# TALAT Lecture 2710: Static Design Example

• View
230

2

Embed Size (px)

DESCRIPTION

Example of structure design of the industrial building developed with the Mathcad software.

### Text of TALAT Lecture 2710: Static Design Example

TALAT Lectures 2710

Static Design Example82 pages

prepared during the TAS project:

TAS

Leonardo da Vinci Training in Aluminium Alloy Structural Design

Example developed with the Mathcad Software

Date of Issue: 1999 EAA - European Aluminium Association

2710 Static Design exampleTable of Contents (Active) 2710 Static Design example........................................................................................... 21. Introduction.......................................................................................................................6 2. Materials ............................................................................................................................7 3. Loads ..................................................................................................................................7 4. Load Combinations........................................................................................................... 9 5. Loads Effects ...................................................................................................................115.1. Loads per unit length and concentrated loads...........................................................................11 5.2 Finite element calculations ........................................................................................................12 5.3. Section forces for characteristic loads ......................................................................................14 5.4. Design moments, shear forces and deflections .........................................................................16

6. Code Checking.................................................................................................................286.1 Column A ..................................................................................................................................28 6.2 Column B ..................................................................................................................................42 6.3 Column C ..................................................................................................................................55 6.4 Floor Beam D ............................................................................................................................56 6.5 Roof Beam E .............................................................................................................................64 6.6 Roof Beam F .............................................................................................................................65 6.7 Welded Connections..................................................................................................................74

1

2 3

MATERIALS2.1 2.2 3.1 3.2 3.3

TALAT 2710

2

4

LOAD COMBINATIONS4.1 4.2 Ultimate limit state Serviceability limit state

5

5.2

5.3

5.4

TALAT 2710

3

6

CODE CHECKING6.1 Column A 6.1.1 Dimensions and material properties 6.1.2 Internal moments and forces 6.1.3 Classification of the cross section in y-y-axis bending 6.1.4 Classification of the cross section in z-z-axis bending 6.1,5 Classification of the cross section in axial compression 6.1.6 Welds 6.1.7 Design resistance, y-y-axis bending 6.1.8 Design resistance, z-z-axis bending 6.1.9 Axial force resistance, y-y buckling 6.1.10 Axial force resistance, z-z axis buckling 6.1.11 Flexural buckling of beam-column 6.1.12 Lateral-torsional buckling between purlins 6.1.13 Design moment at column base 6.1.14 Deflections 6.1.15 Summary Column B 6.2.1 Dimensions and material properties 6.2.2 Internal moments and forces 6.2.3 Classification of the cross section in y-y-axis bending 6.2.4 Classification of the cross section in z-z-axis bending 6.2,5 Classification of the cross section in axial compression 6.2.6 Welds 6.2.7 Design resistance, y-y-axis bending 6.2.8 Design resistance, z-z-axis bending 6.2.9 Axial force resistance, y-y buckling 6.2.10 Axial force resistance, z-z axis buckling 6.2.11 Flexural buckling of beam-column 6.2.12 Lateral-torsional buckling between purlins 6.2.13 Design moment at column base 6.2.14 Deflections 6.2.14 Summary

6.2

6.3 Column C 6.4 Floor Beam D 6.4.1 Dimensions and material properties 6.4.2 Internal moments and forces 6.4.3 Classification of the cross section 6.4.4 Welds 6.4.5 Bending moment resistance 6.4.6 Bending resistance in a section with holes 6.4.7 Shear force resistance 6.4.8 Deflections 6.4.8 Summary

TALAT 2710

4

6.5 6.6

Roof Beam E Roof Beam F 6.6.1 Dimensions and material properties 6.6.2 Internal moments and forces 6.6.3 Classification of the cross section 6.6.4 Welds 6.6.5 Bending moment resistance 6.6.6 Lateral-torsional buckling between purlins 6.6.7 Bending resistance in a section with holes 6.6.8 Shear force resistance 6.6.9 Concentrated transverse force 6.6.10 Deflections 6.6.11 Summary Welded connections 6.7.1 Weld properties 6.7.2 Longitudinal weld of floor beam D 6.7.3 Base of column B 6.7.4 Connection between floor beam D and column B

