Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

Embed Size (px)

Citation preview

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    1/13

    Arch. Environm. Contam. T oxicol. 9, 543-555 (1980) Archives of EnvironmentalContaminationand Toxicology

    T o x i c i t y o f U n d e r g r o u n d C o a l G a s i f ic a t io n C o n d e n s e rW a t er a n d S e l e c te d C o n s t i t u e n t s t o A q u a t i c B i o ta 1G . M . D e G r a e v e , 2 R . L . O v e r c a s t , a n d H . L . B e r g m a nDepartment of Z oology and Physiology, Box 3166, University Station, T he University o fWy oming, Laramie, WY 82071

    A b s t r a c t . T h e a c u t e a n d e m b r y o - l a r v a l t o x ic i ty o f t he L a r a m i e E n e r g yT e c h n o l o g y C e n t e r ' s H a n n a - 3 u n d e r g r o u n d c o a l g a s if ic a ti o n (U C G ) c o n -d e n s e r w a t e r a n d i t s c o n s t i t u e n t s w e r e s t u d i e d in c o n t i n u o u s - f l o wb i o a s s a y s . T h e 9 6 -h r LC s 0 d i lu t io n v a l u e s fo r u n t r e a t e d H a n n a - 3 U C G c o n -d e n s e r w a t e r w e r e 0 .1 % f o r r a i n b o w t r o u t , 0 . 1 1 % f o r f a t h e a d m i n n o w s a n dt h e 4 8 - h r L C s 0 d i l u ti o n f o r Daphnia pulicaria w a s 0 . 1 8% . S e p a r a t e 9 6 -h r a c u t et e s t s w i t h p h e n o l , a m m o n i a , a n d a m m o n i a p l u s p h e n o l s h o w e d t h a t t h e s et w o c o n s t i t u e n t s , a c t i n g s y n e r g i s t i c a l l y , w e r e t h e m a j o r c o n s t i t u e n t s a f -f e c t i n g th e a c u t e t o x i c i t y o f th i s c o a l c o n v e r s i o n e f f l u e n t t o f is h . Daphniapulicaria, o n t h e o t h e r h a n d , w a s r e l a ti v e l y i n s e n s it iv e t o p h e n o l e x p o s u r e ;t h e p r i m a r y c o n s t i t u e n t o f H a n n a - 3 U C G c o n d e n s e r w a t e r a ff e c ti n g t hi ss p e c i e s w a s a m m o n i a .A p r e v i o u s l y d e s c r i b e d m o d e l w a s u s e d f o r p r e d i c t i n g t h e to x i c i t y o fe f f lu e n t s w i t h h ig h c o n c e n t r a t io n s o f p h e n o l a n d a m m o n i a t o c o n f i r m o u rh y p o t h e s i s th a t t h e a c u te t o x i c it y o f H a n n a - 3 U C G c o n d e n s e r w a t e r to f is hw a s p r i m a r i l y d u e t o t h e p r e s e n c e o f p h e n o l a n d a m m o n i a . U s i n g t h eH a n n a - 3 c o n c e n t r a t i o n s o f p h e n o l a n d a m m o n i a i n t h is f o r m u l a , i t w a sc a l c u l a te d t h a t th e 9 6 - hr L C so v a l u e s f o r r a i n b o w t r o u t a n d f a t h e a d m i n n o w se x p o s e d t o H a n n a - 3 c o n d e n s e r w a t e r w o u l d b e 0 . 1 1 % a n d 0 . 2 8 % , r e s p e c -t iv e l y ; v a lu e s w h i c h a r e n e a r t h e o b s e r v e d a c u t e t o x i c i ty o f H a n n a - 3 c o n -d e n s e r w a t e r .I n a 3 0 -d a y e m b r y o - l a r v a l e x p o s u r e , f a t h e a d m i n n o w e g g h a tc h a b i l it y ,g r o w t h , a n d s u r v i v a l w e r e s i g n i f ic a n t ly r e d u c e d a t 0 . 0 4 % , 0 . 0 2 % a n d 0 . 0 1 %H a n n a - 3 c o n d e n s e r w a t e r , r e s p e c t i v e l y . A t a H a n n a - 3 d i lu t io n o f 0 . 0 1% , t h ep h e n o l a n d u n - i o n i z e d a m m o n i a c o n c e n t r a t i o n s w e r e c a l c u l a t e d t o b e 0 . 2 3m g / L a n d 0 . 1 4 m g / L , r e s p e c t i v e l y . T h e p h e n o l a n d u n - i o n i z e d a m m o n i ac o n c e n t r a t i o n s a r e w i t h in r a n g e s e x p e c t e d t o p r o d u c e t h e l o n g - te r m e f f e c tsw h i c h w e r e o b s e r v e d .

    W ork funded under an Interagency Agreemen t between the U .S. Department of Energy and theU.S. Environmental Protection A gency under Contract N o. DE-AS20-79 LC 01761 to the RockyM ountain Institute of Energy and Environment, University of W yoming.2To whom correspondence should be addressed.

    0090- 4341 / 80 / 0009- 0543 $02.609 1980 Sp r i nge r -Ve r l ag N ew Y or k Inc .

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    2/13

    544Table 1. Chemicalcharacteristics of Hanna UCG condenserwaterWater qualityparameter ConcentrationAmmonia (mg/L as NHa) 20,000Conductivity(/xmhos/cmat 25~ 35,000Hardness (mg CaCO~/L) >50pH 8.7Phenol (mg/L) 2,300Total alkalinity mg CaCO~/L) 25,000Total organic carbon (rag/L) 8,900

    G. M. DeGraeveet al.

    The coal resources suitable for in situ or underground coal gasification (UCG)in the Uni ted States were es timated by Glass (1977) to be 3.85 trillion tons.Increasing energy demands in the United States coupled with decreasing natu-ral gas discovery rates and unpredictable imported oil supplies favor researchin UCG which would make the use of this large resource practical. UCGtechnology is most economically feasible for the exploitation of deep coalseams which cannot be recovered by traditional surface mining techniques(Campbell et al. 1974, Brandenburg et al. 1975, Maugh 1977, Bar tke et al. 1978,Bhatia 1978). Underground recovery of coal, using UCG, involves in-placeignition of the coal seam aided by either air or oxygen injection to help supportcombustion. The product gas, which consists primarily of carbon monoxide,methane, and hydrogen has a relatively low energy content of about 100-170BTU/SCF (Maugh 1977). Consequent ly, on-site generation of electrica l energyseems to be the most likely utilization of this low-BTU gas. Water vapor mustbe condensed from the product gas prior to use for electrical generation, andHerbes et al. (1976) estimated that a full scale, above-ground commercialgasification plant could produce 0.4 to 1.2 million gallons (1.5 to 4.5 millionliters) of condensate per day. In situ gasification will produce varying amountsof condensate depending upon ground water characteristics.Although UCG may offer certain environmental advantages over conven-tional surface mining operat ions (Virgona 1978), there are potential environ-mental problems with surface subsidence and with ground water and surfacewater contamination (Gregg 1977, Campbell et al. 1978, Virgona 1978). Sincecoal conversion effluents contain a wide variety of organic constituents(Herbes et al. 1976) and high levels o f both phenolics and ammonia (Herbert1962, Schultz et al. 1978), potential wate r quality problems produced by re-leases of UCG condenser water elicit major concerns about environmentaldegradation. These concerns are magnified in the semi-arid Rocky Mountainregion where 70% of the UCG resource is concentrated (Glass 1977).The U.S. Department of Energy's (DOE) Laramie Energy TechnologyCenter (LETC) is currently involved in experimental scale UCG operations at asite near Hanna, Wyoming, U.S.A., where four experimental burns have beenconducted to date. The Hanna-3 experiment was performed primarily tomonitor environmental parameters during and after gasification of the coal(Bartke et al. 1978, Virgona 1978). The present study concerned the aquatictoxicity of the condenser water produced during the Hanna-3 experiment anddetermined which constituents of the condenser wate r were primarily r-espon-sible for observed toxicity. Flow-through bioassays were used to determine

