73
Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh [email protected] Department of Mathematics University of California, Riverside Riverside, CA 92521 USA Twisting of Torus Knots – p.1/30

Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh [email protected] Department of Mathematics University

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of Torus Knots

Speaker: Logan Godkin

Supervisor: Dr. Mohamed Ait Nouh

[email protected]

Department of Mathematics

University of California, Riverside

Riverside, CA 92521 USA

Twisting of Torus Knots – p.1/30

Page 2: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Plan

twisted knots: Definition.

Twisting of Torus Knots – p.2/30

Page 3: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Plan

twisted knots: Definition.

Connection between twisting of knots and 4-manifolds.

Twisting of Torus Knots – p.2/30

Page 4: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Plan

twisted knots: Definition.

Connection between twisting of knots and 4-manifolds.

Signature of (p, p + 6)-torus knots.

Twisting of Torus Knots – p.2/30

Page 5: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Plan

twisted knots: Definition.

Connection between twisting of knots and 4-manifolds.

Signature of (p, p + 6)-torus knots.

(p, p + 6)-torus knots is not twisted for p ≥ 11.

Twisting of Torus Knots – p.2/30

Page 6: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

What is a Twisting operation?

If ωg = 2:

C

(+1)−twisting

(−1)−twisting

C

Twisting of Torus Knots – p.3/30

Page 7: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

What is a Twisting operation?

If ωg = 2:

C

(+1)−twisting

(−1)−twisting

C

If ωg = 3:

(+1)−twisting

(−1)−twisting

C

C

Twisting of Torus Knots – p.3/30

Page 8: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

What is a Twisted Knot?

Trefoil Knot T(3, 2)

Unknot

U(+1)−twist

+ 1

C

Unknotting

(+1)−twisting

twist knotC

Twisting of Torus Knots – p.4/30

Page 9: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Yves Mathieu 1990: Is any knot in S3 twisted ?

Y. Ohyama: Any knot can be untied by at most twotwisting operations.

Twisting of Torus Knots – p.5/30

Page 10: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Yves Mathieu 1990: Is any knot in S3 twisted ?

Y. Ohyama: Any knot can be untied by at most twotwisting operations.

Ait Nouh-Yasuhara(2000): T (p, p + 4) (p ≥ 9) can not beuntied by a single twisting.

Twisting of Torus Knots – p.5/30

Page 11: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of torus knots

Miyazaki-Motegi(1999):

If T (p, q) (0 < p < q and q 6= kp ± 1) is n-twisted, thenn = ±1.

Twisting of Torus Knots – p.6/30

Page 12: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of torus knots

Miyazaki-Motegi(1999):

If T (p, q) (0 < p < q and q 6= kp ± 1) is n-twisted, thenn = ±1.

Ait Nouh- Yasuhara(2004):

If T (p, q) (0 < p < q and q 6= kp ± 1) is n-twisted, thenn = +1.

Twisting of Torus Knots – p.6/30

Page 13: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of torus knots

Ait Nouh-Godkin(2009):

T (p, p + 6) (p ≥ 11) can not be untied by a single twisting.

p strands half−twistsp+6

T(p,p+6)

Twisting of Torus Knots – p.7/30

Page 14: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of torus knots

Ait Nouh-Yasuhara old conjecture (2009): T (p, q)(0 < p < q) can not be untied by a single twisting forq 6= np ± 1.

Goda-Hayashi-Song: T (p, p + 2) is untied by(−1, p + 1)-twisting !

Twisting of Torus Knots – p.8/30

Page 15: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting of torus knots

Ait Nouh-Godkin conjecture (2009): T (p, q) (0 < p < q) can

not be untied by a single twisting for q 6= np±1 and q 6= p+2.

Twisting of Torus Knots – p.9/30

Page 16: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

4-manifolds

X4 is a simply-connected (π1(X4, Z) = {1}), orientable

and closed 4-manifold.

Twisting of Torus Knots – p.10/30

Page 17: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

4-manifolds

X4 is a simply-connected (π1(X4, Z) = {1}), orientable

and closed 4-manifold.

