49
TARAMALI ELEKTRON MİKROSKOPİSİ (SEM) 22. ULUSAL ELEKTRON MİKROSKOPİ KONGRESİ EMK 2015 ÇALIŞTAY 01 EYLÜL 2015 Attila Alkan Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği, Kocaeli

TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

TARAMALI ELEKTRON MİKROSKOPİSİ

(SEM)

22. ULUSAL ELEKTRON MİKROSKOPİ KONGRESİ

EMK 2015 ÇALIŞTAY 01 EYLÜL 2015

Attila AlkanKocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği, Kocaeli

Page 2: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

2http://nobelprize.org/educational_games/physics/microscopes/powerline/index.html

GÖZLEMLENEBİLİR BÜYÜKLÜKLER

Page 3: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

3

SEM, odaklanmış elektron demetinin bir numune yüzeyini tarayıp, o yüzeyden görüntü elde edilmesini sağlayan bir elektron mikroskop çeşididir. Elektronlar örnek atomlarıyla etkileşerek değişik sinyaller üretirler. Bu sinyaller dedektörler tarafından algılanarak bize, örnek yüzey topografisi ve kompozisyonu hakkında bilgi verir.

SEM’lerin ayırım gücü 1 nanometre ve daha iyi çözünürlülük mertebelerine ulaşabilir.

Numuneler SEM’de; yüksek vakumda, düşük vakumda, ıslak koşullarda ve düşük (cryogenic) veya yüksek sıcaklıklarda incelenebilir.

İlk SEM 1937 yılında Manfred von Ardenne tarafından icat edilmiştir.

İlk ticari SEM 1965 yılında Cambridge Scientific Instrument Company tarafından üretilip ‘’Stereoscan’’ adıyla DuPont firmasına teslim edilmiştir.

TARAMALI ELEKTRON MİKROSKOP (SEM)

Page 4: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

4http://www.cami.miamioh.edu/EMTheory/PDF/Intro/Microscopy_History.pdf

ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER

1951-1989 TESLA (CZECH) 1989 yılında kapandı. Bu tarihe kadar 3000’den fazla SEM ve TEM cihazı üretti. BS 242 modeli (ilk masa üstü TEM).

1991 TESCAN (CZECH) TESLA’dan ayrılanlar tarafından kuruldu. 1991-2015 döneminde, 2000 civarında SEM sistemi üretti.

Page 5: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

5

İlk SEM, Manfred von Ardenne, 1937 İlk ticari SEM, Cambridge Stereoscan Mk1, 1965

İLK TARAMALI ELEKTRON MİKROSKOPLAR

Page 6: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

6

SEM’in IŞIK MİKROSKOBUNA GÖRE ÜSTÜNLÜKLERİ

MİKROSKOP BÜYÜTME ALAN DERİNLİĞİ ÇÖZÜNÜRLÜK

OM 4x – 1400x 0.5 mm ~ 0.2 µm

SEM 1x – 1 000 000x 30 mm 1 nm

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

Page 7: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

7

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

SEM KOLONU ve GÖRÜNTÜ OLUŞUMU

Page 8: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

8

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

ELEKTRON TABANCASI ve FİLAMAN ÇEŞİTLERİ

Tungsten (W) filaman

LaB6 filaman

Field Emission

Termoiyonik tabanca yapısı (W/ LaB6)

Page 9: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

9

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

ALAN YAYIM (FIELD EMISSION) TABANCASI

Tungsten iğnenin ucu çok inceltilmiştir (yarı çapı < 0.1 µm) Sivri nokta etkisinden dolayı uçtaki elektrik alanı çok kuvvetlidir (> 107 V/cm) Elektronlar kuvvetli elektrik alanı yardımıyla iğne ucundan dışarı doğru çekilir Artık gazlardan uca iyon bombardımanını engellemek için ultra yüksek vakuma

(en az 6 x 10-6 Pa) ihtiyaç duyulur. Elektron sonda çapı 1 nanometrenin altında olabilir.