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    3/13

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    4/13

    546 G. M. DeGraeve et a l .

    I0 uO injection0 - 1 0 0 % C H 3 C N / H z OI0 ra in l inear grad ient2 .0 m l /m in25 4 nrn UV~ 1 .0 AU FS

    0oto)N

    Wz w E~J zwn ~ W Z oQ- "1-1~ # J Z l Z Z~-J z , ~ I-- w bJN I.LIZ T O Nz n ~ w ~ - J z zW > - T ~ O Wr n O _ n z l - - rn n'~

    STANDARDS._1Ozon~0O3WrY

    o.4

    I Fig. 1. HPLC chromatogramof Hanna-3 condenser water.All standards were 10 mg/Lexcept for phenol which was950 mg/L

    B i o a s s a y sFlow-through diluters modified slightly from those described by Mount and Brungs (1967) wereused for dosing toxicant solutions to the aquaria for both acute and embryo-larval bioassays. Thediluters were calibrated to deliver eight separate test solutions: 100% dilution water (control), thehighest desired concentration of toxicant, and six intermediate concentrations, each having 50%less toxicant than the immediately higher concentration. The control and seven toxicant c oncen-trations were each delivered to four replicate tanks, two 28-L tanks and two 14-L tanks. Thereplacement rate for each tank was adjusted to 6.2 tank volumes every 24 hr. For acute tests, thetwo 28-L tanks were used for rainbow trout, the 14-L tanks held the fathead minnows, and theDa p h n i a p u l i ca r i a were tested in small chambers suspended in the 28-L tanks (DeGraeve et al .1977). In the embryo-larval test, both 28-L and 14-L tanks were used for rearing fathead minnowfry. All acute bioassays wi th fish were 96-hr long while Da p h n i a p u l i ca r ia were tested for 48-hr. Allacute tes ts were conduc ted at 14~ (- I~ and the photoperiod was 16 hr light and 8 hr dark. Ineach acute test, 10 animals were added to each tank; the tanks were checked twice daily and deadfish were removed, weighed, and measured. At the same time, the behavior and condition ofsurviving animals were also recorded. Animals were not fed during acute bioassays, and the feces

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    5/13

    T o x i c i t y o f U n d e r g r o u n d C o a l G a s i f i c a ti o n C o n d e n s e r W a t e rT a b l e 2 . S u m m a r y o f a u a li t y o f d il u ti o n a nd t e s t w a t e r s

    54 7

    W a t e r q u a l i t y p a r a m e t e r

    C o n c e n t r a t i o n , m e a n s ( r a n g e )D i l u t i o n w a t e r an dco n t ro l t an k s

    Highest concentra~fiont o x i c a n t t a n k s

    Acute BioassaysD i s s o l v ed o x y g en 7 . 4 7 .2

    ( m g / L ) ( 5 . 2 - 8 . 2 ) ( 6 . 2 - 8 . 2 )D i s s o l v e d o x y g en 9 3 .0 9 2 .0

    (% s a t u ra t io n ) (6 7 -9 9 ) (8 0 -1 0 4 )Fr ee CO2 3 .7 4 .7

    ( m g /L ) ( 3 . 0 - 4 . 3 ) ( 3 . 0 - 8 . 2 )pH 8.1 8.0

    ( 8 . 0 - 8 . 1 ) ( 7 . 7 - 8 . 1 )Al kal ini ty 152.0 147.0

    (m g C aC O a/ L ) 1 4 3 -1 5 7 ) (1 4 4 -1 5 3 )Hardness 641 .0 655 .0

    ( m g C a C O a / L ) ( 5 5 5 - 7 4 2 ) ( 5 6 5 - 7 0 0 )Co nd uc t iv i ty 1089 .0 1458 .0( / x m h o s / cm a t 2 5 ~ (9 7 0 -1 2 4 0 ) (1 1 7 5 -2 0 0 0 )

    Embryo-Larval BioassayD i s s o l v ed o x y g en 5 .9 4 .8

    (m g / L ) (4. 8 -6 . 7 ) (3 . 8 -6 . 0 )D i s s o l v ed o x y g en 9 7 .0 7 6 .0

    (% s a t u ra t io n ) (7 5 -1 0 5 ) (6 2 -9 4 )Fr ee CO2 2 .3 2 .6( m g /L ) ( 1 . 7 - 2 . 7 ) ( 2 . 1 - 3 . 4 )

    pH 8.2 8.1( 8 . 1 - 8 . 3 ) ( 8 . 0 - 8 . 2 )

    Alkal ini ty 148.0 152.0( m g C a C O a / L ) ( 1 4 6 - 1 5 3 ) ( 1 5 0 - 1 5 5 )

    Hardness 706 .0 702 .0( m g C a C O J L ) ( 6 5 8 - 7 2 6 ) ( 6 5 5 - 7 1 7 )

    Co nd uct iv i ty 1247 .0 1247 .0( / zm h o s / cm a t 2 5 ~ (1 2 0 0 -1 2 9 0 ) ( 1 2 4 0 -1 3 0 0 )

    w e r e s i p h o n e d f r o m t h e t a n k d a i ly . T h e L C ~ o f o r e a c h t e s t s p e c i e s w a s d e t e r m i n e d b y u s in g t h eg r a p h i c a l m e t h o d ( A m e r i c a n P u b l ic H e a l t h A s s o c i a t i o n 1 97 5) .F o r t e s ti n g t h e lo n g - t e rm e f f e c t s o f H a n n a -3 c o n d e n s e r w a t e r o n f a t h e a d m i n n o w e g g h a tc h a b i l-

