29
Terahertz Compact SPICE M. Shur 1 , A. Gu9n 1 , and T. Y=erdal 2 and G. Aizin 3 1 Physics, Applied Physics, and Astronomy Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Ins<tute, Troy, New York 12180-3590 2 University of Trondheim, Norway 3 Kingsborough College Presented at MOS=AK Workshop Washington DC January 9, 2015 1

Terahertz Compact SPICE - MOS-AK

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

TerahertzCompactSPICE

M.Shur1,A.Gu9n1,andT.Y=erdal2andG.Aizin3

1Physics,AppliedPhysics,andAstronomy

Electrical,Computer,andSystemsEngineeringRensselaerPolytechnicIns<tute,Troy,NewYork12180-3590

2UniversityofTrondheim,Norway3KingsboroughCollege

PresentedatMOS=AKWorkshopWashingtonDCJanuary9,2015

1

Outline

•  Mo9va9on:Penetra9ngTHzrange•  Background:ballis9ctransportandelectroniner9a

•  TerahertzSPICE– Applica9ontoSiPlasmonicFETs– Applica9ontoInGaAsplasmonicFETs

•  Temperaturedependenceoftheresponse•  Conclusionsandfuturework

2

1012 orders improvement since 1900 (from http://bizintelrocks.blogspot.com/)

THz

THzGap

Radar 1936

1 -10-2m Incandescent

1879 LED 1961

4-7.6 10-7m

VSSL 2004

Cell phone 1973

Radio 1886-1895 108-103 m

TV 1923

UV radiation 1901

1-4x10-7 m

UV fluorimeter

SET, Inc. UVtoptm

X-ray 1895

10-14-10-7 m

Wavelength (m)

THz Gap

APPLICATIONSofTHzTECHNOLOGYFaults in Space Shuttle Tiles Radio Astronomy

Vehicle radars and compact radars

Satellite communications

Testing VLSL

Wireless communications Medicine

Explosive detection

Homeland Security

NASA Implementation Plan for Space Shuttle Return to Flight and Beyond March 11, 2005, Volume 1, 9-th Edition

From: http://www.atl.lmco.com/business/ATL7.php

From http://www.scenta.co.uk/_db/_images/terahertz_radiation140.jpg

http://www.uml.edu/media/enews/print_1_108961_108961.html

Courtesy of Infrared Processing and Analysis Center, Caltech/JPL. IPAC is NASA's Infrared Astrophysics Data Center

http://www.atl.lmco.com/business/ATL7.php

http://www.ist-optimist.org/pdf/network/pres_ecoc2002/TERAVISION_ECOC2002.pdf

Y. Chen, et al, THz diffuse reflectance spectra of selected explosives and related compounds (2005)

THz Applications by frequency range

FromT.OtsujiandM.S.Shur,TerahertzPlasmonics.Goodresultsandgreatexpecta9ons,IEEEMicrowaveJournalOctober2014

3DTHzimagingsystem(Teraview)

From http://www.pharmaceutical-technology.com/contractor_images/teraview/1s-terraview.jpg

(a) Grated Gate THz Transistor

After A.V. Muravjov, D.B. Veksler, V.V. Popov, O. Polischuk, X. Hu, R. Gaska, N. Pala, H. Saxena, R.E. Peale, M.S. Shur, Temperature dependence of plasmonic terahertz absorption in grating-gate GaN HEMT structures, submitted to APL, 2009

MeanFreePathandBallis9cTransport

8

From M. Shur, "Ballistic transport and terahertz electronics," 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp.1-7, 15-17 Dec. 2010

M. S. Shur and L. F. Eastman, Ballistic Transport in Semiconductors at Low-Temperatures for Low Power High Speed Logic, IEEE Transactions Electron Devices, Vol. ED-26, No. 11, pp. 1677-1683, November (1979)

9

Oscilla9onsofElectronDensity(PlasmaWaves)

(a)  High frequency, high mobility detector (b)  Lower frequency, lower mobility detector where

Lo is the characteristic length of the decay of the plasma wave excited at source side

A. Gutin, V. Kachorovskii, A. Muraviev, and M. Shur, "Plasmonic terahertz detector response at high intensities," Journal of Applied Physics, vol. 112, pp. 014508-014508-5, 2012.

Gate

S D

L0

L

2D Gas

(a)

(b)

THz radiation excites plasma waves

Plasmonic nonlinearities cause signal rectification

Detecting THz radiation

0 100 200 300 400 5000

100

200

300

400

500

Id = 5mA, Vgs=-0.4 V

X (µm)

Y (µ

m)

Veksler, D.B. Muraviev, A.V. Elkhatib, T.A. Salama, K.N. Shur, M.S. , Plasma wave FET for sub-wavelength THz imaging, International Semiconductor Device Research Symposium December 12-14, 2007 College Park, Maryland, USA

PlasmonicDetectorsinSi,InGaAs,andGaN

ü Conversion efficiency vs frequency (Hz)

ü - Shorter gate – higher frequency

ü - Si plasma wave electronics: 0.5-5 THz - reachable at modern stage of technology.

