69
1 SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME SKILVELYJE IMPLANTUOJAMAS BELAIDIS ŠIRDIES STIMULIATORIUS HEALTH TECHNOLOGY ASSESSMENT: LEADLESS PACEMAKERS FOR RIGHT VENTRICLE PACING 2016 VILNIUS

SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

1

SVEIKATOS TECHNOLOGIJOS VERTINIMAS:

DEŠINIAJAME SKILVELYJE IMPLANTUOJAMAS BELAIDIS

ŠIRDIES STIMULIATORIUS

HEALTH TECHNOLOGY ASSESSMENT:

LEADLESS PACEMAKERS FOR RIGHT VENTRICLE PACING

2016

VILNIUS

Page 2: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

2

Valstybinė akreditavimo sveikatos priežiūros veiklai tarnyba

prie Sveikatos apsaugos ministerijos

Autoriai: Medicinos technologijų skyriaus vyr.specialistės:

Kristina Grigaitė

Vitalija Mazgelė

Valstybinė akreditavimo sveikatos priežiūros veiklai tarnyba prie Sveikatos apsaugos ministerijos

Jeruzalės g. 21, LT-08420 Vilnius

Tel. (8 5) 261 5177,

Faks. (8 5) 212 7310,

El. paštas: [email protected]

Sveikatos technologijos vertinimo santrauką galima rasti interneto svetainėje:

http://www.vaspvt.gov.lt/node/486

Interesų konfliktas: Visi autoriai ir recenzentai, įtraukti į sveikatos priežiūros technologijos vertinimą,

deklaravo neturintys interesų konflikto.

Sveikatos priežiūros technologijos vertinimo turiniui ir/ ar struktūrai buvo naudotas EUnetHTA

(www.eunethta.eu) sveikatos priežiūros technologijų vertinimo šerdinis modelis (HTA Core Model®).

_______________________________________________________________________________

State Health Care Accreditation Agency

under the Ministry of Health

Authors: Chief specialists of Medical Technology division:

Kristina Grigaitė

Vitalija Mazgelė

State Health Care Accreditation Agency under the Ministry of Health

Jeruzalės st. 21, LT-08420 Vilnius

Tel. (370 5) 261 5177,

Fax. (370 5) 212 7310,

E. mail: [email protected]

Health technology assessment is available on the website:

http://www.vaspvt.gov.lt/node/486

Conflict of interest: All authors and the reviewers involved in the production of this report have declared

they have no conflicts of interest in relation to the technology assessed.

The HTA Core Model®, developed within EUnetHTA (www.eunethta.eu), has been utilised when

producing the contents and/ or structure of this work.

Page 3: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

3

TABLE OF CONTENTS

TABLE OF CONTENTS ........................................................................................................................... 3 ABBREVIATIONS .................................................................................................................................... 6 SANTRAUKA ............................................................................................................................................ 7

Sveikatos technologijos vertinimo metodika .......................................................................................... 7 Tikslinė būklė ......................................................................................................................................... 9

Tikslinė populiacija .............................................................................................................................. 10 Šiuolaikinis būklės valdymas ............................................................................................................... 10 Kompensavimas .................................................................................................................................... 10 Pagrindinės technologijos charakteristikos........................................................................................... 11 Investicijos ir prietaisai, reikalingi technologijos naudojimui .............................................................. 12

Pacientų saugumas ................................................................................................................................ 12

Mirštamumas ........................................................................................................................................ 13 Organizmo funkcijos ............................................................................................................................ 13

Gyvenimo kokybė ................................................................................................................................. 13 SVEIKATOS TECNOLOGIJOS FUNKCINĖ VERTĖ .......................................................................... 14 IŠVADOS ................................................................................................................................................. 15 REKOMENDACIJOS .............................................................................................................................. 15

SUMMARY .............................................................................................................................................. 16 Scope..................................................................................................................................................... 16

Target condition .................................................................................................................................... 17 Target population .................................................................................................................................. 17 Current clinical management of the disease or health condition .......................................................... 18

Regulatory & reimbursement status ..................................................................................................... 18 Features of the technology .................................................................................................................... 19

Investments and tools required to use the technology .......................................................................... 20

Patient safety ......................................................................................................................................... 20

Mortality ............................................................................................................................................... 20 Function ................................................................................................................................................ 21

Quality of life ........................................................................................................................................ 21 HEALTH PROBLEM AND CURRENT USE OF THE TECHNOLOGY ............................................. 22

Research questions................................................................................................................................ 22 Overview of the disease or health condition......................................................................................... 22

A0001. For which health conditions, and for what purposes are leadless pacemakers used? .......... 22 A0002. What is the disease or health condition in the scope of this assessment? ............................ 22 A0003. What are the known risk factors for cardiac arrhythmias? .................................................. 23

A0004. What is the natural course of cardiac arrhythmias? ............................................................. 23 Effects of the disease or health condition on the individual and society .............................................. 24

A0005. What is the burden of disease for patients with cardiac arrhythmias? ................................ 24

A0006. What are the consequences of cardiac arrhythmias for the society? ................................... 24 Current clinical management of the disease or health condition .......................................................... 24

A0024. How are cardiac arrhythmias currently diagnosed according to published guidelines and in

practice? ............................................................................................................................................ 24

A0025. How are cardiac arrhythmias currently managed according to published guidelines and in

practice? ............................................................................................................................................ 25 Target population .................................................................................................................................. 26

A0007. What is the target population in this assessment? ............................................................... 26 A0023. How many people belong to the target population? ............................................................ 26

Page 4: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

4

A0011. How much are leadless pacemakers utilised? ...................................................................... 26

Regulatory & reimbursement status ..................................................................................................... 26 A0020. What is the marketing authorisation status of leadless pacemakers? .................................. 26 A0021. What is the reimbursement status of leadless pacemakers? ................................................ 26

Discussion ............................................................................................................................................. 27 DESCRIPTION AND TECHNICAL CHARACTERISTICS OF THE LEADLESS PACEMAKERS .. 28

Research questions................................................................................................................................ 28 Features of the technology and comparators ........................................................................................ 28

B0001. What are leadless pacemakers and conventional single-chamber ventricular pacemakers? 28 B0002. What is the claimed benefit of leadless pacemakers in relation to conventional single-

chamber ventricular pacemakers? .................................................................................................... 30

B0003. What is the phase of development and implementation of leadless pacemakers and

conventional single-chamber ventricular pacemakers? .................................................................... 30 Administration, Investments, personnel and tools required to use the technology and the

comparator(s) ........................................................................................................................................ 31 B0004. Who administers leadless pacemakers and conventional single-chamber ventricular

pacemakers and in what context and level of care are they provided? ............................................. 31 B0008. What kind of special premises are needed to use leadless pacemakers and conventional

single-chamber ventricular pacemakers? .......................................................................................... 31 B0009. What supplies are needed to use leadless pacemakers and conventional single-chamber

ventricular pacemakers? ................................................................................................................... 31 Discussion ............................................................................................................................................. 31

SAFETY ................................................................................................................................................... 33

Research questions................................................................................................................................ 33 Patient safety ......................................................................................................................................... 33

C0008. How safe are leadless pacemakers in comparison to conventional single-chamber

ventricular pacemakers? ................................................................................................................... 33 C0005. What are the susceptible patient groups that are more likely to be harmed through the use

of the technology? ............................................................................................................................ 33 C0007. Are leadless pacemakers and conventional single-chamber ventricular pacemakers

associated with user-dependent harms? ............................................................................................ 33

Discussion ............................................................................................................................................. 34 CLINICAL EFFECTIVENESS ................................................................................................................ 36

Research questions................................................................................................................................ 36 Mortality ............................................................................................................................................... 36

D0001. What is the expected beneficial effect of leadless pacemakers on mortality? ..................... 36

D0003. What is the effect of leadless pacemakers on the mortality due to causes other than cardiac

arrhythmia? ....................................................................................................................................... 36 Morbidity .............................................................................................................................................. 36

D0005. How do leadless pacemakers affect symptoms and findings (severity, frequency) of cardiac

arrhythmias? ..................................................................................................................................... 36

D0006. How do leadless pacemakers affect progression (or recurrence) of cardiac arrhythmias? .. 36 Function ................................................................................................................................................ 37

D0011. What is the effect of leadless pacemakers on patients’ body functions? ............................. 37 D0016. How does the use of leadless pacemakers affect activities of daily living? ........................ 37

Health-related quality of life ................................................................................................................. 37 D0012. What is the effect of leadless pacemakers on generic health-related quality of life? .......... 37 D0013. What is the effect of leadless pacemakers on disease-specific quality of life? ................... 37

Patient satisfaction ................................................................................................................................ 37 D0017. Was the use of leadless pacemakers worthwhile? ............................................................... 37

Page 5: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

5

Discussion ............................................................................................................................................. 37

CONCLUSIONS ...................................................................................................................................... 39 RECOMMENDATIONS .......................................................................................................................... 40 REFERENCES ......................................................................................................................................... 41 APPENDIX 1: METHODOLOGY AND DESCRIPTION OF THE EVIDENCES USED .................... 45

Reporting of results............................................................................................................................... 46

Study characteristics ......................................................................................................................... 46 Quality assessment ........................................................................................................................... 46

Limitations ............................................................................................................................................ 46 ADAPTATION TOOLKIT .................................................................................................................. 48 Documentation of the basic search strategies ....................................................................................... 52

Flow charts of study selection .............................................................................................................. 53 Questions used from HTA Core Model Application for Rapid Relative Effectiveness assessment

(version 4.2) .......................................................................................................................................... 54

Health problem and current use of the technology ........................................................................... 54 Description and technical characteristics of technology ................................................................. 54 Safety ............................................................................................................................................... 54 Clinical effectiveness ....................................................................................................................... 55

APPENDIX 2: DESCRIPTION OF THE EVIDENCE USED ................................................................ 56 Evidence tables of individual studies included ..................................................................................... 56

Included studies .................................................................................................................................... 61 Excluded studies ................................................................................................................................... 61

APPENDIX 3: QUALITY ASSESSMENT OF SELECTED STUDIES ................................................ 64

Quality assessment of the selected case series ..................................................................................... 64 The IHE checklist for case series ..................................................................................................... 65

Quality assessment of the selected systematic reviews ........................................................................ 66 The AMSTAR checklist for systematic reviews .............................................................................. 67

Checklist for potential ethical, organisational, social and legal aspects ............................................... 69

Page 6: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

6

ABBREVIATIONS

% – percent;

ACC – American College of Cardiology;

AF – atrial fibrillation;

AHA – American Heart Association;

ATP – anti-tachycardia pacing;

AV – atrioventricular;

BBB – bundle branch block;

CE – Conformité Européene (European Conformity);

CRT – cardiac resynchronization therapy;

DRG – diagnosis-related group;

ECG – electrocardiogram;

ESC – European Society of Cardiology;

etc. – et cetera;

EU – European Union;

EUR – euro;

FDA – Food and Drug Administration;

Fr – French units;

HRS – Heart Rhythm Society;

i.e. – in essence;

ICD – implantable cardioverter-defibrillator;

ICD-10-AM – International Classification of Diseases, 10th Revision, Australian Modification;

LCP – leadless cardiac pacemaker;

MCRD – monolithic controlled release device;

MRI – magnetic resonance imaging;

NBG – North American Society of Pacing and Electrophysiology (NASPE) and the British Pacing and

Electrophysiology Group (BPEG);

PFO – patent foramen ovale;

SB – sinus bradycardia;

SND – sinus node disease (also sick sinus syndrome);

TGA – Therapeutic Goods Administration;

TPS – transcatheter pacing system;

USA – United States of America;

VVI – single-chamber ventricular pacing;

VVIR – single-chamber ventricular pacing with response modulation;

WiCS™-LV system – Wireless Cardiac Stimulation System.

Page 7: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

7

SANTRAUKA

Sveikatos technologijos vertinimo metodika

Šis sveikatos priežiūros technologijos vertinimas yra Austrijos Liudviko Boltzmano instituto

sveikatos technologijų vertinimui (angl. Ludwig Boltzmann Institute-Health Technology Assessment,

Austria) atlikto vertinimo „Dešiniajame skilvelyje implantuojamas belaidis širdies stimuliatorius“ (angl.

„Leadless pacemakers for right ventricle pacing”) atnaujinimas ir adaptavimas Lietuvos kontekstui

pagal EUnetHTA metodikas. Europos Komisija inicijuoja ir remia EUnetHTA bei kitų šalių atliktų

sveikatos priežiūros technologijų vertinimų naudojimą ir adaptavimą nacionaliniams Europos šalių

poreikiams.

Pirminis šaltinis, kurio pagalba buvo atrinkti pagrindiniai vertinimo elementai – Sveikatos

technologijų vertinimo šerdinis modelis greitam santykinio veiksmingumo vertinimui, versija 4.2 (angl.

‘HTA Core Model® for Rapid Relative Effectiveness Assessments (version 4.2’)). Be to, kiti EUnetHTA

šerdinio modelio dokumentai (Sveikatos technologijų vertinimo šerdinis modelis medicininių ir

chirurginių intervencijų vertinimui, versija 3.0 (angl. ‘HTA Core Model® for Medical and Surgical

Interventions (version 3.0’))) buvo peržiūrėti ir, esant poreikiui, papildomi vertinimo elementai įtraukti.

2016-ųjų metų rugpjūčio mėn. vykdyta sisteminė literatūros paieška buvo tikslinama naudojant

duomenų filtrą – publikacijos išspausdintos laikotarpyje nuo 2015-ųjų metų gruodžio mėn. 10 d. iki

2016-ųjų metų rugpjūčio mėn. 25 d., imtinai. Dalis informacijos buvo atnaujinta ir panaudota remiantis

Austrijos Liudviko Boltzmano instituto sveikatos technologijų vertinimui (LBI-HTA, Austrija) atliktu

sveikatos technologijų vertinimu, įvardinamu kaip sprendimų paramos dokumentas Nr. 97 „Leadless

pacemakers for right ventricle pacing”.

Belaidžio širdies stimuliatoriaus (BŠS) vertinimo analizė atlikta remiantis mokslinės literatūros

šaltiniais, esančiais:

The Cochrane Library duomenų bazėje;

PubMed (Medline) duomenų bazėje;

CRD duomenų bazėje;

Gamintojų internetiniuose puslapiuose, kurių ieškota rankiniu būdu viešai prieinamoje

erdvėje (internete).

Straipsniai, skirti „Saugumo“ ir „Klinikinio efektyvumo“ skyrių adaptavimui, buvo atrinkti

VASPVT (Valstybinė akreditavimo sveikatos priežiūros veiklai tarnyba prie Sveikatos apsaugos

ministerijos, Lietuva) Medicinos technologijų skyriaus specialistų. Papildomi moksliniai straipsniai

buvo įtraukti arba atmesti vadovaujantis PICO lentele, kuri pateikta santraukoje. Nė vienas

randomizuotas kontroliuojamas tyrimas bei sisteminė literatūros apžvalga nebuvo rastas/ įtrauktas į

vertinimą.

Mokslinių straipsnių įtraukimo ir atmetimo procesą vykdė du tyrėjai. Jei ta pati informacija

dubliavosi keliuose straipsniuose, į vertinimą įtraukti tik tie, kuriuose rezultatai pateikti išsamiausiai

arba straipsniai buvo naujausi. Visais atvejais, tiek atmetant, tiek įtraukiant tyrimus į vertinimą buvo

siekiama bendro sutarimo.

Vertinime naudojamų nekontroliuojamų tyrimų (angl. case series) kokybė buvo įvertinta

specialiu, nekontroliuojamiems tyrimams skirtu, Sveikatos Ekonomikos instituto kontrolės klausimynu

(angl. The IHE checklist), kurio rezultatus galima rasti Austrijos LBI-HTA instituto sveikatos

technologijų vertinime, įvardintame kaip sprendimų paramos dokumentas Nr. 97 „Leadless pacemakers

for right ventricle pacing”; klausimynus individualiai pildė du specialistai. Išsiskyrus nuomonėms,

trečias specialistas buvo įtrauktas į tyrimų kokybės vertinimo procesą.

Palyginamoji analizė buvo negalima, kadangi į vertinimą įtraukti tik nekontroliuojami tyrimai.

LBI-HTA agentūros specialistai „Saugumo“ ir „Klinikinio efektyvumo“ skyriuose pateiktų duomenų

kokybę įvertino remiantis tarptautinėmis Rekomendacijų lygių Vertinimo ir Nustatymo Grupės

Page 8: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

8

rekomendacijomis (angl. The Grading of Recommendations Assessment, Development and Evaluation,

GRADE). Trijų nekontroliuojamų į vertinimą įtrauktų tyrimų (iš viso 5 straipsniai) pagrindinių

charakteristikų lentelės yra Austrijos LBI-HTA instituto sveikatos technologijų vertinime, kuris

įvardinamas kaip sprendimų paramos dokumentas Nr. 97 „Leadless pacemakers for right ventricle

pacing”.

Atsakant į „Sveikatos problema ir dabartinis technologijos naudojimas“ bei „Techninės

charakteristikos“ skyrių klausimus, į vertinimą įtrauktiems tyrimams jokie apribojimai netaikyti,

informacijos ieškota rankiniu būdu viešai prieinamoje erdvėje (internete).

Į vertinime analizuojamus klausimus atsakyta tekstiniu formatu. Kadangi nėra palyginamųjų

grupių ir duomenys yra heterogeniški, atlikta analizė yra ne kiekybinė, bet kokybinė.

PICO lentelė

Populiacija Pirmojo pasirinkimo gydymo metodas pacientams, turintiems vienos kameros

(vienkamerinio) širdies stimuliatoriaus indikacijas [2,4]:

Pacientai, kuriems diagnozuotas lėtinis prieširdžių virpėjimas (TLK-10-AM:

I48) ir reikalingas širdies stimuliatorius dėl bradikardijos, kuri išsivystė dėl

atrioventrikulinės (AV) blokados (TLK-10-AM: I44);

Pacientai, kuriems diagnozuota bradikardija dėl AV blokados arba sinusinio

mazgo silpnumo sindromo (TLK-10-AM: I49.5)1.

Kontraindikacijos:

Pacientai, kuriems reikalinga ilgalaikė stimuliacija, viršijanti numatytą

prietaiso veikimo laiką (pvz., vaikai);

Pacientai, kuriems reikalingas vienos kameros (prieširdžio) stimuliatorius

arba dviejų kamerų stimuliatorius arba pacientai, kuriems reikalinga širdies

resinchronizavimo terapija.

MESH term: Arrhythmias, Cardiac [C14.280.067] and Arrhythmias, Cardiac

[C23.550.073].

Intervencija Belaidis autonominis ir visiškai implantuojamas vienkamerinis (dešiniojo

skilvelio) širdies stimuliatorius.

Kontekstas: kraujagyslių chirurgija, intervencinė kardiologija; specializuota

ligoninė.

Prietaisai:

Micra™, gamintojas – Medtronic Inc.;

Nanostim™, gamintojas – St. Jude Medical.

MESH term: Pacemaker, Artificial [E07.305.250.750]

Alternatyvos Įprastinis (tradicinis) implantuojamas vienkamerinis dešiniojo širdies

skilvelio stimuliatorius.