    i t y , f r y s u r v i v a l a n d f r y g r o w t h , e m b r y o - l a r v a l p r o c e d u r e s w e r e u s e d r a t h e r t h a n f u l l l i f e - c y c l et e s ts . T h e s e l e c t io n o f t e s t m e t h o d w a s b a s e d o n t h e r e c e n t f i n d in g s o f M c K i m ( 1 9 7 7 ) t h a tem b ry o - l a rv a l b i o as s ay s w e re u s u a l l y a s s en s i t i v e a s fu l l l i f e - cy c l e t e s t s . L o t s o f 50 n ew l y f e r t i li zedf a t h e a d m i n n o w e g g s fr o m t h e b r o o d s t o c k w e r e i n c u b a t e d a t 2 5~ (_+ 1~ i n m e s h - b o t t o m e g g c u p ss u s p e n d e d i n t o x i c a n t t a nk s . F o u r o r m o r e g r o u p s o f e g g s w e r e t e s t e d i n e a c h d i l u t io n , a n d e g gs u r v i v a l a n d h a t c h a b i l it y w e r e m o n i t o r e d d a il y f o r e a c h l o t . W h e n i n c u b a t io n a t t e m p t s p r o d u c e d a tl e a s t 3 0 l a r v a e , t h e y w e r e t r a n s f e r r e d t o a r e a r i n g t a n k a t t h e s a m e c o n d e n s e r w a t e r c o n c e n t r a t i o n .T h e l a r v a e w e r e f e d b r i n e s h ri m p a n d p o w d e r e d t r o u t s t a r t e r d a il y f o r 3 0 d a y s , a t w h i c h t im e t h es u rv i v o r s w e re co u n t ed , w e i g h ed an d m eas u re d . S t u d en t ' s t te s t a t t h e a = 0 .0 5 an d 0. 1 s ig n i f i can cel e v e l s w e r e u s e d i n a l l c o m p a r i s o n s o f e g g h a t c h a b i li t y a n d l a r v a l g r o w t h a n d s u r v i v a l.R e s u l t sT h e r e s u l t s o f a l l a c u t e t e s t s a r e g i v e n i n T a b l e 3 . I n e v e r y c a s e , r a i n b o w t r o u tw a s t h e m o s t s e n s i t i v e s p e c i e s t e s t e d , a n d Daphnia pulicaria w a s u s u a l l y t h e

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    6/13

    Te3AceocyoH

    3UCc

    waeaseec

    uesoanwoahminwsaDa

    apca

    Rnwo

    Fhminws

    Da

    apca

    Twae

    (9hL0

    (9hLo

    (4hL~

    H

    3c

    wae

    P Uozammoa

    P

    puammoa

    p

    c

    aoaLduo

    ammoac

    aoaL

    duo

    01%

    01%

    01%a

    89mgL

    65mgL

    >1mgL

    07mgL

    15mgL

    11mgL

    01%

    02%

    02%

    23mgp

    L

    49mgp

    L

    65mgp

    L

    04mgNHsL

    08mgNHJL

    11mgNL

    Sace

    C

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    7/13

    T o x i c i ty o f U n d e r g r o u n d C o a l G a s i fi c a t i on C o n d e n s e r W a t e r 5 49

    most tolerant. For each species, the LCs0 value of Hanna-3 condenser waterwas similar to the LCs0 value of the phenol plus ammonia mixture which wasdosed at concentrations identical to those found in Hanna-3 water. Also, at therespective LCs0 dilutions for rainbow trout and fathead minnows in the phenolplus ammonia bioassay, the phenol and ammonia concentrations were eachlower than the respective LCs0 values for phenol and ammonia tested sepa-rately. For Daphnia pul icaria, however, the ammonia concentration at theLCs0 dilution in the phenol plus ammonia test was essentially identical to theLCso for Dap hnia pu l icaria exposed only to ammonia. This species was clearlymore tolerant to phenol than either fathead minnows or rainbow trout.The results of the embryo-larval bioassay with Hanna-3 condenser waterare presented in Table 4. Fathead minnow egg hatchability was significantlyreduced at the 0.08 and 0.04% exposure levels when compared with well-watercontrols. Although the fry reared in all test tanks were fed brine shrimp andpowdered food daily, those reared in well-water controls did not grow as well asthe fish reared in low concentra tions of condenser water. This reduced growthin the control tanks was probably the result of limited food availability; the testtanks supplied with even the lowest concentrations of condenser water con-tained substantial growths of microorganisms on which larval fathead minnowsapparently fed, while the control tanks contained little such growth. Because ofthe slow growth of control fish, the growth of the fry in the lowest condenserwater concentra tion (0.00125%) was compared with each higher concentra tionto determine significant differences. It was found that the mean length of the fryat 30 days post-hatch was significantly reduced by 0.04 and 0.02% condenserwater. Although the mean weight of the fry reared in 0.04 and 0.02% condenserwater was only 0.13 and 0.18 g respectively, compared with 0.23 g in the0.00125% tanks, it was not possible to statistically test this apparent reductionin weight gain, because the fry were weighed as a group rather than individu-ally. Since survival of control fry did not appear to be affected by food supply,the treatm ent concentrat ions were compared with the controls and survival wasfound to be reduced at condenser water dilutions as low as 0.01%.

    T a b l e 4 . S u m m a r y o f h a tc h a b i l it y , s u r v i v a l a n d g r o w t h ( l e n g th a n d w e ig h t ) o f f a t h e a dm i n n o w e g g s , a n d f ry e x p o s e d t o H a n n a - 3 U C G c o n d e n s e r w a t e r a n d w e ll w a t e rS u r v i v a l M e a n l e n g t h M e a n w e i g h t

    C o n c e n t r a t i o n H a t c h a b i l i t y a t 3 0 d a y s a t 3 0 d a y s a t 3 0 d a y s( % c o n d e n s e r w a t e r ) ( % ) ( % ) ( m m ) ( g)0 . 0 8 1 9 ~ 0 - - - -0 . 0 4 62 .8 ~ 10 a 22 .4 r 0 .130 . 0 2 7 3 . 4 3 3 b 2 4 . 5 c 0 . 1 80 . 0 1 6 9 . 7 8 " 2 6 . 4 0 . 2 40 . 0 0 5 7 9 . 3 4 7 2 5 . 0 0 . 2 10 . 0 0 2 5 7 6 . 4 5 1 2 5 . 4 0 . 2 20 . 0 0 1 2 5 8 1 . 2 5 9 2 6 . 6 0 . 2 30 . 0 0 0 ( c o n t r o l ) 8 3 . 5 4 8 1 9 .3 0 . 1 2" S i g n i f i c a n t l y d i f f e r e n t ( a =b S i g n i f i c a n t l y d i f f e r e n t ( a =c S i g n i f i c a n t l y d i f f e r e n t ( ~ =

    0 , 0 5 ) f r o m w e l l - w a t e r c o n t r o l sO , 1 ) f r o m w e l l - w a t e r c o n t r o l s0 .0 5 ) f r o m f r y r e a r e d i n 0 .0 0 1 2 5% c o n s e n s e r w a t e r

