40
Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Embed Size (px)

Citation preview

Page 1: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Time Series Basics (2)

Fin250f: Lecture 3.2

Fall 2005

Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Page 2: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Outline

Linear stochastic processes Autoregressive process Moving average process Lag operator Forecasting AR and MA’s The ARMA(1,1) Trend plus noise models Bubble simulations

Page 3: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Linear Stochastic Processes

Linear modelsTime series dependenceCommon econometric frameworksEngineering background

Page 4: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR(1)Autoregressive Process,

Order 1

Xt = a+φXt−1 +et(Xt −μ ) =φ(Xt−1 −μ ) +et|φ |<1

var(et ) =σ e2

Page 5: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR(1) Properties

E(Xt ) = μ

E(Xt ) =a

1−φ

Et (Xt+1) = φ(Xt − μ ) +μ

Et−1(Xt ) = a +φXt−1

var(Xt ) =σ e

2

(1−φ2 )

ρ j = cor(Xt ,Xt− j ) = φ j

Page 6: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR(m)

(Xt −μ ) = φ j (Xt− j −μ )j=1

m

∑ +et

Page 7: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Moving Average Process of Order 1, MA(1)

Xt = μ +θet−1 + et

Page 8: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

MA(1) Properties

E(Xt ) = μ

Et (Xt+1) = μ +θetvar(Xt ) = (1+θ 2 )σ e

2

cor(Xt ,Xt−1) =θ

(1+θ 2 )

cor(Xt ,Xt− j ) = 0 j ≥ 2

Page 9: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

MA(m)

Xt = μ + θ jet− j + etj=1

m

Page 10: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR->MA

Xt =φXt−1 +etXt−1 =φXt−2 +et−1

Xt =φ(φXt−2 +et−1) +etXt =φ2Xt−2 +φet−1 +et

Xt =φmXt−m + φ jet− jj=0

m

∑ , |φ |<1

Xt = φ jet− jj=0

Page 11: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Lag Operator (L)

LXt = Xt−1

LkXt = Xt−kLkμ = μ

Page 12: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Using the Lag Operator

Xt − μ = φ(Xt−1 − μ ) + etXt − μ = φL(Xt − μ ) + et(1−φL)(Xt − μ ) = et

Page 13: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

An important feature for L

Xt = φXt−1 + et(1−φL)Xt = et

Xt =1

(1−φL)et

Xt = φ jLjetj=0

∑ = (φL) j etj=0

1(1−φL)

= (φL) jj=0

Page 14: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

MA -> AR

Xt = μ +θet−1 +etXt −μ = (1+θL)et

1(1+θL)

(Xt −μ ) = et

(−θL) j (Xt −μ )j=0

∑ = et

Page 15: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

MA->AR

Xt −μ = −(−θ ) jj=1

∑ (Xt− j −μ ) +et

Xt −μ = (−1) j−1θ jj=1

∑ (Xt− j −μ ) +et

Xt −μ =θ (−θ ) j−1

j=1

∑ (Xt− j −μ ) +et

|θ |<1

Page 16: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Forecasting the AR(1)

(Xt+1 − μ ) = φ(Xt − μ ) + et+1

Et (Xt+1 − μ ) = φ(Xt − μ ) +Et (et+1)

Et (et+1) = 0

ft ,1 = Et (Xt+1) = μ +φ(Xt − μ )

Page 17: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Forecasting the AR(1): Multiperiods

(Xt+1 − μ ) = φ(Xt − μ ) + et+1

(Xt+2 − μ ) = φ(Xt+1 − μ ) + et+2

(Xt+2 − μ ) = φ(φ(Xt − μ ) + et+1) + et+2

(Xt+2 − μ ) = φ2 (Xt − μ ) +φet+1 + et+2

Et (Xt+2 − μ ) = φ2 (Xt − μ ) +φEtet+1 +Etet+2

ft ,2 = Et (Xt+2 ) = μ +φ2 (Xt − μ )

ft ,N = Et (Xt+N ) = μ +φN (Xt − μ )

Page 18: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Forecasting an MA(1)

Xt = μ +θet−1 + etXt+1 = μ +θet + et+1

Et (Xt+1) = μ +θEt (et )

Page 19: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

The ARMA(1,1): AR and MA parts

Xt − μ = φ(Xt−1 − μ ) +θet−1 + et

var(Xt ) =1+ 2φθ +θ 2

1−φ2σ e

2

ρ j = cor(Xt ,Xt− j ) = Aφ j

A =(1+φθ )(φ +θ )φ(1+ 2φθ +θ 2 )