Page 10: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

10

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

ELEKTROMANYETİK MERCEKLER: KURAM ve YAPISI

Page 11: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

11

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

Termiyonik tabancada ilk kesişim (cross-over) noktasında, elektron demetinin çapı ~20–50 µm ‘dir.

Örnek yüzeyini 10 nm’nin altında bir sonda çapıyla taramamız gerekiyor.Bu nedenle tabancadan gelen sondanın çapını düşürebilmek (kesişim noktalarınıdemagnify etmek) için kondansör mercekleri, SEM kolonuna ilave edilmiştir.

ELEKTROMANYETİK MERCEKLER: KONDANSÖR MERCEKLERİ

Page 12: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

12

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

ELEKTROMANYETİK MERCEKLER: OBJEKTİF MERCEĞİ

Objektif merceği, manyetik alan şiddetini değiştirerek, elektron demetinin son odak noktasını kontrol eder.

Kesişim görüntüsü (cross-over image) son olarak ~ 10 nanometrelik bir demet spotuna küçültülür (demagnify).

Çapı küçültülen elektron sondasının akımı, kondansör mercekler yardımıyla yaklaşık olarak 10-9 – 10-13 A değerleri arasında bir değere ayarlanabilir.

Page 13: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

13

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

ELEKTROMANYETİK MERCEKLER: OBJEKTİF MERCEĞİ - ODAKLAMA

Objektif merceği akımını değiştirerek, manyetik alan kuvveti değiştirilir. Böylece objektif merceğinin odak uzaklığı da değiştirilmiş olur.

Page 14: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

14

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

Objektif merceğinin manyetik alan deseni çok dikkatli bir şekilde tasarlanıp yüksek bir hassasiyetle üretilmiştir.

Yüksek hassasiyetle üretilen bu parça, 10 nm çapındaki bir demeti kontrol etmek için yetersiz kalabilir.

Bu minör kusurları düzeltmek için de, merceğin demet yoluna bir stigmatoryerleştirilmiştir. Bu stigmator X ve Y doğrultularında düzenlenmiş iki çift kutup parçalarından oluşturulmuştur.

ELEKTROMANYETİK MERCEKLER: OBJEKTİF MERCEĞİ - STIGMATOR

Page 15: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

15

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

ELEKTROMANYETİK MERCEKLER: OBJEKTİF MERCEĞİ - APERTURE

Elektron tabancasından çıkan elektronlar açılarak geldiği için, aynı düzleme keskin bir spot oluşturmak için odaklanamayabilirler.

Bir açıklık (aperture) kullanılarak yolundan sapmış elektronlar durdurulur. Kalan demet dar bir, ‘’en küçük karmaşıklık dairesi çapı’’ ‘na (Disc of LeastConfusion) ulaşır.

Page 16: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

16

http://www.stehm.uvic.ca/using/training/workshops/CAMTEC/2010/secondary_electron_detectors.pdf

KENARA MONTELİ EVERHART-THORNLEY TİPİ İKİNCİL ELEKTRON DETEKTÖRÜ

Page 17: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

17

GERİ SAÇILAN ELEKTRON DEDEKTÖRÜ

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 18: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

18

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

1) Üst kısımdaki ‘’Sanal Kaynak’’, monokromatik elektronların akımını üreten elektron tabancasını temsil eder.

2) Elektron akımı birinci kondansör mercek tarafından yoğunlaştırılır. Bu mercek, demeti şekillendirmekte ve demet akımının miktarını sınırlamakta kullanılır (coarseprobe current knob). Aynı zamanda kondansör açıklığı (aperture) ile birlikte yüksek açılı elektronları demetten ayıklar.

TARAMALI ELEKTRON MİKROSKOP

Page 19: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

19

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

3) Yüksek açılı elektronları kondansör açıklığı (condenseraperture) ortadan kaldırırken, demeti de daraltmış olur. Bu açıklık sabittir ve kullanıcı tarafından değiştirilemez.

