60
The Wind Load Provisions of ASCE 7: From 2005 to 2010 Gary Chock, P.E. Member, ASCE 7 Wind Load Subcommittee Member, International Code Council Structural Committee Structural Engineers Association of Hawaii Member of the State Building Code Council

The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Embed Size (px)

Citation preview

Page 1: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

The Wind Load Provisions of ASCE 7:

From 2005 to 2010

Gary Chock, P.E.

Member, ASCE 7 Wind Load SubcommitteeMember, International Code Council Structural Committee

Structural Engineers Association of Hawaii Member of the State Building Code Council

Page 2: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Upcoming Major Changes to the ASCE 7 Wind Design Provisions

• RE‐ORGANIZATION OF THE WIND LOAD CHAPTER

• SIMPLIFIED METHOD FOR ENCLOSED SIMPLE DIAPHRAGM BUILDINGS ≤ 160 FT.

• NEW WIND MAPS with LRFD Basis

• EXPOSURE D in HURRICANE PRONE REGIONS

• WINDBORNE DEBRIS CRITERIA

• Figure 6‐1 Hawaii designation as a Special Wind Region

Page 3: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Other New Provisions listed per the present Chapter 6 organization (not discussed here)

• 6.2  Definitions

– Definition of mean roof height

– Definition of simple diaphragm building

• Figure 6‐2 revision pertaining to the Enclosed Low‐Rise Simple Diaphragm Building Method

• Figure 6‐10 revision and rewording pertaining to the Low‐Rise Building Method

• 6.5.6.3 Downwind Transition from Exposure D

• 6.5.9.3 Roof aggregate

• 6.5.11.4 Overhangs

• Table 6‐4 Free‐standing walls and signs

Page 4: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Upcoming Changes to the ASCE 7 Wind Design Commentary listed per the present

Chapter 6 organization (not discussed here)

• C6.5.4 Saffir‐Simpson Category 

• C6.5.6 reference

• C6.5.6.6 Multiple roughness regimes

• Table C6‐8 z0 for Exposure B

• C6.5.6 z0 and alpha

• Example of roughness transition calculations

• C6.6 Wind Tunnel database

Page 5: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Re-organization of Chapter 6 Wind Load into Multiple Chapters in ASCE 7-2010

Page 6: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Clarifying the Basis of the Different Methods• DIRECTIONAL PROCEDURE: 

A procedure for determining wind loads on buildings and other structures for specific wind directions, in which the external pressure coefficients utilized are based on past wind tunnel testing of prototypical building models for the corresponding direction of wind. 

Formerly referred to as Method 2 – Analytical Procedure, All Heights

• ENVELOPE PROCEDURE: A procedure for determining wind load cases on buildings, in which pseudo external pressure coefficients are derived from past wind tunnel testing of prototypical building models sucessivelyrotated through 360 degrees, such that the pseudo pressure cases produce key structural actions (uplift, horizontal shear, bending moments, etc.) that envelope their maximum values among all possible wind directions.

Formerly referred to as Method 1 Enclosed Simple Diaphragm Low‐Rise and Method 2 Analytical Procedure Low‐Rise, but not explained as a separate methodology

Page 7: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Method 2 Analytical All Heights Figure 6-6

Page 8: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Example of Method 2 Analytical Procedure Low‐Rise (Envelope Procedure) Figure 6‐10

Page 9: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Clarifying the Different Methods

• WIND TUNNEL PROCEDURE: 

A procedure for determining wind loads on buildings and other structures, in which pressures and/or forces and moments are determined for each wind direction considered, from a model of the building or other structure and its surroundings, in accordance with Chapter 31.

Formerly referred to as Method 3

Page 10: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 26 General Requirements26.1 Procedures

26.2 Definitions

26.3 Symbols and Notation

26.4 General

26.5 Wind Hazard Map

26.6 Wind Directionality

26.7 Exposure

26.8 Topographic Effects

26.9 Gust Effect Factor

26.10 Enclosure Classifications

26.11 Internal Pressure Coefficient

Page 11: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

General Requirements – Velocity Pressure

The ASCE/SEI Standard 7-05 utilizes the following equation for velocitypressure:

q = 0.00256 Kz Kzt Kd V2 Iwhere:

Kz is the velocity pressure exposure coefficient that is defined accordingto system or component design cases and terrain category,Kzt is the topographic speed-up factor,Kd is the wind directionality factor which accounts for the fact that theprobability that the maximum wind may not impact the structuralcomponent or system in its weakest orientation,V is the peak gust windspeed associated with a 700-year return period,divided by √1.6, andI is the Importance Factor of the building or structure, based on itsoccupancy type.

