Horta Torus Structure

  • Upload
    aiyubi2

  • View
    227

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 Horta Torus Structure

    1/25

    Langley Research Center

    Static and Dynamic Model Update of anInflatable/Rigidizable Torus Structure

    (Work In Progress)

    Lucas G. Horta

    and Mercedes C. Reaves

    Structural Dynamics Branch

    NASA Langley Research Center

    FEMCI Workshop 2005

    May 5, 2005

  • 8/12/2019 Horta Torus Structure

    2/25

    Langley Research Center

    Background The TSU* Hexapod is a generic test bed

    that incorporates design features of

    structures that can be packed for launchand deployed in space

    Inflatable/rigidizable structures can be

    inflated to more than 12 times their

    packaged size enabling new space mission

    scenarios

    However, new fabrication techniques also

    bring new modeling challenges

    *TSU= Tennessee State University

  • 8/12/2019 Horta Torus Structure

    3/25

    Langley Research Center

    Objective and MotivationObjective-To develop a mathematical

    and computational procedure to

    reconcile differences between finite

    element models and data from staticand dynamic tests

    Motivation- All missions envisioned

    for inflatable and rigidizable systemswill require state of the art controls

    and accurate analytical models. In

    the Hexapod case, the initial model

    missed many important modes

    10 20 30 40 50 60 70 80 90 100 11010

    -5

    10-4

    10-3

    10-2

    10-1

    Freq. (Hz)

    Mag

    Scale Factor = 0.11241 Sensor No. 12 Shaker 2

    Test

    NASTRAN

    10 20 30 40 50 60 70 80 90 100 110-150

    -100

    -50

    0

    50

    100

    Freq. (Hz)

    Phase(deg)

    Initial ModelShaker No. 2

  • 8/12/2019 Horta Torus Structure

    4/25

    Langley Research Center

    ApproachFEM developed using commercial tools

    Static test results used to update stiffness values

    Dynamic test results used to update mass distribution

    Probabilist ic assessment used to compute most likely set

    of parameters

    Update parameters computed via nonlinear optimization(genetic and gradient based)

    Computational tools based on MATLAB

    System ID using the Eigensystem Realization AlgorithmIncremental update of components starting with torus

  • 8/12/2019 Horta Torus Structure

    5/25

    Langley Research Center

    Model Update Procedure

    Develop

    baseline

    fini te element

    model Select

    parametersfor update

    Define parameter

    bounds & probability

    distribution

    Compute output

    probability &sensitivity valuesReduce parameter set

    using sensitivity and

    probability resultsSolve

    optimization for

    updated

    parameters &probability

  • 8/12/2019 Horta Torus Structure

    6/25

    Langley Research Center

    Computational Framework

    NASTRANStatic

    Dynamic

    Bulk DataFile

    Output DataFile

    MATLABOptimization

    Probability

    Sensitivity

    System ID

    External Inputs

    1- Parameter selection

    and prob. distribution

    2- Experimental data

  • 8/12/2019 Horta Torus Structure

    7/25

    Langley Research Center

    Torus Description and Nomenclature

    Urethane

    Joint (typ.)

    Tube (typ.)

    O.D. 0.0181 m

    1.858 m Joint flanget = 0.00508 m

    Inner joint

    t = 0.0063 m

    Outer joint

    t = 0.0032 m

    Tube (typ.)

    t = 0.00042 m

  • 8/12/2019 Horta Torus Structure

    8/25

    Langley Research Center

    Main Sources of Modeling

    Uncertainties

    Fabrication irregularities due to materials and

    fabrication methods (irregular cross-section,irregular geometry, etc)

    Unknown stiffness of adhesive bonded joints

    Composite material property uncertainties,

    effective single ply and rule of mixture

    approximations

  • 8/12/2019 Horta Torus Structure

    9/25

    Langley Research Center

    STATIC TEST RESULTS

  • 8/12/2019 Horta Torus Structure

    10/25

  • 8/12/2019 Horta Torus Structure

    11/25

    Langley Research Center

    Input Load and Sensor Location for Static

    Tests

    Support 1

    Support 2Support 3

    Loading

    Point

    1

    23

    4

    5

    6

    7

    8

    9

    10

    11121314

    1516

    17

    18

    19

    20

    21

    2223

    24

  • 8/12/2019 Horta Torus Structure

    12/25

    Langley Research Center

    Static Test Parameters Selected

    for Update1. Torus tube thickness

    2. Urethane joint:

    - Inner joint thickness

    - Outer joint thickness- Joint flange thickness

    3. Torus tube orthotropic material properties:

    E1, E24. Urethane joint modulus of elasticity E

  • 8/12/2019 Horta Torus Structure

    13/25

    Langley Research Center

    Output Probability Statement

    How probable is it to predict the measured

    output?

