7
1 The actin cortex: a bridge between cell shape and function Kevin J. Chalut 1 , Ewa K. Paluch 2,3 1 Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom; 2 MRC-LMCB, University College London, London, United Kingdom; 3 Institute for the Physics of Living Systems, University College London, London, United Kingdom. Correspondence: [email protected] [email protected] Precise control of cell morphogenesis is a key to healthy cell physiology, and cell shape deregulation is at the heart of many pathological disorders. Changes in cell shape strongly correlate with, if not cause, processes such as cell migration, tissue homeostasis, epithelial- amoeboid-mesenchymal transitions and cellular differentiation (Figure 1). In fact, early embryologists defined many cell fate changes based on cell morphology, and used cell shape as a primary identifier of different nascent tissues. Here, we discuss the control of cell shape and mechanics, and the emerging relationship between shape, biochemical signaling and cellular function, highlighting remaining gaps in our understanding and potential directions of future investigations. Cell shape is defined by cellular mechanical properties and by the cell’s physical interactions with its environment. Most cell deformations are driven by changes in the physical properties of the cell surface, which are dominated by the mechanics of the cellular cortex. The cortex is a thin network of actin that lies under and is tethered to the plasma membrane in most animal cells. Cortical actin filaments are organized in a meshwork cross- linked by specific proteins and by myosin motors, which generate contractile stresses in the network (Clark et al., 2014). These stresses give rise to cortical tension, which determines global cell surface mechanics. Gradients in cortical tension result in cortical flows and cellular contractions, such as those driving cleavage furrow ingression, cell body retraction during cell migration and epithelial contractions underlying tissue constriction events (Levayer and Lecuit, 2012). Over the past decade, an increasing number of biological and biophysical investigations have focused on the actin cortex. Cortex composition has been characterized by mass

The actin cortex: a bridge between cell shape and function

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The actin cortex: a bridge between cell shape and function

1

Theactincortex:abridgebetweencellshapeandfunctionKevinJ.Chalut1,EwaK.Paluch2,31WellcomeTrust/MedicalResearchCouncilStemCellInstitute,UniversityofCambridge,UnitedKingdom;2MRC-LMCB,UniversityCollegeLondon,London,UnitedKingdom;3InstituteforthePhysicsofLivingSystems,UniversityCollegeLondon,London,UnitedKingdom.Correspondence:[email protected]@ucl.ac.ukPrecisecontrolofcellmorphogenesisisakeytohealthycellphysiology,andcellshape

deregulationisattheheartofmanypathologicaldisorders.Changesincellshapestrongly

correlatewith,ifnotcause,processessuchascellmigration,tissuehomeostasis,epithelial-

amoeboid-mesenchymaltransitionsandcellulardifferentiation(Figure1).Infact,early

embryologistsdefinedmanycellfatechangesbasedoncellmorphology,andusedcell

shapeasaprimaryidentifierofdifferentnascenttissues.Here,wediscussthecontrolofcell

shapeandmechanics,andtheemergingrelationshipbetweenshape,biochemicalsignaling

andcellularfunction,highlightingremaininggapsinourunderstandingandpotential

directionsoffutureinvestigations.

Cellshapeisdefinedbycellularmechanicalpropertiesandbythecell’sphysicalinteractions

withitsenvironment.Mostcelldeformationsaredrivenbychangesinthephysical

propertiesofthecellsurface,whicharedominatedbythemechanicsofthecellularcortex.

Thecortexisathinnetworkofactinthatliesunderandistetheredtotheplasma

membraneinmostanimalcells.Corticalactinfilamentsareorganizedinameshworkcross-

linkedbyspecificproteinsandbymyosinmotors,whichgeneratecontractilestressesinthe

network(Clarketal.,2014).Thesestressesgiverisetocorticaltension,whichdetermines

globalcellsurfacemechanics.Gradientsincorticaltensionresultincorticalflowsand

cellularcontractions,suchasthosedrivingcleavagefurrowingression,cellbodyretraction

duringcellmigrationandepithelialcontractionsunderlyingtissueconstrictionevents

(LevayerandLecuit,2012).