(ASCE 7-10 will revise how V is defined and will eliminate I)

Page 12: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 27 WIND LOADS (MWFRS) – DIRECTIONAL PROCEDURE FOR ENCLOSED, 4 PARTIALLY ENCLOSED,

AND OPEN BUILDINGS OF ALL HEIGHTS27.1 Scope

PART I Enclosed and Partially Enclosed Buildings of All Heights27.2 General Requirements

27.3 Velocity Pressure

27.4 Wind Loads

PART II Enclosed Simple Diaphragm Buildings with h ≤ 160 Feet27.5 General Requirements

27.6 Wind Loads

PART II has been added to ASCE 7‐10 to cover the common practical cases of enclosed simple diaphragm buildings up to height h = 160 ft. Design wind pressures are tabulated directly using the Directional Approach of PART I 

Page 13: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010
Page 14: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Frequency calculation to determine whether a building is flexible, (listed per the present Chapter 6 organization) 6.5.8 Gust Effect Factor.

6.5.8.1 Frequency Determination. To determine whether a building or structure is rigid or flexible as defined in Section 6.2, the fundamental frequency of the structure, n1, in the direction under consideration shall be established for buildings greater than 60 feet in height, using the structural properties and deformational characteristics of the resisting elements in a properly substantiated analysis.  As an alternative to performing an analysis to determine the frequency of the structure, n1, it is permitted to use the approximate building frequency, n a, for steel, concrete, or masonry buildings less than or equal to 300 feet in height, directly calculated in accordance with Section 6.5.8.2.  Buildings up to 60 feet in height are permitted to be considered rigid.

Note, per 6.2 Definitions, RIGID BUILDINGS AND OTHER STRUCTURES: The defining criteria for rigid, in comparison to flexible, is that the natural frequency is greater than or equal to 1 Hz

Page 15: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Approximate Fundamental Frequency (lower-bound)

6.5.8.2 Approximate Fundamental Frequency. The approximate lower‐bound fundamental frequency (n a), in Hertz, is permitted to be determined from one of the following equations:

• For steel moment‐resisting‐frame buildings:• na = 22.2/ H0.8 (6‐4)• For concrete moment‐resisting frame buildings: • na = 43.5/ H0.9 (6‐5)• For steel and concrete buildings with other lateral‐force‐resisting systems:• na = 75/ H (6‐6)• For concrete or masonry shear wall buildings, it is also permitted to use:

• n1 = 385(Cw)0.5/H

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛= ∑

=2

2

183.01

100

i

i

in

i iBw

Dh

AhH

Ac

AB = base area of the structure (ft2)Ai = area of shear wall “i “(ft2)Di = length of shear wall “i”(ft)hi = height of shear wall “i” (ft)

n1 = building natural frequency (hertz)H = building height (ft)n = # of shear walls in building effective in resisting lateral forces in direction under consideration

Page 16: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

What is an Enclosed Simple Diaphragm Building?

BUILDING, SIMPLE DIAPHRAGM: A building in which both windward and leeward wind loads are transmitted by vertically spanning wall elements only through the floor and roof diaphragms to the same vertical elements of the MWFRS.

New PART II Enclosed Simple Diaphragm Buildings with h ≤ 160 Feet provides tables of design pressure based on calculations that assume lower bound frequencies (75/H) and account for non‐rigid buildings up to 160 ft. tall.

