20
1 מ חויבות ל מ צוינות- ג רעין להצלחהTarget choice for SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC on behalf of SARAF team UCANS-V conference 12-15/5/2015 INFN Laboratori Nazionali di Legnaro

Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 1

Target choice for SARAF TNS

(Thermal Neutron Source)

Ido Silverman, Soreq-NRC on behalf of SARAF team

UCANS-V conference

12-15/5/2015 INFN Laboratori Nazionali di Legnaro

Page 2: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 2

Talk Layout System requirements for the Thermal Neutron

Source (TNS) at Soreq Applied Research Accelerator Facility (SARAF)

Review of technologies for the neutron converter

Recent results with a liquid lithium neutron converter

Page 3: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 3

Background Soreq nuclear reactor

(IRR-1) is in operation since 1961

It provides: Neutron radiography Neutron diffraction Samples irradiation

Soreq infrastructure should be modernized to support experimental nuclear physics research in Israel

Page 4: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 4

SARAF Accelerator Complex Parameter Value Comment Ion Species Protons/Deuterons M/q ≤ 2

Energy Range 5 – 40 MeV Variable energy

Current Range 0.04 – 5 mA CW (and pulsed)

Operation 6000 hours/year

Reliability 90%

Maintenance Hands-On Very low beam loss

Phase I - 2010 Phase II - 2022

Page 5: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 5

IRR-1 radiography facility capabilities Requirement for SARAF TNS Capability # High intensity neutron generator Neutron flux on image plane

6x105 n/(s*cm2) 1

System geometry Resolution – L/D > 250 2 Effective neutron thermalization Cadmium ratio > 15 3 Small neutron opening from source to radiography system, high neutron density in thermalization system

Neutron flux homogeneity, better than 3% cm2

4

Effective gamma shielding Gamma dose < 300 mR/hr 5

Page 6: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 6

Preliminary system design

קו קרן

Raster

דיפרקטומטר

חדר רדיוגרפיה

מקור ניטרונים

TNR

Diffractometer

Thermal neutron source

9Be(d,xn)

beam

6 m

beam raster

concrete shield

diffractometer

collimator

L/D=250 image plane

2 m heavy concrete shield

collimator

Page 7: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 7

Available technologies for neutron converter design

Lithium Beryllium Carbon Target design Birmingham BNCT,

BINP LENS, SPES SPIRAL-I Static

? ESS-BILBAO FRIB, SPIRAL-II Rotating IFMIF, LiLiT X X Liquid

Drawbacks Advantages Target design High heat flux, Radiation damage, Large neutron source

Simple Static

Complex mechanism, Reduced neutron conversion efficiency

Low thermal stress, Low radiation damage density

Rotating

Complex system, Only for lithium

Low thermal stress, Low radiation damage Small neutron source

Liquid

Page 8: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 8

Available technologies for neutron converter design

Lithium Beryllium Carbon Target design Birmingham BNCT,

BINP LENS, SPES SPIRAL-I Static

? ESS-BILBAO FRIB, SPIRAL-II Rotating IFMIF, LiLiT X X Liquid

Drawbacks Advantages Target design High heat flux, Radiation damage, Large neutron source

Simple Static

Complex mechanism, Reduced neutron conversion efficiency

Low thermal stress, Low radiation damage density

Rotating

Complex system, Only for lithium

Low thermal stress, Low radiation damage Small neutron source

Liquid

Page 9: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 9

Target fail modes review – R&D risks Short term fail modes Target cooling

Mechanical loads

Medium\ Long term fail modes Radiation damage – limited knowledge, difficult to

evaluate

Mechanical reliability

Radiation safety

Page 10: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 10

Micro-channels cooling of a solid target Proposed 80 kW micro-channels cooled neutron source (size 100x100 mm2) and

prototype test section (channel width 0.2 mm, made of Aluminum)

H. Hirshfeld et al., NIM A 562(2006)903-905

Page 11: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 11

Micro-channels cooling – experimental results

Measured wall temperature above coolant temperature as function of heating power flux for two flow rate. Distinctive change in heat transfer capability can be noticed at power flux of about 600 W/cm2. Stable operation has been achieved for heating power of up to 1400 W/cm2

Start of boiling

Page 12: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 12

Radiation damage from high current low energy proton beam Irradiation of solid

targets cause fast accumulation of hydrogen gas at traps close to the targets surface (depth < 100 μm)

Unless released or chemically locked, the gas bubbles may fracture the target

SARAF phase-I Tungsten beam dump after irradiation by ~10 mA*hr

protons at 2-3 MeV

Page 13: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 13

Radiation damage in Be thick targets

Design studies for ESS-BILBAO neutronic applications laboratory

ESS-BILBAO Target Group

ESS-B rot ESS-B LENS

2.25 0.62 Avg. Intensity [mA] 3420 171 156 Operation time [hr]

4.5 18 Implantation [a/cm3]

Life time estimation regarding gas implantation

50 MeV p beam

Page 14: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 14

Liquid Lithium Target - LiLiT Proton energy: ~2 MeV

Proton current: <3.5 mA

T ≈ 2200C

Tmax ≈ 3500C

Operating at SARAF

since 10/2013

• Jet: 18 mm x 1.5 mm • Lithium velocity: 20 m/s • Wall assisted lithium jet

Jet chamber

liquid lithium

beam

Thanks for J. Nolen, C. Reed & Y. Momozaki for the help with design and training

Page 15: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 15

LiLiT installation at SARAF

Beam

S. Halfon et al., Review of Scientific Instruments 85, 056105 (2014).

S. Halfon et al., Review of Scientific Instruments 84, 123507 (2013).

Page 16: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 16

LiLiT thermal model

Temperature distribution at the center of the jet

Flow direction

Beam

Page 17: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 17

Jet velocity effect

S. Halfon et al., AIP Conference Proceedings 1525, 511-515 (2014).

Beam σ = 2 mm

Page 18: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 18

Liquid Lithium free surface proton irradiation

Lithium flow

Proton beam

Emissivity - εLi = 0.05

εSS = 0.4-0.6

p, 1.81 MeV, ~1 mA

Page 19: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 19

Measured lithium temperature

1.5 mA Protons beam at 1.92 MeV Beam power ~3 kW Beam size, σ=2.5 mm Calculated heat-up 200oC Measured ~ 50oC

Beam position on target

Thermal track

Page 20: Target choice for SARAF TNS (Thermal Neutron Source) · SARAF TNS (Thermal Neutron Source) Ido Silverman, Soreq-NRC. on behalf of SARAF team. UCANS-V conference. 12-15/5/2015 INFN

רעין להצלחהג - צוינותמל חויבותמ 20

Summary Design choices for TNS has been reviewed

based on: Short and long term failure modes

System requirements

R&D risk analysis

SARAF TNS design is considering changing from a static beryllium target to a liquid lithium target