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    8/13

    550 G. M. DeGraeve et al.

    D i s c u s s i o n

    T h e t o x i c i ty o f a n u m b e r o f o t h e r e n e r g y - r e l a t e d e f f l u e n ts h a s b e e n i n v e s t i g a t e db y s t a n d a r d b i o a s s a y p r o c e d u r e s . T h e t o x i c i t y o f r e f i n e r y e f fl u e n t s t o f a t h e a dm i n n o w s w a s a f f e c t e d b y d i f fe r e n t t r e a t m e n t p r o c e s s e s ( G r a h a m a n d D o r r i s1 9 6 8 ) . T wo p a r t i a l l y - t r e a t e d r e f i n e r y e f f l u e n t s ( m e a n p h e n o l c o n c e n t r a t i o n s 5 .6a n d 1 4.8 r a g /L ) p r o d u c e d 4 8 - h r L C s0 v a l u e s r a n g i n g f r o m 4 t o 7 0 % e f f l u e n t ,w h i l e t w o e x t e n s i v e l y - t r e a t e d e f f l u e n t s ( m e a n p h e n o l c o n c e n t r a t i o n s 0 . 3 a n d1 .0 r a g / L ) we r e n o t t o x i c a t 1 0 0 % i n 4 8 h r . W i t h 2 4 - h r s t a t i c b i o a s sa y s , Ma t -t h e w s a n d M y e r s (1 97 6) e x p o s e d r e d e a r s u n f i s h ( L e p o m i s m i e r o l o p h u s ) t o d i lu -t io n s o f p e t r o l e u m r e f i n e r y w a s t e w a t e r s a n d f o u n d L C 5 0 v a l u e s f r o m 0 . 04 t o1 3 . 5 % . T h e y c o n c l u d e d t h a t a m m o n i a , s u l f i d e s , a n d p h e n o l i c s w e r e p r i m a r i l yr e s p o n s i b l e f o r t h e o b s e r v e d t o x i c i t y .

    W h e n A n d e r s o n e t a l . ( 1 9 8 0 ) e x p o s e d r a i n b o w t r o u t t o w a s t e - w a t e r p r o -d u c e d b y u n d e r g r o u n d r e to r t in g o f oi l s h a le , t h e 9 6 - h r L C s 0 v a l u e s r a n g e d f r o m0 .4 1 t o 0 .5 1 % e f f l u e n t . A l t h o u g h p h e n o l c o n c e n t r a t i o n s w e r e l o w in t h ise f f l u e n t , a m m o n i a l e v e l s we r e h i g h ( 3 ,2 7 6 m g / L a s NH3 ) . I n a s e p a r a t e b i o a s -s a y , t h e y t e s t e d d i l u t i o n s o f a m i x t u r e o f 13 m a j o r i n o r g a n i c c o n s t i t u e n t s a tc o n c e n t r a t i o n s f o u n d i n t h e o i l s h a l e p r o c e s s w a t e r a n d f o u n d t h e 9 6 - hr L C s0 f o rr a i n b o w t r o u t t o b e 0 . 5 6 % o f t h is m i x t u r e , w h i c h w a s c l o s e t o t h e 9 6 - hr L C s0d i l u t i o n f o r t h e o i l s h a l e p r o c e s s w a t e r . T h e y c o n c l u d e d t h a t t h e i n o r g a n i cc o m p o n e n t , p r im a r il y a m m o n i a , a c c o u n t e d f o r m o s t o f t h e a c u t e t o x i c it y o b -s e r v e d i n t h is e f f lu e n t . I n a n e m b r y o - l a r v a l b i o a s s a y e x p o s i n g r a i n b o w t r o u t t ot h i s s a m e p r o c e s s w a t e r , t h e s e i n v e s t i g a t o r s f o u n d f r y g r o w t h r e d u c e d a t c o n -c e n t r a t io n s a s l o w a s 0 . 1 6 % . A t a d il u ti o n o f 0 . 1 6% t h e u n - i o n iz e d a m m o n i ac o n c e n t r a t i o n w a s c a l c u l a t e d t o b e 0 . 0 4 r a g / L , w h i c h i s h i g h e r t h a n t h e u n -i o n i z ed a m m o n i a l e v e l o f 0 .0 1 6 6 m g / L w h i c h S m i t h a n d P i p e r ( 19 75 ) fo u n d t or e d u c e g r o w t h i n r a i n b o w t r o u t a f t e r 6 a n d 12 m o n t h s o f e x p o s u r e .T h e t o x i c i t y t o f a t h e a d m i n n o w s o f co a l g a s if ic a ti o n c o n d e n s e r w a t e r p r o -d u c e d b y t h e a b o v e - g r o u n d S y n t h a n e p r o c e s s w a s i n v es t ig a t ed b y S c h u l tz e t a l .( 1 9 7 8 ) . T h e y r e n e we d t h e t e s t so l u t i o n s o n a d a i l y b a s i s a n d f o u n d t h e 2 4 , 4 8a n d 9 6 - h r L C s0 v a l u e s t o b e 0 .1 6 3 , 0 .0 8 4 a n d 0 .0 5 1 % c o n d e n sa t e , r e sp e c t i v e l y .T h e m a j o r o r g an i c c o n s t i t u e n t s o f t h e c o n d e n s a t e w e r e p h e n o l s ( 5 ,2 2 0 r a g/ L ),c r e s o l s a n d x y l e n o l s , a n d a m m o n i a w a s a m a j o r i n o r g a n i c C o m p o n e n t ( - 9 , 0 0 0r a g / L ) . T h e y c o n c l u d e d t h a t p h e n o l a n d c r e s o l s w e r e m o s t i m p o r t a n t i n a f f e c t -i ng t o x i c it y to f a t h e a d m i n n o w s , a n d t h a t " a m m o n i a t o x i c i ty is n o t a s i gn i fi ca n tp r o b l e m " . H o w e v e r , t h e y d i d n o t s p e c i f y t h e ir e f fl u e n t c o l l e c ti o n a n d s t o r a g ec o n d i t i o n s ( d u r a t i o n , t e m p e r a t u r e ) o r th e p H a t t h e 9 6 - h r L C 50 d i l u t io n . T h e ya l s o di d n o t c o n s i d e r t h e p o s s i b i li t y t h a t s o m e o f t h e a m m o n i a i n th e c o n d e n s e rw a t e r c o u l d h a v e b e e n l o s t t o t h e a t m o s p h e r e i n t h e i r s t a t i c r e n e w a l t e s t s a n d ,m o s t i m p o r t a n t , t h e y d i d n o t s u p p o r t t h e i r c o n c l u s i o n w i t h a m m o n i a a n a l y s e sd u r in g t h e t e s t. A c t u a l l y , th e o n l y e s t i m a t e o f a m m o n i a c o n c e n t r a t i o n w h i c ht h e y r e p o r te d f o r th is c o n d e n s e r w a t e r w a s p u b l is h e d b y F o r n e y e t a l . (1974) ,f o u r y e a r s p r i o r to t h e ir b i o a s s a y s . A d d i t io n a l l y , b a s e d o n t h e ir r e p o r t e d 5 , 20 0m g / L c o n c e n t r a t i o n o f p h e n o l s a n d 9 6 -h r L C s o d i lu t io n o f 0 . 0 5 1 % , w e c a l c u l a t e dt h e c o n c e n t r a t i o n o f p h e n o l s a t t h e ir L C so d i l u ti o n t o b e 2 .7 m g / L . T h i s i sc o n s i d e r a b l y l o w e r t h a n t h e 6 7 . 5 m g / L L C 50 f o r p h e n o l , o b t a i n e d i n t h e p r e s e n ts t u d y f o r f a t h e a d m i n n o w s i n t h e 9 6 - h r f l o w - t h r o u g h b i o a s s a y . A p p a r e n t l y ,s o m e o t h e r c o n s t i t u e n t (s ) i n ad d i t io n t o p h e n o l s , c r e s o l s , a n d x y l e n o l s p l a y e d a