Overthepastdecade,anincreasingnumberofbiologicalandbiophysicalinvestigations

havefocusedontheactincortex.Cortexcompositionhasbeencharacterizedbymass

Page 2: The actin cortex: a bridge between cell shape and function

2

spectrometryusingisolatedcellularblebstocollectsufficientamountsofcorticalmaterial

(Bovellanetal.,2014).Corticalactinnucleatorsandvariousregulatorsofcortical

contractilityhavebeenidentified(Bovellanetal.,2014;Luoetal.,2013),andtoolsare

availabletomeasurephysicalcharacteristics,suchascorticaltensionandthickness

(reviewedin(Clarketal.,2014)).Themechanicsofcorticalcontractionsandflowsinmany

morphogeneticeventshavebeendissected,includingC.eleganszygotepolarization(Mayer

etal.,2010),mouseembryocompaction(Maitreetal.,2015)andepithelialconstrictionsin

theDrosophilaembryo(LevayerandLecuit,2012).However,mostpaststudieshave

focusedonthecortexinitself.Incontrast,muchlessisknownabouthowthecortexis

dynamicallyregulatedbyspecificsignalingpathways,howitinturntriggersbiochemical

signalingevents,andhowcorticalprocessesareintegratedwithinthecelltodrive

morphogenesis.

Manymorphogeneticprocessesappeartobedrivenbytransitionsbetweenacorticalanda

stressfiberdominatedorganizationofintracellularactinnetworks.Stressfibersarequasi

one-dimensionalbundlesofactinfilamentsusuallyconnectingtwoadhesionpoints,

whereasinthecortex,actinformsaroughlyisotropicmeshworkundertheplasma

membrane(Figure2).Whilethemolecularregulationofboththecortexandstressfibers

arereasonablywellunderstood,howtransitionsbetweenthesetwotypesofnetworksare

controlledremainselusive.Forexample,duringdevelopmentaltransitionssuchasexitfrom

naïvepluripotencyorduringepithelialtomesenchymaltransitions(EMT),actinreorganizes

fromamostlycorticalarrangementintostressfibersandlamellipodia(Figure1).Howthis

reorganization,whichdrivescellspreading,isregulatedbythesignalingpathwaysdriving

cellstatechangessuchascelldifferentiationisnotunderstood.

Transitionsinactinnetworkorganizationarealsoassociatedwithchangesinthewaythe

cellinteractswiththeenvironment.Stressfibersareusuallyconnectedtoandpromotethe

formationofintegrin-basedfocaladhesions(LivneandGeiger,2016),whereascorticalactin

isoftenassociatedwithcadherin-basedcell-celladhesions(Engletal.,2014).Interestingly,

cell-cellcontactformationisconcomitantwithcorticalclearinginthecontactzone(Maitre

etal.,2012)whileactindynamicsandtensioninturninfluencecadherinrecruitment(Engl

etal.,2014).Thus,thecell’sinteractionswithneighborsandmatrixarecontrolledviaa

Page 3: The actin cortex: a bridge between cell shape and function

3

subtlecross-talkbetweenactinorganization,contractility,dynamicsandcontactswith

integrinsand/orcadherins.Onefuturechallengewillbetofullyunderstandthiscross-talk,

andhowitismodulatedduringcellularshapechangesassociatedwithdevelopmentalfate

transitions.Extendingthealreadybroadlibrariesofactinbindingproteinsandidentifying

connectionstoadhesionsmayprovideonepathtowardsthisgoal.Theseextensionscanin

turninstructgain-andloss-of-functionstudiestoshedlightonthechangestocellshapeand

fatethataccompanydevelopmentalprocesses.

Anotherkeyyetpoorlyunderstoodaspectoftheactincytoskeletonfunctionin

developmentisitsroleincellularsignaling.Indeed,actinnetworksnotonlycontrolcell

shape,theyalsoareacenterofbothmechanicalandbiochemicalsignaling.Forexample,

focaladhesionmaturationisdrivenbytensioninstressfibers,whichupregulatesfocal

adhesionkinaseandSrcfamilykinasebasedsignaling.Thesekinasesareupstream

mediatorsofmitogenactivatedproteinkinase(MAPK)signaling,whichisessentialfora

multitudeofcellularprocessesincludingdifferentiation.Moreover,thereisfeedbackfrom

MAPKsignalingtotheactincytoskeleton:actinorganizationandcontractilityisregulatedby

interactionsbetweenErkandRhoGTPases(Vialetal.,2003).Thoughlessstudied,similar

interactionsarepossiblebetweencadherin-basedadhesionsandWntsignaling,both

canonicalandnon-canonical(HeubergerandBirchmeier,2010).Itislikelythatthe

connectionbetweenactinnetworksandcellularadhesionsdrivesmanyotherbiochemical

signalingfeedbackloops,raisingthetantalizingpossibilitythatactinorganizationandcell

shapearemorethanpassivedownstreamplayersincellulartransformationssuchas

differentiation.