Page 20: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

ARMA(1,1) with L

(1−φL)(Xt −μ ) = (1+θ )et

et =(1−φL)(1+θL)

(Xt −μ )

et = (1−φL) (−θL) jj=0

∑ (Xt −μ )

Page 21: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

ARMA(1,1) with L

(Xt −μ ) =θ (j=1

∑ −θ ) j−1(Xt− j −μ ) +

φ (−θ ) j−1(Xt− j −μ )j=1

∑ +et

(Xt −μ ) = (φ +θ ) (j=1

∑ −θ ) j−1(Xt− j −μ ) +et

Page 22: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Forecasting 1 Period

(Xt −μ ) = (φ +θ ) (j=1

∑ −θ ) j−1(Xt− j −μ ) +et

ft ,1 = μ +(φ +θ ) (j=1

∑ −θ ) j−1(Xt− j −μ )

Page 23: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

ARMA(p,q)

Xt −μ = φi (Xt−i −μ )i=1

p

∑ + θ jet− jj=1

q

∑ +et

Page 24: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Why ARMA(1,1)?

Small, but persistent ACF’sComparing the AR(1) and ARMA(1,1)

Page 25: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR(1) ACF’s

Page 26: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

ARMA(1,1) ACF’s

Page 27: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Adding an AR(1) to an MA(0)(Trend plus noise)

Zt = Xt +Yt(Xt − μ X ) = φ(Xt − μ X ) + et(1−φL)(Xt − μ X ) = etYt = μY +utZt is ARMA(1,1)

Page 28: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Why Is This Useful?(Taylor 3.6.2)

Returns follow a combination processSum of:

Small, but very persistent trend Independent noise term

Page 29: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Trend Plus Noise

rt = ut +ε tut = φut−1 + etcov(rt ,rt−1) = cov(φut−1 + et +ε t ,ut−1 +ε t−1)

Page 30: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Trend Plus Noise

cov(rt ,rt−1) = cov(φut−1,ut−1)

cov(rt ,rt−1) = φσ u

2

cov(rt ,rt− j ) = φ jσ u

2

cor(rt ,rt−1) =cov(rt ,rt−1)σ r

2=

φσ u

2

(σ u

2 +σ ε

2 )

A =σ u

2

(σ u

2 +σ ε

2 )

cor(rt ,rt− j ) = Aφ j

Page 31: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Parameter Example

A small bigA = 0.02,

Page 32: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Trend Plus Noise ACF

Page 33: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Temporary Pricing ErrorsBubbles(3.6.1)

log(Pt ) = log(Pt*) +ut

log(Pt*) = log(Pt−1

* ) +ε tut =φut−1 +etRt = log(Pt ) − log(Pt−1)

Rt = log(Pt*) − log(Pt−1

* ) +ut −ut−1

Rt = ε t +ut −ut−1

Page 34: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

AR(1) Difference

ut = φut−1 + etut−1 = φut−2 + et−1

ut − ut−1 = φ(ut−1 − ut−2 ) + et − et−1

ARMA(1,1)

Returns = ARMA + noise

Page 35: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Variance Ratio

Rt = ε t +(ut −ut−1)

ut =φut−1 +et

B =var(ut −ut−1)

var(Rt )=

2 var(ut ) − 2φvar(ut−1)var(Rt )

B =2(1−φ)var(ut )

σ ε2 + 2(1−φ)var(ut )

Page 36: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Return Autocorrelations

Rt = ε t +ut −ut−1

cor(Rt ,Rt−1) = Bcor(ut −ut−1,ut−1 −ut−2 )

cor(Rt ,Rt− j ) = BAφ j

A =(1−φ)(φ −1)

2φ(1−φ)=

−(1−φ)2φ

< 0

Page 37: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

An Example

var(ε t ) = 0.001,var(et ) = 0.001

φ = 0.99,B = 0.49

Page 38: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Bubble Price Simulation

Page 39: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Return ACF

Page 40: Time Series Basics (2) Fin250f: Lecture 3.2 Fall 2005 Reading: Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

Outline

Linear stochastic processes Autoregressive process Moving average process Lag operator Forecasting AR and MA’s The ARMA(1,1) Trend plus noise models Bubble simulations