MESH term: Pacemaker, Artificial [E07.305.250.750]

Rezultatai

Efektyvumas Mirtingumas dėl širdies–kraujagyslių sistemos ligų;

Sergamumas širdies–kraujagyslių sistemos ligomis;

1 Tik tais atvejais, kai kiti stimuliavimo režimai (dvikamerinis stimuliavimas, prieširdžių stimuliavimas) nėra

rekomenduojami.

Page 9: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

9

Pacientų gyvenimo kokybė;

Fizinis pajėgumas;

Stimuliavimo veikla.

Saugumas Nepageidaujamų įvykių dažnis.

Tyrimų tipas

Efektyvumas Randomizuoti kontroliuojami tyrimai2;

Prospektyviniai nerandomizuoti kontroliuojami tyrimai.

Saugumas Randomizuoti kontroliuojami tyrimai;

Prospektyviniai nerandomizuoti kontroliuojami tyrimai;

Prospektyviniai nekontroliuojami tyrimai ar atvejų registrai, kuriuose

daugiau nei 100 pacientų.

PICO klausimas: Ar dešiniajame skilvelyje implantuojami belaidžiai širdies stimuliatoriai, lyginant

juos su įprastiniais (tradiciniais) širdies stimuliatoriais, yra tokie pat efektyvūs atsižvelgiant į

mirtingumą ir sergamumą širdies–kraujagyslių sistemos ligomis, fizinį pajėgumą bei ar yra dar

efektyvesni ir saugesni atsižvelgiant į gyvenimo kokybės aspektą ir nepageidaujamų įvykių dažnį?

Tikslinė būklė

Belaidžiai širdies stimuliatoriai (BŠS) yra alternatyva tradiciniams širdies stimuliatoriams (ŠS)

įvairių širdies aritmijų gydymui. Natūralus širdies stimuliatorius organizme yra dešiniajame prieširdyje

esantis sinusinis mazgas. Širdies bradiaritmija (bradikardija, susijusi su aritmija) išsivysto dėl sinusinio

mazgo silpnumo (sinusinio mazgo silpnumo sindromas, SND) arba dėl atrioventrikulinės blokados

(širdies laidumo sutrikimai). Taip pat bradikardija gali būti susijusi su prieširdžių virpėjimu. (A0001)

Širdies stimuliacijos tikslas – užtikrinti tinkamą širdies ritmą ir širdies atsaką atkuriant

efektyvią cirkuliaciją bei hemodinamiką, sutrikusią dėl lėto širdies plakimo (bradikardija ar

bradiaritmija: <60 širdies susitraukimų per minutę). Manoma, kad nuolatinė širdies stimuliacija gali

sumažinti simptomus, susijusius su bradikardija (pvz.: galvos svaigimą, nuovargį, alpimą, prastą

ištvermę), arba apsaugoti nuo galimo ritmo sutrikimo blogėjimo. (A0001)

Šio vertinimo tikslinė būklė – širdies aritmijos suaugusiems, kuriems indikuotinas

vienkamerinis širdies skilvelio stimuliavimas. Toks stimuliacijos režimas gali būti taikomas pacientams,

sergantiems lėtiniu prieširdžių virpėjimu dėl kurio reikalingas širdies stimuliatorius skilvelio atsako

koregavimui. (A0002)

Bradiaritmija, kuriai valdyti reikalingas ŠS, gali būti sukelta daugelio veiksnių. Esminės

priežastys: idiopatinė (senėjimo) degeneracija; išeminė širdies liga; infiltracinės ligos (pvz.: sarkoidozė,

amiloidozė, hemochromatozė); kolageno ir kraujagyslių ligos (pvz.: sisteminė raudonoji vilkligė,

reumatoidinis artritas, sklerodermija); įgimtos ligos, įskaitant SND bei atriventrikulinę blokadą;

infekcinės ligos (pvz.: Laimo liga); chirurginės traumos, tokios kaip vožtuvas keitimas, širdies

transplantacija. (A0003)

Priklausomai nuo bradiaritmijos tipo skiriasi širdies stimuliavimo režimai. Pacientai, kuriems

atrioventrikulinė blokada negydyta, gali mirti dėl širdies nepakankamumo arba dėl skilvelinės

tachiaritmijos juos gali ištikti staigi mirtis. Pacientų, sergančių SND, bendras išgyvenamumas bei

staigios mirties rizika yra panaši kaip bendros populiacijos. Vis dėlto, vieningai sutariama, kad

pacientams, sergantiems SND, širdies stimuliavimas gali turėti įtakos simptomų palengvinimui. (A0004)

2 Randomizuoti kontroliuojami tyrimai, kuriuose lyginami belaidžiai ir įprastiniai širdies stimuliatoriai, yra pageidautini, jei

jie yra tinkami (pakankamas pacientų skaičius, intervencija nėra skubi), etiški (klinikinė atsvara, pacientai gali duoti

sutikimą) ir būtini dėl galimo poveikio. Tyrimo vykdytojai bei pacientai negali būti maskuoti, o lyginimas su placebu yra

neetiškas dėl efektyvaus gydymo prieinamumo.

Page 10: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

10

Tikslinė populiacija

BŠS yra skirtas naudoti kaip įprastų vienkamerinių dešiniojo širdies skilvelio stimuliatorių

pakaitalas. Tikslinė populiacija yra tie pacientai, kuriems yra indikuojamas vienkamerinis dešiniojo

širdies skilvelio stimuliacijos režimas (VVI). (A0007; A0023)

Kai bradikardija kelia grėsmę normaliai kraujotakai, pasireiškia tokie simptomai: nuovargis,

galvos svaigimas, alpimas, dusulys, krūtinės skausmas, silpnumas, sumažėjęs fizinis pajėgumas. Per

pirmuosius 6 mėn. po širdies elektroninių prietaisų (visų tipų) implantacijos mažiau nei 6% pacientų

patiria sunkias komplikacijas, dažniausia iš jų – pakartotinė intervencija dėl laidų sukeltų komplikacijų.

(A0005)

Pacientų, kuriems reikalinga vienkamerinio širdies stimuliatoriaus implantacija, skaičius lieka

neaiškus. Lietuvoje 2015 m. užregistruota daugiau nei 110,000 pacientų, kuriems diagnozuota širdies

aritmija. 2005 m. Lietuvoje buvo atlikta daugiau nei 1,500 širdies stimuliatorių implantacijų operacijų;

šis skaičius didėja kiekvienais metais. (A0006; A0011)

Šiuolaikinis būklės valdymas

Nėra apibrėžta, kokia turėtų būti širdies ritmas riba, žemiau kurios gydymas būtų sindikuotinas.

Sprendžiant širdies stimuliacijos reikalingumą, reikia nustatyti sąsają tarp simptomų ir bradikardijos.

Nuolatinė bradiaritmija nustatoma pagal standartinę elektrokardiogramą (EKG), o protarpinė – pagal

standartinę EKG arba pagal prailgintą EKG. Jei bradikardija yra įtariama, tačiau nediagnozuota, gali

prireikti provokuojančių testų arba elektrofiziologinio tyrimo. (A0024)

Sprendimas dėl širdies stimuliatoriaus implantacijos ir ritmo režimo grindžiamas pagal tris

klinikinius veiksnius: širdies laidumo sutrikimai, simptomų buvimas ir jų sąsaja su bradikardija,

priežasties negrįžtamumas. VVI stimuliavimo režimas gali būti taikomas pacientams, sergantiems

prieširdžių virpėjimu, dėl kurio reikalingas širdies stimuliatorius skilvelio atsako (atrioventrikulinei

blokadai) koregavimui. Pacientams, su nustatyta atrioventrikuline blokada (be prieširdžių virpėjimo)

arba SND, gali būti taikomas vienkamerinis arba dvikamerinis širdies stimuliatorius. Simptominė

bradikardija yra indikacija širdies stimuliatoriaus implantacijos operacijai, jei simptomai yra susiję su

bradikardija ir bradikardijos atsiradimo priežastis yra negrįžtama. (A0025)

Kompensavimas

Nanostim™: Po LEADLESS I tyrimo, baigto 2013 m. spalio mėn., BŠS gamintojas St. Jude

Medical gavo patvirtinimą, kad Nanostim™ BŠS gavo CE ženklą ir gali būti naudojamas Europos

Sąjungoje. Tyrimas, skirtas patikrinti Nanostim™ BŠS Jungtinėse Amerikos Valstijose, buvo pradėtas

2014 m. Medicinos priemonės (prietaiso) vis dar nepatvirtino nei JAV Maisto ir vaistų administracija

(FDA), nei Kanados federalinis sveikatos apsaugos departamentas „Health Canada“, nei Australijos

Terapinių prekių administracija (TGA). Planuojama, kad FDA patvirtinimą Nanostim™ BŠS gaus

2016–2017. (A0020; A0021)

Micra™ Transcatheter Pacing System: 2015 m. BŠS gamintojas Medtronic medicinos

priemonei (prietaisui) Micra™ Transcatheter Pacing System (TPS) gavo CE ženklą. Tyrimas, skirtas

įvertinti Micra™ BŠS klinikinius rezultatus JAV, buvo pradėtas 2013 m. lapkričio mėn., o JAV Maisto

ir vaistų administracija medicinos priemonę (prietaisą) patvirtino 2016 m. balandžio mėn. (A0020;

A0021)

Nėra tikslių duomenų apie šių įrenginių kainą, tačiau akivaizdu, kad vienkameriniai belaidžiai

širdies stimuliatoriai kainuoja brangiau nei įprastiniai (Australijoje jų kainos yra 11,300 EUR, palyginus

su įprastiniais, kurių kainos 4,200 EUR). Italijos sveikatos technologijų vertinimo agentūros AGENAS

ataskaitoje skelbiama, kad Nanostim™ prietaiso (gamintojas St. Jude Medical) ir jo implantavimo kaina

– 11,500 EUR. Gamintojas Medtronic Inc. nepateikia prietaiso Micra ™ TPS kainos. (A0020; A0021)

Page 11: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

11

(Belaidžiai) širdies stimuliatoriai Lietuvoje yra kompensuojami atsižvelgiant į DRG kodus

F12A bei F12B (Širdies stimuliatoriaus (visos sistemos) implantavimas ar pakeitimas), kurių kainos

atitinkamai yra 2,817.74 EUR ir 1,439.21 EUR. (A0020; A0021)

Pagrindinės technologijos charakteristikos

Belaidžiai širdies stimuliatoriai yra autonominiai (savarankiški) intrakardialiniai širdies

prietaisai, atliekantys tas pačias funkcijas kaip įprasti ŠS, tačiau gerokai mažesnio dydžio, todėl su

įvedimo kateteriu gali būti visiškai implantuoti dešiniajame širdies skilvelyje. (B0001) Pirmasis visiškai į endokardą implantuojamas stimuliatoriaus prototipas buvo pristatytas 1970

m. Nuo to laiko buvo kuriamos kelios skirtingos belaidės sistemos su skirtingais energijos šaltiniais bei

skirtingais prisitvirtinimo mechanizmais; galiausiai CE ženklą gavo dvi belaidės vienkamerinės

dešiniojo skilvelio stimuliavimo sistemos: Nanostim™ belaidis širdies stimuliatorius ir Micra™

transkateterinio stimuliavimo sistema. Šių dviejų prietaisų techninės charakteristikos panašios: tai

vienos kameros stimuliatoriai, įmontuoti hermetiškai sandarioje kapsulėje, abiejų nustatymai

programuojami. Dydis maždaug dešimt kartų mažesnis nei įprasto vienos kameros ŠS – ~1cm³, sveria

~2 gramus. Numatomas prietaisų baterijos ilgaamžiškumas – ~10 m. (kaip ir įprastinio ŠS). Implantacija

į dešinįjį skilvelį atliekama per šlaunies veną, naudojant 18 Fr (Nanostim™) ir 23 Fr (Micra™) dydžio

kateterius; prietaiso proksimalinį galą galima prijungti prie įvedimo ir išėmimo kateterių, todėl

skilvelyje galima pakeisti prietaiso padėtį arba jį išimti (eksplantuoti). Teoriškai, abi sistemos suteikia

galimybę prietaisą eksplantuoti ar pakeisti jo padėtį po implantacijos; apie eksplantaciją yra ir praktinių-

mokslinių duomenų iš tyrimų su gyvūnais bei žmonėmis. Vis dėlto, šiuo metu turimų duomenų trūksta ir

manoma, jog, esant atitinkamoms aplinkybėms, yra racionaliau į širdies skilvelį šalia išjungto prietaiso

implantuoti naują stimuliatorių. (B0001; B0003) Pagrindinis dviejų BŠS sistemų skirtumas – skirtingi prisitvirtinimo endokarde mechanizmai:

Nanostim™ BŠS turi įsukamą vienos vijos spiralę, be to, papildomai prietaisas tvirtinamas trimis

siūlėmis; Micra™ BŠS prisitvirtina savaime išsiskleidžiančiais (angl. self-expanding) kabliukais

pagamintais iš nikelio ir titano lydinio (nitinolio). (B0001)

Įprastinis ŠS, kurį sudaro maitinimo elementas ir elektroninė schema, atsakinga už energijos iš

maitinimo elemento transformavimą į elektros impulsus, stimuliuojančius širdį (schema kontroliuoja

siunčiamų impulsų dažnį bei elektros impulsų tiekiamų į širdį intensyvumą), yra implantuojama į po

raktikauliu suformuotą odos „kišenę“ (angl. pectoral subcutaneous pocket). Stimuliavimo laidas

užbaigia elektrinį kelią tarp ŠS ir širdies, per jį elektriniai impulsai siunčiami į širdį. Atsižvelgiant į

būklės sudėtingumą, ŠS gali stimuliuoti tiek vieną (vienkameriniai), tiek dvi kameras (dvikameriniai);

dvikameriniams ŠS reikalingi du laidai. (B0001)

Lyginant su įprastiniu ŠS, tam, jog užtikrintų savo funkcijas, BŠS nereikalinga suformuota

odos „kišenė“ kairėje krūtinės pusėje ir nereikalingi į kraujagysles įvesti stimuliavimo laidai, per

kuriuos impulsai pasiekia širdies prieširdžius ar skilvelius. Minėti faktai leidžia išvengti su šiomis

sudedamosiomis prietaiso dalimis susijusių komplikacijų. Operacinio pjūvio vietoje (kišenėje) būdingos

vietinės komplikacijos – odos erozija, hematoma, paraudimas, patinimas, žaizdos infekcija. 6-iems

pacientams iš 10-ies, šios komplikacijos apriboja peties regiono, kuriame įsodintas ŠS, judesius. Su

stimuliavimo laidais susiję nepageidaujami įvykiai: venų obstrukcija (nepraeinamumas), įtrūkimai

stimuliavimo laidų paviršiuje (izoliacijos įtrūkimai), stimuliavimo laidų „atsijungimas“ nuo ŠS,

elektrinių signalų trukdžiai, stimuliavimo laidų lūžiai (nutrūkimas), infekcija. Pavojingiausi

nepageidaujami įvykiai yra tie, kuriems pašalinti reikalinga chirurginė intervencija, ypač pavojingos

infekcijos, dėl kurių reikia atlikti ŠS eksplantaciją. (B0001; B0002)

Dar vienas BŠS implantacijos privalumas susijęs su trumpesne procedūros ir gijimo laikotarpio

trukme bei geresne gyvenimo kokybe, kadangi po procedūros nelieka rando, nėra iškilimo, peties

judesiai išlieka neapriboti. (B0002)

Page 12: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

12

Apskaičiuota, jog apytiksliai 75% pacientų, kuriems implantuotas ŠS, per laiką atsiranda

indikacijų, kai reikia atlikti magnetinio rezonanso tomografijos tyrimus. Vis dėlto, yra žinoma, jog tokie

tyrimai pacientams, su implantuotu įprastu ŠS, gali būti žalingi paciento sveikatai ir sutrikdyti prietaiso

veiklą. Micra™ BŠS suteikia galimybę pacientams saugiai atlikti magnetinę tomografiją su 1.5 ir 3

Tesla galingumo magnetinio rezonanso tomografais, neseniai (2016 m. kovo mėn.) ir Nanostim™ BŠS

gamintojai paskelbė apie tokią galimybę (tik su 1.5 Tesla galingumo prietaisais). (B0002)

Investicijos ir prietaisai, reikalingi technologijos naudojimui

Tiek BŠS, tiek įprastinio vienkamerinio ŠS implantavimo procedūros gali būti atliekamos tik

specializuotuose intervencinės kardiologijos skyriuose. BŠS implantacijos metu reikalingi

fluoroskopijos procedūrai naudojami prietaisai, kad stimuliatorius būtų tinkamai implantuotas į dešinįjį

skilvelį.

Kaip ir prieš atliekant bet kokią naują procedūrą, prieš BŠS implantaciją reikalingas specialus

pasiruošimas bei papildomi mokymai. Specialistai kardiologai gali atlikti abi minėtas procedūras, tačiau

specialus pasiruošimas yra privalomas. (B0004; B0008; B0009)

Pacientų saugumas

Sunkių, su prietaiso naudojimu susijusių, nepageidaujamų įvykių dažnis, trijuose į vertinimą

įtrauktuose nekontroliuojamuose tyrimuose, varijavo nuo 4 iki 6.5%. Vis dėlto, svarbu atkreipti dėmesį,

jog rezultatai gauti remiantis 3-mis nerandomizuotais moksliniais tyrimais, todėl duomenys apie

belaidžių širdies stimuliatorių saugumo aspektą yra preliminarūs. (C0008)

LEADLESS I tyrime širdies sužalojimas (širdies tamponada (angl. cardiac tamponade))

nustatytas vienam pacientui, LEADLESS II tyrime tokio pobūdžio sužalojimai (širdies perforacijos

su/be tamponados ar perikardo efuzijos3 (angl. cardiac perforations with/without tamponade or

pericardial effusions)) nustatyti 8 pacientams, o “Micra™ Transcatheter Pacemaker Study” tyrime

širdies sužalojimai (širdies perforacijos ar efuzijos (angl. cardiac perforations or effusions)) diagnozuoti

11 pacientų. 6 pacientams, kuriems buvo implantuotas Nanostim™ BŠS, nustatytas prietaiso

pasislinkimas iš implantavimo vietos; tokie nepageidaujami įvykiai nenustatyti pacientams, kuriems

buvo implantuoti Micra™ BŠS.

Nustatyti ir kiti, su prietaisu ar su implantacijos procedūra susiję, paciento gyvybei pavojų

keliantys nepageidaujami įvykiai: kraujagyslių komplikacijos, širdies ritmo sutrikimai (aritmija)

procedūros metu, padidėjusios ribinės (slenkstinės) stimuliavimo vertės ir dėl to reikalinga prietaiso

eksplantacija bei naujo prietaiso implantacija. (C0008)

Šiuo metu turimų duomenų nepakanka, jog būtų nustatytos pacientų grupės, kurioms yra

didžiausia rizika patirti nepageidaujamus įvykius. Taip pat nėra visiškai aišku ar ilgalaikėje

perspektyvoje, praėjus keleriems metams po implantacijos, bus įmanoma prietaisą saugiai eksplantuoti.