H2(X4, Z) =< γ1, γ2, ..., γn > free abelian group of n

generators.

Twisting of Torus Knots – p.10/30

Page 18: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

4-manifolds

X4 is a simply-connected (π1(X4, Z) = {1}), orientable

and closed 4-manifold.

H2(X4, Z) =< γ1, γ2, ..., γn > free abelian group of n

generators.

The intersection matrix (form) is: M = (γi.γj)1≤i,j≤n

Twisting of Torus Knots – p.10/30

Page 19: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

4-manifolds

X4 is a simply-connected (π1(X4, Z) = {1}), orientable

and closed 4-manifold.

H2(X4, Z) =< γ1, γ2, ..., γn > free abelian group of n

generators.

The intersection matrix (form) is: M = (γi.γj)1≤i,j≤n

The signature of M is called the signature of X4, and isgiven by the formula: σ(X4) = b+

2 − b−2

Twisting of Torus Knots – p.10/30

Page 20: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

4-manifolds

X4 is a simply-connected (π1(X4, Z) = {1}), orientable

and closed 4-manifold.

H2(X4, Z) =< γ1, γ2, ..., γn > free abelian group of n

generators.

The intersection matrix (form) is: M = (γi.γj)1≤i,j≤n

The signature of M is called the signature of X4, and isgiven by the formula: σ(X4) = b+

2 − b−2

Example: H2(CP 2, Z) =< γ1 >, where γ1 =< CP 1 > andCP 1 ∼= S2 and such that γ1.γ1 = +1.

Twisting of Torus Knots – p.10/30

Page 21: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in CP 2:

K

U ω,

B4

D = K2

Disk D2

K(−1 )

− int B4

CP2

+1

CP2

Kirby Calculus

[D] = ωγ ∈ H2(CP 2 − intB4, S3, Z).

Twisting of Torus Knots – p.11/30

Page 22: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in CP 2:

K

U ω,

B4

D = K2

Disk D2

K(−1 )

− int B4

CP2

+1

CP2

Kirby Calculus

[D] = ωγ ∈ H2(CP 2 − intB4, S3, Z).

H2(CP 2 − intB4, S3, Z) =< γ > with γ.γ = +1.

Twisting of Torus Knots – p.11/30

Page 23: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in CP2

K

U ω,

B4

D = K2

Disk D2

K)

− int B4

CP

CP2

Kirby Calculus

2−1

(+1

[D] = ωγ̄ ∈ H2(CP2− intB4, S3, Z).

Twisting of Torus Knots – p.12/30

Page 24: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in CP2

K

U ω,

B4

D = K2

Disk D2

K)

− int B4

CP

CP2

Kirby Calculus

2−1

(+1

[D] = ωγ̄ ∈ H2(CP2− intB4, S3, Z).

H2(CP2− intB4, S3, Z) =< γ̄ > with γ̄.γ̄ = −1.

Twisting of Torus Knots – p.12/30

Page 25: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in nCP 2:

K

U B4

D = K2

Disk D2

K

− int B4

CP2

CP2

Kirby Calculus

(−n

n

n

n

n CP2= CP

2# CP

2# ....... # CP

2

)ω, (−n < 0 )

n times

[D] = ωγ1 + ωγ2 + .... + ωγn ∈ H2(nCP 2 − intB4, S3, Z).

Twisting of Torus Knots – p.13/30

Page 26: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in nCP 2:

K

U B4

D = K2

Disk D2

K

− int B4

CP2

CP2

Kirby Calculus

(−n

n

n

n

n CP2= CP

2# CP

2# ....... # CP

2

)ω, (−n < 0 )

n times

[D] = ωγ1 + ωγ2 + .... + ωγn ∈ H2(nCP 2 − intB4, S3, Z).

H2(nCP 2 − intB4, S3, Z) =< γ1, γ2, ..., γn > withγi.γi = +1 for i = 1, 2, ..., n.