4) İkinci kondansör merceği elektronları ince, dar ve koherent bir şekle sokar (fineprobe current knob).

5) Kullanıcı seçimli objektif açıklığı da ilaveten demetten gelen yüksek açılı elektronları ortadan kaldırır.

TARAMALI ELEKTRON MİKROSKOP

Page 20: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

20

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

TARAMALI ELEKTRON MİKROSKOP

6) Bir bobin seti elektron demetine numune üzerinde ızgara biçiminde (televizyondaki gibi)bir tarama yaptırır. Tarama hızıyla (genellikle mikrosaniyearalığında) belirlenen bir zaman periyodunda, elektron demeti tarama noktalarında bekler.

7) Son mercek olan objektif merceği numunenin istenen bölgesinde tarama demetini odaklar.

8) Demet örneğe çarptığında ve birkaç mikro saniye beklediğinde, numunenin içinde etkileşimler olur ve bu etkileşimler değişik aygıtlarla tespit edilir.

Page 21: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

21

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

9) Demet bir sonraki bekleme noktasına (dwell point) hareket etmeden önce, görüntüleme dedektörü demetin son konumunda etkileşime giren elektronları sayar ve o noktayı SEM ekranında bir piksel olarak gösterir. Bu pikselin şiddeti de o noktada görüntüleme dedektörleriyardımıyla algılanan elektronların sayısıyla belirlenir. Daha fazla reaksiyon daha parlak piksel oluşturur.

10) Bu süreç ızgara taraması bitene kadar tekrarlanır ve sonra yeniden aynı işlem tekrarlanır. Tüm desen saniyede 30 kez taranabilir.

TARAMALI ELEKTRON MİKROSKOP

Page 22: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

22

Kaynak: University of Tennessee, Dept. of Materials Science and Engineering

Page 23: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

23

ELEKTRON DEMETİ – NUMUNE ETKİLEŞİMİ

Elektron tabancasından çıkan elektron demeti (birincil elektronlar) numuneye ulaştığında numune atomlarının elektrostatik alanları ile etkileşir ve bu atomların yörüngelerindeki elektronlarla çarpışır.

İkincil elektronlar (SE), enerjileri düşük olduğu için numune yüzeyine yakın yerlerden ve geri saçılan elektronlar da (BSE) enerjileri yüksek olduğundan daha derinden çıkar.

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

Page 24: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

24

Birincil elektronlar elektrostatik alanla yön değiştirirlerken, elektron hızı değişmediği için enerjisi de değişmez ve bu şekilde numune yüzeyinden geri çıkabilirler. Bu tip saçılmaya elastik saçılma denir. Enerjileri birincil elektronlarla aynı olan veya enerji kaybetmiş ancak birincil elektron enerjisine yakın enerjiye sahip olan elektronlara geri saçılmış elektronlar (backscattered electrons, BSE) denir.

Birincil elektronlar atom yörüngelerindeki elektronlarla daçarpışabilirler. Dış yörüngedeki elektronların çarpışma ileatomlardan sökülebilmeleri için az bir enerji yeterlidir. Buelektronlara ise ikincil elektronlar (secondary electrons, SE)denir. Enerjileri oldukça düşük olan bu elektronların ancakyüzeye yakın olanları numuneyi terk edebilirler. Birincilelektronlar numune elektronlarının elektrostatik alanları veyörünge elektronları ile çarpıştıklarında enerjilerinin birkısmı veya tamamını kaybederler. Bu tip saçılmaya iseinelastik saçılma denir. Geri saçılan elektronların bir kısmıile ikincil elektronların tamamı bu şekilde oluşur.

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

Page 25: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

25

İç yörüngedeki elektronlarla birincil elektronların çarpışmasısonucunda bu yörüngedeki elektronlar da yerlerindensökülebilirler. Bu şekilde iç yörüngede meydana gelenboşluklar, dış yörüngedeki elektronlar tarafındandoldurulduğunda ise iki konum arasındaki fark X-ışını olarakyayımlanır. Yörüngeler arası enerji farkı sabit olduğu için veyörüngeler arasında yüksek olasılıklı transferler de kısıtlıolduğundan, yayımlanan X-ışınlarının büyük bir kısmı belirlienerjilerde ortaya çıkar. Bunlara karakteristik X-ışınları adıverilir.