    Linear Torus Solution

    Probability

    Bands

    w range

    w

    v

    v range

    Output No. 1

    Output No. 2

    Updated parameters

    Sample Space 300 points

  • 8/12/2019 Horta Torus Structure

    14/25

    Displacement Results: Test, Baseline, and

    Updated Model

    Measurement locations

    Target 1

    Z = -4.54 mm

    Load =42.1 N

    Support 1

    Support 2

    Support 3

    Torus structure displacement under load

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    1 2 3 4 6 7 8 9 10 11 12 14 15 16 17 18 19 20 22 23 24

    Measurement location

    Baseline

    Update

    Update Gen

    Average Test

    VerticalDisplacement(mm)

    Torus static test results

    =1.1 =0.01

    Support 1

    Support 2Support 3

    Loading

    Point

    12 3

    45

    6

    7

    8

    910

    11121314

    1516

    17

    18

    19

    20

    21

    2223

    24

  • 8/12/2019 Horta Torus Structure

    15/25

    Langley Research Center

    Static Update Summary

    14.1-13.90.008730.011570.011680.00860.01016

    Flange

    thickness

    16.920.00.005270.005070.007610.005070.00634Inner jointthickness

    -11.019.60.003520.003790.00380.002530.00317

    Outer joint

    thickness

    9.4130.00039120.0003760.0004960.00030240.000432

    Tube

    thickness

    -6.103.21E+093.03E+093.33E+092.73E+093.03E+09Joint E

    5.405.83E+106.16E+106.77E+105.5E+106.16E+10Tube E1,E2

    %

    Change

    Genetic

    %

    Change

    FMIN

    Optimum

    Genetic

    Optimum

    FMIN

    Upper

    Bound

    Lower

    BoundBaselineParameters

  • 8/12/2019 Horta Torus Structure

    16/25

  • 8/12/2019 Horta Torus Structure

    17/25

    Langley Research Center

    Dynamic Test Configuration

    Force gageSpring/cable

    suspension

    Suspension 1

    Suspension 2

    Laser

    Vibrometer

    Shaker

    Suspension 3

    Retro-

    reflective

    Target (typ.)

  • 8/12/2019 Horta Torus Structure

    18/25

    Langley Research Center

    Shaker and Sensor Locations for Dynamic

    Tests

    Suspension 1

    Shaker 1Z

    Suspension 2Shaker 2ZC

    CC

    C

    C

    C

    C

    C

    C

    C

    C

    C

    14

    16

    17

    1

    5

    4

    2

    7

    8

    11

    10

    1315

    18

    3

    6

    9

    12

    Shaker4 XY

    Suspension 3

  • 8/12/2019 Horta Torus Structure

    19/25

    Langley Research Center

    Sample Set of Identification Results

    (Drive Point 1 & 2)

    0 20 40 60 80 100 12010

    -5

    100

    105 Predicted (- -) and Real FRFs for input No. 1 and output No. 11

    Frequency (Hz)

    Amp

    litud

    e

    0 20 40 60 80 100 120-200

    -100

    0

    100

    200

    Frequency (Hz)

    Phase

    (deg

    )

    0 20 40 60 80 100 12010

    -4

    10-2

    10

    0

    102 Predicted (- -) and Real FRFs for input No. 2 and output No. 17

    Frequency (Hz)

    Amp

    litude

    0 20 40 60 80 100 120-200

    -100

    0

    100

    200

    Frequency (Hz)

    Phase

    (deg

    )

    Shaker No. 1

    Shaker No. 2

  • 8/12/2019 Horta Torus Structure

    20/25

  • 8/12/2019 Horta Torus Structure

    21/25

    1279.81433.81194.8955.8Joint 7 density

    990.761433.81194.8955.8Joint 8 density

    1063.51433.81194.8955.8Joint 10 density

    1150.51433.81194.8955.8Joint 11 density

    1239.21433.81194.8955.8Joint 13 density

    1433.81433.81194.8955.8Joint 14 density

    1080.21433.81194.8955.8Joint 16 density

    1231.41433.81194.8955.8Joint 17 density

    10931433.81194.8955.8Joint 1 density980.591433.81194.8955.8Joint 2 density

    996.081433.81194.8955.5Joint 4 density

    1204.61433.81194.8955.5Joint 5 density

    1770.42200.81834.01467.2Torus tube density

    2400.43502.22918.52334.8Spring 3

    3169.83502.22918.52334.8Spring 2

    2752.93502.22918.52334.8Spring 1

    Optimum ValueUpper BoundNominal ValueLower BoundParameter^

    Dynamic Update Summary*

    * list of parameters not based on statistical analysis

  • 8/12/2019 Horta Torus Structure

    22/25

  • 8/12/2019 Horta Torus Structure

    23/25

  • 8/12/2019 Horta Torus Structure

    24/25

    Langley Research Center

    Work To Be Done Establish repeatability of test data

    Complete probabilistic assessment of dynamic FRF to verifyparameter selection

    Compute updated parameters for dynamic case using non-gradient based optimizer

    Verify computational accuracy with refined FEM

    Implement error localization algorithm to examine potential FEM

    problem areas Compute Modal Assurance Criterion using reduced mass matrix

    Re-test with increased sensor count to improve spatialresolution for test and analysis modes

    Refine system ID results to improve areas near FRF zeros

  • 8/12/2019 Horta Torus Structure

    25/25

    Langley Research Center

    Concluding Remarks

    Computational procedure using MATLAB in place

    Initial updates completed using static and dynamic tests

    results

    Updated solution for static case is in good agreement with test

    Selected parameters for static analysis showed low output

    probability values when used to predict observed solution

    Two step approach using output probabilit ies fol lowed by

    optimization provides good physical insight into the problem

    Dynamic test and analysis results need to be re-visited

    Procedure computationally intensive but well suited for multi-

    processor systems