Twisting of Torus Knots – p.13/30

Page 27: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in nCP2:

K

U B4

D = K2

Disk D2

K

− int B4

CP2

CP2

Kirby Calculus

n

n

n CP2= CP

2# CP

2# ....... # CP

2

)ω, (n(n > 0 )

n−

n times

[D] = ωγ̄1 + ωγ̄2 + .... + ωγ̄n ∈ H2(nCP2− intB4, S3, Z).

Twisting of Torus Knots – p.14/30

Page 28: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in nCP2:

K

U B4

D = K2

Disk D2

K

− int B4

CP2

CP2

Kirby Calculus

n

n

n CP2= CP

2# CP

2# ....... # CP

2

)ω, (n(n > 0 )

n−

n times

[D] = ωγ̄1 + ωγ̄2 + .... + ωγ̄n ∈ H2(nCP2− intB4, S3, Z).

H2(nCP 2 − intB4, S3, Z) =< γ̄1, γ̄2, ..., γ̄n > withγ̄i.γ̄i = −1 for i = 1, 2, ..., n.

Twisting of Torus Knots – p.14/30

Page 29: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in S2 × S2

K

U B4

D = K2

Disk D2

K

− int B42

Sx2

(2n )ω,

S0

0

S2x S

2

Kirby Calculus

K(2n>0,ω)

→ K2 =⇒ [D2] = −ωα + nω2 β

Twisting of Torus Knots – p.15/30

Page 30: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and sliceness in S2 × S2

K

U B4

D = K2

Disk D2

K

− int B42

Sx2

(2n )ω,

S0

0

S2x S

2

Kirby Calculus

K(2n>0,ω)

→ K2 =⇒ [D2] = −ωα + nω2 β

K(2,2)→ K2 =⇒ [D2] = −2α+2β ∈ H2(S

2×S2−intB4, S3, Z)

Twisting of Torus Knots – p.15/30

Page 31: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Twisting and 4-manifolds: Main idea

K

U (n1

ω, 1 )U (n1 ω, 1

) .....(n2, ω2) (nm , ωm)

K

p CP2# qCP2

# xS2r S2

B4

− int B4

D = K2

Disk D2

X4=

K bounds a disk in a punctured standard 4-manifolds i.e. of

the form pCP 2#qCP 2#rS2 × S2 − intB4

Twisting of Torus Knots – p.16/30

Page 32: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots:

Letσ = σ(T (p, p + 6)).

Twisting of Torus Knots – p.17/30

Page 33: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots:

Letσ = σ(T (p, p + 6)).

σ =

−(p − 1)(p + 7)

2if p ≡ 5 (mod.12),

−(p − 1)(p + 7)

2− 6 if p ≡ 7 or 11(mod.12).

Twisting of Torus Knots – p.17/30

Page 34: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots: Proof

Ait Nouh-Yasuhara:

σ(T (p, p + r)) = −(p − 1)(p + r + 1)

2

+2

r/2∑

i=1

([

(2i − 1)p

2r

]

[

(2i − 1)p + r

2r

])

.

Twisting of Torus Knots – p.18/30

Page 35: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots: Proof

Ait Nouh-Yasuhara:

σ(T (p, p + r)) = −(p − 1)(p + r + 1)

2

+2

r/2∑

i=1

([

(2i − 1)p

2r

]

[

(2i − 1)p + r

2r

])

.

σ = −(p − 1)(p + 7)

2+2

3∑

i=1

([

(2i − 1)p

12

]

[

(2i − 1)p + 6

12

])

.

Twisting of Torus Knots – p.18/30

Page 36: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots: Proof

σ = −(p − 1)(p + 7)

2+ 2

(

[ p

12

]

[

p + 6

12

])

+

2

(

[p

4

]

[

p + 2

4

])

+ 2

([

5p

12

]

[

5p + 6

12

])

.

Twisting of Torus Knots – p.19/30

Page 37: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Signature of (p, p + 6)-torus knots: Proof

σ = −(p − 1)(p + 7)

2+ 2

(

[ p

12

]

[

p + 6

12

])

+

2

(

[p

4

]

[

p + 2

4

])

+ 2

([

5p

12

]

[

5p + 6

12

])

.

p = 12n + 5.