X-ışını yayımlanması yerine enerji farkı dış yörüngeden birelektronun serbest kalması ile karşılanırsa, bu elektronaAuger elektronu (AE) denir.

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

Page 26: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

26

Etkileşim hacminin boyutları ve biçimi numunenin ortalama atom numarasına(yoğunluğuna) göre değişir. Hafif elementlerde yağmur damlası şeklini alırken, ağırelementlerde yarı küresel şekildedir. Hızlandırma geriliminin (Vacc) artmasıyla şeklideğişmezken boyutları artar.

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

Page 27: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

27

İkincil elektron ve geri saçılan elektronların enerji dağılımıve miktarı

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

Page 28: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

28

Mikroskoptaki merceklerin küçültme katsayıları artırılarak demet çapı istenilen orandaküçültülebilir gibi görünüyorsa da mercek kusurları, elektronik sistemdeki kararsızlık veelektronların dalga özellikleri nedeniyle bu mümkün değildir. Bu hatalar; Küresel Kusur, Kromatik Kusur, Difraksiyon Kusuru ve Astigmatizm'dir.

AstigmatizmMerceklerdeki manyetik alanın simetrisindeki bozukluk nedeniyle birbirine dik iki eksen boyunca farklı kuvvette olması astigmatik kusuru oluşturur. Değişik kuvvetteki alanlardan geçen elektronlar iki ayrı noktada odaklanırlar. Bunun sonucu iki fokus alanı oluşur. SEM’ de en önemli hata budur; astigmatik kusuru oluşturan başlıca nedenler mikroskop içindeki ve özellikle açıklıklar (aperture) üzerindeki kir ve toz zerrecikleridir. Bu kusuru düzelmek için manyetik bobinlerden oluşan ve stigmatör adı verilen aparat kullanılır.

Kaynak: Kocaeli Üniversitesi, Metalurji ve Malzeme Mühendisliği Ders Notları

MERCEK HATALARI

Page 29: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

29Kaynak: A Guide to Scanning Microscope Observation, JEOL

HIZLANDIRMA GERİLİMİNİN GÖRÜNTÜ KALİTESİNE ETKİSİ

Page 30: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

30

ELEKTRON SONDA AKIMI, ÇAPI VE GÖRÜNTÜ KALİTESİ

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 31: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

31

KENAR ETKİSİNİN GÖRÜNTÜ KALİTESİNE ETKİSİ

SEM örnekleri genelde düzgün olmayan engebeli yüzeylere sahiptir. Örnek yüzeyinin çıkıntılı ve dairesel kısımlarından yüksek miktarda ikincil elektronlar üretilir. Bu kısımlar diğer düz kısımlara göre daha parlak görünür.

Kenar etkisinin derecesi hızlandırma gerilimine bağlıdır. Daha düşük hızlandırma gerilimi, numuneye gelen elektronların daha düşük bir girginlik derinliğine sahip olmasına neden olur ve kenar kısımlarındaki parlaklığı düşürür. Bu da o mikro yapıların daha net görünmesine yol açar.

Normal olarak ikincil elektron görüntüleri bir miktar geri saçılan elektronları da içerir. Eğer örnek yüzeyinin eğim doğrultusu ve ikincil elektron dedektörünün konumu geometrik açıdan birbirleriyle uyum içindeyse, eğimli kısımlardan çıkan daha fazla geri saçılan elektronlar o bölgeleri daha parlak yapar.