Tokiu atveju, alternatyvi stimuliatoriaus pakeitimo strategija galėtų būti – šalia neveikiančio prietaiso,

implantuoti naująjį BŠS. BŠS yra nedidelis (užima ~1cm³), todėl įvertinus širdies skilvelio anatominius

parametrus, tai reali galimybė. Remiantis moksliniais skaičiavimais, dešiniajame skilvelyje įmanoma

implantuoti bent 3 Micra™ BŠS, tačiau tiksliai šiuos klausimus galėtų atsakyti tik tolimesni moksliniai

tyrimai. (C0005; C diskusija)

Tiek BŠS, tiek įprastinio vienkamerinio ŠS implantavimo procedūros yra susijusios su

nepageidaujamais įvykiais, kurie įvyksta dėl specialisto nepatyrimo, kompetencijos stokos. Viename

moksliniame tyrime buvo analizuota, kaip komplikacijų dažnis susijęs su specialisto patirtimi; rezultatai

rodo, jog atliekant 10 pirmųjų implantacijos procedūrų, su procedūra susijusių nepageidaujamų įvykių

dažnis siekia 6.8%, o atliekant vėlesnes procedūras sumažėja – 3.6% (p=0.56). (C0007)

3 Perikardo efuzija – kraujo išsiliejimas į perikardą.

Page 13: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

13

Mirštamumas

Nėra tikimasi, kad BŠS galėtų turėti didesnį teigiamą poveikį mirtingumui negu įprastiniai VVI

širdies stimuliatoriai. Bendras mirtingumo dažnis svyravo nuo 3 iki 5%, o mirtingumas, susijęs su

širdies-kraujagyslių ligomis, nuo 0.8 iki 1%. (D0001)

Su procedūra susijęs mirtingumas buvo aprašytas visuose trijuose tyrimuose. LEADLESS I

tyrime vienam pacientui implantacijos metu pasireiškė perforacija, pacientas mirė dėl masinio smegenų

arterijų išeminio infarkto. LEADLESS II tyrime įvardintos dvi su procedūra susijusios mirtys: vienam

pacientui BŠS implantacija komplikavosi kirkšnies hematoma, o kitas pacientas dėl nesėkmingos BŠS

implantacijos patyrė komplikuotą perikardo eksudaciją. „Micra™ Transcatheter Pacemaker Study“

tyrime vienas pacientas mirė dėl su procedūra susijusių komplikacijų: implantacijos procedūra užtruko

ilgiau nei įprasta dėl atrioventikulinio mazgo abliacijos bei inkstų ligos, vis dėlto mirties priežastis buvo

metabolinė acidozė. (D0003)

Organizmo funkcijos

BŠS sistema buvo sukurta siekiant išvengti ŠS generatoriaus „kišenės“ ir transveninių laidų

(BŠS sistemoje elektrodai išdėstyti kapsulėje), tokiu būdu panaikinant svarbiausias komplikacijų

priežastis, susijusias su įprastomis ŠS sistemomis, ir gaunant panašią naudą. (D diskusija)

Pažymėtina, kad per didelė skilvelių stimuliacija gali būti susijusi su blogesniais širdies–

kraujagyslių rodmenų rezultatais. Kai kurie autoriai pastebėjo, kad BŠS gali padidinti aritmijos riziką

dėl didesnio BŠS kontakto endokarde, lyginant su įprastinėmis širdies stimuliatorių sistemomis; vis

dėlto, prospektyviniuose tyrimuose papildomų aritmijos atvejų nebuvo nustatyta. (D diskusija).

Gyvenimo kokybė

Generatoriaus „kišenės“ nebuvimas turi tam tikrų privalumų, susijusių tiek su pacientų

komfortu (gyvenimo kokybe), tiek su mažesne infekcinių įvykių rizika. Su sveikata susijusi gyvenimo

kokybė nebuvo vertinta nė viename tyrime, o, be to, neaišku, ar laidų/ generatoriaus sukeliamų

komplikacijų išvengimas duoda atitinkamos naudos pacientams. (D diskusija)

Page 14: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

14

SVEIKATOS TECNOLOGIJOS FUNKCINĖ VERTĖ

Vadovaujantis Ligų, vaistinių preparatų ir medicinos pagalbos priemonių įrašymo į

kompensavimo sąrašus ir jų keitimo tvarkos aprašu, patvirtintu Lietuvos Respublikos sveikatos

apsaugos ministro 2002 m. balandžio 5 d. įsakymu Nr. 159 „Dėl Ligų, vaistinių preparatų ir medicinos

pagalbos priemonių įrašymo į kompensavimo sąrašus ir jų keitimo tvarkos aprašo patvirtinimo“, buvo

įvertinta šios sveikatos technologijos – dešiniajame skilvelyje implantuojamo belaidžio širdies

stimuliatoriaus – kaip medicinos pagalbos priemonės (MPP), funkcinė vertė. Belaidžio širdies

stimuliatoriaus funkcinė vertė buvo vertinta bradikardijos (kartu su prieširdžių virpėjimu ir plazdėjimu

(pagal TLK-10-AM: I48)), atrioventrikulinės blokados (pagal TLK-10-AM: I44) bei sinusinio mazgo

silpnumo sindromo (pagal TLK-10-AM: I49.5) atvejais (1 lentelė).

1 lentelė. Dešiniajame skilvelyje implantuojamo belaidžio širdies stimuliatoriaus funkcinė vertė.

Funkcinės vertės

kriterijai Balai Pastabos

Ligos įtaka sveikatai 2

Prieširdžių virpėjimas ir plazdėjimas bei

sinusinio mazgo silpnumo sindromas daro įtaką

neįgalumui/ darbingumui ir gyvenimo kokybei.

Ligai progresuojant gali kilti grėsmė paciento

gyvybei.

Socialinė MPP svarba 2

Didžiąja dalimi (daugiau nei 50%) gali atkurti

prarastas funkcijas, sumažinti neįgalumą/

atkurti darbingumą.

MPP inovatyvumas 1

MPP iš dalies pakeis šiuo metu naudojamą

alternatyvią MPP: MPP bus naudojama kartu

su šiuo metu naudojama alternatyvia MPP toms

pačioms indikacijoms.

MPP klinikinis

efektyvumas 1

MPP klinikinis efektyvumas panašus į

alternatyvios MPP, nors mokslinių įrodymų

trūksta.

MPP ekonominis

efektyvumas 0*

MPP klinikinis efektyvumas panašus į

alternatyvios MPP, tačiau vertinamos MPP

kaina yra aukštesnė.

Galutinis balas 6

*Ekonominio efektyvumo aspektas nebuvo vertintas.

Page 15: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

15

IŠVADOS

1. BŠS siūlomas kaip alternatyva vienkameriniams širdies stimuliatoriams. Vienkamerinis skilvelio

stimuliacijos režimas gali būti taikomas pacientams, kuriems diagnozuotas prieširdžių virpėjimas

(arba ne) ar sinusinio mazgo silpnumo sindromas; dėl šių indikacijų atsiradusios

atrioventrikulinės blokados koregavimui reikalingas širdies stimuliatorius, tačiau jis skiriamas

tik simptomų, susijusių su bradiaritmija, palengvinimui.

2. Rinkoje yra dvi belaidžių širdies stimuliatorių sistemos – Nanostim™ ir Micra™; abu prietaisai

yra vienkameriniai širdies stimuliatoriai, turintys panašias technines charakteristikas bei CE

ženklą. Pagrindinis dviejų BŠS sistemų skirtumas – skirtingi prisitvirtinimo endokarde

mechanizmai: Nanostim™ BŠS turi įsukamą vienos vijos spiralę, be to, papildomai prietaisas

tvirtinamas trimis siūlėmis; Micra™ BŠS prisitvirtina savaime išsiskleidžiančiais kabliukais

pagamintais iš nikelio ir titano lydinio (nitinolio).

3. BŠS technologijos saugumas nėra pakankamai moksliškai pagrįstas – duomenys preliminarūs,

grindžiami tik 3 nekontroliuojamų tyrimų rezultatais. Sunkių, su prietaiso naudojimu susijusių,

nepageidaujamų įvykių dažnis į vertinimą įtrauktuose tyrimuose varijavo nuo 4 iki 6.5%.

Dažniausiai pacientams nustatyti širdies sužalojimai (širdies perforacijos su/be tamponados,

perikardo efuzijos, širdies tamponados). Nustatyti 6 (0.95%) atvejai, kai prietaisas pasislinko iš

implantavimo vietos; visi šie atvejai įvyko pacientams, kuriems buvo implantuotas Nanostim™

BŠS, o ne Micra™ BŠS.

4. Mirštamumo rodikliai, lyginant BŠS su įprastais vienkameriniais stimuliatoriais, reikšmingai

nesiskiria. Vis dėlto, manoma, kad generatoriaus kišenės nebuvimas turi privalumų, lemiančių

didesnį paciento komfortą (gyvenimo kokybę) ir mažesnę infekcijų riziką, nors nei klinikinis

efektyvumas, nei gyvenimo kokybė tyrimuose nebuvo analizuoti.

REKOMENDACIJOS

1. Prieš priimant sprendimus dėl belaidžio širdies stimuliatoriaus naudojimo, rekomenduojama

įvertinti galimų nepageidaujamų įvykių riziką, nes, nepaisant BŠS sistemų pranašumų,

informacija apie šios sveikatos priežiūros technologijos saugumą ir efektyvumą yra ribota.

Reikalingi papildomi moksliniai įrodymai (randomizuoti kontroliuojami tyrimai), kurie

nustatytų/ palygintų klinikinę bei ekonominę vertinamos sveikatos priežiūros technologijos ir

įprastinių širdies stimuliatorių naudą.

Page 16: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

16

SUMMARY

Scope

PICO for leadless pacemakers for right ventricle pacing Population First line treatment of patients with indications for single-chamber ventricular

pacemakers [2,4]:

Patients with chronic atrial fibrillation (AF; ICD-10 I.48) who require a

pacemaker for persistent or intermittent bradycardia due to slow ventricular

response (atrioventricular (AV) block, ICD-10 I.44);

Patients with persistent or intermittent bradycardia due to AV block or

symptomatic sinus node disease (SND, ICD-10 I.49.5)4.

Contraindications:

Patients requiring long-term pacing exceeding estimated device longevity (NB.

children);

Patients with indications for atrial single-chamber pacemakers or dual-chamber

pacemakers or with indications for cardiac resynchronisaton therapy.

MESH term: Arrhythmias, Cardiac [C14.280.067] and Arrhythmias, Cardiac

[C23.550.073].

Intervention Leadless self-contained and fully implantable VVI(R) pacemaker.

Setting: Vascular surgery, Interventional cardiology; specialist hospital, general

hospital.

Products:

Micra™ TPS, Medtronic Inc.;

Nanostim™, St. Jude Medical.

MESH term: Pacemaker, Artificial [E07.305.250.750]

Comparison Conventional VVI(R) pacemaker.

MESH term: Pacemaker, Artificial [E07.305.250.750]

Outcomes

Efficacy Cardiovascular mortality;

Cardiovascular morbidity;

Patient related quality of life;

Exercise capacity;

Pacing performance.

Safety Complication rate.

Study design

Efficacy Randomised controlled trials (Non-inferiority)5;

4 Only in specific instances, where other pacing modes (dual-pacing, atrial pacing) are not recommended 5 Randomised controlled trials comparing leadless pacemakers with traditional pace-makers are desired, since they are

appropriate (adequate number of patients, inter-vention not urgent) and ethical (clinical equipoise, patients able to give

consent) and necessary due to small plausible effect sizes. Blinding of operators and patients how-ever is not possible, and

placebo-controlled trials would be unethical due to the avail-ability of an effective treatment

Page 17: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

17

Prospective non-randomised controlled trials.

Safety Randomised controlled trials;

Prospective non-randomised controlled trials;

Prospective case series or registries with >100 patients.

PICO research question: Are leadless pacemakers in comparison to conventional pacemakers in

patients with indications for right ventricle pacing as effective concerning cardiovascular morbidity

and mortality, exercise capacity, and more effective and safe concerning patient-related quality of life

and complication rate? ESC – European Society of Cardiology; AV – atrioventricular; TPS – transcatheter pacing system; VVIR – Single-chamber

ventricular pacing with response modulation.

Target condition

Leadless pacemakers are developed as alternatives for traditional permanent cardiac

pacemakers for the treatment of a variety of cardiac arrhythmias. The natural pacemaker of the heart is

the sinus node located in the right atrium. Cardiac bradyarrhythmias (bradycardia associated with

arrhythmia) are mainly due to either the incapacity of the sinus node to produce enough number of

impulses per minute (sinus node disease) or the disturbance in atrioventricular (AV) conduction. Also,

bradycardia can be associated with atrial fibrillation (AF), which is an abnormal heart rhythm

characterized by rapid and irregular beating. (A0001)

The purpose of cardiac pacing is to provide an appropriate heart rate and heart response to

reestablish effective circulation and more normal haemodynamics that are compromised by a slow heart

rate (bradycardia or bradyarrhythmia: <60 beats per minute). Permanent pacemaker implantation is

further considered to alleviate symptoms associated with a bradyarrhythmia (e.g. dizziness, light-

headedness, syncope, fatigue, poor exercise tolerance) or to prevent the possible worsening of the

rhythm disturbance. (A0001)

In the scope of this assessment are cardiac arrhythmias in adults for which single-chamber

ventricular pacing (VVI) is indicated. VVI pacing mode is the method of choice for patients with

chronic atrial fibrillation who require a pacemaker due to slow ventricular response (atrioventricular

block, Class I recommendation). (A0002)

Bradyarrhythmias requiring cardiac pacing can be caused by a variety of aetiologies. Intrinsic

causes are: idiopathic (ageing) degeneration; ischaemic heart disease; infiltrative diseases (e.g.

sarcoidosis, amyloidosis, haemochromatosis); collagen vascular diseases (e.g. systemic lupus

erythematosus, rheumatoid arthritis, scleroderma); congenital diseases, including sinus node and AV

node disease; infective diseases (e.g. Lyme disease); surgical trauma: valve replacement (including

percutaneous aortic replacement), heart transplantation. (A0003)

The natural history and the role of pacing differ depending on the type of bradyarrhythmia. In

patients with untreated AV block, death can occur due to heart failure secondary to low cardiac output

or to sudden cardiac death caused by prolonged asystole or bradycardia-triggered ventricular

tachyarrhythmia. Total survival and the risk of sudden cardiac death of patients with sinus node disease

(SND) are similar to the general population. There is a strong consensus that patients with SND will

benefit from cardiac pacing for symptom relief (only). (A0004)

Target population

Leadless pacemakers are intended to be used as replacement for conventional single-chamber

right ventricular pacemakers. The target population consists of the patients in which this pacing mode is

indicated. (A0007; A0023)

Symptoms are present if bradycardia is severe enough to compromise blood flow: they may

comprise fatigue, dizziness, syncope (fainting), dyspnoea, chest pain, weakness and a reduced exercise

Page 18: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

18

capacity. Up to 6% of patients experience major complications within the first 6 months following

implantation of cardiac electronic devices (all types), with lead-related reintervention being the single

most common complication. (A0005)

The prevalence of indications requiring single-chamber pacemaker implantation is unclear. In

2015 over 110,000 patients with cardiac arrhythmias were recorded in Lithuania. There were about

1,500 pacemaker implantations in Lithuania in 2005, and the number is growing each year. (A0006;

A0011)

Current clinical management of the disease or health condition

There is no defined heart rate below which treatment is indicated. When deciding on the need

for cardiac pacing, the correlation between symptoms and bradyarrhythmia needs to be established. The

diagnosis of bradyarrhythmia is usually made from a standard electrocardiogram (ECG) when

persistent, and from a standard ECG or more prolonged ECG recordings when intermittent. Provocative

testing or an electrophysiological study may be required when a bradycardia is suspected but not

documented. (A0024)

The decision regarding pacemaker implantation and choice of pacing mode is based on three

clinical factors: the location of the conduction abnormality, the presence of symptoms and their

association with the bradyarrhythmia, and the absence of a reversible cause. VVI pacing mode is the

method of choice for patients with chronic atrial fibrillation who require a pacemaker due to slow

ventricular response (atrioventricular block, Class I recommendation). In patients with acquired AV

block (but no AF) or sinus node disease, the condition can be managed with either a single or dual

chamber pacemaker. Also, sinus bradycardia is only an indication for pacing if bradycardia is

symptomatic, if the symptoms can be attributed to sinus bradycardia and if a reversible cause can be

excluded. (A0025)

Regulatory & reimbursement status

Nanostim™: After the LEADLESS trial in October 2013, St. Jude Medical received CE mark

approval (for European commercialization) to market the Nanostim™ leadless pacemaker in the

European Union. A trial designed to investigate Nanostim™ for the United States Food and Drug

Administration (FDA) approval was initiated in February 2014. The device has not yet been approved

by FDA, Health Canada or Therapeutic Goods Administration (Australia). FDA approval of the device

is sought in 2016–2017. (A0020; A0021)

Micra™ Transcatheter Pacing System: Medtronic received CE mark for Micra™

Transcatheter Pacing System (TPS) in 2015. An FDA approval study on Micra™ TPS was initiated in

November 2013 and based on the favorable clinical results of the study, the FDA approved the Micra™

Transcatheter Pacing System for clinical use on April 2016. (A0020; A0021)

As yet there are no data available about the cost of these devices. Leadless pacemakers in

Australia are, however, significantly more expensive in comparison to conventional single chamber

pacemakers (11,300 EUR vs. 4,200 EUR). In a Horizon Scanning report published by the Italian group

AGENAS, the reported cost of the Nanostim device and implantation was 11,500 EUR, according to St

Jude Medical; however, costs were not available for the Micra™ TPS device from Medtronic Inc.

(Leadless) cardiac pacemakers are currently reimbursed in Lithuania via the DRG code F12A

and F12B Implantation or changing of a pacemaker (prices are 2,817.74 EUR and 1,439.21 EUR,

respectively). (A0020; A0021)

Page 19: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

19

Features of the technology

Leadless cardiac pacemakers (LCP) are self-contained intracardiac devices that are designed to

have the same function as traditional cardiac pacemakers, but are miniaturized and can be implanted

entirely inside the right ventricle of the heart via a steerable catheter. (B0001)

The first prototype of a completely endocardial implantable pacemaker was presented in 1970.