6.7

SoftwareThe example is worked out using the MathCad software in which some symbols have special meanin according to the following x 50.6 . mm Assign value Global assignment Evaluate expression Boolean equals Decimal point (1 3 2 ) (2 4 3 ) ( c .d ) Vector Vector Vectorize (multiply the elements in vector c with corresponding elements in d) Result

y 2.5 . mm x y = 53.1 mm

a b 0.5 c d a

a = ( 2 12 6 )

StructureThe structure was proposed by Steinar Lundberg, who also contributed with valuable suggestions. Part 1 to 6.6 was worked out by Torsten Hglund and 6.7 by Myriam Bouet-Griffon.

TALAT 2710

5

1. Introduction1.1 DescriptionThe industrial building contains an administration part with offices, wardrobe, meeting rooms etc. and a fabrication hall. The load bearing system consist of frames standing at a distance of 5000 m In the serviceability limit state max. allowable deflection is 1/250 of span.

1.2

Sketches

1.3

References

[1] ENV 1999-1-1. Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997 [2] ENV 1991-2-1. Eurocode 1 - Basis of design and actions on structures - Part 2-1: Action on structures - Densities, self-weight and imposed loads. 1995 [3] ENV 1991-2-3. Eurocode 1 - Basis of design and actions on structures Part 2-3: Action on structures - Snow loads. 1995 [4] ENV 1991-2-4. Eurocode 1 - Basis of design and actions on structures Part 2-4: Action on structures - Wind loads. 1995 [5] ENV 1991-1. Eurocode 1 - Basis of design and actions on structures Part 1: Basis of design. 1994

1.4

S.I. unitskN 1000 . N MPa 1000000 . Pa kNm kN . m MPa = 1 N mm2

TALAT 2710

6

2. Materials2.1[1], 3.2.2

AluminiumThe extrusions are alloy EN AW-6082, temper T6 The plates are EN AW-5083 temper H24 Strength of aluminium alloys EN AW-6082 T6 EN AW-5083 H24 fo fo 260 . MPa 250 . MPa fu fu 310 . MPa 340 . MPa 1.25

[1], 5.1.1 [1], 6.1.1

The partial safety factor for the members The partial safety factor for welded connections Design values of material coefficients Modulus of elasticity Shear modulus Poissons ratio Coefficient of linear thermal expansion Density

M1 1.10 Mw1.25

M2

E G

700000 . MPa 27000 . MPa 0.3

6 T 23 . 10 3 2700 . kg . m

2.2

Other materialsComment: Properties of any other materials to be filled in

Permanent loadsPermanent loads are self-weight of structure, insulation, surface materials and fixed equipment Permanent load on roof Permanent load on floor q p.roof q p.floor 0.5 . kN . m 0.7 . kN . m2 2

3.2[2], 6.3.1

Imposed loadsOffice area => Category B Uniform distributed load Concentrated load q k.floor Q k.floor 3 . kN . m 2 . kN2

[2], 6.3.4

Roofs not accessible except for normal maintenance etc. => Category H => Uniform distributed load Concentrated load q k.roof Q k.roof 0.75 . kN . m 1.5 . kN2

TALAT 2710

7

[?], ??

Load from crane, the crane located in the middle of the roof beam in the production hall Concentrated load Q crane 50 . kN

3.33.3.1[3]

Environmental loadsSnow loadsComment: The characteristic values of the snow loads vary from nation to nation. For simplicity for this design example, a snow load is chosen including shape coefficient, exposure coefficient and thermal coefficient. In a design report the calculation of the snow loads have to be shown. Snow load q snow 2 kN . m2

3.3.2[3]

Documents
Education
Documents
Documents
Documents
Documents
Documents
Education
Documents
Documents
Documents
Technology
Documents
Documents
Documents
Documents
Documents
Documents
Documents
Education
Documents
Education
Education
Education