Twisting of Torus Knots – p.19/30

Page 38: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

(p, p + 6)-torus knots is not twisted: p ≡ 5 (mod. 12)

Assume for a contradiction that T (p, p + 6) is(+1, ω)-twisted.

Twisting of Torus Knots – p.20/30

Page 39: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

(p, p + 6)-torus knots is not twisted: p ≡ 5 (mod. 12)

Assume for a contradiction that T (p, p + 6) is(+1, ω)-twisted.

(∆, ∂∆) ⊂ (CP 2 − B4, S3) such that[∆] = ωγ̄ ∈ H2(CP 2 − B4, S3).

δ

B4

CP2 − B4

∆∆ = T(p,p+6)

Twisting of Torus Knots – p.20/30

Page 40: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

T (−5, 1) ∼= U(−1,5)→ T (−5, 6) ∼= T (−6, 5)

(−2n,6)→

T (−6, 12n + 5) ∼= T (−p, 6)(−1,p)→ T (−p, p + 6).

Twisting of Torus Knots – p.21/30

Page 41: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

T (−5, 1) ∼= U(−1,5)→ T (−5, 6) ∼= T (−6, 5)

(−2n,6)→

T (−6, 12n + 5) ∼= T (−p, 6)(−1,p)→ T (−p, p + 6).

(D, ∂D) ⊂ (CP 2#S2 × S2#CP 2 − B4, S3) such that:

Twisting of Torus Knots – p.21/30

Page 42: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

T (−5, 1) ∼= U(−1,5)→ T (−5, 6) ∼= T (−6, 5)

(−2n,6)→

T (−6, 12n + 5) ∼= T (−p, 6)(−1,p)→ T (−p, p + 6).

(D, ∂D) ⊂ (CP 2#S2 × S2#CP 2 − B4, S3) such that:

[D] = 5γ1+6α+6nβ+pγ2 ∈ H2(CP 2#S2×S2#CP 2−B4, S3).

Twisting of Torus Knots – p.21/30

Page 43: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

[ ] =

T(p,p+6)

T(−p,p+6)

4

4

− int B4

D

∆ ω γ CP − int B2

[ ] =D 5 γ + 6 α + 6n pγβ + 1 2

M

Let M4 = CP 2#S2 × S2#CP 2 and X4 = CP 2#M4.

Twisting of Torus Knots – p.22/30

Page 44: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

[ ] =

T(p,p+6)

T(−p,p+6)

4

4

− int B4

D

∆ ω γ CP − int B2

[ ] =D 5 γ + 6 α + 6n pγβ + 1 2

M

Let M4 = CP 2#S2 × S2#CP 2 and X4 = CP 2#M4.

X4 = CP 2#S2 × S2#CP 2#CP 2.

Twisting of Torus Knots – p.22/30

Page 45: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

[ ] =

T(p,p+6)

T(−p,p+6)

4

4

− int B4

D

∆ ω γ CP − int B2

[ ] =D 5 γ + 6 α + 6n pγβ + 1 2

M

Let M4 = CP 2#S2 × S2#CP 2 and X4 = CP 2#M4.

X4 = CP 2#S2 × S2#CP 2#CP 2.

The sphere [S2] = [D ∪ ∆] ⊂ X4 satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X4, Z).

Twisting of Torus Knots – p.22/30

Page 46: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Kikuchi’s Theorem

X4 be a closed, oriented and smooth 4-manifold such that:

H1(X4) has no 2-torsion; and

Twisting of Torus Knots – p.23/30

Page 47: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Kikuchi’s Theorem

X4 be a closed, oriented and smooth 4-manifold such that:

H1(X4) has no 2-torsion; and

b±12 ≤ 3

Twisting of Torus Knots – p.23/30

Page 48: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Kikuchi’s Theorem

X4 be a closed, oriented and smooth 4-manifold such that:

H1(X4) has no 2-torsion; and

b±12 ≤ 3

If [S2] ∈ H2(X4, Z) is a characteristic class then:

[S2].[S2] = σ(X4)

Twisting of Torus Knots – p.23/30

Page 49: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

The sphere [S2] = [D ∪ ∆] satisfies:

Twisting of Torus Knots – p.24/30

Page 50: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

The sphere [S2] = [D ∪ ∆] satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X4, Z).

