Turbulence Chapter04

  • Upload
    madhu

  • View
    238

  • Download
    1

Embed Size (px)

Citation preview

  • 8/16/2019 Turbulence Chapter04

    1/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    TurbulenceLecture 4 

    Reynolds Averaging

  • 8/16/2019 Turbulence Chapter04

    2/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    Reminder: DNS is not practical

    "Turbulence in a box"

    Re: 40,000Grid: 40963 (70 billion cells)

    Computer: Earth SimulatorT. Ishihara, T. Gotoh, Y. Kaneda, Study of High-Reynoldds Number Isotropic Turbulence by Direct Numerical Simulation, Annual Reviewof Fluid Mechanics 2009, 41:165-180.

  • 8/16/2019 Turbulence Chapter04

    3/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    • 

    Do we really need all the details of a DNS? –  Time resolved flow field in 3D?

     –  The entire temporal evolution at every point?

    ☝  Are time dependent quantities meaningful for other realisations?

     –   All probability density functions?

     –   All moments?

     –   Any other statistical quantity?

    •  So, what are we really interested in?

     –  Mean values (first moments)

     –  Perhaps fluctuation levels (second moments, stresses)

     –  Perhaps probablity density functions (for combustion)

    A less costly approach than DNS is needed!

  • 8/16/2019 Turbulence Chapter04

    4/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    • 

    We are mainly interested in the mean values.•  We need equations for mean quantities!

    •  Reynolds decomposition can provide the mean quantities.

    •  It is now sufficient to substitute ui  and p in the equations to get the

    "Reynolds averaged Navier Stokes equations"

    u u u ui i i i

    = +   ! ! =, 0

     p p p p= +   ! !   =, 0

    Reynolds Decomposition

    !" 

    !" 

    ! t 

    u

     x

    i

    i

    + = 0

     ! " 

    "  ! 

      " 

    " µ 

    " # ! 

    u

    t u

      u

     x

     p

     x x

    u

     x

    u

     x

    u

     x g i  j

    i

     j i j

    i

     j

     j

    i

    ij i+ = $   + +   $%

    &' (

    )*+

    ,--

    .

    /00

    +2

    3

    ✍ 

    u02

    i  ≥ 0

     p02

    i  ≥ 0

    u0

    iu0

    j   ???

  • 8/16/2019 Turbulence Chapter04

    5/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    Derivation of Reynolds-Averaged Navier Stokes Eq.

  • 8/16/2019 Turbulence Chapter04

    6/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    • 

    The Conservation equation for mass (constant viscosity and density)

    (3.3.1a)

    •  The Conservation equation for momentum (constant viscosity and

    density)

    (3.3.2a)

    0=

    i

    i

     x

    u

     ! " 

    "  ! 

      " 

    " µ 

    " # ! 

    u

    t u

      u

     x

     p

     x x

    u

     x

    u

     x

    u

     x g i  j

    i

     j i j

    i

     j

     j

    i

    ij i+ = $   + +   $%

    &'

      (

    )*

    +--

    .00

    +

    2

    3

    0

    i

    i  j

      j

      j  j

    i

    i  j

    i  j

    i  g  x x

    u

     x x

    u

     x

     p

     x

    uu

    u ! 

    " " 

    " " 

    " µ 

    "  ! 

    "  !    +

    ##

    $

    %

    &&

    '

    (++)=+

    22 0

    i

      j  j

    i

    i  j

    i

      j

    i  g  x x

    u

     x

     p

     x

    uu

    u++!=+

    " " 

    " # 

     $ " 

    "   21

    Averaged Balance Equations Ia

  • 8/16/2019 Turbulence Chapter04

    7/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    Averaged Balance Equations I

    The Conservation equation for mass (instantaneous)

    (3.3.1)

    The Conservation equation for momentum (instantaneous)

    (3.3.2)

    !" 

    !" 

    ! t 

    u

     x

    i

    i

    + =  0

     ! " 

    "  ! 

      " 

    " µ 

    " # ! 

    u

    t u

      u

     x

     p

     x x

    u

     x

    u

     x

    u

     x g i  j

    i

     j i j

    i

     j

     j

    i

    ij i+ = $   + +   $%

    &'

    (

    )*

    +

    ,--

    .