This new simplified method also assumes that the building is enclosed, so that the internal pressurization effect GCpi  is reduced.  Accordingly, this would require impact protective systems on glazing in windborne debris regions like Hawaii

Page 17: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010
Page 18: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 28 WIND LOADS (MWFRS) - ENVELOPE PROCEDURE FOR ENCLOSED AND PARTIALLY

ENCLOSED LOW-RISE BUILDINGS

28.1 Scope

PART I Enclosed and Partially Enclosed Low‐Rise Buildings28.2 Scope

28.3 Velocity Pressure

28.4 Wind Loads – Main Wind Force Resisting System

PART II Enclosed Simple Diaphragm Low‐Rise Buildings28.5 General Requirements

28.6 Wind Loads – Main Wind Force Resisting System

Page 19: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 29 WIND LOADS (MWFRS) – BUILDING APPURTENANCES AND OTHER STRUCTURES

29.1 Scope

29.2 General Requirements

29.3 Velocity Pressure

29.4 Design Wind Loads – Solid Freestanding Walls and Solid Freestanding Signs

29.5 Design Wind Loads – Other Structures

29.6 Rooftop Structures and Equipment for Buildings with h ≤ 60 ft.

29.7 Parapets

This is a Directional Procedure

Page 20: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 30 WIND LOADS COMPONENTS AND CLADDING

1) Part 1 applies to enclosed and partially enclosed low rise buildings, buildings with h ≤ 60 ft, and buildings with 60 ft < h 90 ft having flat roofs, gable roofs, multi‐span gable roofs, hip roofs, monoslope roofs, stepped roofs and saw tooth roofs. Wind pressures are calculated from a wind pressure equation. (This is an envelope procedure)

2) Part 2 applies to enclosed low‐ rise buildings and buildings with h ≤ 60 ft having flat roofs, gable roofs and hip roofs. Wind pressures are determined directly from a table. (This is an envelope procedure)

3)  Part 3 applies to enclosed and partially enclosed buildings with a mean roof height h > 60 feet having flat roofs, pitched roofs, gable roofs, hip roofs, mansard roofs, arched roofs and dome roofs. Wind pressures are calculated from a wind pressure equation. (This is a directional procedure)

4)  Part 4 applies to enclosed buildings having a mean roof height h ≤ 160 feet having flat roofs, gable roofs, hip roofs, monoslope roofs and mansard roofs. Wind pressures are determined directly from a table. (This is a new directional procedure)

Page 21: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 30 WIND LOADS COMPONENTS AND CLADDING

5)  Part 5 applies to open buildings of all heights having pitched free roofs, monoslope free roofs and trough free roofs. (This is a directional procedure)

6)  Part 6 applies to building appurtenances such as roof overhangs and parapets. (This is a directional procedure)

Page 22: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 30 WIND LOADS COMPONENTS AND CLADDING

30.1 Scope

30.2 General Requirements

30.3 Velocity Pressure

PART I Enclosed and Partially Enclosed Low‐Rise Buildings30.4 Design Wind Pressures for Enclosed and Partially Enclosed Low‐Rise 

Buildings with h ≤ 60 ft.

30.5 Design Wind Pressures for Enclosed and Partially Enclosed Low‐Rise Buildings with 60 ft. < h < 90 ft.

PART II Enclosed Low‐Rise Buildings30.6 Conditions

30.7 Design Wind Pressures for Enclosed Low‐Rise Buildings h ≤ 60 ft.

Page 23: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 30 WIND LOADS COMPONENTS AND CLADDING

PART III Enclosed and Partially Enclosed Buildings with h > 60 ft.30.8 Design Wind Pressures for Enclosed and Partially Enclosed Buildings with 

h > 60 ft.

PART IV Enclosed Simple Diaphragm Buildings with h ≤ 160 ft.30.9 General Requirements

30.10 Wind Loads – Components and Cladding

This section has been added to ASCE 7‐10 to cover the common practical case of enclosed buildings up to height h = 160 ft. Table 30.9‐1 includes wall and roof pressures for flat roofs (θ < 10 deg), gable roofs, hip roofs, monoslope roofs and mansard roofs. Pressures are derived from Fig.30.8‐1 (flat roofs), Fig. 30.4‐1B, C and D (gable and hip roofs) and Fig. 30.4‐2 (monoslope roofs) of Part 3. The GCp values from these figures were combined with an internal pressure coefficient (+ or – 0.18) to obtain a net coefficient from which pressures were calculated. 