Twisting of Torus Knots – p.24/30

Page 51: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

The sphere [S2] = [D ∪ ∆] satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X4, Z).

X4 = CP 2#S2 × S2#CP 2#CP 2.

Twisting of Torus Knots – p.24/30

Page 52: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

The sphere [S2] = [D ∪ ∆] satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X4, Z).

X4 = CP 2#S2 × S2#CP 2#CP 2.

Kikuchi’s theorem: [S2].[S2] = σ(X4)

Twisting of Torus Knots – p.24/30

Page 53: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

The sphere [S2] = [D ∪ ∆] satisfies:

[S2] = 5γ1 + 6α + 6nβ + pγ2 + ωγ̄ ∈ H2(X4, Z).

X4 = CP 2#S2 × S2#CP 2#CP 2.

Kikuchi’s theorem: [S2].[S2] = σ(X4)

25 + 2 × 6 × 6n + p2 − ω2 = 1

Twisting of Torus Knots – p.24/30

Page 54: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

25 + 2 × 6 × 6n + p2 − ω2 = 1.

Twisting of Torus Knots – p.25/30

Page 55: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

25 + 2 × 6 × 6n + p2 − ω2 = 1.

p = 12n + 5.

Twisting of Torus Knots – p.25/30

Page 56: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

25 + 2 × 6 × 6n + p2 − ω2 = 1.

p = 12n + 5.

p2 + 6p − 6 = ω2.

Twisting of Torus Knots – p.25/30

Page 57: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is odd

25 + 2 × 6 × 6n + p2 − ω2 = 1.

p = 12n + 5.

p2 + 6p − 6 = ω2.

p2 + 6p − 6 is not a perfect square (contradiction).

Twisting of Torus Knots – p.25/30

Page 58: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even: (Gilmer-Viro’ theorem)

g (here g = 2)

K

K = δ gB4

S3= X 4

Σ

Σ

[ Σ ]g = ξ = Σi=1

i=nai γi H2 (X 4

, Z)

X 4compact and oriented.

2/ξ =⇒|ξ2

2− σ(X4) − σ(k) |≤ dimH2(X

4; Z2) + 2g

Twisting of Torus Knots – p.26/30

Page 59: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even: (Gilmer-Viro’ theorem)

g (here g = 2)

K

K = δ gB4

S3= X 4

Σ

Σ

[ Σ ]g = ξ = Σi=1

i=nai γi H2 (X 4

, Z)

X 4compact and oriented.

2/ξ =⇒|ξ2

2− σ(X4) − σ(k) |≤ dimH2(X

4; Z2) + 2g

d/ξ =⇒| d2−1

2.d2 .ξ2 − σ(X4) − σd(k) |≤ dimH2(X4; Zd) + 2g

(d ≥ 3 is a prime).

Twisting of Torus Knots – p.26/30

Page 60: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even: (Gilmer-Viro’ theorem)

g (here g = 2)

K

K = δ gB4

S3= X 4

Σ

Σ

[ Σ ]g = ξ = Σi=1

i=nai γi H2 (X 4

, Z)

X 4compact and oriented.

2/ξ =⇒|ξ2

2− σ(X4) − σ(k) |≤ dimH2(X

4; Z2) + 2g

d/ξ =⇒| d2−1

2.d2 .ξ2 − σ(X4) − σd(k) |≤ dimH2(X4; Zd) + 2g

(d ≥ 3 is a prime).

Tristram’s d-signature of a knot:

σd(k) = σ(ξdM + ξdMt), with ξd = e

2iπ(d−1)d .