Since then, different leadless systems with different energy sources and myocardial fixation systems

have been developed, resulting in the CE certification of two right ventricular single-chamber

pacemaker systems: the Nanostim™ leadless cardiac pacemaker and the Micra™ TPS. These devices

share common characteristics, as they are both programmable, single-chamber ventricular pacemakers,

self-contained in a hermetically sealed capsule. Both have a volume of up to 1cm³, weight just 2 g and

thus are approximately ten times smaller than conventional VVI pacemakers. The devices have an

estimated battery longevity of approximately ten years, which is comparable to conventional

pacemakers. Both systems are delivered through the femoral vein, via 18 Fr (Nanostim™ LCP) and 23

Fr (Micra™ TPS) catheters, and have a docking feature which allows attachment to a catheter for

delivery, repositioning and retrieval. In theory, both systems offer a device retrieval option, allowing

repositioning or retrieval of the devices following implantation. There are some data on the removal of

implanted systems in animal studies and in humans. However, retrieval of the device requires

confirmation and rationale is to add another pacemaker into the right ventricle and this is possible due to

the small size of the device. (B0001; B0003)

Main differences between the systems are related to the fixation mechanism: Nanostim™ LCP

uses a screw-in helix and a secondary fixation mechanism of three nylon tines, whereas the Micra™

TPS uses four self-expanding nitinol tines. (B0001)

In conventional pacemakers, a separate pulse generator containing the battery and the

machinery for sensing and timing of the electrical impulses is placed in a (most commonly) pectoral

subcutaneous pocket. The electrical impulses are delivered from the generator directly to the heart

through one or more transvenous leads, depending on the desired pacing mode. The majority of

conventional pacemakers are capable of several pacing modes. (B0001)

In contrast to traditional pacemakers, leadless pacemakers do not require the placement of an

external pulse generator in a surgical pocket in the chest and the transmission of impulses through

transvenous leads. The claimed benefit is accordingly the avoidance of complications associated with

these two components of traditional pacemaker implantation. The subcutanous pocket has a potential for

local complications such as skin erosion, pocket haematoma and pocket infection. In up to six out of ten

patients, it causes reduced mobility in the shoulder region where the pulse generator is placed. Lead-

related complications include venous obstructions, insulation breaks, lead dislodgements, electrical

malfunction, lead fractures and infection. Of particular concern are infections requiring lead extraction,

as the procedure is associated with a high risk of complications. The longer the leads are in place, the

greater the risk. (B0001; B0002)

Additional benefits are expected with regards to shorter procedure and recovery times and a

better quality of life as a result of the maintenance of shoulder mobility and the absence of a lump or

scar. (B0002)

Moreover, it is estimated that up to 75% of pacemaker patients are expected to develop an

indication for an MRI scan over the lifetime of their device. Pre-clinical MRI testing has consistently

shown the incompatibility of traditional pacing systems and the MRI environment, which may

compromise the patient’s health and/or damage the device. In addition, the Micra™ Transcatheter

Pacing System is designed to allow patients to safely undergo MRI scans, in both 1.5 and 3 Tesla MRI

scanners; the Nanostim™ device allows patients to safely undergo MRI scans in 1.5 Tesla MRI

scanners. (B0002)

Page 20: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

20

Investments and tools required to use the technology

Both LCP and traditional pacemakers are provided in specialised centres with interventional

cardiology in the cardiac catheterization, laboratory sedative medication and local anaesthesia. LCP

implantation further requires fluoroscopy to guide positioning of the device.

Setting and staff required for LCP implantation do not differ from traditional pacemaker

procedures. As with any novel implantation method or procedure, there is a learning curve for

implantation of the leadless pacemaker and additional training for medical specialists will be required.

(B0004; B0008; B0009)

Patient safety

The rates of serious adverse device effects ranged between 4% and 6.5% in the three case

series. However, data on the safety of transcatheter pacing are preliminary and have been limited to a

few reports from nonrandomized studies. (C0008)

There was one patient with cardiac injury (cardiac tamponade) in the LEADLESS I trial, eight

injuries (cardiac perforations with/without tamponade or pericardial effusions) in LEADLESS II and 11

injuries (cardiac perforations or effusions) in the Micra™ Transcatheter Pacemaker Study. Six

dislodgements were reported with the Nanostim™ device, but none with the Micra™ TPS system. Other

serious adverse events that were attributable either to the device or the procedure included vascular

complications, arrhythmia during device implantation and elevated pacing thresholds requiring retrieval

and implantation of a new device. (C0008)

There are not enough data to answer the question about the susceptible patient groups that are

more likely to be harmed through the use of the technology. Also, it is unknown whether long-term

retrieval of the pacemaker after several years of implantation in patients will be possible. An alternative

replacement strategy could be – to place an additional device next to the initial device, without

compromising the right ventricular volume capacity and overall function. For this strategy, it is

important to realize that the LCP only takes up 1.0 ml of volume in the right ventricle, but also that

evidence of these strategies is currently lacking. (C0005; C discussion)

Leadless pacemakers and conventional single-chamber ventricular pacemakers are associated

with user-dependent harms due to the risk of serious adverse events related with the implantation

procedure. The influence of operator experience on the rate of device-related serious adverse events was

assessed in one case serie; The rate of device related serious adverse events was 6.8% for the initial 10

cases versus 3.6% for the subsequent implants (p=0.56). (C0007)

Mortality

Leadless pacemakers are not expected to have a beneficial effect on mortality compared to

conventional VVI pacemakers. Overall mortality ranged from 3 to 5% and cardiac mortality ranged

from 0.8 to 1%. (D0001)

Procedural mortality was reported in all three studies. In LEADLESS I trial, one patient had a

perforation during the implantation procedure and died of a massive cerebral artery ischaemic infarct.

Two procedure-related (but classified as non-device-related) deaths were reported in the LEADLESS II

cohort: in one patient LCP implantation was complicated by a large groin haematoma; the second

subject underwent an unsuccessful LCP implant complicated by pericardial effusion. In the Micra

Transcatheter Pacemaker Study cohort, one death was adjudicated as related to the transcatheter

implantation procedure: the patient had a prolonged procedure time due to a concomitant AV node

ablation and end stage renal disease and the cause of death was perceived to be metabolic acidosis.

(D0003)

Page 21: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

21

Function

A leadless intracardiac transcatheter pacing system has been designed to avoid the need for a

pacemaker pocket and transvenous lead (the electrodes are positioned on the pacemaker capsule),

thereby eliminating an important source of complications associated with traditional pacing systems

while providing similar benefits. (D discussion)

Notably, excessive ventricular pacing has been associated with worse cardiovascular outcomes.

Some have proposed that LCPs may increase risk of arrhythmia due to their larger point of endocardial

contact when compared to conventional pacing systems, although excessive arrhythmic events have not

been noted in prospective trials. (D discussion)

Quality of life

The lack of a generator pocket has some advantages as well both in terms of patient comfort

(and quality of life) and infectious risk. However, health-related quality of life was not assessed in the

studies. Also, it is unclear, if the avoidance of lead/ generator complications translates in a relevant

benefit for the patients. (D discussion)

Page 22: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

22

HEALTH PROBLEM AND CURRENT USE OF THE TECHNOLOGY

Research questions ID Question

A0001 For which health conditions, and for what purposes are leadless pacemakers used?

A0002 What is the disease or health condition in the scope of this assessment?

A0003 What are the known risk factors for cardiac arrhythmias?

A0004 What is the natural course of cardiac arrhythmias?

A0005 What are the consequences of cardiac arrhythmias for the society?

A0006 What is the burden of disease for patients with cardiac arrhythmias?

A0007 What is the target population in this assessment?

A0023 How many people belong to the target population?

A0011 How much are leadless pacemakers utilised?

A0020 What is the marketing authorisation status of leadless pacemakers?

A0021 What is the reimbursement status of leadless pacemakers?

A0024 How are cardiac arrhythmias currently diagnosed according to published guidelines

and in practice?

A0025 How are cardiac arrhythmias currently managed according to published guidelines and

in practice?

Overview of the disease or health condition

A0001. For which health conditions, and for what purposes are leadless pacemakers used?

Leadless pacemakers are developed as alternatives for traditional permanent cardiac

pacemakers for the treatment of a variety of cardiac arrhythmias. The natural pacemaker of the heart is

the sinus node located in the right atrium. It generates around 70 regular electrical impulses per minute

(at rest), that are conducted across the rest of the heart. This triggers contraction of the atriums followed

by the contraction of the ventricles allowing the blood flow. Cardiac bradyarrhythmias (bradycardia

associated with arrhythmia) are mainly due to either the incapacity of the sinus node to produce enough

number of impulses per minute (sinus node disease) or the disturbance in atrioventricular (AV)

conduction.

Atrial fibrillation is an abnormal heart rhythm characterized by rapid and irregular beating, but

can be associated with bradycardia. The principal reason to place a pacemaker in a patient with atrial

fibrillation (AF) is to treat symptomatic bradycardia. Pacing has not been shown to prevent the

development of AF.

The purpose of cardiac pacing is to provide an appropriate heart rate and heart response to

reestablish effective circulation and more normal haemodynamics that are compromised by a slow heart

rate (bradycardia or bradyarrhythmia: <60 beats per minute). Permanent pacemaker implantation is

further considered to alleviate symptoms associated with a bradyarrhythmia (e.g. dizziness, light-

headedness, syncope, fatigue, poor exercise tolerance) or to prevent the possible worsening of the

rhythm disturbance [1].

A0002. What is the disease or health condition in the scope of this assessment?

In the scope of this assessment are cardiac arrhythmias in adults for which single-chamber

ventricular pacing (VVI) is indicated. Guidelines for implantation of permanent pacemakers have been

Page 23: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

23

established by the American College of Cardiology, the American Heart Association and the Heart

Rhythm Society (ACC/AHA/HRS) [2,3] and by the European Society of Cardiology (ESC) [4].

VVI pacing mode is the method of choice for patients with chronic atrial fibrillation (AF; ICD-

10-AM: I44) who require a pacemaker due to slow ventricular response (atrioventricular (AV) block,

Class I recommendation [4]).

This pacing mode may be considered for patients with AV block, even in the absence of AF, on

an individual basis, but in general is not considered the first choice [4]. In patients with sinus node

disease (SND, also sick sinus syndrome) as well as in patients with atrial fibrillation, pacing is only

indicated if bradycardia causes symptoms. Dual-chamber pacing is recommended over VVI pacing

[2,3,4].

A0003. What are the known risk factors for cardiac arrhythmias?

Bradyarrhythmias requiring cardiac pacing can be caused by a variety of aetiologies [4].

Intrinsic causes are:

Idiopathic (ageing) degeneration;

Ischaemic heart disease;

Infiltrative diseases (e.g. sarcoidosis, amyloidosis, haemochromatosis);

Collagen vascular diseases (e.g. systemic lupus erythematosus, rheumatoid arthritis,

scleroderma);

Congenital diseases, including sinus node and AV node disease;

Infective diseases (e.g. Lyme disease);

Rare genetic diseases;

Surgical trauma: valve replacement (including percutaneous aortic replacement), heart

transplantation;

Intended or unintended AV block due to catheter ablation procedure.

Extrinsic causes are:

Physical training (sports);

Vagal reflex: vasovagal, situational, carotid sinus syndrome;

Idiopathic paroxysmal AV block;

(Adverse) drug effects;

Cocaine abuse and other recreational drugs;

Electrolyte imbalance: hypokalaemia, hyperkalaemia;

Metabolic disorders: hypothyroidism, hypothermia, anorexia nervosa;

Neurological disorders;

Obstructive sleep apnoea.

A0004. What is the natural course of cardiac arrhythmias?

The natural history and the role of pacing differ depending on the type of bradyarrhythmia. In

patients with untreated AV block, death can occur due to heart failure secondary to low cardiac output

or to sudden cardiac death caused by prolonged asystole or bradycardia-triggered ventricular

tachyarrhythmia. Several observational studies indicate that pacing prevents recurrence of syncope and

improves survival [4].

Total survival and the risk of sudden cardiac death of patients with SND are similar to the

general population [5,6]. There is a strong consensus that patients with SND will benefit from cardiac

pacing for symptom relief (only) [4].

Page 24: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

24

Effects of the disease or health condition on the individual and society

A0005. What is the burden of disease for patients with cardiac arrhythmias?

Symptoms are present if bradycardia is severe enough to compromise blood flow: they may

comprise fatigue, dizziness, syncope (fainting), dyspnoea, chest pain, weakness and a reduced exercise

capacity.

Major complications associated with the implantation of a single-chamber right ventricular

pacemaker include lead-related reinterventions, local infections requiring reintervention, device-related

systemic infections, endocarditis, pneumothorax requiring drainage, cardiac perforation, pocket

revisions because of pain, generator-lead interface problems requiring reintervention, haematomas

requiring reintervention, deep venous thrombosis, Twiddler’s syndrome, wound revisions, stroke,

myocardial infarctions, and procedure-related deaths. Minor complications include haematomas

resulting in a prolonged hospital stay, hospital readmissions, additional outpatient visits, wound

infections treated with antibiotics, conservatively treated pneumothorax, and lead dislodgements without

reintervention [7,8].

Up to 6% of patients experience major complications within the first 6 months following

implantation of cardiac electronic devices (all types), with lead-related reintervention being the single

most common complication, followed by infections, pneumothorax and cardiac perforation. For single-

chamber pacemakers, this risk is however significantly lower, with 3.3% experiencing any major

complication [8]. Also the risk of lead complications is lower for single-chamber right ventricular

pacemakers compared to other pacemaker types [9].

A0006. What are the consequences of cardiac arrhythmias for the society?

The prevalence of indications requiring single-chamber pacemaker implantation is unclear. In

2015 over 110,000 patients with cardiac arrhythmias were recorded in Lithuania [10]. Each year there

are about 6,000 pacemaker implantations in Austria, of which approximately one third are single-

chamber pacemakers [11,12]. There were about 1,500 pacemaker implantations in Lithuania in 2005,

and the number is growing each year [13].

Current clinical management of the disease or health condition

A0024. How are cardiac arrhythmias currently diagnosed according to published guidelines and

in practice?

There is no defined heart rate below which treatment is indicated. When deciding on the need

for cardiac pacing, the correlation between symptoms and bradyarrhythmia needs to be established. The

diagnosis of bradyarrhythmia is usually made from a standard electrocardiogram (ECG) when

persistent, and from a standard ECG or more prolonged ECG recordings (ambulatory monitoring or

implantable loop recorder) when intermittent. Provocative testing or an electrophysiological study may

be required when a bradycardia is suspected but not documented. This strategy is based on the

assumption that provoked abnormalities will have the same mechanism as spontaneous episodes. (Long-

term) ECG monitoring has the advantage of high diagnostic accuracy, whereas provocative testing is

faster, but more prone to misdiagnosis [4].

Page 25: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

25

A0025. How are cardiac arrhythmias currently managed according to published guidelines and in

practice?

The decision regarding pacemaker implantation and choice of pacing mode is based on three

clinical factors: the location of the conduction abnormality, the presence of symptoms and their

association with the bradyarrhythmia, and the absence of a reversible cause (Figure 1).

SND – sinus node disease; AV – atrioventricular; AF – atrial fibrillation; AVM – AV delay management.

For nomenclature of pacing modes see Table 1 (question B0001): Revised NBG code for pacing nomenclature [14]

Figure 1. Choice of the pacing mode (ESC guidelines, [4])

VVI pacing mode is the method of choice for patients with chronic atrial fibrillation (AF; ICD-

10-AM: I44) who require a pacemaker due to slow ventricular response (atrioventricular (AV) block,

Class I recommendation [4]).

Atrioventricular (AV) block is defined as a delay or interruption in the transmission of an

impulse from the atria to the ventricles due to an anatomical or functional impairment in the conduction

system. The conduction can be delayed, intermittent, or absent. The commonly used classification

includes first degree (slowed conduction without loss of atrioventricular synchrony), second degree

(intermittent loss of atrioventricular conduction, often in a regular pattern, e.g., 2:1, 3:2, or higher

degrees of block), and third degree or complete AV block [1].

In patients with acquired AV block (but no AF) or sinus node disease (SND), the condition can

be managed with either a single or dual-chamber pacemaker. Dual-chamber pacing is recommended

over single chamber ventricular pacing for avoiding pacemaker syndrome, lowering the risk of

developing AF and improving quality of life (class IIa recommendation, [4]). However, the decision

should take into account the increased complication risk and costs of dual-chamber pacing.

Sinus bradycardia (SB) is a rhythm in which fewer impulses than the normal number arise from

the sinoatrial node. It is caused by a primary sinus node dysfunction or by other conditions (drugs, acute

myocardial infarction, obstructive sleep apnoea, etc.). In general, SB is only an indication for pacing if

bradycardia is symptomatic, if the symptoms can be attributed to SB and if a reversible cause can be

Page 26: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

26

excluded. Dual-chamber pacing is the pacing mode of first choice and unnecessary right ventricular

pacing should be avoided since it may cause AF and deterioration of heart failure. In the subset of

patients with SND in whom AV conduction is intact, single-chamber is feasible (AAI mode); atrial

pacemakers are recommended over ventricular pacemakers [4].

Target population

A0007. What is the target population in this assessment?

A0023. How many people belong to the target population?

Leadless pacemakers are intended to be used as replacement for conventional single-chamber

right ventricular pacemakers. The target population consists of the patients in which this pacing mode is

indicated. There are no data available on the number of patients belonging to the target population.

A0011. How much are leadless pacemakers utilised?

Estimates of the expected yearly utilisation of leadless pacemaker vary from 270 to 2,400

implantations in Austria. There were about 1,500 pacemaker implantations in Lithuania in 2005, but the

number is growing each year [13]. However, the specific and current number of pacemaker

implantations in Lithuania is unknown without data from National Health Insurance Fund.

Regulatory & reimbursement status

A0020. What is the marketing authorisation status of leadless pacemakers?

A0021. What is the reimbursement status of leadless pacemakers?

Nanostim™ Leadless Pacemaker (St. Jude Medical, USA)

Europe: After the LEADLESS trial in October 2013, St. Jude Medical received CE mark

approval (for European commercialization) to market the Nanostim™ leadless pacemaker in the

European Union (EU). According to the EU registry, the Leadless Observational Study (NCT02051972)

is ongoing in Europe with sites in the United Kingdom, Germany, Italy, the Czech Republic, France,

Spain, and the Netherlands with a planned enrolment of 1,000 patients and follow-up for 5 years. Data

from 300 patients with 6 months of follow-up will be used to meet the post market clinical follow-up

requirements for CE marking.

The United States, Canada and Australia: A trial designed to investigate Nanostim™ for the

United States Food and Drug Administration (FDA) approval was initiated in February 2014

(NCT02030418). Sites from the USA, Canada and Australia participated in the LEADLESS II study.

The enrolments (667 patients) were completed in 2015 and the pre-specified safety/effectiveness

endpoints were met. FDA has provided approval to enrol up to 900 additional patients in the continued

access phase and enrolments are underway. The device has not yet been approved by FDA, Health

Canada or Therapeutic Goods Administration (TGA) (Australia). FDA approval of the device is sought

in 2016–2017.

Japan: Enrolments in the Leadless Japan pre-market study are underway and the plan is to enrol

22 Japanese patients in the study to meet the primary endpoint analysis [15].

Micra™ Transcatheter Pacing System (TPS) (Medtronic Inc., Ireland)

Medtronic received CE mark for Micra™ Transcatheter Pacing System (TPS) in 2015. An

FDA approval study on Micra™ TPS was initiated in November 2013 (NCT02004873). The FDA

evaluated data from a clinical trial of 719 patients implanted with the Micra device, which found that 98

percent of patients in the trial had adequate heart pacing (known as pacing capture threshold) six months

Page 27: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

27

after the device was implanted. Complications occurred in fewer than 7 percent of participants in the

clinical trials and included prolonged hospitalizations, blood clots in the legs (deep vein thrombosis) and

lungs (pulmonary embolism), heart injury, device dislocation and heart attacks [16]. Based on the

favorable clinical results of the Micra Transcatheter Pacing Study, the FDA approved the TPS system

for clinical use on April 2016 [17,18].

As yet there are no data available about the cost of these devices. Conventional single chamber

pacemakers currently available in Australia are listed on the Australian Prostheses List at a price of

around 4,200 EUR (priced between 881 EUR and 4,406 EUR). Leadless pacemakers are, however,

significantly more expensive in comparison to conventional single chamber pacemakers (11,300 EUR

vs. 4,200 EUR). In a Horizon Scanning report published by the Italian group AGENAS, the reported

cost of the Nanostim device and implantation was 11,500 EUR, according to St Jude Medical; however,

costs were not available for the Micra™ TPS device from Medtronic Inc. [19].