Page 24: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 30 WIND LOADS COMPONENTS AND CLADDING

PART V Open Buildings of All Heights with Monoslope, Pitched or Trough Free Roofs30.11 Design Wind Pressures for Open Buildings of All Heights with 

Monoslope, Pitched or Trough Fee Roofs

PART VI Building Appurtenances (Roof Overhangs and Parapets)30.12 Roof Parapets

30.13 Roof Overhangs

Page 25: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Chapter 31 Wind Tunnel Procedure

• 31.1 Scope

• 31.2 Test Conditions

• 31.3 Dynamic Response

• 31.4 Limitations on Wind Speeds

• 31.5 Wind‐Borne Debris

Page 26: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

C6.5.2 Limitations of Analytical ProcedureThe provisions given under 6.5.2 apply to the majority of site locations and buildings and structures, but for some projectsthese provisions may be inadequate.  Examples of site locations and buildings and structures (or portions thereof) that mayrequire special studies, either using applicable recognized literature pertaining to wind effects, or using the wind tunnel procedure of 6.6 include: 

1. Site locations which have channeling effects or wakes from upwind obstructions.  

2. Buildings with unusual or irregular geometric shape, including barrel vaults, and other buildings whose shape (in plan or vertical cross‐section) differs significantly from the shapes in Figures 6‐3 through 6‐8.  

Page 27: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

C6.5.2 Limitations of Analytical Procedure2. Buildings with response characteristics that result in substantial vortex‐

induced and/or torsional dynamic effects, or dynamic effects resulting from aeroelastic instabilities such as flutter or galloping. Such dynamic effects are difficult to anticipate, being dependent on many factors, but are likely to be important when any of the following apply.  i. The height of the building is over 400 ft.

ii. The height of the building is greater than 4 times its minimum effective width as defined below.

iii. The lowest natural frequency of the building is less than 0.25 Hz.

iv.

v.   The minimum effective width minB is defined as the minimum value of 

∑ ∑ iii hBh / considering all possible wind directions.  The summations are over the 

height of the building for each wind direction, hi  is the height above grade of level i , and  iB is the width at level i normal to the wind direction. 

The reduced velocity  5min1

>BnVz

 where  hz 6.0= and  zV  is the mean hourly velocity 

at height  z .   

Page 28: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

C6.5.2 Limitations of Analytical Procedure

4.  Slender bridges, cranes, electrical transmission lines, guyed masts, telecommunication towers and flagpoles.

When undertaking detailed studies of the dynamic response to wind forces, the fundamental frequencies of the structure in each direction of consideration should be established using the structural properties and deformational characteristics of the resisting elements in a properly substantiated analysis, and not utilizing approximate equations based on height. 

Page 29: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

ASCE 7 2010 Determination of Design Wind Speeds

• Incorporates a new probabilistic analysis with an improved windfield model for the continental U.S. and a separate analysis for Hawaii (ARA, 2001) 

• Load calculation at strength design pointLRFD design

Wind maps at 300‐1700 year recurrence

Load Factor = 1.0 (versus 1.6 today)

Other Wind maps provided at 50, 10 etc. years for serviceability and drift

Allowable Stress available by using 0.8 factor

• Design wind speed return period is based on occupancy, and the Importance Factor is thus eliminated

Page 30: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Reasons (per ASCE)• New data and research indicates that the current hurricane wind speeds given in ASCE 

7 were conservative in the continental USA and needed to be adjusted downward. 

• A strength design wind speed map is more aligned with seismic design in that they both use a load factor of 1.0 for strength design.

• Multiple maps eliminate the problem of having importance factors that vary with occupancy category and hurricane prone and non‐hurricane prone regions. 

• The use of multiple maps eliminates the confusion of engineers not understanding that the present map is not a 50‐year return period map.

• Engineers have not understood that their design, after multiplication by the 1.6 load factor, was a roughly 700 year event with wind speeds √1.6 times that shown on the map.

• Building owners have not understood that their buildings would not fail for wind speeds somewhat above the present map value. The revised maps give the owner a better idea of the wind speeds for which no damage or minimal damage is expected in an engineered structure.