Twisting of Torus Knots – p.26/30

Page 61: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

Gilmer-Viro’s theorem:

| −ω2

2− σ(T (p, p + 6)) − σ(CP 2) |≤ 2

Twisting of Torus Knots – p.27/30

Page 62: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

Gilmer-Viro’s theorem:

| −ω2

2− σ(T (p, p + 6)) − σ(CP 2) |≤ 2

ω2

2− 3 ≤ −σ ≤

ω2

2+ 1

Twisting of Torus Knots – p.27/30

Page 63: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

Gilmer-Viro’s theorem:

| −ω2

2− σ(T (p, p + 6)) − σ(CP 2) |≤ 2

ω2

2− 3 ≤ −σ ≤

ω2

2+ 1

−σ(T (p, p + 6)) =ω2

2

or

−σ(T (p, p + 6)) =ω2

2− 2

Twisting of Torus Knots – p.27/30

Page 64: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

By Proposition 2.2:

σ(T (p, p + 6)) = −(p − 1)(p + 7)

2if p ≡ 5 (mod. 12).

Twisting of Torus Knots – p.28/30

Page 65: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

By Proposition 2.2:

σ(T (p, p + 6)) = −(p − 1)(p + 7)

2if p ≡ 5 (mod. 12).

(p − 1)(p + 7) = ω2

or

(p − 1)(p + 7) − 4 = ω2

Twisting of Torus Knots – p.28/30

Page 66: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

By Proposition 2.2:

σ(T (p, p + 6)) = −(p − 1)(p + 7)

2if p ≡ 5 (mod. 12).

(p − 1)(p + 7) = ω2

or

(p − 1)(p + 7) − 4 = ω2

Neither (p − 1)(p + 7) nor (p − 1)(p + 7) − 4 is a perfectsquare, by a discriminant argument.

Twisting of Torus Knots – p.28/30

Page 67: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

ω is even

By Proposition 2.2:

σ(T (p, p + 6)) = −(p − 1)(p + 7)

2if p ≡ 5 (mod. 12).

(p − 1)(p + 7) = ω2

or

(p − 1)(p + 7) − 4 = ω2

Neither (p − 1)(p + 7) nor (p − 1)(p + 7) − 4 is a perfectsquare, by a discriminant argument.

Contradiction.

Twisting of Torus Knots – p.28/30

Page 68: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

(p, p + 6)-torus knots is not twisted: other cases

(p, p + 6)-torus knots is not twisted: p ≡ 7 (mod. 12)(similar argument).

Twisting of Torus Knots – p.29/30

Page 69: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

(p, p + 6)-torus knots is not twisted: other cases

(p, p + 6)-torus knots is not twisted: p ≡ 7 (mod. 12)(similar argument).

(p, p + 6)-torus knots is not twisted: p ≡ 11 (mod. 12)(similar argument).

Twisting of Torus Knots – p.29/30

Page 70: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

(p, p + 6)-torus knots is not twisted: other cases

(p, p + 6)-torus knots is not twisted: p ≡ 7 (mod. 12)(similar argument).

(p, p + 6)-torus knots is not twisted: p ≡ 11 (mod. 12)(similar argument).

p ≡ 9 and p ≡ 3 are thrown up because p and p + 6 wouldnot be coprime.

Twisting of Torus Knots – p.29/30

Page 71: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Thanks

Organizers of the conference:

Prof. Lew Ludwig and Collin Adams.

Twisting of Torus Knots – p.30/30

Page 72: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Thanks

Organizers of the conference:

Prof. Lew Ludwig and Collin Adams.

Dr. Mohamed Ait Nouh (Supervisor and Coauthor).

Twisting of Torus Knots – p.30/30

Page 73: Twisting of Torus Knots Speaker: Logan Godkin · Twisting of Torus Knots Speaker: Logan Godkin Supervisor: Dr. Mohamed Ait Nouh lgod001@student.ucr.edu Department of Mathematics University

Thanks

Organizers of the conference:

Prof. Lew Ludwig and Collin Adams.

Dr. Mohamed Ait Nouh (Supervisor and Coauthor).

Audience !

Twisting of Torus Knots – p.30/30