11
Blue MOT Trap atom number Loading Rate Zeeman slower flux

Trap laser (6 mW - 1 cm diameter) x 6 - /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

Embed Size (px)

Citation preview

Page 1: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

Blue MOT Trap atom number

Loading RateZeeman slower flux

Page 2: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

Trap laser (6 mW - 1 cm diameter) x 6-G/2 detuned to 171Yb 1P1

oven Zeeman slower

Trapped atom number

Lens f=7.5 cm, diameter d=2.54 cm

PMT = 5 V @ vcon= 0.3 V

Power meter = 0.3 mW

D=15 cm

𝜃

Page 3: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

= 0.14

𝑠=𝑠01+¿¿

G n

n

Page 4: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

oven Zeeman slower

Flux measurement

Trap laser (6 mW - 1 cm diameter) x 20 Hz detuned to 171Yb 1P1

PMT = ~ 2 V @ vcon= 0.608 V

Fluorescent power of atomic beam is too weak to be measured by power meter, thus a calibrated PMT was used. Calibration reference PMT = 5 V @ vcon= 0.300 V P = 0.3 W

However PMT gain varies with control voltage, thus PMT gain with control voltage was measured.

Page 5: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

PMT gain with control voltage

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9100

101

102

103

104

105

PM

T v

olta

ge

(V

)

control voltage (V)

PMT voltage (V) is normalized to be 1 volt when control voltage is 0.2 V

Page 6: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38

0

20

40

60

80

100

PM

T v

olta

ge

(V

)

control voltage (V)

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.700

2000

4000

6000

8000

10000

PM

T v

olta

ge (

V)

control voltage (V)

Gain ratio =189

Page 7: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

Mixture of ther-mal and slowed atoms

Thermal atoms 1

Thermal atoms 2

Non-atomic scattering

Probe laser o o o o

Magnetic field o x o o

Zeeman slowing laser o o x o

Atomic beam o o o x

PMT voltage (v) 2.45 2.35 2.10 0.14

V - 0.14 2.31 2.21 1.96 0

1. What was measured is the number of atoms inside interaction volume.

2. What is to be measured is the loading rate of MOT, which is the flux of atomic beam.

3. Flux is always preserved while the speed of atoms vary with Zeeman slower.

4. Flux varies only with oven temperature.

5. The number of atoms inside interaction volume varies with the speed of atoms.

Atomic beam fluorescence

Page 8: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

Total number of atoms interacting with probe laser𝑁=𝐹𝑙𝑣

F is flux of atomic beam : N cm-2s-1

A is area of interaction L is interacting lengthv is velocity of atoms

𝑙

𝐴𝐹𝑣

Density of atoms interacting with probe laser n=N/cm-3𝑛=𝐹𝑣𝐴

Page 9: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

PMT signal : 2 V @ vcon=0.608 V 0.011 V @ vcon=0.300 V 0.00066 W

= 0.1=0)

G n

n

= 30000 cm/s

= 1.4

= 1.54 /cm2

= 1.5 l𝑜𝑎𝑑𝑖𝑛𝑔𝑟𝑎𝑡𝑒𝛼=𝜀 𝐹𝐴𝑡𝑟𝑎𝑝𝑐𝑟𝑜𝑠𝑠𝑠𝑒𝑐𝑡𝑖𝑜𝑛

Page 10: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

-10 -5 0 5 10

0

2

4

6

8

PM

T s

ign

al(

V)

s

Model ExpDecay

Equation y = y0 + A1*exp(-(x-x0)/t1)Reduced

Chi-Sqr0.06023

Adj. R-Sq 0.9736

Value Standard

DPO3014 y0 6.386 0.00308

DPO3014 x0 1.218 --

DPO3014 A1 -6.22 --

DPO3014 t1 0.616 0.00169N atoms = 3X107 ( pmt signal 6 v)

Loading rate = = 4.8

=0.032

3.2 % of atoms are trapped. Atoms may defuse out by Zeeman slower. Only a small fraction of slowed atoms can reach MOT re-gion.

Loading rate from MOT experiment

Page 11: Trap laser (6 mW - 1 cm diameter) x 6 -  /2 detuned to 171Yb 1P1 oven Zeeman slower Trapped atom number Lens f=7.5 cm, diameter d=2.54 cm PMT = 5 V @

=

Zeeman slowed Atom density

n()=

Atom density ) variation by a contribution of slowed atom of

We can know the value of by comparing the PMT signal of the table

Mixture of ther-mal and slowed atoms

Thermal atoms 1

Thermal atoms 2

Non-atomic scattering

Probe laser o o o o

Magnetic field o x o o

Zeeman slowing laser o o x o

Atomic beam o o o x

PMT voltage (v) 2.45 2.35 2.10 0.14

V - 0.14 2.31 2.21 1.96 0

Assume vslow=30 m/sVmp =300 m/s

0.005 0.02