(Leadless) cardiac pacemakers are currently reimbursed in Lithuania via the DRG code F12A

and F12B Implantation or changing of a pacemaker (prices are 2,817.74 EUR and 1,439.21 EUR,

respectively) [20].

Discussion

Millions of people worldwide experience irregular heartbeats, called arrhythmias, at some point

in their lives. Most of the time, they are harmless and happen in healthy people free of heart disease.

However, some abnormal heart rhythms can be serious or even deadly [21]. As for instance, bradycardia

is a sign of a problem with the heart's electrical system. It means that the heart's natural pacemaker isn't

working right or that the electrical pathways of the heart are disrupted. In severe forms of bradycardia,

the heart beats so slowly that it doesn't pump enough blood to meet the body's needs. Men and women

age 65 and older are most likely to develop a slow heart rate that needs treatment, usually with a

pacemakers [22].

Nearly 1 million people worldwide are implanted with pacemakers each year [17,23,24,25],

and despite advances in pacemaker and lead technology, nearly 10 % of patients undergoing device

implantation suffer from procedure-related complications that are associated with significant health care

cost, patient morbidity, and mortality [17,25]. However, now there are leadless pacemakers that are

developed as alternatives for traditional permanent cardiac pacemakers for the treatment of a variety of

cardiac arrhythmias bradyarrhythmias [1,26]. Leadless pacemaker does not require the use of wired

leads to provide an electrical connection between the pulse-generating device and the heart and is

implanted directly in the right ventricle chamber of the heart [16].

Leadless pacemakers are only appropriate for patients with a single-chamber pacing indication

and not suitable for dual-chamber sensing and pacing. In Europe, VVI indications account for 20% to

30% of all new pacemaker implantations, but on a global scale, the percentage of VVI pacing is higher

due to the high number of single-chamber pacemakers in developing countries [24].

In a number of patients, the implantation of a transvenous pacemaker system is precluded

because of conditions such as compromised venous access, the need to preserve veins for

haemodialysis, thrombosis, a history of infection, or the need for an indwelling venous catheter. While

leadless pacemakers potentially represent the only treatment alternative in these patients, it remains to

be demonstrated that these patients are not at increased risk for complications associated with the

implantation procedure [15].

Page 28: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

28

DESCRIPTION AND TECHNICAL CHARACTERISTICS OF THE

LEADLESS PACEMAKERS

Research questions ID Question

B0001 What are leadless pacemakers and conventional single-chamber ventricular

pacemakers?

B0002 What is the claimed benefit of leadless pacemakers in relation to conventional single-

chamber ventricular pacemakers

B0003 What is the phase of development and implementation of leadless pacemakers and

conventional single-chamber ventricular pacemakers?

B0004 Who administers leadless pacemakers and conventional single-chamber ventricular

pacemakers and in what context and level of care are they provided?

B0008 What kind of special premises are needed to use leadless pacemakers and conventional

single-chamber ventricular pacemakers?

B0009 What supplies are needed to use leadless pacemakers and conventional single-chamber

ventricular pacemakers?

Features of the technology and comparators

B0001. What are leadless pacemakers and conventional single-chamber ventricular pacemakers?

Leadless cardiac pacemakers (LCP) are self-contained intracardiac devices that are designed to

have the same function as traditional cardiac pacemakers, but are miniaturized and can be implanted

entirely inside the right ventricle of the heart via a steerable catheter [27]. In conventional pacemakers, a

separate pulse generator containing the battery and the machinery for sensing and timing of the

electrical impulses is placed in a (most commonly) pectoral subcutaneous pocket. The electrical

impulses are delivered from the generator directly to the heart through one or more transvenous leads,

depending on the desired pacing mode [28]. The majority of conventional pacemakers are capable of

several pacing modes, such as single-chamber ventricular (VVI) or atrial pacing, or dual chamber

pacing. The current generation of single-unit LCP can only be used for single-chamber pacing,

specifically right ventricular pacing [28,29]. Pacing modes are classified according to a standardised

code (Table 1).

This limitation does not apply to multi-component leadless pacing systems using ultrasound or

induction to deliver electrical impulses from a separate generator to the heart; these systems are however

not the subject of the present report, which is restricted to fully self-contained leadless pacemakers.

Table 1. Revised NBG code for pacing nomenclature [14].

Position I II III IV V

Category Chamber(s)

paced

Chamber(s)

sensed

Response to

sensing

Rate

modulation

Multisite

pacing

0 = None

A = Atrium

V = Ventricle

D = Dual

(A+V)

0 = None

A = Atrium

V = Ventricle

D = Dual (A+V)

0 = None

T = Triggered

I = Inhibited

D = Dual (T+I)

0 = None

R = Rate

modulation

0 = None

A = Atrium

V = Ventricle

D = Dual

(A+V)

Page 29: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

29

Marketed products

Currently two leadless pacing systems are available: the Nanostim™ leadless cardiac

pacemaker and the Micra™ transcatheter pacing system (TPS) (see Table 2 for a comparison of the

specifications). These devices share common characteristics, as they are both programmable, single-

chamber ventricular pacemakers, self-contained in a hermetically sealed capsule [30]. Both have a

volume of up to 1 cm³, weight just 2 g and thus are approximately ten times smaller than conventional

VVI pacemakers [23,27,28]. The devices have an estimated battery longevity of approximately ten

years, which is comparable to conventional pacemakers [27,28]. Both systems are delivered through the

femoral vein, via 18 Fr (Nanostim™ LCP) and 23 Fr (Micra™ TPS) catheters, and have a docking

feature which allows attachment to a catheter for delivery, repositioning and retrieval [31]. The tip of the

capsule includes a monolithic controlled release device (MCRD). The MCRD elutes glucocorticosteroid

to reduce acute inflammation at the implantation site [30]. In theory, both systems offer a device

retrieval option, allowing repositioning or retrieval of the devices following implantation [27,28,32].

There are some data on the removal of implanted systems in animal studies [23] and in humans [25,33].

However, retrieval of the device requires confirmation and rationale is to add another pacemaker into

the right ventricle and this is possible due to the small size of the device. In younger patients, this might

cause problems down the line due to a large amount of systems being placed within the ventricle

[23,25].

Main differences between the systems are related to the fixation mechanism: Nanostim™ LCP

uses a screw-in helix and a secondary fixation mechanism of three nylon tines, whereas the Micra™

TPS uses four self-expanding nitinol tines [28].

There is another completely leadless ultrasound-based pacing system called Wireless Cardiac

Stimulation System (WiCSTM-LV system), manufactured by EBR Systems, Inc. (Sunnyvalle, CA,

USA). However, this system is specifically designed to deliver left ventricular endocardial pacing [24]

for cardiac resynchronization therapy (CRT) [17].

Table 2. Specifications of fully self-contained leadless cardiac pacemakers.

Nanostim™ leadless cardiac

pacemaker

Micra™ transcatheter pacing

system

Manufacturer St. Jude Medical Medtronic

Volume (cm³) 1 0.8

Size (h x w), maximum

thickness, mm

42 x 5.99 25.9 x 6.7

Weight, g 2 2

Fixation mechanism Screw-in helix (+ nylon tines) Self-expanding nitinol tines

Pacing mode VVI(R) VVI(R)

Battery longevity (years) 9.8 10

Battery Lithium carbon mono-fluoride Lithium silver vanadium oxide/

carbon mono-fluoride

Device retrieval option Yes Practically no

CE mark Yes, October 2013 Yes, April 2015

FDA approval No, investigational device Yes, April 2016

According to the manufacturer’s website [34] Nanostim™ leadless pacemaker is indicated for:

Chronic atrial fibrillation with 2 or 3° atrioventricular block (AV) or bifascicular bundle branch

block (BBB),

Normal sinus rhythm with 2 or 3° AV or BBB block and a low level of physical activity or short

expected lifespan, or

Page 30: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

30

Sinus bradycardia with infrequent pauses or unexplained syncope with electrophysiological

findings.

According to the product manual [35], the Micra™ Transcatheter Pacing System is indicated

for use to improve cardiac output, prevent symptoms, or protect against arrhythmias related to cardiac

impulse formation or conduction disorders. The device is indicated for use in patients who are

experiencing exercise intolerance or exercise restrictions related to an arrhythmia. The device is

designed to be used only in the right ventricle.

B0002. What is the claimed benefit of leadless pacemakers in relation to conventional single-

chamber ventricular pacemakers?

In contrast to traditional pacemakers, leadless pacemakers do not require the placement of an

external pulse generator in a surgical pocket in the chest and the transmission of impulses through

transvenous leads. The claimed benefit is accordingly the avoidance of complications associated with

these two components of traditional pacemaker implantation. The subcutanous pocket has a potential for

local complications such as skin erosion, pocket haematoma and pocket infection. In up to six out of ten

patients, it causes reduced mobility in the shoulder region where the pulse generator is placed [23,36].

Lead-related complications include venous obstructions, insulation breaks, lead dislodgements,

electrical malfunction, lead fractures and infection. Of particular concern are infections requiring lead

extraction, as the procedure is associated with a high risk of complications. The longer the leads are in

place, the greater the risk. Therefore, these risks are unlikely to affect older individuals; they are a

significant consideration when counseling younger patients or those with a longer expected life span

[7,9,32].

Additional benefits are expected with regards to shorter procedure and recovery times and a

better quality of life as a result of the maintenance of shoulder mobility and the absence of a lump or

scar. Moreover, it is estimated that up to 75% of pacemaker patients are expected to develop an

indication for an MRI scan over the lifetime of their device. Pre-clinical MRI testing has consistently

shown the incompatibility of traditional pacing systems and the MRI environment, which may

compromise the patient’s health and/or damage the device. In addition, the Micra™ Transcatheter

Pacing System is designed to allow patients to safely undergo MRI scans, in both 1.5 and 3 Tesla MRI

scanners. Micra™ is equipped with the MRI SureScan™ feature, which permits a mode of operation

that allows a patient to safely undergo an MRI procedure. In contrast to traditional pacing systems,

SureScan™ pacemakers have hardware modifications that reduce or eliminate MRI associated hazards

such as device malfunction or device heating [37].

In March 2016, the manufacturer of the Nanostim™ leadless pacemakers also announced CE

Mark approval and availability for patients with Nanostim™ device to undergo MRI scans in 1.5 Tesla

scanners [38].

B0003. What is the phase of development and implementation of leadless pacemakers and

conventional single-chamber ventricular pacemakers?

The first-in-human pacemaker implantation was performed in Stockholm on 8 October 1958 by

Ake Senning and Rune Elmquist on a patient desperately in need of a pacemaker due to a third degree

atrio-ventricular block. Currently, conventional single-chamber ventricular pacemakers are a well-

established standard technique [4,29].

The notion of miniaturized intracardiac pacemaker systems that could eliminate the need for

transvenous leads was conceptualized early in the development of pacemaker technology. Initial

pacemakers were limited by poor lead and battery longevity [17]. The first prototype of a completely

endocardial implantable pacemaker was presented in 1970. Since then, different leadless systems with

Page 31: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

31

different energy sources and myocardial fixation systems have been developed, resulting in the CE

certification of two right ventricular single-chamber pacemaker systems (Nanostim™; St. Jude Medical,

St. Paul, MN, USA, and Micra™; Medtronic, Minneapolis, MN, USA) [23,31]. Leadless pacemakers

still are an emerging technology, not yet established in use. The technology represents a modification of

the existing pacemaker technology.

Administration, Investments, personnel and tools required to use the technology and the

comparator(s)

B0004. Who administers leadless pacemakers and conventional single-chamber ventricular

pacemakers and in what context and level of care are they provided?

B0008. What kind of special premises are needed to use leadless pacemakers and conventional

single-chamber ventricular pacemakers?

B0009. What supplies are needed to use leadless pacemakers and conventional single-chamber

ventricular pacemakers?

Both LCP and traditional pacemakers are provided in specialised centres with interventional

cardiology in the cardiac catheterization, laboratory sedative medication and local anaesthesia. LCP

implantation further requires fluoroscopy to guide positioning of the device.

Setting and staff required for LCP implantation do not differ from traditional pacemaker

procedures. As with any novel implantation method or procedure, there is a learning curve for

implantation of the leadless pacemaker and additional training for medical specialists will be required.

Unlike an angiogram or electrophysiologic study where catheters are inserted and promptly removed,

implantation of a pacemaker via the femoral vein requires strict surgical sterile precautions (careful

prep, hat, mask, etc.). Preoperative prophylactic antibiotics should be administered as with any

implanted device [23,39].

Discussion

Since the first cardiac pacemaker was implanted in 1958, improvements in pacing technology

have been coupled to advances in engineering, material design, and computer sciences. In 1970,

Spickler and colleagues reported on the first experimental use of a leadless and completely intracardiac

pacemaker in dogs with complete heart block. The pacemaker consisted of a capsule measuring 8 mm

by 18 mm and containing the electrodes, Betacel power source, and circuitry. Despite being such a

remarkable technological achievement at the time, it failed to advance into clinical use in part due to

concerns about radiation toxicity. It was not until almost 45 years after its conception that the idea of a

self-contained intracardiac pacemaker came to fruition [17,40].

Despite the hype around this new technology, it is important to realize that the current

generation of single component LCPs have their own unanswered questions and limitations; single-

chamber pacing is indicated in only a small number of patients. The vast majority of patients in need for

cardiac pacing require a dual-chamber pacing system [17,29,33,40].

Other relevant issue is the retrieval or explantation of the device; both devices utilize a

catheter-based snare retrieval approach. In animal studies it was successfully shown that the LCP could

be easily retrieved and replaced as needed; there are case reports describing the successful extraction of

a leadless pacemaker during short-term follow-up in humans as well. Noteworthy, encapsulation of a

transcatheter implantable pacemaker is not yet fully understood, and the timing of optimal device

implantation and retrieval needs to be determined [23,31]. Success in very late retrieval or extraction of

the devices is unknown [32]. Therefore, it is possible to program intracardiac pacemakers into an Off

mode, which allows the scenario of implanting an additional device at the end of battery life or in case

of malfunction. Although space in the right ventricle is limited, recent evidence has indicated that the

Page 32: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

32

human right ventricle is able to accommodate at least three Micra™ devices within traditional, clinically

accepted pacing locations [29,37].

Also, this novel technique has learning curve-associated problems, which must be kept into

consideration. This is important because there are differences in implant procedure for each specific

device used, i.e. use of 23Fr catheter than 18Fr, when implanting MicraTM device as opposed to

NanostimTM. Also, NanostimTM is fixed to the heart using screws and MicraTM mainly by tines [23]. The

FDA panel members noted that training was also needed, because the tube that is fed through the blood

vessels is wider and tougher to maneuver than thinner catheters commonly used in other minimally

invasive procedures [41]. Both manufacturers have proposed training programmes in their FDA

submissions. However the extent to which the learning effect is able to significantly reduce acute

complications remains to be demonstrated [15].

Leadless technology is already the beginning of a new era in cardiac pacing, but due to the

existing limitations and unclear long-term performance, it will not replace conventional pacemaker

systems yet. At the moment, it is an additional tool in the treatment of patients in need for single-

chamber pacing. In the future, it is hoped that these devices will be used to manage key cardiovascular

disorders especially advanced heart failure requiring synchrony and bradycardia. After testing safety and

feasibility of LCPs as a whole, the most important developments needed are increased ease of operation

during implant and replacement, a longer battery life, and long-term working guarantee. With time it is

hoped that LCPs will evolve into a dual chamber device that allows for resynchronization therapy and

can function as an ICD, which can have both anti-tachycardia pacing (ATP) and defibrillator capability.

Medtronic MicraTM is already approved for full body MRI scans and adaptation of other devices to MRI

compatibility may also hasten LCPs’ clinical acceptance [23,29,40].

Page 33: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

33

SAFETY

Research questions ID Question

C0008 How safe are leadless pacemakers in comparison to conventional single-chamber

ventricular pacemakers?

C0005 What are the susceptible patient groups that are more likely to be harmed through the

use of the technology?

C0007 Are leadless pacemakers and conventional single-chamber ventricular pacemakers

associated with user-dependent harms?

Patient safety

C0008. How safe are leadless pacemakers in comparison to conventional single-chamber

ventricular pacemakers?

The rates of serious adverse device effects ranged between 4% and 6.5% in the three case

series. These studies are non-randomized and so the evaluation of this new technique over contemporary

systems is incomplete.

There was one patient with cardiac injury (cardiac tamponade) in the LEADLESS I trial [25],

eight injuries (cardiac perforations with/without tamponade or pericardial effusions) in LEADLESS II

[33] and 11 injuries (cardiac perforations or effusions) in the Micra™ Transcatheter Pacemaker Study

[42,43].

Six dislodgements were reported with the Nanostim™ device [33], but none with the Micra™

TPS system [42,43]. Other serious adverse events that were attributable either to the device or the

procedure included vascular complications [33], arrhythmia during device implantation [43] and

elevated pacing thresholds requiring retrieval and implantation of a new device [33,43].

C0005. What are the susceptible patient groups that are more likely to be harmed through the use

of the technology?

There are not enough data to answer this question. However, in one case serie [25] one patient

had a patent foramen ovale (PFO), through which the deflectable delivery sheath had inadvertently

transited; thereby permitting LCP access to the left ventricle. Although the patient did not experience

any permanent clinical sequelae, it is possible that had the event not been recognized it could have led to

an adverse outcome.

C0007. Are leadless pacemakers and conventional single-chamber ventricular pacemakers

associated with user-dependent harms?

Leadless pacemakers and conventional single-chamber ventricular pacemakers are associated

with user-dependent harms due to the risk of serious adverse events related with the implantation

procedure.

The influence of operator experience on the rate of device-related serious adverse events was

assessed in one case serie [33]. Cases were stratified according to the first 10 devices implanted by an

operator (470 implants) versus subsequent implants by the same operator (56 implants). The rate of

device related serious adverse events was 6.8% for the initial 10 cases versus 3.6% for the subsequent

implants (p=0.56).

Page 34: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

34

Discussion

For more than half a century, permanent cardiac pacing for symptomatic bradycardia has been

achieved with systems that consist of a surgically implanted subcutaneous electrical generator connected

to one or more transvenous leads that deliver the pacing therapy to the heart [42]. Although the efficacy

and safety of transvenous pacemaker therapy have incrementally improved and they help to improve

quality of life and reduce mortality in at-risk patients, this therapy is associated with procedure- and

device-related complications [24,25]. Approximately 10% of patients experience a short-term

complication related to transvenous implantation of the pacemaker. These may be due to either the pulse

generator (hematoma, skin breakdown, pocket infection) or venous access and lead implantation

(pneumothorax, cardiac tamponade, lead dislodgement). In the long-term, transvenous leads, often

considered the weakest link of the cardiac pacing system, can potentiate venous obstruction and are

prone to insulation breaks, conductor fracture and infection [17,25,33,40]. The incidence of pacemaker

lead fracture is about 1–4%. Most patients need immediate medical attention when lead fracture is

suspected especially if they are pacemaker-dependent [23].

The pursuit of leadless pacing options has long been of interest to reduce the complications that

can lead to interruption of pacemaker therapy, to hospitalization, or to death. As a result of advances in

battery chemistry and component design, pacemakers are now small enough to place within the heart;

leadless pacemakers can overcome many issues due to absence of leads and no requirement for a

surgical pocket [23,42].