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    9/13

    Toxicity of Underground Co al Gasification Con denser W ater 551m a j o r r o l e in i n fl u en c i ng t h e t o x i c i t y o f t h e c o a l c o n v e r s i o n p r o d u c t w a t e r , a n dt h e r e i s n o c o n c l u s i v e e v i d e n c e i n t h e w o r k o f S c h u l t z e t a l . w h i c h s u g g e s t s t h a ta m m o n i a w a s n o t o n e o f t h e p r in c i p a l to x i c c o n s t i t u e n t s . O n t h e o t h e r h a n d ,H e r b e r t ( 1 96 2) sp e c u l a t e d t h a t t h e t o x i c i t y o f e f f l u e n t s f r o m c o a l d i s ti l la t io n( s p e n t s t il l- li q u or ) t o r a i n b o w t r o u t w a s d u e p r i m a r i l y t o a m m o n i a a n dm o n o h y d r i c p h e n o l c o n t e n t . H e t e s t e d t h is h y p o t h e s i s b y c o n d u c t i n g f o u r s e p a -r a t e t e s t s , e x p o s i n g r a i n b o w t r o u t t o s i x d i l u ti o n s o f ( 1) t h e sp e n t s t i ll - li q u o r , ( 2)a m m o n i u m c h l o r id e s o l u t i o n s w i th N H 4 c o n c e n t r a t i o n s e q u a l to t h o s e in s p e n ts t i l l - l i q u o r , ( 3 ) p h e n o l so l u t i o n s c o r r e sp o n d i n g t o t h e p h e n o l c o n c e n t r a t i o n s i nt h e sp e n t s t il l- li q u o r , a n d ( 4) m i x t u r e s o f p h e n o l p l u s a m m o n i a a t c o n c e n t r a -t i o n s e q u a l t o t h a t i n sp e n t s t il l- l iq u o r . H e f o u n d t h e sp e n t s t i ll - li q u o r d i lu t i o n sm o s t t o x i c , t h e p h e n o l p l u s a m m o n i a m i x t u r e n e a r l y a s t o x i c , a n d t h e s i n g l ec o m p o u n d s l e a s t to x i c , a n d c o n c l u d e d t h a t " t h e s o l u ti o n s c o n ta i ni n g u n -i o n iz e d a m m o n i a a n d p h e n o l w e r e m o r e t o x i c th a n s o l u t io n s o f u n - i o n i z eda m m o n i a a l o n e " . H e a l so c o n c l u d e d t h a t th e o t h e r c o n s t i tu e n t s o f th e s p e n ts t il l- l iq u o r c o n t r i b u t e d l i t tl e t o t h e t o x i c i t y r e l a t i v e t o t h e e f f e c t o f t h e p h e n o lp l u s a m m o n i a m i x t u re . H e f o u n d , a s in t h is s t u d y , t h a t e v e n t h o u g h p h e n o l a n da m m o n i a w e r e c o m b i n e d a t c o n c e n t r a t io n s e a c h l es s t h a n t h e ir r e s p e c t i v e L C s0c o n c e n t r a t io n s , m o r e t h a n h a l f o f t h e f is h u s u a l ly d i ed . B o t h s t u d i e s s u g g e s tt h a t t h e r e i s a s y n e r g i s ti c a c t io n b e t w e e n p h e n o l a n d a m m o n i a , w h i c h i s p r i-m a r i l y r e s p o n s i b l e f o r t h e o b s e r v e d t o x i c i t y i n t h e s e c o m p l e x c o a l c o n v e r s i o ne f f l u e n t s .H e r b e r t p r o p o s e d t h e u s e o f t h e e x p r e s s i o n A s / A t + P s / P t f o r p r e d i c ti n g t h et o x i c i t y o f a p h e n o l p l u s a m m o n i a m i x t u r e . As /A t a n d Ps /P t w e r e d e s i g n a t e d a st h e r a t io s o f t h e c o n c e n t r a t i o n s o f a m m o n i a a n d p h e n o l i n s o l u t io n t o t h e t o x i ca m m o n i a a n d p h e n o l c o n c e n t r a t io n s f o r t h e a q u a t i c s p e c i e s in q u e s t i o n , a n dh y p o t h e s i z e d t h a t w h e n A J A r + P J P t = 1, t h is d i l u t io n o f t h e m i x t u r ew o u l d b e th e t o x i c l e v e l f o r t h a t s p e c i e s . I n t e r e s ti n g l y , H e r b e r t ' s e x p r e s s i o nu s e d w i t h o u r s e p a r a t e r a i n b o w t r o u t L C s 0 v a l u e s f o r a m m o n i a a n d p h e n o la n d o u r a n a l y z e d p h e n o l a n d u n - io n i z e d a m m o n i a c o n c e n t r a t i o n s a t t h eL C s0 d i lu t io n f o r t h e p h e n o l p l u s a m m o n i a b i o a s s a y , p r o d u c e d a v a l u e o f 0 .4 9 /0 .7 7 + 2 .7 9 / 8 .9 = 0 .9 5 . A l so , i f t h e c a l c u l a t e d p h e n o l a n d u n - i o n i z e d a m m o n i al e v e ls f r o m t h e H a n n a - 3 c o n d e n s e r w a t e r a c u t e t e s t a t th e L C ~0 d i lu t io n o f 0 . 1 %f o r r a i n b o w t r o u t a r e a p p li e d to t hi s s a m e e x p r e s s i o n , t h e v a l u e b e c o m e s 1 .2 8 .C o n s i d e r i n g t h e c o m p l e x i t y o f t h e p r o c e s s w a t e r a n d t h e f a c t t h a t o t h e r t o x i-c a n t s a r e p r e s e n t, t h i s v a l u e i s r e m a r k a b l y c l o s e t o H e r b e r t ' s p r o j e c t e d v a l u eo f 1 . H e r b e r t a l s o u s e d t h is m o d e l f o r p r e d i ct in g t h e t o x i c i ty t o r a i n b o w t r o u t o fsp e n t s t i l l - l i q u o r wh e n d i l u t e d i n r e c e i v i n g s t r e a m s . He c o m p l e t e d a s e r i e s o fc a g e d f i s h b i o a s s a y s d o w n s t r e a m f r o m a s p e n t s t i l l - l i q u o r d i s c h a r g e a n d f o u n dt h a t t h e p r e d i c t io n s w e r e a c c u r a t e f o r 8 0 % o f t h e e x p e r i m e n t a l d a y s . T h i sm o d e l w a s u s e d i n th e p r e s e n t s t u d y t o p r e d i c t t h e 9 6 -h r L C s0 c o n c e n t r a t i o n o fH a n n a - 3 c o n d e n s e r w a t e r ( 20 ,0 0 0 m g /1 a s N H 3 a n d 2 , 30 0 m g / L p h e n o l ) t or a i n b o w t r o u t i n t h e d i l u ti o n w a t e r ( p H 8 . 0 ; 14 ~ u s i n g t h e p h e n o l a n da m m o n i a 9 6 -h r L C~ o v a l u e s f o r r a i n b o w t r o u t. T h e m u l t ip l e o f th e t o x i c c o n -c e n t r a t i o n o b t a i n e d w a s 8 8 5 ; t h u s , i t w a s p r e d i c t e d t h a t t h e 9 6 - h r L C so d i l u ti o no f H a n n a - 3 c o n d e n s e r w a t e r w o u l d b e 1 /8 85 o r 0 . 1 1 % ; a c t u a l ly , t h e r a i n b o wt r o u t L C s 0 w a s 0 . 1 % ( T a b l e 3 ). U s i n g t h i s s a m e m o d e l t o p r e d i c t t h e t o x i cc o n c e n t r a ti o n o f H a n n a - 3 c o n d e n s e r w a t e r to f a th e a d m i n n o w s , t h e L C s o w a s

