1+x,-1+y,1+z #5 1+x,+y,+z

2Cd(1)-N(1) 2.308(5) Cd(1)-O(1)#3 2.388(5)Cd(1)-N(4)#1 2.313(5) Cd(1)-O(4)#2 2.398(5)Cd(1)-O(1) 2.347(5) Cd(1)-O(2)#3 2.438(5)Cd(1)-O(3)#2 2.387(5) Cd(1)-C(14)#2 2.740(7)N(1)-Cd(1)-N(4)#1 174.8(2) N(4)#1-Cd(1)-C(14)#2 97.1(2)N(1)-Cd(1)-O(1) 86.58(18) O(1)-Cd(1)-C(14)#2 120.85(19)N(4)#1-Cd(1)-O(3)#2 88.30(19) O(3)#2-Cd(1)-C(14)#2 27.39(18)N(1)-Cd(1)-O(3)#2 87.48(18) O(1)#3-Cd(1)-C(14)#2 166.30(18)N(4)#1-Cd(1)-O(3)#2 96.51(18) O(4)#2-Cd(1)-C(14)#2 27.33(18)O(1)-Cd(1)-O(3)#2 148.19(16) O(2)#3-Cd(1)-C(14)#2 113.60(19)N(1)-Cd(1)-O(1)#3 89.37(18) C(15)-N(1)-Cd(1) 119.6(5)N(4)#1-Cd(1)-O(1)#3 89.66(18) C(19)-N(1)-Cd(1) 121.8(5)O(1)-Cd(1)-O(1)#3 71.08(18) C(25)-N(4)-Cd(1)#4 124.0(5)O(3)#2-Cd(1)-O(1)#3 140.07(16) C(24)-N(4)-Cd(1)#4 118.1(5)N(1)-Cd(1)-O(4)#2 85.89(18) C(1)-O(1)-Cd(1) 157.8(5)N(4)#1-Cd(1)-O(4)#2 93.72(19) C(1)-O(1)-Cd(1)#3 93.2(4)O(1)-Cd(1)-O(4)#2 93.73(17) Cd(1)-O(1)-Cd(1)#3 108.92(18)O(3)#2-Cd(1)-O(4)#2 54.67(16) C(1)-O(2)-Cd(1)#3 91.7(4)O(1)#3-Cd(1)-O(4)#2 164.35(15) C(14)-O(3)-Cd(1)#5 92.1(4)

Page 20: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

20

N(1)-Cd(1)-O(2)#3 91.13(18) C(14)-O(4)-Cd(1)#5 91.6(4)N(4)#1-Cd(1)-O(2)#3 92.41(19) O(4)-C(14)-Cd(1)#5 61.0(4)O(1)-Cd(1)-O(2)#3 125.01(16) O(3)-C(14)-Cd(1)#5 60.5(4)O(3)#2-Cd(1)-O(2)#3 86.31(16) C(13)-C(14)-Cd(1)#5 174.3(5)O(1)#3-Cd(1)-O(2)#3 53.95(16) O(2)-C(1)-O(1) 121.1(6)O(4)#2-Cd(1)-O(2)#3 140.94(17) O(4)-C(14)-O(3) 121.4(7)N(1)-Cd(1)-C(14)#2 84.95(19) ---- ----Symmetry transformation: #1 -1+x,-1+y,1+z #2 1+x,+y,+z #3 -x,-y,2-z#4 1+x,1+y,-1+z #5 -1+x,+y,+z

Table S3. Details of hydrogen bonding interactions observed in the structure of 1 and 2:

D-H···A d(H···A) (Å) d(D···A) (Å) D-H···A (°)1

N(2)-H(2)···O(7)1 2.22 3.052 (6) 164O(6)-H(6C)···O(1)2 1.95 (4) 2.881 (6) 169 (4)O(6)-H(6D)···O(5)4 1.99 (4) 2.722 (9) 133 (3)O(7)-H(7C)···O(2)2 2.02 2.895 (6) 161 (4)O(7)-H(7D)···O(6)3 1.80 (5) 2.726 (7) 173 (5)

Symmetry code : 1. -x,-y,1-z; 2. x,y,z; 3. 1-x,-y,1-z; 4. -x,-y,2-z

2N(2)-H(2)···O(6)1 2.01 2.854 (8) 166O(6)-H(6C)···O(7)2 1.81 (7) 2.756 (9) 176 (7)O(6)-H(6D)···O(3)3 1.87 (4) 2.815 (8) 175 (8)O(7)-H(7C)···O(4)4 1.92 (7) 2.880 (8) 177 (9)O(7)-H(7D)···O(5)4 1.90 (4) 2.818 (8) 160 (8)C(18)-H(18)···O(6)1 2.60 3.294 (10) 132

Symmetry code : 1. 1-x,1-y,1-z; 2. x,y,z; 3. -1+x,1+y,-1+z; 4. -x,-y,1-z

Page 21: )URQWLHUV Luminescence Studies 7KLV MRXUQDOLV ... · Efficient Heterogeneous Catalysis by Dual Ligand Zn(II)/Cd(II) MOFs for Knoevenagel Condensation Reaction: Adaptable Synthetic

21

References:

S1. SAINT+, 6.02 ed, Bruker AXS, Madison, WI, 1999.

S2. XPREP, 5.1 ed. Siemens Industrial Automation Inc., Madison, WI, 1995.

S3. G. M. Sheldrick, SHELXTL ™Reference Manual: version 5.1, Bruker AXS, Madison, WI, 1997.

S4. G. M. Sheldrick, Acta Cryst C, 2015, 71, 3.

S5. V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576.

S6. Y. Wang, L. Wang, C. Liu and R. Wang, ChemCatChem, 2015, 7, 1559.

S7. S. Yu, R. Sun, H. Chen, X. Xie and Y. Liu, Chem. Eur. J., 2015, 21, 1420.

S8. K. Yamashita, T. Tanaka and M. Hayashi, Tetrahedron, 2005, 61, 7981.