Page 31: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Basic Wind Speed, V Occupancy Category Description Return Period Map Value for HawaiiI (ASCE 7 -10) Agricultural, Temporary, and

Minor Storage300 113

II (ASCE 7 -10) “Normal Occupancies” 700 129III and IV (ASCE 7 -10) High Hazard Occupancies

(such as assembly, school buildings with > 250 occupants, Power, Telecom, Hazmat, Explosives,) Essential Facilities

1700 143

I (ASCE 7- 05) 105 * √1.6 * √0.77 gives the LRFD equivalent of

117

II (ASCE 7-05) 105 * √1.6 gives the LRFD equivalent of 133III and IV (ASCE 7-05) 105 * √1.6 * √1.15 gives the LRFD equivalent

of142

Page 32: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Table C6-ZZc √1.6 * Basic Wind Speed

Virgin IslandsPuerto Rico

Haw aiiPort Aransas, Texas

Galveston, TexasCameron, Louisiana

Slidell, LouisianaBiloxi, Mississippi

Gulf Shores, AlabamaPanama City, FloridaClearw ater, Florida

Key West, FloridaMiami Beach, Florida

Melbourne, FloridaJacksonville Beach, Florida

Sea Island, GeorgiaFolley Beach, South Carolina

Wrightsville Beach, North CarolinaVirginia Beach, Virginia

Ocean City, MarylandBow ers Beach, Delaw areAtlantic City, New Jersey

Brooklyn, New YorkSouthampton, New YorkNew Haven, Connecticut

New port, Rhode IslandHyannis, MassachusettsBoston, Massachusetts

Hampton Beach, New HampshireBar Harbor, Maine

Wind Speed, mph (m/s)

Category 1 Category 4Category 3Category 2 Category 5

Saffir/Simpson Hurricane Category

82(36.7)

191(85.4)

156(69.7)

130(58.1)

108(48.3)

Page 33: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010
Page 34: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Hurricane Prone Regions

HURRICANE PRONE REGIONS: Areas vulnerable to hurricanes; in the United States and its territories defined as

1. The U.S. Atlantic Ocean and Gulf of Mexico coasts where the basic wind speed for Category II buildings is greater than 90 114 mi/h, and

2. Hawaii, Puerto Rico, Guam, Virgin Islands, and American Samoa.

• Reasoning:  Adjust the wind speed criteria by √1.6 to the LRFD level with a LF of 1.0

Page 35: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Relation between Saffir - Simpson Hurricane Scale Winds to Peak Gust Speeds Over Open Terrain

Saffir-Simpson category

sustained (1-minute) wind

speed over open water

(mph)

3-second Peak Gust over open terrain (mph)

ASCE 7-05 [Vickery, 2000]

Updated 3-second Peak Gust over open terrain

(mph)ASCE 7-10 [Simiu,

Vickery, Kareem, 2007]

12345

74-9495-110

111-130131-155

>155

82-108109-130131-156157-191

>191

81-105106-121122-143144-171

>171

Page 36: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure D will be back in Hurricane Prone Regions

• Research since 2004 has showed that the drag coefficient over the ocean in high winds in hurricanes did not continue to increase with increasing wind speed as previously believed. The studies showed that the sea surface drag coefficient, and hence the aerodynamic roughness of the ocean, reached a maximum at mean wind speeds of about 30 m/sec (~70 mph peak gust). There is some evidence that the drag coefficient actually decreases (i.e. the sea surface becomes aerodynamically smoother) as the wind speed increase further, or as the hurricane radius decreases. The consequences of these studies are that the surface roughness over the ocean in a hurricane is consistent with that of exposure D rather than exposure C.  Consequently, the use of exposure D along the hurricane coastline is now required.

Page 37: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Windborne Debris

• WIND‐BORNE DEBRIS REGIONS: Areas within hurricane prone regions located:

1.  Within 1 mile of the coastal mean high water line where the basic wind speed, for the building category under consideration, is equal to or greater than 130110 mi/h and in Hawaii

or

2.  In areas where the basic wind speed, for the building category under consideration, is equal to or greater than 140120 mi/h.

Reasoning:  adjust the windspeed to the LRFD design level with a LF of 1.0 instead of 1.6, and reference the new strength‐level wind maps of return periods that are occupancy category dependent

Page 38: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Differences between Content in the Standard and Local Codes, per ASCE and NCSEA

“Material that is left in the building codeconforms to one of the following criteria:

Relates to local climatic, terrain, or other environmentalconditions, which many building officials will wish to specify whenadopting the model code by local ordinance. This includesspecification of basic wind speeds, terrain, exposure and similarprovisions.