However, data on the safety of transcatheter pacing are preliminary and have been limited to a

few reports from nonrandomized studies. Also, the initial experience with these two (Micra™,

Nanostim™) LCPs has highlighted several important safety considerations with the implantation

procedure and delivery systems [17,42]. Furthermore, there is the possibility of complications with a

leadless pacing system not seen with conventional pacing systems.

It is worth mentioning, there were two halts to the Nanostim™ trials in 2014 and 2015, due to

reports of serious adverse events, including perforation of the heart and dislodgement of the device; the

two products differ in the rates of dislocations (6 with Nanostim™ LCP vs. 0 with the Micra™ TCP).

The differences might be due to the different fixation technologies of the two products (see Table 2

(question B0001)). It is recommended to re-assess the fixation technology of the Nanostim™ LCP [15].

Also, the LCP has a wider diameter than conventional pacing leads, which raises the possibility of

mechanically-induced pro-arrhythmia [25]. Perforations related to leadless cardiac pacemakers may be

due in part to the relatively large diameter of the device as well [33].

The other issue is the implantation of LPC; the delivery of the implant requires a different

approach than that used for transvenous leads, with substantially larger venous access tools. Torturous

venous systems and anatomic variations may introduce additional challenges to implantation, therefore

this technique necessitates a solid training program for new implanters. Larger studies and serial follow-

up will be necessary to assess this, and other, potential complications [24,25,42].

Also, it is unknown whether long-term retrieval of the pacemaker after several years of

implantation in patients will be possible. Acute and subacute retrieval of the LCP is feasible, and

preclinical evidence shows that the device can be extracted up to 5 months post-implantation. The

device may get encapsulated over time and therefore may be difficult to capture and retrieve. Long-term

animal studies are under way that will evaluate the feasibility of late device retrieval. An alternative

replacement strategy could be to place an additional device next to the initial device, without

compromising the right ventricular volume capacity and overall function. For this strategy, it is

important to realize that the LCP only takes up 1.0 ml of volume in the right ventricle, but also that

evidence of these strategies is currently lacking [24].

Leadless cardiac devices have the potential to revolutionize the field, significantly reduce the

short and long-term complications related to transvenous leads, and improve patient morbidity and

mortality. However, despite the remarkable advantages of leadless pacing systems, the data are still

Page 35: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

35

quite limited and broad implementation of these technologies need to occur in a cautious and deliberate

fashion as the peri-procedural risks remains high; randomized control trials will be necessary to

determine clinical and cost benefit of LCPs as compared with conventional pacemaker systems [17].

Page 36: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

36

CLINICAL EFFECTIVENESS

Research questions ID Question

D0001 What is the expected beneficial effect of leadless pacemakers on mortality?

D0003 What is the effect of leadless pacemakers on the mortality due to causes other than

cardiac arrhythmia?

D0005 How do leadless pacemakers affect symptoms and findings (severity, frequency) of

cardiac arrhythmias?

D0006 How do leadless pacemakers affect progression (or recurrence) of cardiac arrhythmias

D0011 What is the effect of leadless pacemakers on patients’ body functions?

D0016 How does the use of leadless pacemakers affect activities of daily living

D0012 What is the effect of leadless pacemakers on generic health-related quality of life?

D0013 What is the effect of leadless pacemakers on disease-specific quality of life?

D0017 Was the use of leadless pacemakers worthwhile?

Mortality

D0001. What is the expected beneficial effect of leadless pacemakers on mortality?

Leadless pacemakers are not expected to have a beneficial effect on mortality compared to

conventional VVI pacemakers.

Overall mortality ranged from 3 to 5%. Cardiac mortality was reported in two studies with

0.8% [33] and 1% [42,43], respectively.

D0003. What is the effect of leadless pacemakers on the mortality due to causes other than cardiac

arrhythmia?

Procedural mortality was reported in all three studies [24,25,33,42,43]. In LEADLESS I trial,

one patient had a perforation during the implantation procedure, leading to cardiac tamponade. He died

of a massive cerebral artery ischaemic infarct five days later [24,25]. Two procedure-related (but

classified as non-device-related) deaths were reported in the LEADLESS II cohort: in one patient LCP

implantation was complicated by a large groin haematoma, the patient suffered fatal cardiac arrest 14

days later. The second subject underwent an unsuccessful LCP implant complicated by pericardial

effusion, developed atrial fibrillation two days after the operation and died 8 days after the failed LCP

implant [33]. In the Micra Transcatheter Pacemaker Study cohort, one death was adjudicated as related

to the transcatheter implantation procedure: the patient had a prolonged procedure time due to a

concomitant AV node ablation and end stage renal disease and the cause of death was perceived to be

metabolic acidosis [42].

Morbidity

D0005. How do leadless pacemakers affect symptoms and findings (severity, frequency) of cardiac

arrhythmias?

None of the studies reported results on symptoms associated with cardiac arrhythmias.

D0006. How do leadless pacemakers affect progression (or recurrence) of cardiac arrhythmias?

None of the studies reported results on progression of cardiac arrhythmias.

Page 37: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

37

None of the studies reported pacing-induced arrhythmias.

Function

D0011. What is the effect of leadless pacemakers on patients’ body functions?

None of the studies reported results on patient’s body functions.

D0016. How does the use of leadless pacemakers affect activities of daily living?

None of the studies reported results on exercise capacity.

Health-related quality of life

D0012. What is the effect of leadless pacemakers on generic health-related quality of life?

D0013. What is the effect of leadless pacemakers on disease-specific quality of life?

None of the studies reported results on health-related quality of life.

Patient satisfaction

D0017. Was the use of leadless pacemakers worthwhile?

None of the studies reported results on patient satisfaction.

Discussion

For almost 60 years, pacemaker therapy has been the standard of care for various

bradyarrhythmias [24]. Permanent cardiac pacing for symptomatic bradycardia has been achieved with

systems that consist of a surgically implanted subcutaneous electrical generator connected to one or

more transvenous leads that deliver the pacing therapy to the heart. Although cardiac pacemakers are

effective (improved quality of life and reduced mortality in at-risk patients), approximately one in eight

patients has an early complication, frequently related to the lead or leads or to the subcutaneous

“pocket” [24,25,42].

Recently, a leadless cardiac pacemaker has been introduced to potentially overcome some of

these short- and long-term outcomes [24]. Leadless pacemakers are not expected to have a beneficial

effect on mortality compared to conventional VVI mode pacemakers. A leadless intracardiac

transcatheter pacing system has been designed to avoid the need for a pacemaker pocket and

transvenous lead (the electrodes are positioned on the pacemaker capsule) [37,42], thereby eliminating

an important source of complications associated with traditional pacing systems while providing similar

benefits [43].

The lack of a generator pocket has some advantages as well both in terms of patient comfort

(and quality of life) and infectious risk [23,32]. However, there are no data on clinical efficacy

endpoints and, in particular, health-related quality of life was not assessed in the studies. Also, it is

unclear, if the avoidance of lead/ generator complications translates in a relevant benefit for the patients.

In most patients receiving a traditional pacemaker, health-related quality of life increases in the first year

after pacemaker implantation – the occurrence of an inhospital adverse event however did not have any

impact on how health-related quality of life was perceived 1 year after the pacemaker implantation [44].

The major limitation of the first generation of single component leadless cardiac pacemakers is

their ability to perform single-chamber (right ventricle) pacing only, limiting the use of such a device to

a population that would not derive benefit from dual-chamber pacing or cardiac resynchronization

Page 38: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

38

therapy. Notably, excessive ventricular pacing has been associated with worse cardiovascular outcomes

[40]. Further challenges include cost, physician training, worldwide accessibility, and long-term follow-

up results. Hence, without the results of long-term trials, it is not possible to make a final decision about

leadless cardiac pacemakers [23].

Page 39: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

39

CONCLUSIONS

1. Leadless pacemaker is offered as an alternative to conventional single- chamber pacemakers.

Single-chamber ventricular pacing (VVI) mode is the method of choice for patients with (or

without) chronic atrial fibrillation or with sinus node disease who require a pacemaker due to

slow ventricular response (atrioventricular block), only indicated to alleviate symptoms

associated with a bradyarrhythmia.

2. There are two wireless cardiac pacemaker systems from different manufacturers – Nanostim™

and Micra™; these devices share common characteristics, as they both are single-chamber

ventricular pacemakers and have CE Mark approval. Main differences between the systems are

related to the fixation mechanism: Nanostim™ LCP uses a screw-in helix and a secondary

fixation mechanism of three nylon tines, whereas the Micra™ TPS uses four self-expanding

nitinol tines.

3. The data on the safety of transcatheter pacing are preliminary and have been limited to a few

reports from nonrandomized studies. The rates of serious adverse device effects ranged between

4 and 6.5% in the three case series. However, In most cases cardiac injuries (cardiac perforations

with/without tamponade, pericardial effusions, cardiac tamponade) were diagnosed. Also, six

dislodgements (0.95%) were reported with the Nanostim™ device, but none with the Micra™

TPS system.

4. Leadless pacemakers are not expected to have a beneficial effect on mortality compared to

conventional VVI pacemakers. Potentially the lack of a generator pocket has some advantages in

terms of patient comfort (and quality of life) and infectious risk; however, there are no data on

clinical efficacy endpoints and, in particular, health-related quality of life was not assessed in the

studies.

Page 40: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

40

RECOMMENDATIONS

1. The data concerning safety and efficacy of the leadless pacing systems are still quite limited, and

before deciding on usage of these systems it is recommended to evaluate the potential risk of

adverse events. Evidence-based data (randomized controlled trials) will be necessary to

determine clinical and cost benefit of LCPs as compared with conventional pacemaker systems.

Page 41: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

41

REFERENCES

1. Hayes DL. Permanent cardiac pacing: Overview of devices and indications. UpToDate; 2016

Apr. Available from: http://www.uptodate.com/contents/permanent-cardiac-pacing-overview-of-

devices-and-indications

2. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA, 3rd, Freedman RA, Gettes LS, Gillinov

AM, Gregoratos G, Hammill SC, Hayes DL, Hlatky MA, Newby LK, Page RL, Schoenfeld MH,

Silka MJ, Stevenson LW, Sweeney MO. ACC/AHA/HRS 2008 Guidelines for Device-Based

Therapy of Cardiac Rhythm Abnormalities: a report of the American College of

Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee

to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac

Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American

Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol.

2008;51(21):e1-62. Available from: http://content.onlinejacc.org/article.aspx?articleid=1138927

3. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NAM, Ferguson TB, Hammill

SC, Karasik PE, Link MS, Marine JE, Schoenfeld MH, Shanker AJ, Silka MJ, Stevenson LW,

Stevenson WG, Varosy PD. 2012 ACCF/AHA/HRS Focused Update of the 2008 Guidelines for

Device-Based Therapy of Cardiac Rhythm Abnormalities: A Report of the American College of

Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the

Heart Rhythm Society. Circulation. 2012;126:1784-1800. Available from:

http://circ.ahajournals.org/content/126/14/1784

4. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, Cleland

J, Deharo JC, Delgado V, Elliott PM, Gorenek B, Israel CW, Leclercq C, Linde C, Mont L,

Padeletti L, Sutton R, Vardas PE, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno

H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J,

Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA,

Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S. 2013 ESC Guidelines on cardiac

pacing and cardiac resynchronization therapy. European Heart Journal. 2013 Jun;34(29):2281-

329. Available from:

http://eurheartj.oxfordjournals.org/content/early/2013/06/13/eurheartj.eht150.explore

5. Sutton R, Kenny RA. The natural history of sick sinus syndrome. Pacing and clinical

electrophysiology: PACE. 1986;9 (6Pt2): 1110-4. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/2432517

6. Shaw DB, Holman RR, Gowers JI. Survival in sinoatrial disorder (sick-sinus syndrome). British

medical journal. 1980;280(6208):139-41. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/7357290

7. Udo EO, Zuithoff NP, van Hemel NM, de Cock CC, Hendriks T, Doevendans PA, Moons KG.

Incidence and predictors of short- and long-term complications in pacemaker therapy: the

FOLLOWPACE study. Heart rhythm: the official journal of the Heart Rhythm Society.

2012;9(5):728-35. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22182495

8. Kirkfeldt RE, Johansen JB, Nohr EA, Jorgensen OD, Nielsen JC. Complications after cardiac

implantable electronic device implantations: an analysis of a complete, nationwide cohort in

Denmark. Eur Heart J. 2014;35(18):1186-94. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/24347317

9. Kirkfeldt RE, Johansen JB, Nohr EA, Moller M, Arnsbo P, Nielsen JC. Risk factors for lead

complications in cardiac pacing: a population-based cohort study of 28,860 Danish patients.

Heart rhythm: the official journal of the Heart Rhythm Society. 2011;8(10):1622-8. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/21699827

Page 42: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

42

10. Sergančių asmenų skaičius pagal diagnozių grupes 2015 m. Higienos instituto Sveikatos

informacijos centras, 2016. Available from: http://stat.hi.lt/default.aspx?report_id=168

11. Burkert N, Freidl W, Rasky E, Stronegger W, Großschädl F, Muckenhuber J, Schenouda M,

Hollerit B, Hofmann H. Herz-Kreislauf-Report für Österreich. 2013. Available from:

http://www.hauptverband.at/portal27/portal/hvbportal/content/contentWindow?&contentid=100

08.566527&action=b&cacheability=PAGE

12. Österreichische Kardiologische Gesellschaft. Schrittmacher und ICD-Implantationen. 2016;

Available from: http://www.atcardio.at/de/arbeitsgruppen/rhythmologie/laufende-aktivitaeten/

13. Ector H, Vardas P. on behalf of the European Heart Rhythm Association, European Society of

Cardiology. Current use of pacemakers, implantable cardioverter defibrillators, and

resynchronization devices: data from the registry of the European Heart Rhythm Association.

European Heart Journal Supplements (2007) 9 (Supplement I), I44–I49. Available from:

http://eurheartjsupp.oxfordjournals.org/content/ehjsupp/9/suppl_I/I44.full.pdf

14. Bernstein AD, Daubert JC, Fletcher RD, Hayes DL, Luderitz B, Reynolds DW, Schoenfeld MH,

Sutton R. The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and

multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and

Electrophysiology Group. Pacing and clinical electrophysiology: PACE. 2002;25(2):260-4.

Available from: http://www.ncbi.nlm.nih.gov/pubmed/11916002

15. Kisser A, Emprechtinger R. Leadless pacemakers for right ventricle pacing. Decision Support

Document No. 97; 2016. Vienna: Ludwig Boltzmann Institute for Health Technology

Assessment. Available from: http://eprints.hta.lbg.ac.at/1094/1/DSD_97.pdf

16. FDA News Release. FDA approves first leadless pacemaker to treat heart rhythm disorders.

2016; Apr 6. Available from:

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm494417.htm

17. Rutzen-Lopez H, Silva J, Helm RH. Leadless Cardiac Devices-Pacemakers and Implantable

Cardioverter-Defibrillators. Current Treatment Options in Cardiovascular Medicine. 2016

Aug;18(8):49.

18. HealthDay. New FDA Approved Wire-Free Pacemaker is Making Waves. 2016; Apr 7.

Available from: http://www.healthywomen.org/content/article/new-fda-approved-wire-free-

pacemaker-making-waves

19. Kessels S, Parsons J, Ellery B. Health Policy Advisory Committee on Technology. Technology

Brief. Leadless Pacemaker. Adelaide Health Technology Assessment (AHTA); 2015 Jul.

Available from: https://www.health.qld.gov.au/healthpact/docs/briefs/WP222.pdf

20. VLK prie SAM. Stacionarinių aktyviojo gydymo atvejų kainų pagal giminingų diagnozių grupes

sąrašas. 2016; Jul 1. Available from: http://www.vlk.lt/veikla/veiklos-sritys/sveikatos-prieziuros-

paslaugu-bazines-kainos/Documents/0704%20Stacionaro%20DRG%20kainos%20nuo%2007-

01.pdf

21. Heart Rhythm Society. Heart Diseases & Disorders. Available from:

http://www.hrsonline.org/Patient-Resources/Heart-Diseases-Disorders

22. WebMD. Bradycardia (Slow Heart Rate) – Topic Overview. Available from:

http://www.webmd.com/heart-disease/tc/bradycardia-slow-heart-rate-overview#2

23. Seriwala HM, Khan MS, Munir MB, Riaz IB, Riaz H, Saba S, Voigt AH. Leadless pacemakers:

A new era in cardiac pacing. Journal of Cardiology. 2016 Jan;67(1):1-5.

24. Knops RE, Tjong FVY, Neuzil P, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR,

Dukkipati SR, Koruth JS, Wilde AAM, Kautzner J, Reddy VY. Chronic performance of a

leadless cardiac pacemaker: 1-year follow-up of the LEADLESS trial. Journal of the American

College of Cardiology. 2015;65(15):1497-504.

25. Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR, Tjong

FV, Jacobson P, Ostrosff A, Dukkipati SR, Koruth JS, Wilde AA, Kautzner J, Neuzil P.

Page 43: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

43

Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation.

2014;129(14):1466-71.

26. Bernard ML. Pacing Without Wires: Leadless Cardiac Pacing. The Ochsner Journal. 2016; 16

(3): 238-242. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024804/

27. Sperzel J, Burri H, Gras D, Tjong FVY, Knops RE, Hindricks G, Steinwender C, Defaye P. State

of the art of leadless pacing. Europace. 2015;17(10):1508-13. Available from:

http://europace.oxfordjournals.org/content/early/2015/05/29/europace.euv096

28. Miller MA, Neuzil P, Dukkipati SR, Reddy VY. Leadless Cardiac Pacemakers: Back to the

Future. J Am Coll Cardiol. 2015;66(10):1179-89. Available from:

https://www.ncbi.nlm.nih.gov/pubmed/26337997

29. Falk V, Starck CT. Cardiac pacing - Will the future be exclusively leadless? Expert Review of

Medical Devices. 2016 May;13(5):421-2.

30. FDA Executive Summary Memorandum. General Issues: Leadless Pacemaker Devices. 2016

Feb. Available from:

http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/MedicalDev

ices/MedicalDevicesAdvisoryCommittee/CirculatorySystemDevicesPanel/UCM485093.pdf

31. O‘Connor S, Meyer C. First in a series on leadless pacing: percutaneous implantable

transcatheter pacemaker – background, technical aspects, and possible pitfalls. E-Journal of

Cardiology Practice. 2016 Aug, Vol.14, N°20. Available from:

http://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-14/First-in-a-series-

on-leadless-pacing-Percutaneous-implantable-transcatheter-pacemaker-background-technical-

aspects-and-possible-pitfalls

32. Arkles J, Cooper J. The Emerging Roles of Leadless Devices. Current Treatment Options in

Cardiovascular Medicine. 2016 Feb;18(2):14.

33. Reddy VY, Exner DV, Cantillon DJ, Doshi R, Bunch TJ, Tomassoni GF, Friedman PA, Estes

NA 3rd, Ip J, Niazi I, Plunkitt K, Banker R, Porterfield J, Ip JE, Dukkipati SR. Percutaneous

Implantation of an Entirely Intracardiac Leadless Pacemaker. The New England Journal of

Medicine. 2015 Sep 17;373(12):1125-35.