Thepossibilitythatactinactivelyregulatescellfunctionisbuttressedbythefactthatthere

areatleasttwootherconnectionsbetweenactinorganizationandsignaling.First,actin

dynamicsitselfcaninfluencegeneexpression.Changesinactinorganizationarelikelyto

modifytheintracellularfilamentous(F)tomonomeric(G)actinratiobothinthecytoplasm

and,becauseactinisactivelyshuttledintoandoutofthenucleus,inthenucleus.Increasing

levelsofG-actininthenucleusaffectstranscription,bothduetointeractionswithallthree

typesofRNApolymeraseandalsobecauseitisinvolvedinthenuclearexportofmyocardin-

relatedtranscriptionfactors(MRTFs).Forexample,iflessG-actinisavailableinthenucleus

Page 4: The actin cortex: a bridge between cell shape and function

4

(perhapsbecauseofincreasedlevelsofpolymerizedactininthecell)thenMRTFfamily

membersinturnactivatetheserumresponsefactor(SRF)pathway.SRFactivates

immediateearlygenessuchasc-fos(PosernandTreisman,2006),whichplaymajorrolesin

cellulartransformationssuchasdifferentiationandoncogenesis.Second,thecortexis

physicallyconnectedtothenucleusviacytoplasmicstructuralcomponents,andstressesat

thecellsurfacecantranslatetostrainonthenucleus(Pagliaraetal.,2014).Increasedstress

intheactincytoskeletoncanactthroughtheLINCcomplexonthenuclearmembraneand

thenuclearlaminstofurthertunebiochemicalsignaling.Forexample,increased

cytoskeletalstresscanstabilizelaminA/CwhichactivatesSRFandtheretinoicacid

pathways,andfurthermoreactsasamediatorofMAPKsignaling(Swiftetal.,2013)and

activationofimmediateearlygenes.Thereisalsonewevidencethatstressthroughthe

actincytoskeletoncanactdirectlythroughemerins(alsonuclearmembraneproteins)to

facilitatepolycomb-mediatedgenesilencingatthenuclearenvelope(Leetal.,2016).

Itistemptingtogiveintodespairwhenconsideringthemyriadofwaysinwhichtheactin

cytoskeletonaffectssignalingandviceversa.However,itappearsthatthenexusofactin-

regulatedsignalingandshapemaybeactinnetworkorganization.Thus,tofullyunderstand

therelationshipbetweencellshapeandcellfunction,wemustfirstunderstandthe

transitionsbetweendifferenttypesofactinnetworks.Then,cytoskeletalinvestigations

mustbefullyintegratedwithstudiesofsignalingpathwaysthatdrivecellstatechanges.

Truecomprehensionoftheinterplaybetweenactinnetworktransitionsandcellstate

transitionswillrequireaninterdisciplinarypushinvolvingbiophysicists,molecularandcell

biologistsstudyingthecytoskeleton,developmentalbiologistsandstemcellbiologists.

Acknowledgements:

KJCacknowledgessupportfromtheRoyalSociety,MedicalResearchCouncilUKand

WellcomeTrust(forcorefundingtotheCambridgeStemCellInstitute).EKPacknowledges

supportfromtheMedicalResearchCouncilUK(corefundingtotheLMCB).WethankCéline

LabouesseandMurielleSerresforprovidingtheimagesforthefigures.

Page 5: The actin cortex: a bridge between cell shape and function

5

Figure1:Embryonicstemcellsinanaïvephaseofpluripotency(A)andafterexitfromnaïve

pluripotency(B).Duringthistime,actin(incyan)transitionsfromcorticalactintostress

fibersasthecellsspread.Nucleiarelabeledinred.