From V. Yu. Kachorovskii, S. L. Roumyantsev, W. Knap, and M. Shur, Performance Limits for Field Effect Transistors as Terahertz Detectors, Appl. Phys. Lett. 102, 223505 (2013)

10

11

THz Detectors

Responsivity (V/W)

NEP (W/Hz1/2)

Response Time (sec)

Operating Temp (K)

Golay Cells1 105 10-10 10-2 300

Pyroelectric2 105 10-10 10-2 240-350

Schottky diodes3 103 10-10-10-11

10-9 10-420

Si FETs4 104 10-10-10-14 <10-9 10-450

InGaAs HEMT5 103 10-11 <10-9

10-450

GaN HEMT6

103

10-11

<10-9

10-800

1)  QMC Instruments, http://www.terahertz.co.uk/ 2)  Spectrum Detector, Inc. http://www.spectrumdetector.com/pdf/datasheets/THZ.pdf 3)  Virginia Diodes, Inc. http://virginiadiodes.com/WR2.2ZBD.htm 4)  E. Ojefors, U.R. Pfeiffer, A. Lisauskas, H.G. Roskos, "A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology,"

IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 1968-1976, July 2009. 5)  Shamsun Nahar, Alexey Gutin, Andrey Muraviev, Ingrid Wilke, Michael Shur, and Mona M. Hella, Terahertz Detection using on chip

Patch and Dipole Antenna-Coupled GaAs High Electron Mobility Transistors, International Microwave Symposium, Proceedings, Tampa Bay, Florida, June 2014, accepted

6)  T. Tanigawa, T. Onishi, S. Takigawa, T. Otsuji, “Enhanced responsivity in a novel AlGaN/GaN plasmon-resonant terahertz detector using gate-dipole antenna with parasitic elements,” 2010 68th Annual Device Research Conference, pp. 167-8, June 2010.

Pyroelectric Golay cell Schottky diode HEMT

TerahertzDetectors

Sources: http://spectrum.ieee.org/semiconductors/optoelectronics/a-cheap-terahertz-camera S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, et al., "Wireless communication at 310 GHz using GaAs high-electron-mobility transistors for detection," Communications and Networks, Journal of, vol. 15, pp. 559-568, 2013. S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, "CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging," Optics letters, vol. 37, pp. 536-538, 2012.

Real-time CMOS THz camera

Wireless communication

Measured eye-diagram at data rate of HD uncompressed video

THz Applications of Plasmonic Detectors

Firstdemonstra9onofterahertzandsub-terahertzresponseinsiliconCMOS(Responseuptoover4THz)

NFETs PFETs

From W. Stillman, F. Guarin, V. Yu. Kachorovskii, N. Pala, S. Rumyantsev, M.S. Shur, and D. Veksler, Nanometer Scale Complementary Silicon MOSFETs as Detectors of Terahertz and Sub-terahertz Radiation, in Abstracts of IEEE sensors Conference, Atlanta, GA, October 2007, pp. 479-480

THz Response of CMOS (Nonresonant)

13

14

Shock waves the channel of InGaAs HEMT

L = 130 nm

S. Rudin, G. Rupper, A. Gutin, and M. Shur, Response of plasmonic terahertz detector to large signals: theory and experiment SPIE Defense Conference Proceedings, INVITED, Baltimore, MD, April (2013), Proc. SPIE 8716, Terahertz Physics, Devices, and Systems VII: Advanced Applications in Industry and Defense, 87160D (May 31, 2013); doi:10.1117/12.2015330

THz SPICE

After A. Gutin, S. Nahar, M. Hella, M. Shur, "Modeling Terahertz Plasmonic Si FETs With SPICE," IEEE Transactions on Terahertz Science and Technology, vol.3, no.5, pp.545-549, Sept. 2013.

Traditional SPICE

THzSPICEModel

15

TransmissionLineModel

16From G. R. Aizin and G, C. Dyer, Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states, PHYSICAL REVIEW B 86, 235316 (2012)

R R R L L L

C C C

Gate

Source Drain

TransmissionLineRepresenta9onofTHzFET

S D Gate

2D gas

FET

TL equivalent circuit

𝑅= 𝑚↑∗ /𝑒↑2 𝑛↓0 𝜏𝑊  - Drude resistance per unit length 𝐿=𝜏𝑅 − Drude kinetic inductance per unit length 𝐶= 𝑊𝜀/𝑑  – gate capacitance per unit length

FromP.J.Burke,I.B.Spielman,J.P.Eisenstein,L.N.PfeifferandK.W.West,Highfrequencyconduc9vityofthehigh-mobilitytwo-dimensionalelectrongas,Appl.Phys.Le=.,February2000

ResonantPlasmaWaveResponseofTHzFET

Source Drain

~ 𝑈↓𝑠𝑔  𝑍↓𝑑𝑔  THz

S D Gate

|𝑍↓𝑠𝑔 |

𝜔/2𝜋 , THz

Source-gate complex impedance 𝒁↓𝒔𝒈  versus frequency 𝝎/𝟐𝝅  under open gate condition ( 𝒁↓𝒅𝒈 =∞)

Maxima of |𝑍↓𝑠𝑔 | correspond to the resonant excitation of the plasma waves at 1.02 THz, 3.05THz, 5.08THz, …

𝐿↓𝑔𝑎𝑡𝑒 =130 𝑛𝑚 𝑛↓0 =5.39×10↑11  𝑐𝑚↑−2  𝜏=1.08×10↑−11  𝑠 𝑑=4 𝑛𝑚

Measuring terahertz response

Ugs!