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    10/13

    552 G. M. DeGraeve e t a l .

    estimated to be 0.28%, higher than the observed 0.11% value. In view of thecomplex nature of this effluent, perhaps the difference between 0.28% and0.11% is reasonable. Thus, Herbert's predictive model appears to apply toUCG condensate as it does to spent still-liquors, which suggests that ammoniaand phenol in combination are primarily responsible for affecting acute tox-icity.It is of interest to note the acute toxicity pattern observed for D a p h n i apu l icar ia . This species was easily the most tolerant to phenol (48-hr LCs0 > 109mg/L) of the species tested, and in another group of experiments D a p h n i apu l icar ia was less sensitive to most individual organic compounds than eitherfathead minnows or rainbow trout (DeGraeve e t a l . 1980); but D a p h n i apu l icar ia was moderat ely sensitive to ammonia Table 3), and the LC~0 forun-ionized ammonia alone was virtually the same as the un-ionized ammoniaconcent ration at the LCs0 dilution in the phenol plus ammonia bioassay. Thesedata suggest that this invertebrate may respond similarly to fish when exposedto coal conversion effluents like UCG condenser water if ammonia concentra-tions are high. However, at least for a short-term exposure, Da p h n ia p u l i ca r iaappear to be able to tolerate higher levels of many organic compounds thanrainbow trout or fathead minnows.Fathead minnow larval growth was significantly reduced a fter a 30-dayexposure to 0.02% Hanna-3 condenser water, and survival was significantlyreduced at 0.01% condenser water (Table 4). Consequently, since the 96-hrLCs0 for fathead minnows was 0.11% condenser water, an effec t was observedin 30-day exposures at a concentration equal to about 9.1% of the 96-hr LCs0.At the 0.01% condenser water dilution, the calculated phenol level was 0.23mg/L, and the un-ionized ammonia concentrat ion, at a pH of 8.1 and tempera-ture of 25~ was calculated at 0.14 mg/L (Emerson et a l . 1975). The lowestphenol concentration reported by the European Inland Fisheries AdvisoryCommission (1973a) as reducing growth in rainbow trout was 1.0 mg/L. Thephenol concentrat ion in the 0.01% condenser water exposure, where survival offathead minnow fry was significantly reduced, was 23% of that value. How-ever, in a separate embryo-larval study exposing fathead minnows to phenol,fry weight was significantly reduced after 30 days o f exposure to phenol con-centrations as low as 2.5 mg/L (DeGraeve et a l . 1980).The European Inland Fisheries Advisory Commission (1973b) reportedthat prolonged exposure of rainbow trou t fry to 0.2 mg/L un-ionized ammoniawas lethal, and Thurston et a l . (1978) exposed cutthroat trou t fry to ammoniasolutions and found the 36-day LCso values to range between 0.3 and 0.6 mg/Lun-ionized ammonia. Smith and Piper (1975) reported reduced growth andpathological changes in the gills and livers of rainbow trout exposed for sixmonths to un-ionized ammonia concent rations of 0.0166 mg/L. All of the abovestudies were conducted with salmonid species, but Robinette (1976) reportedreduced growth in channel catfish after 27 days of exposure to 0.12 mg/Lun-ionized ammonia. Clearly, the calculated un-ionized ammonia value of 0.14mg/L at the 0.01% dilution of Hanna-3 condenser water is well within the rangeexpected to affect fish survival and growth. At these low levels it is difficult todetermine whether there was a synergistic reaction between phenol and am-monia which affected the larval fathead minnows, although this is a distinctpossibility. At least, ammonia appears to have been present at concentrations

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    11/13

    Toxicity of Underground Coal Gasification Condenser Water 553w h i c h c o u l d h a v e r e d u c e d s u r v i v a l o f f a t h e a d m i n n o w f r y in t h e 0 .0 1 % d i lu t io no f H a n n a - 3 c o n d e n s e r w a t e r a n d p h e n o l m a y h a v e a l so p l a y e d a n i m p o r t a n tr o l e .

    I n e x c e s s o f 1 00 o t h e r o r g a n i c c o m p o u n d s w h i c h m i g h t h a v e w i d e r a n g in ge f f e c t s o n a q u a t i c b i o t a h a v e b e e n i d e n t i f i e d i n c o a l g a s i f i c a t i o n c o n d e n s e rw a t e r ( P e ll iz z a ri 1 97 8). H o w e v e r , s i n c e m o s t o f t h e t o x i c i t y o f t h is c o m p l e xU C G c o n d e n s e r w a t e r a p p e a r s t o b e a t tr i b u ta b l e to p h e n o l a n d a m m o n i a , t h ei m p a c t o f t h i s w a t e r o n a q u a t ic b i o t a c o u ld b e r e d u c e d c o n s i d e r a b l y b y t r e a t -m e n t p r o c e s s e s w h i c h w o u l d r e d u c e t h e le v e ls o f t h e s e t o x i c a n t s .

    C o n c l u s i o n sH a n n a - 3 c o n d e n s e r w a t e r w a s a c u t e l y t o x ic to r a in b o w t r o u t , fa t h e a d m i n-

    n o w s , a n d D a p h n i a p u l i c a r i a ; t h e L C s 0 v a l u e s w e r e 0 . 1 , 0 .1 1 a n d 0 . 1 8 % , r e -s p e c t i v e l y .S e p a r a t e b i o a s s a y s w i th p h en o l , a m m o n i a , a n d p h e n o l p lu s a m m o n i a

    s h o w e d t h a t t h e s e t w o c o m p o u n d s r e a c t s y n e r g i s t i c a l l y a n d p r o b a b l y a c c o u n tf o r m u c h o f t h e a c u t e t o x ic i ty o f H a n n a - 3 c o n d e n s e r w a t e r t o ra i n b o w t r o u t a n df a t h e a d m i n n o w s .