Örnek yüzey morfolojisi nedeniyle, kontrast faktörleri arasında, eğimve kenar etkileri ikincil elektronlar için önemlidir. Örnek yüzeyinden ikincil elektronların yayınımı, büyük ölçüde birincil elektronların örnek yüzeyine gelme açısına bağlıdır. Daha yüksek açı, daha büyük yayınıma yol açar.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 32: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

32

ÖRNEK EĞİM AÇISININ KULLANIMI

Örnek eğiminin amacı:1) İkincil elektron görüntülerinin kalitesini arttırmak,2) Topografik yapıyı daha belirgin hale getirmek ve örnek

kenarlarını gözlemleyebilmek, 3) Stereo SEM görüntü çıktılarını elde etmek.

Eğim açısına örnek:Yandaki şekilde görüntüler 0o ve 45o eğim açısıyla alınmıştır. 45o eğimli görüntüde topografi daha belirgin hale gelmiş ve sinyal miktarı artmıştır.

Stereo SEM görüntüsü:Stereo SEM görüntüleri, örneğin yapısını (topografiközelliklerini) daha iyi anlamakta kullanılır. Stereo gözlem yaparken, incelenecek bölgenin önce bir görüntüsü alınır, daha sonra aynı bölgenin görüntüsü 5o ile 15o arası bir değerde numuneye eğim verilerek tekrar alınır. Eski yöntemde, elde edilen iki fotoğraf özel bir stereo gözlükle incelenirdi. Yeni SEM’lerde bu işlem bir yazılım ile gerçekleştirilmektedir.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 33: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

33

DEDEKTÖR KONUMU ve ÖRNEK DOĞRULTUSU

- Üretilen ikincil elektronların miktarı, teorik olarak birincil elektronların gelme açısına bağlıdır. Bununla beraber eğer numune ikincil elektron dedektörüne doğru yönelmişse, görüntü aydınlığı artar.- Yandaki şekildeki gibi uzun örneklerde, örnek detektöre doğru boylamasına (uzun ekseni) yönelmişse, örneğin her iki yanı da eşit olarak aydınlanır.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 34: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

34

ÖRNEKLERDE ELEKTRON YÜKLENMESİ OLAYIİletken olmayan örneklerde biriken elektronlar toprağa akamadığından, görüntülenen

alanlarda parlamalar şeklinde kendisini gösterir ve ayrıntılar kaybolur.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 35: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

35

ÖRNEK HAZIRLAMA, ÖNEMLİ NOKTALAR

Hacimli Örneklerin Hazırlanması:

1) Hacimli ve şekilsiz örneklerde örnek tabanı yeterli miktarda yapıştırıcı pastayla desteklenmelidir.

2) Metal veya polimer malzemelerde örnekler uygun örnek taşıyıcılara vidayla sıkıca bağlanmalıdır.

3) Fiber gibi malzemeler şekilde gösterildiği gibi karbon pasta ile uçlarından tutturulmalıdır.

Toz örneklerin Hazırlanması:

- Toz yapısındaki örnekler, taşıyıcıya yapıştırılmış çift taraflı bant üzerine bastırılır. Sonra örneklerin üzerine basınçlı azot gazı püskürtülerek üst üste binmiş parçacıklar birbirinden uzaklaştırılır. Daha sonra gerekliyse uygun bir iletken kaplama yapılır.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 36: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

36

ELEKTRON DEMETİ KAYNAKLI ÖRNEK HASARI

Örneği tarayan elektron demetinin enerjisinin örnek içindeki kaybı, çoğunlukla ısı üretimi şeklinde olur.

Taranan bölgedeki sıcaklık artışı aşağıdakilere bağlıdır:1) Elektron demeti hızlandırma gerilimi ve dozu,2) Tarama alanı,3) Tarama süresi,4) Örneğin ısıl iletkenliği (polimer ve biyolojik örnekler

düşük ısı iletkenliğine sahip olup, genellikle ısıya dayanıklı değildirler).