Relates to enforcement of types of construction which is oftenset by condition so local practice, materials availability andconstruction industry capabilities

Is not presently covered in an adequate manner by a nationalconsensus standard. This includes to material covering roofingmaterials, hurricane protection of openings, etc.” February, 2005

Jim Rossberg, Structural Engineering Institute of ASCE, representing NCSEA Code Advisory Committee and ASCE/SEI

Page 39: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Hawaii Special Wind Region in ASCE 7-10

C6.5.4.1 Special Wind Regions. Although the wind speed map of Fig. 6‐1 is valid for most regions of the country, there are special regions in which wind speed anomalies are known to exist. Some of these special regions are noted in Fig. 6‐1. Winds blowing over mountain ranges or through gorges or river valleys in these special regions can develop speeds that are substantially higher than the values indicated on the map. When selecting basic wind speeds in these special regions, use of regional climatic data and consultation with a wind engineer or meteorologist is advised.

Page 40: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Hawaii Special Wind Region in ASCE 7-10C6.5.4.1

It is also possible that anomalies in wind speeds exist on a micrometeorological scale. For example, wind speed‐up over hills and escarpments is addressed in Section 6.5.7. Wind speeds over complex terrain may be better determined by wind‐tunnel studies as described in Section 6.6. Adjustments of wind speeds should be made at the micrometeorological scale on the basis of wind engineering or meteorological advice and used in accordance with the provisions of Section 6.5.4.2 when such adjustments are warranted.  Due to the complexity of mountainous terrain and valley gorges in Hawaii, there are topographic wind speed‐up effects that cannot be addressed solely by Figure 6‐4.  In the Hawaii Special Wind Region, there are special Kzttopographic effect adjustments to the Basic Wind Speed established by the authorities having jurisdiction. 

Page 41: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Hawaii Design Maps• Exposure based on Land‐cover data developed by the NOAA Coastal 

Services Center from Landsat Enhanced Thematic Mapper satellite imagery beginning in the year 2000 to provide land cover data for the coastal regions of the National Land Cover Database (NLCD). – (Subject to update for the Exposure D revision in ASCE 7‐10 which becomes effective 

locally by adoption of the 2012 IBC)

• Topographic Factor giving the maximum topographic effect

• Tables of Directionality Factor that take into account site directional probabilities of the occurrence of the maximum effect

• Effective Wind Speed for Cladding and Components based on 105 mph basic wind speed – (subject to revision before LRFD wind speed maps of ASCE 7‐10 becomes effective 

locally by adoption of the 2012 IBC)

• Therefore, the maps are good for the 2003 – 2009 IBC period of adoptions

Page 42: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure Category - Oahu

Page 43: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure Category - Hawaii

Page 44: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure Category - Maui

Page 45: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure Category - Molokai and Lanai

Page 46: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Exposure Category - Kauai

Page 47: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Oahu

Page 48: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Hawaii

Page 49: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Maui

Page 50: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Molokai

Page 51: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Lanai

Page 52: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Maximum Topographic Factor - Kauai

Page 53: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed Maps

Algebraically-normalized maps of “Veffective”, i.e., V multiplied by √( Kzt x Kd / 0.85 ) allow implicit consideration of topographic effects for Cladding and Component design.

The Veffective values can be used for performance-specified building components and cladding, as well as when using prescriptive design tables and existing reference standards and simplified methods based on wind speed tables.

Page 54: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 55: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 56: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 57: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 58: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 59: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

Effective Wind Speed based on 105 mph Basis for C&C

Page 60: The Wind Load Provisions of ASCE 7: From 2005 to 2010martinchock.com/_library/documents/papers/changestoasce7-052010.pdf · The Wind Load Provisions of ASCE 7: From 2005 to 2010

ASCE 7 Wind Provisions Update Status

• Currently completing remaining final ballot items before these are forwarded to the ASCE 7 Main Committee in August

• Updates have moved to a 5 year revision cycle

• ASCE 7‐10 will be referenced in the 2012 IBC, then presumably adopted by 2014 in the State of Hawaii, and then by the counties by 2016.