    T h e f o r m u l a p r o p o s e d b y H e r b e r t (1 96 2) fo r p re d i c t i n g t h e t o x i c i ty o fe f f l u e n ts w i t h h ig h c o n c e n t r a t io n s o f p h e n o l a n d a m m o n i a w a s u s e d t o p r ed i c tt h e a c u te L C s o d i lu t io n o f H a n n a - 3 U C G c o n d e n s e r w a t e r f o r r a i n b o w t r o u t a n df a t h e a d m i n n o w s . T h e p r e d i c t e d L C s0 v a l u e s w e r e 0 . 1 1 % f o r r a i n b o w t r o u t a n d0 . 2 8 % f o r f a t h e a d m i n n o w s , w h i c h w e r e s i m i l a r t o t h e o b s e r v e d 9 6 - h r L C s 0v a l u e s o f H a n n a - 3 c o n d e n s e r w a t e r f o r t h e s e s p e c i e s .D a p h n i a p u l i c a r i a w a s r e l a t i v e l y i n s e n s i t i v e t o p h e n o l e x p o s u r e ; a p p a r -e n t ly a m m o n i a a c c o u n t e d f o r m o s t o f t h e r e s p o n s e o f D a p h n i a p u l i c a r i a t oH a n n a - 3 c o n d e n s e r w a t e r .

    I n 3 0 -d a y e m b r y o - l a r v a l b i o a s s a y s , f a t h e a d m i n n o w s u r v i v a l w a s r e d u c e da t c o n c e n t r a t i o n s o f H a n n a - 3 c o n d e n s e r w a t e r a s lo w a s 0 .0 1 % . T h e c a l c u l a t e dp h e n o l a n d u n - i o n i z e d a m m o n i a c o n c e n t r a t i o n s a t t h a t d i lu t io n w e r e 0 .2 3 m g / La n d 0 .1 4 m g / L , r e s p e c t i v e l y , a n d t h e a m m o n i a c o n c e n t r a t i o n w a s s im i l ar t oc o n c e n t r a t i o n s s h o w i n g l o n g - t e r m e f f e c t s o n f i sh d e s c r i b e d i n o t h e r p u b l i s h e ds t u d i e s .Acknowledgments. Dia nn e Geiger and Den nis Wo ods were invaluable in conducting these bioas-says. In addition, we thank Joseph Meyer, Rodn ey Johnson, M ichael Marcus, and Timothy F anninfor their technical assistance, L ym an McDonald for statistical advice, Bruce King for supplying thecoal gasification condenser water, and Linda Zeveloff and Pat Beintema for typing the manuscript.This project w as funded jointly by the U.S. Department o f Energy and the U .S. EnvironmentalProtection Ag ency under C ontract No. DE-AS20-79 LC 01761 to the Rocky Moun tain Institute fo rEnergy and Environment and the Department of Zoology and Physiology at the University ofWyoming.

    R e f e r e n c e sAme rican Public He alth Association: Standard m ethods for the exam ination o f wa ter and waste-water. 14 ed. American Public Health Assoc., Washington, DC (1975).Anderson, A. D ., M. E. Leb sack , G. M . DeG raeve, D. S. Farrier, and H . L. B ergman" Toxicity of

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    12/13

    55 4 G . M . D e G r a e v e et al.a n in situ o i l s h a l e p r o c e s s w a t e r t o r a i n b o w t r o u t a n d f a t h e a d m i n n o w s . A r c h . E n v i r o n .Contam. and Toxico l . 9 , 173 (1980) .

    B a r t k e , T . C . , L . D o ck t e r , T . E . S t e rn e r , J . E . V i rg o n a , an d L . F . Wo j d ac : S t a t u s r ep o r t o n t h eH a n n a I I I a n d H a n n a I V u n d e r g r o u n d c o a l g a s i fi c a ti o n e x p e r i m e n t s . P r o c . o f th e 4 t h U n d e r -g ro u n d C o a l C o n v e r s i o n Sy m p o s i u m , J u l y 1 7 -2 0 , 1 9 7 8 . S t ea m b o a t Sp r i n g s , C O , (19 7 8) .B h a t i a , S . K . : P re l i m i n a ry d es i g n an d co s t e s t i m a t e o f a p i l o t p l an t fo r t h e u n d e rg ro u n d g as i f i ca t io no f c o a l b y t h e l i n k e d v e r t i c a l w e l l s p ro c e s s . P r e p . f o r t h e U . S . D o O . E . D i v . o f O il , G a s , S h a l ea n d I n S i t u T e c h n o l o g y b y B o o z , A l l e n a n d H a m i l t o n , I n c . u n d e r C o n t r a c t N o . E F - C - 0 1 - 26 2 8 ,(1978).

    B ran d en b u rg , C . F . , D . D . F i s ch e r , G . G . C am p b e l l , R . M . B o y d , an d J . K . E as t l ack : T h e u n d e r -g ro u n d g as i f i ca t i o n o f a s u b b i t u m i n o u s co a l . P rep r i n t s o f Pap e r s , A m . C h em . S o c . , D i v . Fu e lChemis t ry . 20 , 3 (1975) .C a m p b e l l , G . G . , C . F . B r a n d e n b u r g , a n d R . M . B o y d : P r e l i m i n a r y e v a l u a t i o n o f u n d e r g r o u n dc o a l g a si f ic a t io n at H a n n a , W y o m i n g . B u r e a u o f M i n e s T e c h n i c a l P r o g r e ss R e p o r t 82, 1(1974).

    C am p b e l l , J . H . , E . Pe l l i zza r i , an d S . Sa n t o r : R es u l t s o f a g ro u n d w a t e r q u a l i ty s t u d y n ea r anu n d e r g r o u n d c o a l g a s i fi c a ti o n e x p e r i m e n t ( H o e C r e e k I ) . L a w r e n c e L i v e r m o r e L a b o r a t o r y ,L i v e rm o re , C A , U C R L -5 2 4 0 5 , 1 (19 7 8) .

    D e G r a e v e , G . M . , T . C r u z a n , a n d R . W . W a r d : C h a m b e r f o r h o l d i n g a q u a t i c m i c r o i n v e r t e b r a t e sd u r i n g t o x i c i t y t e s t s i n a f l o w - t h ro u g h d i l u t e r s y s t em . P ro g . F i s h C u t l . 3 9 , 1 00 (19 7 7) .

    D e G r a e v e , G . M . , D . L . G e i g e r, J . S . M e y e r , a n d H . L . B e r g m a n : A c u t e a n d e m b r y o - la r v a lt o x i c i ty o f p h e n o l i c c o m p o u n d s t o a q u a ti c b i o ta . A r c h E n v i r o n . C o n t a m . T o x i c o l . 9,557 (1980).E m e r s o n , K . , R . C . R u s s o , R . E . L u n d , a n d R . V . T h u r s t o n : A q u e o u s a m m o n i a e q u i l i b ri u mca l cu l a t i o n s : e f f ec t s o f p H an d t em p era t u re . J . F i s h . R e s . B d . C an . 3 2 , 2 3 7 9 (19 7 5) .