Bu hasarı önlemek için aşağıdaki noktalar dikkate alınmalıdır:1) Düşük hızlandırma gerilimi kullanmak,2) Elektron demet şiddetini düşürmek,3) Tarama süresini azaltmak,4) Düşük büyütmelerde görüntü almak,5) Numune yüeyindeki metal kaplama kalınlığını kontrol

etmek,6) Görüntü almadan önce ilgili bölgenin yakınındaki bir

alandan mikroskop ayarlarını yapıp, hemen görüntülenecek bölgeye kayıp işlem yapmak.

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 37: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

37

Kirliliğin kaynakları:

1) SEM örnek odasından kaynaklanan,2) Örnek değişimi işleminden

kaynaklanan,3) Örnekten kaynaklanan.

Gözlem yüzeyinin kararmasını önlemek için alınması gereken önlemler:

1) Çift taraflı karbon bantı veya pastayı minimum miktarda kullanın ve tamamen kurumasını bekleyin,

2) Biyolojik örnekler için mümkün olan en küçük örneği hazırlayın,

3) Gömme malzemeleri veya kalıplama reçineleri, elektron demetine maruz kaldığında önemli miktarda organik gaz çıkarabilirler. Bu nedenle kalıplama malzemeleri mümkün olduğunca elektron demetiyle az etkileşime girmelidir veya yüzeyleri iletken bir malzemeyle kaplanmalıdır.

GÖRÜNTÜ ALANINDA ZAMAN İÇİNDE OLUŞABİLEN KARARMA (ARTIK GAZ KİRLİLİĞİ)

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 38: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

38

Büyük a açısı, düşük netlik derinliğine yol açar

ELEKTRON MİKROSKOPLARINDA NETLİK DERİNLİĞİ

Page 39: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

39

ÇALIŞMA UZAKLIĞI VE OBJEKTİF AÇIKLIĞININ GÖRÜNTÜYE ETKİSİ

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 40: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

40

ÇALIŞMA UZAKLIĞI VE OBJEKTİF AÇIKLIĞININ GÖRÜNTÜYE ETKİSİ

Kaynak: A Guide to Scanning Microscope Observation, JEOL

Page 41: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

Ernst Abbe’nin eşitliği:

d = 0.61 x l / n x sina

d: ayırım gücü (algılanabilen iki nokta arası minimum mesafe)l: demetin dalga boyun: kırılma indisi (vakum ve havada değeri 1’e eşittir)a: merceğin açıklık (aperture) açısı

MİKROSKOPTA AYIRMA GÜCÜ (ÇÖZÜNÜRLÜK, RESOLUTION)

Page 42: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

42

ELEKTRON MİKROSKOPLARINDA AYIRMA GÜCÜ

Kaynak: Introduction to electron microscopy, Andres Kaech

Page 43: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

43

ELEKTRON MİKROSKOPLARINDA AYIRMA GÜCÜ

Kaynak: Introduction to electron microscopy, Andres Kaech

Page 44: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

44

1988 MODEL ANALOG SEM (Görüntü analiz donanımının ilavesiyle sonradan dijitalleştirilmiş)

Page 45: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

45

2015 MODEL BİLGİSAYAR KONTROLLÜ FE-SEM/EDX/EBSD SİSTEMİ

Page 46: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

46

ÖRNEK HAZIRLAMA DONANIMI (Kritik Nokta Kurutma ve Kaplama Cihazı (Au/Pd ve C)

Page 47: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

Detectors

EBSD

STEM

EDX/WDX

CL

SE

LVSTD

BSE

EBIC

Page 48: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

Kocaeli UniversityEngineering FacultyDepartment of Metallurgical and Materials Science EngineeringUmuttepe Campus, TR-41380 Kocaeli, TurkeyTel: +90-262-303 3056 Fax: +90-262-303 3003E-Mail: [email protected]: metalurji.kocaeli.edu.tr

48

Page 49: TARAMALI ELEKTRON - Atomika Teknikatomikateknik.com/uploads/belgeler/taramali-elektron... · 2018-10-24 · ELEKTRON MİKROSKOP FİRMALARI İÇİN ÖNEMLİ TARİHLER 1951-1989 TESLA

49