34. St Jude Medical. Nanostim™. 2016; Available from: http://professional-

intl.sjm.com/products/crm/leadless-pacemakers/dual-and-single-chamber/nanostim#isw

35. Medtronic. Micra™ MC1VR01 2016; Available from:

http://manuals.medtronic.com/wcm/groups/mdtcom_sg/@emanuals/@era/@crdm/documents/do

cuments/contrib_216851.pdf

36. Daniels JD, Sun S, Zafereo J, Minhajuddin A, Nguyen C, Obel O, Wu R, Joglar JA. Preventing

shoulder pain after cardiac rhythm management device implantation: a randomized, controlled

study. Pacing & Clinical Electrophysiology. 2011;34(6):672-8. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21261667

37. Soejima K, Edmonson J, Ellingson ML, Herberg B, Wiklund C, Zhao J. Safety evaluation of a

leadless transcatheter pacemaker for magnetic resonance imaging use. Heart Rhythm. 2016 Jun

29.

38. St. Jude Medical. St. Jude Medical Secures CE Mark Approval of MRI Compatibility for the

Nanostim Leadless Pacemaker. 2016 Mar. Available from:

http://media.sjm.com/newsroom/news-releases/news-releases-details/2016/St-Jude-Medical-

Secures-CE-Mark-Approval-of-MRI-Compatibility-for-the-Nanostim-Leadless-

Pacemaker/default.aspx

39. Higgins SL, Rogers JD. Advances in Pacing Therapy: Examining the Potential Impact of

Leadless Pacing Therapy. The Journal of Innovations in Cardiac Rhythm Management, 5 (2014),

1825–1833. Available from: http://www.innovationsincrm.com/cardiac-rhythm-

management/2014/november/655-potential-impact-of-leadless-pacing-therapy

Page 44: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

44

40. Austin C, Kusumoto F. Innovative pacing: Recent advances, emerging technologies, and future

directions in cardiac pacing. Trends in Cardiovascular Medicine. 2016 Jul;26(5):452-63.

41. Carlson J. Medtronic's Micra pacemaker wins approval for sale in U.S. 2016 Apr. Available

from: http://www.startribune.com/medtronic-s-micra-pacemaker-wins-approval-for-sale-in-u-

s/376785461/

42. Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, Narasimhan C, Steinwender C,

Brugada J, Lloyd M, Roberts PR, Sagi V, Hummel J, Bongiorni MG, Knops RE, Ellis CR,

Gornick CC, Bernabei MA, Laager V, Stromberg K, Williams ER, Hudnall JH, Ritter P, Micra

Transcatheter Pacing Study Group. A Leadless Intracardiac Transcatheter Pacing System. New

Englands Journal of Medicine. 2015; 374:533-541.

43. Ritter P, Duray GZ, Steinwender C, Soejima K, Omar R, Mont L, Boersma LVA, Knops RE,

Chinitz L, Zhang S, Narasimhan C, Hummel J, Lloyd M, Simmers TA, Voigt A, Laager V,

Stromberg K, Bonner MD, Sheldon TJ, Reynolds D, Micra Transcatheter Pacing Study Group.

Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing

Study. European Heart Journal. 2015; 36 (37): 2510-9.

44. van Eck JW, van Hemel NM, van den Bos A, Taks W, Grobbee DE, Moons KG. Predictors of

improved quality of life 1 year after pacemaker implantation. American heart journal.

2008;156(3):491-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18760131

45. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P,

DeBeer H, Jaeschake R, Rind, Meerpohl, Dahm P, Schünemann HJ. GRADE guidelines: 1.

Introduction-GRADE evidence profiles and summary of findings tables. Journal of clinical

epidemiology. 2011; 64 (4): 383-94. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21195583

46. Kypta A, Blessberger H, Lichtenauer M, Steinwender C. Complete encapsulation of a leadless

cardiac pacemaker. Clinical research in cardiology: official journal of the German Cardiac

Society. 2015. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26493306

47. Gartlehner G. Internes Manual. Abläufe und Methoden. Teil 2 (2. Aufl.). Wien: Ludwig

Boltzmann Institute für Health Technology Assessment, 2009.

48. EUnetHTA Joint Action 1, Work Package 5. HTA Adaptation Toolkit & Glossary. Adapting

existing HTAs from one country into other settings version 5.0; 2011. Available from:

http://www.eunethta.eu/sites/5026.fedimbo.belgium.be/files/EUnetHTA_adptation_toolkit_2011

%20version%205.pdf

49. EUnetHTA Joint Action 2 Work Package 8. HTA Core Model® for Rapid Relative

Effectiveness Assessment (version 4.2), based on the HTA Core Model® for Rapid Relative

Effectiveness Assessment of Pharmaceuticals. 2016. Available from:

http://meka.thl.fi/htacore/model/HTACoreModel_ForRapidREAs4.2.pdf

Page 45: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

45

APPENDIX 1: METHODOLOGY AND DESCRIPTION OF THE

EVIDENCES USED

This health technology assessment (“Leadless pacemakers for right ventricle pacing”) which

was implemented by the LBI-HTA (Ludwig Boltzmann Institute-Health Technology Assessment,

Austria) was updated and adapted for the context of Lithuania. The European Commission initiates and

supports the usage and adaptation of EunetHTA’s and other countries health technology assessments for

national needs of the European countries.

A working version of the HTA Core Model® for Rapid Relative Effectiveness Assessments

(version 4.2) was used as the primary source for selecting the assessment elements. Additionally,

assessment elements from other EUnetHTA Core Model Applications (HTA Core Model® for Medical

and Surgical Interventions (version 3.0)) were screened and included, if believed relevant to the present

assessment.

The systematic literature search was conducted with time limitation between 10th December

2015 and 25th August 2016, inclusive. Also, information for the assessment was updated and used from

the LBI-HTA decision support document No. 97 (“Leadless pacemakers for right ventricle pacing”).

The adaptation of the assessment was based primarily on a basic systematic literature search in

the following sources:

Cochrane Library database;

PubMed (Medline);

CRD database;

Hand searches including articles from the manufacturers.

Relevant literature sources and articles for the adaptation for the ‘Safety’ and ‘Clinical

effectiveness’ domains were selected by the VASPVT (State Health Care Accreditation Agency under

the Ministry of Health, Lithuania). References were included or excluded according to the PICO scheme

described in the summary. In terms of study design, no RCTs or SRs were found.

Selection of relevant documents was performed by two independent researchers. If the same

data were duplicated in multiple articles, only results from the most comprehensive or most recent

article were included. Consensus was found in all cases about the inclusion and exclusion of individual

studies.

The relevant information from the feasible studies was retrieved without any further analysis.

For all studies the methodological quality was assessed using the IHE checklist for case series (see more

in LBI-HTA decision support document No. 97 “Leadless pacemakers for right ventricle pacing”) by

two review authors independently from each other. In case of disagreement a third researcher was

involved to solve the differences.

Incidentally, a comparative analysis was not applicable, since the available studies are case

series. LBI-HTA used the Grading of Recommendations Assessment, Development and Evaluation

(GRADE) methodology to assess the quality of the evidence for ‘Clinical effectiveness’ and ‘Safety’.

Evidence tables of single arm studies (3 studies) included for clinical effectiveness and safety can be

found on LBI-HTA decision support document No. 97 “Leadless pacemakers for right ventricle pacing”.

A manual search and basic search were performed for ‘Health problem and current use’ and

‘Description and technical characteristics’.

Most of the research questions were answered in plain text format. The analysis is qualitative

and not quantitative due to a lack of comparison groups and heterogeneity of the data.

Page 46: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

46

Reporting of results

Study characteristics

There are no comparative studies to assess the effectiveness and the safety of leadless

pacemakers. We identified five references to three prospective multi-centre single arm studies that

reported the performance of leadless pacemakers [24,25,33,42,43] in a total of 633 participants (efficacy

cohorts). In the same five references [24,25,33,42,43] the safety of leadless pacemakers was assessed in

a total of 1,284 participants. All studies were sponsored by device manufacturers. Study characteristics

and results of included studies are displayed in LBI-HTA decision support document No. 97 “Leadless

pacemakers for right ventricle pacing”.

All three studies included patients with indications for VVI pacing, with a restriction on non-

pacemaker dependent patients in one study [24,25]. For the majority of the study participants, pacing

was indicated due to atrial fibrillation with AV block (range 56–67%). Other indications were sinus

node dysfunction (range 15–35%) and AV block (range 8.7–18%). For the latter two indications,

reasons for the selection of VVI pacing mode were the expectation of only infrequent need for pacing,

advanced age of the patient, patient preference, conditions that precluded implantation of a transvenous

pacemaker system or significant comorbidities.

Mean age of the study participants was 76 years in all three studies. The study populations were

predominantly male (range 59–67%). Comorbidities were frequent, with almost 80% of the participants

suffering from hypertension.

None of the studies reported results on the outcomes defined as crucial (health related quality

of life (HRQoL), exercise capacity) to assess clinical effectiveness.

Overall mortality ranged from 3 to 5%; cardiac mortality was reported in two studies with 0.8%

and 1%. Four deaths were reported as procedure-related.

The rates of serious adverse device effects ranged between 4% and 6.5% in the three case

series. In total, 20 patients experienced a cardiac injury. Six device dislodgements were reported with

the Nanostim™ device, but none with the Micra™ TPS system.

Other serious adverse events that were attributable either to the device or the procedure

included vascular complications, arrhythmia during device implantation and elevated pacing thresholds

requiring retrieval and implantation of a new device.

Quality assessment

The strength of evidence was rated according to GRADE (Grading of Recommendations

Assessment, Development and Evaluation) scheme [45] for each endpoint individually. Each study was

rated by two independent researchers from LBI. In case of disagreement a third researcher was involved

to solve the difference. A more detailed list of criteria applied can be found in the recommendations of

the GRADE Working Group [45].

Overall, the strength of evidence for the effectiveness and safety of leadless pacemakers in

comparison to conventional pacemakers is very low [15].

The ranking according to the GRADE scheme for the research question and the quality

assessment table of the selected three single arm studies can be found in the LBI-HTA (Ludwig

Boltzmann Institute-Health Technology Assessment, Austria) decision support document No. 97

“Leadless pacemakers for right ventricle pacing” [15].

Limitations

The available studies are non-randomised and there is no direct comparison of the benefit of

LCP over contemporary single-chamber systems, so no de-finitive conclusion can be drawn on the

Page 47: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

47

superiority or even non-inferiority of the new technology compared to standard therapy. Indirect

comparisons with historical data from previous pacemaker studies are difficult, since most studies

include patients with dual-chamber pacemakers or other implantable cardiac devices, for which

complication rates are considerably higher than for single-chamber pacemakers [7,8,9]. There are no

data on clinical efficacy endpoints and, in particular, HRQoL was not assessed in the studies. It is

unclear, if the avoidance of lead/generator complications translates in a relevant benefit for the patients.

In most patients receiving a traditional pacemaker, HRQoL increases in the first year after pacemaker

implantation – the occurrence of an inhospital adverse event however did not have any impact on how

HRQoL was perceived 1 year after the pacemaker implantation [44].

In a number of patients, the implantation of a transvenous pacemaker system is precluded

because of conditions such as compromised venous access, the need to preserve veins for

haemodialysis, thrombosis, a history of infection, or the need for an indwelling venous catheter. While

leadless pacemakers po-tentially represent the only treatment alternative in these patients, it remains to

be demonstrated that these patients are not at increased risk for complications associated with the

implantation procedure [15].

Finally, safety data are available only for 6 months follow-up. Battery longevity of leadless

pacemakers was estimated to be up to ten years, but actual longevity has not been measured and might

be overestimated [46]. So far, there is no definitive answer how pacemaker-dependent patients can be

treated after the battery expires. Retrievability of the leadless pacemaker after a prolonged implantation

time has not been studied at later timepoints and might be compromised by complete encapsulation of

the devices observed in autopsies [47]. So far, there is no experience on the feasibility of the

implantation of additional LCP in the heart chamber.

Page 48: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

48

ADAPTATION TOOLKIT

Table I. Speedy sifting questions [48]

Speedy sifting questions:

Assessment of relevance Answers

1. Are the policy and research questions being addressed relevant to

your questions?

Yes.

2. What is the language of this HTA report? Is it possible to

translate this report into your language?

Yes.

3. Is there a description of the health technology being assessed? Yes; pages 5, 15.

4. Is the scope of the assessment specified? Yes; page 9.

5. Has the report been externally reviewed? Yes; page 2.

6. Is there any conflict of interest? Yes; page 2.

7. When was the work that underpins this report done? Does this

make it out of date for your purposes? No; pages 1, 12, 46.

8. Have the methods of the assessment been described in the HTA

report? Yes; pages 5, 11, 31.

HTA available at: http://eprints.hta.lbg.ac.at/1094/1/DSD_97.pdf

Page 49: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

49

Table II. Technology’s use domain questions [48]

Questions Answers

To assess relevance:

1.What is the research question considered? Is the research question

considered within this section of the report relevant to your question?

Yes; pages 5, 9.

To assess reliability:

2. Were conditions, target group, relevant interventions or comparisons

between interventions and relevant outcomes appropriately defined?

Yes; pages5, 9, 15,

19, 22, 44.

3. Is the information provided on technology use and development complete

and comprehensive? Are the methods and sources used when elaborating the

background information well documented?

Partly, update

needed.

4. Are patterns of utilisation, diffusion, indications and time trends adequately

described?

Partly, update

needed.

5. Is an analysis of the regulatory status of the technology provided (market

admission, status in other countries)?

Yes; pages 15, 17.

Update needed.

To assess transferability:

6. Is there any consideration of when and how technical characteristics affect

outcomes?

Yes; page 15.

7. Are there any differences in the use of this technology within the target

setting (compared to the uses described in the HTA report for adaptation)?

No.

Table III. Safety domain questions [48]

Questions Answers

To assess relevance:

1. Were harms or safety assessed? Yes; pages 6, 27.

2. Is the scope of the safety assessment relevant to your question? Yes; pages 5, 9

To assess reliability:

3. Was the search for studies reasonably comprehensive? Yes; pages 12, 46.

4. Were special sources consulted (disease registers, routinely data collected

(on utilisation, costs, adverse effects, etc.), consumer associations, etc..)

Yes; pages 12, 45.

5. What are the sources of information/ data (e.g. surveillance databases,

declaration of incidents, safety report, RCT, case reports)?

Yes; pages 12, 46.

6. Were the criteria used for deciding which studies to include in the HTA

report reported?

Yes; pages 9, 13,

44.

7. Was bias in the selection of studies avoided? Yes; pages 14, 31,

43.

8. Did the selection of studies (in particular the choice of eligible study

designs) minimise the possibility of including studies with a high propensity

for bias?

Yes; pages 14, 31,

43.

9. Were the criteria used for assessing the validity of the included studies

reported?

Yes; page 43.

10. a) Were the inclusion criteria used for the primary studies appropriate to

the study question posed by the HTA report?

b) Were the criteria used to assess the validity of the primary study

appropriate?

Yes; pages 9, 13.

Yes; pages 5, 31.

11. Which risks have been reported and how were they measured? Yes; page 43.

12. a) Were the study outcomes valid?

b) Were the study outcomes pertinent?

Partly; page 28.

Partly; page 28.

13. Are the number of patients, their representativeness and the quality of No; pages 28, 39.

Page 50: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

50

the data high enough to exclude a modest but clinically relevant rate of

serious

complications? I.e. what is the potential for overlooking a possible serious

adverse event?

14. Is there a possibility for a „class‟ effect adverse reaction or safety

problem?

No.

To assess transferability:

15. Does the population described for eligibility match the population to

which it is targeted in the target setting?

Yes; pages 9, 28.

16. Are there any reasons to expect differences in complication rates (e.g.

epidemiology, genetic issues, healthcare system (quality of care,

surveillance))?

Yes; page 28.

17. Are the requirements for its use (special measures needed for

use/ implementation, maintenance, etc.) available in the target setting?

Yes; page 17.

18. Is the necessary expertise (knowledge and skills) available in the target

setting?

Yes; page 17.

19. a) Is safety particularly dependent on training?

b) Are there types of teams to which the procedure should be limited for

safety reasons?

c) Is there a need for special training or certification to deliver the

intervention

properly?

d) Would it be possible (affordable) to organise such training, if any?

Unknown; pages 6,

33.

Yes; pages 9, 17.

Yes; page 17.

Unknown.

Table IV. Effectiveness domain questions [48]

Questions Answers

To assess relevance:

1. a) What is the research question considered?

b) Is the research question considered within this section of the HTA report

relevant to your HTA question?

Yes; pages 5, 9.

Yes; page 25.

2. Are the outcome measures relevant for your HTA question? Yes; pages 9, 25.

3. Were the search methods used to find studies relevant to the main

question(s) stated?

Yes; pages 12, 45,

46.

To assess reliability:

4. Was the search for studies reasonably comprehensive? Yes; pages 12, 46.

5. Were the criteria used for deciding which studies to include in the HTA

report reported?

Yes; pages 9, 13, 44.

6. Was bias in the selection of studies avoided? Yes; pages 14, 31,

43.

7. Did the selection of studies (in particular the choice of eligible study

designs) minimise the possibility of including studies with a high propensity

for bias?

Yes; pages 14, 31,

43.

8. Were the criteria used for assessing the validity of the included studies

reported?

Yes; pages 31, 43.

9. Was the validity of all studies referred to in the text assessed using

appropriate criteria (either in selecting studies for inclusion or in analysing the

studies that are cited)?

Yes; pages 31, 43.

10. Were the methods used to combine the findings of the relevant studies (to

reach a conclusion) reported?

No.

Page 51: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

51

11. Were the findings of the relevant studies combined appropriately with

respect to the main question the HTA report addresses?

No.

12. Were the conclusions made by the authors supported by the data and/ or

analysis reported in the HTA report?

Yes; pages 6, 33, 35.

13. How likely is it that the relevance of this HTA report has changed due to

additional research that had started, completed or been published since this

Health Technology Assessment report?

Unlikely.

To assess transferability:

14. Would you expect the baseline risk of patients within your own setting to

be the same as the baseline risk of those patients considered within the HTA

report for adaptation? (assuming that patients receive the same treatment and

same comparator).

Yes.

Page 52: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

52

Documentation of the basic search strategies

Database: PubMed (MEDLINE)

Search date: 2016-08-25

Results: 44 hits.

Searches Results

1. Pacemaker, Artificial[MeSH] 24170

2. Cardiac Pacing, Artificial[MeSH] 21728

3. pacemaker* 41504

4. (Pacemaker, Artificial[MeSH] OR Cardiac Pacing, Artificial[MeSH] OR pacemaker*) 56850

5. leadless 129

6. leadless pac* 71

7. transcatheter pac* 10

8. (leadless OR leadless pac* OR transcatheter pac*) 131

9. (Pacemaker, Artificial[MeSH] OR Cardiac Pacing, Artificial[MeSH] OR pacemaker*)

AND (leadless OR leadless pac* OR transcatheter pac*)

99

10. (Pacemaker, Artificial[MeSH] OR Cardiac Pacing, Artificial[MeSH] OR pacemaker*)

AND (leadless OR leadless pac* OR transcatheter pac*) Filters activated: Publication date

from 2015/12/10 to 2016/08/25, English.

44

Database: Cochrane Library

Search date: 2016-08-25

Results: 1 hit.