Page 6: The actin cortex: a bridge between cell shape and function

6

Figure2:Differenttypesofactinnetworksininterphase(A)andmitotic(B)HeLacells

stainedwithDAPItodetectDNA(red)andphalloidintomarkF-actin(cyan).Interphasecells

arespreadandactinisprimarilyorganizedinstressfibers.Mitoticcellsareroundedand

actinispredominantlycortical.

A B

Page 7: The actin cortex: a bridge between cell shape and function

7

References:Bovellan,M.,Romeo,Y.,Biro,M.,Boden,A.,Chugh,P.,Yonis,A.,Vaghela,M.,Fritzsche,M.,Moulding,D.,Thorogate,R.,etal.(2014).Cellularcontrolofcorticalactinnucleation.CurrBiol24,1628-1635.Clark,A.G.,Wartlick,O.,Salbreux,G.,andPaluch,E.K.(2014).Stressesatthecellsurfaceduringanimalcellmorphogenesis.Currentbiology:CB24,R484-494.Engl,W.,Arasi,B.,Yap,L.L.,Thiery,J.P.,andViasnoff,V.(2014).ActindynamicsmodulatemechanosensitiveimmobilizationofE-cadherinatadherensjunctions.NatCellBiol16,587-594.Heuberger,J.,andBirchmeier,W.(2010).Interplayofcadherin-mediatedcelladhesionandcanonicalWntsignaling.ColdSpringHarbPerspectBiol2,a002915.Le,H.Q.,Ghatak,S.,Yeung,C.Y.,Tellkamp,F.,Gunschmann,C.,Dieterich,C.,Yeroslaviz,A.,Habermann,B.,Pombo,A.,Niessen,C.M.,etal.(2016).MechanicalregulationoftranscriptioncontrolsPolycomb-mediatedgenesilencingduringlineagecommitment.NatCellBiol18,864-875.Levayer,R.,andLecuit,T.(2012).Biomechanicalregulationofcontractility:spatialcontrolanddynamics.TrendsCellBiol22,61-81.Livne,A.,andGeiger,B.(2016).Theinnerworkingsofstressfibers-fromcontractilemachinerytofocaladhesionsandback.JCellSci129,1293-1304.Luo,T.,Mohan,K.,Iglesias,P.A.,andRobinson,D.N.(2013).Molecularmechanismsofcellularmechanosensing.NatMater12,1064-1071.Maitre,J.L.,Berthoumieux,H.,Krens,S.F.,Salbreux,G.,Julicher,F.,Paluch,E.,andHeisenberg,C.P.(2012).Adhesionfunctionsincellsortingbymechanicallycouplingthecorticesofadheringcells.Science338,253-256.Maitre,J.L.,Niwayama,R.,Turlier,H.,Nedelec,F.,andHiiragi,T.(2015).Pulsatilecell-autonomouscontractilitydrivescompactioninthemouseembryo.NatCellBiol17,849-855.Mayer,M.,Depken,M.,Bois,J.S.,Julicher,F.,andGrill,S.W.(2010).Anisotropiesincorticaltensionrevealthephysicalbasisofpolarizingcorticalflows.Nature467,617-621.Pagliara,S.,Franze,K.,McClain,C.R.,Wylde,G.W.,Fisher,C.L.,Franklin,R.J.,Kabla,A.J.,Keyser,U.F.,andChalut,K.J.(2014).Auxeticnucleiinembryonicstemcellsexitingpluripotency.Naturematerials13,638-644.Posern,G.,andTreisman,R.(2006).Actin'together:serumresponsefactor,itscofactorsandthelinktosignaltransduction.TrendsCellBiol16,588-596.Swift,J.,Ivanovska,I.L.,Buxboim,A.,Harada,T.,Dingal,P.C.,Pinter,J.,Pajerowski,J.D.,Spinler,K.R.,Shin,J.W.,Tewari,M.,etal.(2013).Nuclearlamin-Ascaleswithtissuestiffnessandenhancesmatrix-directeddifferentiation.Science341,1240104.Vial,E.,Sahai,E.,andMarshall,C.J.(2003).ERK-MAPKsignalingcoordinatelyregulatesactivityofRac1andRhoAfortumorcellmotility.CancerCell4,67-79.