    /00

    +

    2

    3

  • 8/16/2019 Turbulence Chapter04

    8/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

     Applying Reynolds decomposition to the conservation equation formass and momentum, and considering !  and µ  to be constant yields:

    (3.3.5)

    with

    (3.3.6)

    !   = µ  / " ( )

    u

     x

    u

     x

    i

    i

    i

    i

    +

    "=  0

    (   )! 

    u

    u

    t xu u u u u u u ui i

      j

    i j i j i j i j+

    "+ +   "   +   "   +   " "   =

    ! !  "

    + +

    "#

    $%

    &

    '(  +

    1 1  2 2

     ) 

    * ) 

    *  + 

      * 

    * * 

    * * 

     p

     x

     p

     x

    u

     x x

    u

     x x  g i i

    i

      j j

    i

      j j

    i

    Averaged Balance Equations III

  • 8/16/2019 Turbulence Chapter04

    9/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    For constant density, time averaging yields:

     After the averaging process, the unknown

    Reynolds Stress Tensor arises in the conservation equation

    for momentum.

    Closure problem of turbulence for the Reynolds-Averaged-

    Navier Stokes equations.

    u

     x

    i

    i

    =  0

    ! " 

    ! # 

    ! ! 

    u

    u u

     x

     p

     x

    u u

     x

    u

     x x g i

      i j

      j i

    i j

      j

    i

      j j

    i+ =   $ $

    % %+ +

    1  2

    ! !u ui j

    Reynolds Averaged Navier Stokes Equations

    ρu0iu0

    j

    i =

    m2

    s21

    m3kg  = m

    2

    s21

    m3Ns2

    m  =

    N m2

  • 8/16/2019 Turbulence Chapter04

    10/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    Interpretation of Reynolds Stresses

    • 

    Similar to viscous stresses

    •  Example in a shear layer : 

    ! " 

    ! # 

    ! ! 

    u

    u u

     x

     p

     x

    u u

     x

    u

     x x g i

      i j

      j i

    i j

      j

    i

      j j

    i+ =   $ $

    % %+ +

    1  2

    ∂ u1

    ∂ x2>  0

     "21,v

     "

    21,t

    x1

    x2

     "21,v

    viscous stress turbulent stress

    u1

    u1

    u01

    u2

    u0

    2u

    0

    1

    u1

    u1

    u0

    1u2

    u0

    2u

    0

    1

    molecule (discontinuous) fluid particle (continuous)

      n  e   t   f   l  u

      x  o   f   h  o  r   i  -

      z  o  n   t  a   l  m  o  m  e  n   t  u  m 

     "21,t

  • 8/16/2019 Turbulence Chapter04

    11/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    The result

    The Reynolds Averaged equations for Reynolds averaged velocities

    are identical to

    the Navier Stokes equations for the instantaneous velocities

    with the exception of the Reynolds Stresses.

    ! Similar CFD codes can be used

    Turbulent flows behave „similar“ to laminar flows

    ! A turbulent flow might be thought of as „non-Newtonian“

    u

     x

    i

    i

    =  0

    ! " 

    ! # 

    ! ! 

    u

    u u

     x

     p

     x

    u u

     x

    u

     x x g i

      i j

      j i

    i j

      j

    i

      j j

    i+ =   $ $

    % %+ +

    1  2

  • 8/16/2019 Turbulence Chapter04

    12/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    The sign of Reynolds stresses (example for cosines)

    The sign of a Reynolds stress depends on whether u‘ and v‘ arepositively correlated (+), negatively corelated (-), or un-correlated (0). 

    u0v0

    u0 = 0

    v0 = 0

    u0

    , v0

    t

    v0

    u0

    u0

    v0

    u0   v

    0

    v0

  • 8/16/2019 Turbulence Chapter04

    13/13

    Prof. Dr.-Ing. Andreas Kempf, Chair of Fluid Dynamics

    Original course material by J. Janicka, TU-Darmstadt

    Problem

    How to determine turbulent stresses?•  Derive transport equations: Second moment closure

    •  Exploit similarity to viscous stresses

     –  Eddy viscosity / Bousinesq approach, with turbulent viscosity

    (most common turbulence models)

     –  How to determine turbulent viscosity?