Ua!

δU gnd

V RL!!

Equivalent SPICE test bench

BWO

Sample

XYZ translation stage!

Parabolic Mirror

SR830

Ug

Chopper

Lock-in 2400S

LabView

After A. Gutin, S. Nahar, M. Hella, M. Shur, "Modeling Terahertz Plasmonic Si FETs With SPICE," IEEE Transactions on Terahertz Science and Technology, vol.3, no.5, pp.545-549, Sept. 2013.

ExperimentalSetupforModelValida9on

19

Analy&calmodelandsimulatedbyTHzSPICE Measuredandsimulatedresults

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.250

2

4

6

8

10

12

14

16

18

20

22

24

26

S imula ted Meas ured

Response(mV)

UG T(V)

160mW

80.5mW39.4mW19.7mW

100

200

300

400

500

600

-0.20 0.00 0.20 0.40 0.60

Res

pons

e (µ

V)

UGT (V)

THz SPICE

Analytical

ModelValida9onforGaAsHEMT

After A. Gutin, T. Ytterdal, V. Kachorovskii, A. Muraviev, M. Shur, “THz SPICE for Modeling Detectors and Non-quadratic Response at Large Input Signal,” IEEE Sensors Journal, vol.13, no.1, pp.55,62, Jan. 2013.

20

gt

THz response at different technology nodes simulated at 200 GHz

After A. Gutin, S. Nahar, M. Hella, M. Shur, "Modeling Terahertz Plasmonic Si FETs With SPICE," IEEE Transactions on Terahertz Science and Technology, vol.3, no.5, pp.545-549, Sept. 2013.

SimulatedSiNMOSResponseforDifferentGateLengthsat200GHz

21

0.5 1.0 1.5 2.0 2.5 3.00.00

0.05

0.10

0.15

0.20

0.25

Res

pone

(a.u

.)

Frequency (THz)

130 nm 65 nm 32 nm 22 nm 14 nm

MaximumTHzresponseasafunc&onoffrequencyatdifferenttechnologynodes

After A. Gutin, S. Nahar, M. Hella, M. Shur, "Modeling Terahertz Plasmonic Si FETs With SPICE," IEEE Transactions on Terahertz Science and Technology, vol.3, no.5, pp.545-549, Sept. 2013.

FrequencyDependenceforSiTechnologyNodes

22

Spa9aldependenceofplasmawaveoscilla9ons:effectofparasi9cs

23

Gate voltage 0 V Effective mass of 0.19, and subthreshold ideality factor of 1.45, and extracted mobility of 220 cm2/Vs

Detectorresponseasafunc9onoffrequency:effectofparasi9cs

24

A. Gutin, T. Ytterdal, A. Muraviev, and M. Shur. "Modelling effect of parasitics in plasmonic FETs." Solid-State Electronics 104 (2015): 75-78.

Schema9cspa9aldependenceofplasmawaveoscilla9ons

25

Gate and drain contacts are connected by additional capacitance.

A. Gutin, T. Ytterdal, A. Muraviev, and M. Shur. "Modelling effect of parasitics in plasmonic FETs." Solid-State Electronics 104 (2015): 75-78.

-0.6 -0.4 -0.2 0.0 0.2 0.41E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

Dra

in c

urre

nt (A

)

Gate voltage

10K 20K 40K 77K 120K 200K 300K

Responsivityinthesubthresholdregionisroughlypropor9onaltotheslope

SubthresholdTemperatureDependenceinGaAsHEMTs

26

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.10

20

40

60

80

100

120

140

160

180

200

10K 20K 120K 40K 70K 250K 300K

Res

pons

e (u

V)

Gate voltage

10 100

10

100

Max

imum

Res

pons

e (u

V)

Temperature (K)

CoolingplasmonicdetectorscanimproveresponsivityandNEPbyseveralordersofmagnitudeandallowpassivedetec9on

TemperatureDependenceofGaAsHEMTResponse

27

ConclusionsandFutureWork

• Transport is ballistic in submicron transistors, and the physics is very different: silicon CMOS penetrated THz range

• Ultra short channel transistors support plasma waves in THz range with the channel acting as a resonance cavity

• THz compact SPICE model accurately reproduces THz response due to decaying plasma waves

• Future work: account for resonant plasma wave response in high mobility systems using varying transmission line model

28

Acknowledgements

Thisworkwasmade possible, in part, by SRCand the Texas Analog Center of Excellence(TxACE)undertasknumber1836.079.Theworkat RPI was also par9ally supported by the byArmy Research Laboratory under ARL MSMEAlliance.

29