    European Inland Fisheries Advisory Commission: W a t e r q u a l i ty c r i t e ri a f o r E u r o p e a n f r e s h w a t e rf i s h . R ep o r t o n m o n o h y d r i c p h en o l s an d i n l an d f i s h e r i e s . Wa t e r R es . 7 , 3 9 3 (1 9 7 3 a ) .- - : W a t e r q u a l i ty c r i t e r ia f o r E u r o p e a n f r e s h w a t e r f is h . R e p o r t o n a m m o n i a a n d i n la n df i sher ies . W ater R es . 7 , 1011 (1973b) .F o r n e y , F . J . , W . P . H a y n e s , S . J . G a s i o r , G . E . J o h n s o n , a n d J . P . S t r a k e y : A n a l y s i s o f t a r s ,

    c h a r s , g a s e s , a n d w a t e r f o u n d i n e ff l u e n ts fr o m t h e S y n t h a n e p r o c e s s . U . S . B u r e a u o f M i n e sT ec h n i ca l P ro g res s R ep o r t , J an u a ry , P i t ts b u rg h , PA (1 97 4 ).

    G l a s s , G . B . : C o a l r e s o u r c e s f o r in situ g a s if i ca t io n . A m e r i c a n N u c l e a r S o c i e t y T o p i c a l M e e t i n g o nE n e r g y a n d M i n e r a l R e s o u r c e R e c o v e r y . U . S . D . O . E . C o n f . 7 7 0 4 4 0 , G o l d e n , C O , ( 1 9 7 7 ) .G r a h a m , R . J . , a n d T . C . D o r r i s : L o n g - t e r m t o x i c i t y b io a s s a y o f o i l r e f i n e r y e f fl u e n ts . W a t e r R e s .2, 643 (1%8).

    G r e g g , D . W . : G r o u n d s u b s i d e n c e r e s u lt in g f r o m u n d e r g r o u n d g a s i fi c a t io n o f c o a l . L a w r e n c eL i v e r m o r e L a b o r a t o r y , L i v e r m o r e , C A , U C R L - 5 2 2 5 5 , 1 ( 19 77 ).

    H e rb e r t , D . W. M . : T h e t o x i c i t y t o r a i n b o w t ro u t o f s p en t s t i l l- l i q u o r s f ro m t h e d i s t i l la t i o n o f co a l .Ann. Appl . B io l . 50 , 755 (1962) .H e r b e s , S . E . , G . R . S o u t h w o r t h , a n d C . W . G e h r s : O r g a n ic c o n t a m i n a n t s i n a q u e o u s c o a l c o n v e r -s i o n e f f l u en t s : en v i ro n m en t a l co n s e q u e n ce s an d r e s ea rch p r i o r i ti e s . P ro c . 1 0 t h A n n u a l C o n fe r -e n c e o n T r a c e S u b s t a n c e s i n E n v i r o n m e n t a l H e a l t h , J u n e 7 -1 0, U n i v e r s i t y o f M i s s o u r i ,Co lum bia , 1 (1976) .M a t t h e w s , J . E . , a n d L . H . M y e r s : A c u t e t o x i c e f f e c ts o f p e t r o l e u m r e f i n e r y w a s t e w a t e r s o n r e d e a rs u n f is h . E n v i ro n m en t a l P ro t ec t i o n T ech n o l o g y Se r i e s PB -26 2 -9 1 3, 1 , A d a , O K (19 7 6) .

    M a u g h , T . H . : U n d e rg ro u n d g as i f i ca ti o n : A n a l te rn a t e w ay t o ex p l o i t co a l . Sc i e n ce 1 9 8, 1 1 32(1977).

    M cK i m , J . M . : E v a l u a t i o n o f t e s t s w i t h ea r l y li f e s t ag es o f f is h fo r p r ed i c t i n g l o n g - t e rm t o x i c i t y . J .Fi sh . Re s . Bd . Can . 8 , 11 48 (1977) .

    M o u n t , D . E . , an d W . B ru n g s : A s i m p l i f i ed d o s i n g ap p a ra t u s fo r f i s h t o x i c i t y s tu d i e s . W at e r R es . 1 ,21 (1967).P e l l iz z a r i, E . D . : I d e n t i f ic a t i o n o f c o m p o n e n t s o f e n e r g y - r e l a t e d w a s t e s a n d e f f lu e n t s . U . S . E . P . A .E n v i ro n m en t a l R es ea rc h L ab o ra t o ry , A t h en s , G A , E PA -6 0 0/ 7-78 -0 0 4 (19 7 8) .R o b i n e t t e , H . R . : E f f e c t o f su b l e th a l l e v e l s o f a m m o n i a o n t h e g r o w t h o f c h a n n e l c a t fi s h (lctalurus

    punctatus). Prog . Fi sh Cul t . 38 , 26 (1976) .

  • 8/6/2019 Toxicity of Underground Coal Gasification Condenser Water and Selected Constituents to Aquatic Biota

    13/13

    T o x i c i t y o f U n d e r g r o u n d C o a l G a s i f i c a ti o n C o n d e n s e r W a t e r 5 55S c h u l t z , W . T . , S . D a v i s , a nd J . N . D u m o n t : T o x i c i t y o f c o a l c o n v e r s i o n g a s i fi e r c o n d e n s a t e t o t h e

    fa t h ead m i n n o w . B u l l . E n v i ro n . C o n t am . an d T o x i co l . 1 9 , 2 3 7 (1 9 7 8 ) .S m i t h , C . E . , a n d R . G . P i p e r : L e s i o n s a s s o c i a t e d w i t h c h r o n i c e x p o s u r e t o a m m o n i a . I n W . E .

    R i b e l i n a n d G . M i g a k i ( e d) : T h e p a t h o l o g y o f f is h e s , M a d i s o n : U n i v e r s i t y o f W i s c o n s i n P r e s s(1975).T h u r s t o n , R . V . , R . C . R u s s o , a n d C . E . S m i t h : A c u t e t o x i c i ty o f a m m o n i a a n d n i t r it e to c u t t h r o a tt rou t f ry . Trans . Am. Fi sh . Soc. 107 , 361 (1978) .

    V i r g o n a , J . E . : E n v i r o n m e n t a l r e s e a r c h f o r u n d e r g r o u n d c o a l g a s i fi c a ti o n . P r o c . E n v i r o n m e n t a lA s s e s s m e n t o f S o li d F o s s i l F u e l P r o c e s s e s S y m p o s i u m o f t h e 7 1 st A n n u a l A m e r i c a n I n s t i tu t eC h e m i c a l E n g i n e e r s M e e t i n g , N o v . 1 2 -1 6 , M i a m i B e a c h , F L ( 19 78 ).

    Manuscr ip t rece i ved Augus t 20 , 1979; accep ted N ovem ber 23 , 1979 .