Searches Results

1. MeSH descriptor: [Pacemaker, Artificial] explode all trees 704

2. MeSH descriptor: [Cardiac Pacing, Artificial] explode all trees 1337

3. pacemaker* 1867

4. #1 OR #2 OR #3 2667

5. (leadless or transcatheter*) near pacing 2

6. leadless 1

7. #5 OR #6 3

8. #4 AND #7 3

9. #4 AND #7 Publication Year from 2015 to 2016 1

Database: CRD database

Search date: 2016-08-25

Results: 0 hits.

Searches Results

1. MeSH DESCRIPTOR Pacemaker, Artificial EXPLODE ALL TREES 100

2. MeSH DESCRIPTOR Cardiac Pacing, Artificial EXPLODE ALL TREES 139

3. (pacemaker*) 193

4. #1 OR #2 OR #3 284

5. (leadless) 1

6. ((leadless OR transcatheter*) NEAR pacing) 1

7. #5 OR #6 2

8. #4 AND #7 2

9. (#4 AND #7) WHERE LPD FROM 10/12/2015 TO 25/08/2016 0

Page 53: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

53

Flow charts of study selection

Table V. Flow chart showing selection of studies.

Records identified

through PubMed

(Medline) searching

(n = 44)

Scr

een

ing

In

clu

ded

E

ligib

ilit

y

Iden

tifi

cati

on

Records identified

through Cochrane

Library searching

(n = 1)

Records after duplicates removed

(n = 49)

Records screened

(n = 49)

Records excluded (n = 44) with

reasons:

Wrong population: n=6

Wrong intervention: n=1

Wrong study design: n=25

Wrong research question: n=7

Background: n=5

Full-text articles assessed

for eligibility

(n = 5)

Studies included in qualitative synthesis:

non-RCT (n = 5)

Records identified

through CRD

database searching

(n = 0)

Additional

records from

HTA [15]

(n = 5)

Page 54: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

54

Questions used from HTA Core Model Application for Rapid Relative Effectiveness

assessment (version 4.2)

Health problem and current use of the technology [49]

ID Question

A0001 For which health conditions, and for what purposes are leadless pacemakers used?

A0002 What is the disease or health condition in the scope of this assessment?

A0003 What are the known risk factors for cardiac arrhythmias?

A0004 What is the natural course of cardiac arrhythmias?

A0005 What are the consequences of cardiac arrhythmias for the society?

A0006 What is the burden of disease for patients with cardiac arrhythmias?

A0007 What is the target population in this assessment?

A0023 How many people belong to the target population?

A0011 How much are leadless pacemakers utilised?

A0020 What is the marketing authorisation status of leadless pacemakers?

A0021 What is the reimbursement status of leadless pacemakers?

A0024 How are cardiac arrhythmias currently diagnosed according to published guidelines

and in practice?

A0025 How are cardiac arrhythmias currently managed according to published guidelines

and in practice?

Description and technical characteristics of technology [49]

ID Question

B0001 What are leadless pacemakers and conventional single-chamber ventricular

pacemakers?

B0002 What is the claimed benefit of leadless pacemakers in relation to conventional single-

chamber ventricular pacemakers

B0003 What is the phase of development and implementation of leadless pacemakers and

conventional single-chamber ventricular pacemakers?

B0004 Who administers leadless pacemakers and conventional single-chamber ventricular

pacemakers and in what context and level of care are they provided?

B0008 What kind of special premises are needed to use leadless pacemakers and conventional

single-chamber ventricular pacemakers?

B0009 What supplies are needed to use leadless pacemakers and conventional single-chamber

ventricular pacemakers?

Safety [49]

ID Question

C0008 How safe are leadless pacemakers in comparison to conventional single-chamber

ventricular pacemakers?

C0005 What are the susceptible patient groups that are more likely to be harmed through the

use of the technology?

C0007 Are leadless pacemakers and conventional single-chamber ventricular pacemakers

associated with user-dependent harms?

Page 55: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

55

Clinical effectiveness [49]

ID Question

D0001 What is the expected beneficial effect of leadless pacemakers on mortality?

D0003 What is the effect of leadless pacemakers on the mortality due to causes other than

cardiac arrhythmia?

D0005 How do leadless pacemakers affect symptoms and findings (severity, frequency) of

cardiac arrhythmias?

D0006 How do leadless pacemakers affect progression (or recurrence) of cardiac arrhythmias

D0011 What is the effect of leadless pacemakers on patients’ body functions?

D0016 How does the use of leadless pacemakers affect activities of daily living

D0012 What is the effect of leadless pacemakers on generic health-related quality of life?

D0013 What is the effect of leadless pacemakers on disease-specific quality of life?

D0017 Was the use of leadless pacemakers worthwhile?

Page 56: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

56

APPENDIX 2: DESCRIPTION OF THE EVIDENCE USED

Evidence tables of individual studies included

Table VI. Results from observational studies of leadless pacemakers.

Study (acronym, ID no.) LEADLESS I – Evaluation of a new

cardiac pacemaker (NCT01700244)

The LEADLESS II pacemaker IDE

study (NCT02030418)

Micra Transcatheter Pacing Study

(NCT02004873)

Reference [24,25] [33] [42,43]

STUDY DESCRIPTION

Country Czech Republic; Germany; Netherlands Australia; Canada; USA

USA, Australia, Austria, Canada, Czech

Republic, China, Denmark, France,

Greece, Hungary, India, Italy, Japan,

Malaysia, Netherlands, Serbia, South

Africa, Spain, United Kingdom

Sponsor St. Jude Medical St. Jude Medical Medtronic

Conflict of Interests R.E.K., V.Y.R., J.K. grant support from

Nanostim Inc.; R.E.K. grant support from

St. Jude Medical; J.K. speaker fees; J.S.

honoraria for lectures; V.Y.R. stock

options; J.R.G. grant support; J.K. and

A.A.M.W. in advisory boards.

Not available. P.R., G.Z.D., C.S., K.S., L.V.A.B.,

R.E.K., L.C., S.Z., C.N., J.H., M.L.,

T.A.S. consulting fees/ honoraria; R.O.

consulting fees/ honoraria, speaker‘s

bureau; L.M. consulting fees/ honoraria,

speaker‘s bureau, research grants,

fellowship support; V.L., K.S., M.D.B.,

T.J.S. Employment, Significant,

Medtronic; D.R. consulting fees/

honoraria, research grants.

Intervention/ Product Implantation of a leadless cardiac

pacemaker/Nanostim™ LCP

Implantation of a leadless cardiac

pacemaker/Nanostim™ LCP

Implantation of a leadless cardiac

pacemaker/Micra™ TPS

Comparator NA NA Dual-chamber pacemaker

Study design Single cohort feasibility trial Single cohort safety/efficacy study Single cohort safety/efficacy study with

historical control

Duration of the study December 2012 – April 2013 February 2014 – September 2015 November 2013 – May 2015

Randomisation method None None None

Blinding method Open label

Open label

Open label

Page 57: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

57

(investigator, patient,

outcomes assessor)

Intervention (n=) 33 300 (Primary cohort)

526 (Full cohort)

297 (Efficacy cohort)

725 (Safety cohort)

Control (n=) 0 0 0

Population Patients indicated for VVI pacing who are

not Pacemaker dependant

Patients indicated for VVI(R) pacing Patients indicated for VVI(R) pacing

Inclusion criteria Chronic atrial fibrillation with 2 or 3° AV

or bifascicular bundle branch block (BBB

block); or

Normal sinus rhythm with 2 or 3° AV or

BBB block and a low level of physical

activity or short expected lifespan (but at

least one year); or

Sinus bradycardia with infrequent pauses

or unexplained syncope with EP findings.

Chronic and/or permanent atrial

fibrillation with 2 or 3° AV or bifascicular

bundle branch block (BBB block),

including slow ventricular rates (with or

without medication) associated with atrial

fibrillation; or

Normal sinus rhythm with 2 or 3° AV or

BBB block and a low level of physical

activity or short expected lifespan (but at

least one year); or

Sinus bradycardia with infrequent pauses

or unexplained syncope with EP findings.

Class I or II indication for pacing

(bradycardia due to atrial

tachyarrhythmia, sinus node dysfunction,

atrioventricular node dysfunction, or other

causes).

Exclusion criteria Pacemaker dependent;

Known pacemaker syndrome, have

retrograde VA conduction or suffer a

drop in arterial blood pressure with the

onset of ventricular pacing;

Pre-existing pacing or defibrillation

leads;

Pre-existing pulmonary arterial (PA)

hypertension or significant

physiologically-impairing lung

disease;

Current implantation of an implantable

cardioverter defibrillator (ICD) or

cardiac resynchronization therapy

(CRT);

Pacemaker syndrome, retrograde VA

conduction or drop in arterial blood

pressure with the onset of ventricular

pacing;

Pre-existing endocardial pacing or

defibrillation leads; or

Pre-existing pulmonary arterial (PA)

hypertension or significant

physiologically-impairing lung disease;

Current implantation of either

conventional or subcutaneous

implantable cardioverter defibrillator

(ICD) or cardiac resynchronization

therapy (CRT);

Mechanical tricuspid valve prosthesis;

Entirely pacemaker dependent (escape

rhythm <30 bpm)* (restriction was

lifted following review of the Early

Performance Assessment);

Existing or prior pacemaker, ICD or

CRT device implant;

Unstable angina pectoris, acute

myocardial infarction within 30d,

Current implantation of neurostimulator

or any other chronically implanted

electronic device, mechanical tricuspid

valve, implanted vena cava filter, or left

ventricular assist device;

Morbidly obese;

Femoral venous anatomy unable for

Page 58: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

58

Mechanical tricuspid valve prosthesis;

Presence of implanted vena cava filter;

Presence of implanted leadless cardiac

pacemaker;

Hypersensitivity to <1mg of

dexamethasone sodium phosphate;

Life-expectancy <12m; pregnant or

breastfeeding women

Implanted vena cava filter;

Implanted leadless cardiac pacemaker;

Evidence of thrombosis in one of the

veins used for access during the

procedure;

Recent cardiovascular or peripheral

vascular surgery within 30 days of

enrolment;

Allergic or hypersensitive to <1mg of

dexamethasone sodium phosphate;

Life-expectancy <12m; pregnant or

breastfeeding women

transcatheter procedure;

Intolerance to device material or

hypersensitivity to <1mg

dexamethasone;

Life-expectancy <12m; pregnant or

breastfeeding women

Primary outcome

(including measurement

tools and measurement

times)

S: Complication-free rate (freedom of

SADE at 90 days)

S: Complication-free rate (freedom of

SADE) at 6 months

E: Therapeutically acceptable pacing

capture threshold (≤2.0 V at 0.4 msec)

and a therapeutically acceptable sensing

amplitude (R wave ≥5.0 mV, or a value

equal to or greater than the value at

implantation) through 6 months

S: Freedom from major complications

related to the Micra™ TPS and/or

procedures at 6-month post-implant

(within 183 days)

E: Adequate pacing capture threshold

at 6 months (≤2 V at a pulse width of

0.24 ms and stable (increase of ≤1.5

V))

Secondary outcome

(including measurement

tools and measurement

times)

S: Implant success rate (% of subjects

leaving the implant procedure with an

implanted and functioning LCP device)

E: Pacemaker performance

characteristics, LCP performance during

magnet testing (predischarge) and 6-

minute walking test (at 2 weeks)

S: Non–device-related SAE during 6

months of follow-up.

S: SADE and Non-device-related SAE

during follow-up (Full cohort)

E: Automated ventricular capture

management (VCM) feature by

comparing the percentage of subjects with

a VCM within +0.5 V of pacing capture

thresholds evaluated manually at 6

months

Rate response during treadmill testing in a

subset of subjects

Micra™ TPS longevity estimates at 6

months, electrical performance, implant

procedure ambulatory ECG monitoring,

quality of life, and device orientation

S: Adverse Events

Freedom from SADE at 12 months

Follow-up (months) 12 6 (Primary cohort) 6

Page 59: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

59

Mean (±SD) of 6.9±4.2 (Full cohort)

Loss to follow-up, n (%) 0 0 0

POPULATION CHARACTERISTICS

Age (mean), y 76.5±8.4 75.7±11.6

75.8±12.1 (Full cohort)

75.9±10.9 (Safety cohort) vs. 71.1±12.1

Male, n (%) 22 (67) 193 (64.3)

325 (61.8) (Full cohort)

426 (58.8) (Safety cohort) vs. 1469 (55.1)

Pacing indication, n (%) Permanent AF with AV block (including

AF with slow ventricular response) 22

(67)

Sinus rhythm with 2nd/3rd degree AV

block and significant comorbidities 6 (18)

Sinus bradycardia with infrequent pauses

or unexplained syncope 5 (15)

AF with AV block 294 (55.9)

Sinus rhythm with high-grade AV block

46 (8.7)

Sinus bradycardia with infrequent pauses

or syncope 186 (35.4) (Full cohort)

Bradycardia associated with persistent or

permanent atrial tachyarrhythmia (64)

Sinus-node dysfunction (17.5)

AV block (14.8)

Other reasons (3.7)

Comorbidities Diabetes, 143 (27.2)

CAD, 201 (38.2)

CHF, 82 (15.6)

Hypertension, 420 (79.8)

Valvular Disease, 106 (20.2)

Diabetes, 207 (28.6); COPD, 90 (12.4);

Renal dysfunction, 145 (20.0); CAD, 203

(28.0); AF, 526 (72.6); CHF, 123 (17.0);

Hypertension, 570 (78.6); Valvular

Disease, 306 (42.2)

OUTCOMES

EFFICACY

Pacing performance N/A (no threshold defined) 270/300 (90%, 95% CI 86.0–93.2) 292/297 (98.3)

Quality of life NR NR NR

SAFETY

Implant success rate, n (%) 32 (97) 504/526 (95.8) 719/725 (99.2)

Overall Mortality, n (%) 1 (3) 28/526 (5.3) 29/725 (4)

Procedure-related mortality,

n(%)

1 (3) 2/526 (0.4) 1/725 (0.1*)

Cardiac mortality, n (%) NR 4/526 (0.8) 7/725 (1.0)

Cardiac morbidity, n (%) NR NR NR

Overall Adverse Events, n

(%)

NR NR NR

Serious Adverse Events, n NR NR NR

Page 60: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

60

(%)

Non-device-related SAE, n

(%)

NR 29/526 (5.5)

NR

Overall Adverse Device

Effects (ADE), n (%)

NR NR NR

Serious Adverse Device

Effects (SADE), n (%)

2 (6) 34/526 (6.5)

25/725 (4.0*)

Hospitalization, n (%) 9 (27) NR 12/725 (2.3*)

Loss of device function, n

(%)

NR NR 1/725 (0.1*)

Cardiac injury, n (%) 1 (3) 8/526 (1.5) 11/725 (1.6*)

Device dislodgement, n (%) 0 6/526 (1.1) 0

Elevated pacing thresholds

requiring retrieval/

replacement, n (%)

0 4/526 (0.8) 2/725 (0.3%*)

Legend: LCP – Leadless cardiac pacemaker, IDE – Investigational device exemption; TPS – Transcatheter pacing system; NA – not applicable; NR – not reported; SAE – Serious

adverse events; VCM – Ventricular capture management; AF – Atrial fibrillation; AV – atrioventricular; COPD –Chronic obstructive pulmonary diseases; CAD – Coronary artery

disease; CHF – Congestive Heart failure; CI – Confidence interval; ADE –Adverse device events; SADE – Serious adverse device events.

* 183 days Kaplan-Meier estimates.

Page 61: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

Included studies

HTA

1. Kisser A, Emprechtinger R. Leadless pacemakers for right ventricle pacing. Decision Support Document

No. 97; 2016. Vienna: Ludwig Boltzmann Institute for Health Technology Assessment.

Non-RCTs

2. Knops RE, Tjong FVY, Neuzil P, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR,

Dukkipati SR, Koruth JS, Wilde AAM, Kautzner J, Reddy VY. Chronic performance of a leadless

cardiac pacemaker: 1-year follow-up of the LEADLESS trial. Journal of the American College of

Cardiology. 2015;65(15):1497-504.

3. Reddy VY, Exner DV, Cantillon DJ, Doshi R, Bunch TJ, Tomassoni GF, Friedman PA, Estes NA 3rd, Ip

J, Niazi I, Plunkitt K, Banker R, Porterfield J, Ip JE, Dukkipati SR. Percutaneous Implantation of an

Entirely Intracardiac Leadless Pacemaker. The New England Journal of Medicine. 2015 Sep

17;373(12):1125-35.

4. Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J, Sediva L, de Groot JR, Tjong FV,

Jacobson P, Ostrosff A, Dukkipati SR, Koruth JS, Wilde AA, Kautzner J, Neuzil P. Permanent leadless

cardiac pacing: results of the LEADLESS trial. Circulation. 2014;129(14):1466-71.

5. Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, Narasimhan C, Steinwender C, Brugada

J, Lloyd M, Roberts PR, Sagi V, Hummel J, Bongiorni MG, Knops RE, Ellis CR, Gornick CC, Bernabei

MA, Laager V, Stromberg K, Williams ER, Hudnall JH, Ritter P, Micra Transcatheter Pacing Study

Group. A Leadless Intracardiac Transcatheter Pacing System. New Englands Journal of Medicine. 2015;

374:533-541.

6. Ritter P, Duray GZ, Steinwender C, Soejima K, Omar R, Mont L, Boersma LVA, Knops RE, Chinitz L,

Zhang S, Narasimhan C, Hummel J, Lloyd M, Simmers TA, Voigt A, Laager V, Stromberg K, Bonner

MD, Sheldon TJ, Reynolds D, Micra Transcatheter Pacing Study Group. Early performance of a

miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. European Heart Journal.

2015; 36 (37): 2510-9.

Excluded studies

Reference Exclusion

criteria

1. Chen K, Zheng X, Dai Y, Wang H, Tang Y, Lan T, Zhang J, Tian Y, Zhang B, Zhou X,

Bonner M, Zhang S. Multiple leadless pacemakers implanted in the right ventricle of swine.

Europace. 2016 Jan 31.

Wrong

population.

2. Soejima K, Edmonson J, Ellingson ML, Herberg B, Wiklund C, Zhao J. Safety evaluation of

a leadless transcatheter pacemaker for magnetic resonance imaging use. Heart Rhythm. 2016

Jun 29.

Wrong study

design.

3. Seriwala HM, Khan MS, Munir MB, Riaz IB, Riaz H, Saba S, Voigt AH. Leadless

pacemakers: A new era in cardiac pacing. Journal of Cardiology. 2016 Jan;67(1):1-5.

Background.

4. Tjong FV, Brouwer TF, Smeding L, Kooiman KM, de Groot JR, Ligon D, Sanghera R,

Schalij MJ, Wilde AA, Knops RE. Combined leadless pacemaker and subcutaneous

implantable defibrillator therapy: feasibility, safety, and performance. Europace. 2016 Mar 3.

Wrong

population.

5. Karjalainen PP, Nammas W, Paana T. Transcatheter leadless pacemaker implantation in a

patient with a transvenous dual-chamber pacemaker already in place. Journal of

Electrocardiology. 2016 Jul-Aug;49(4):554-6.

Wrong study

design.

6. Kypta A, Blessberger H, Lichtenauer M, Kammler J, Lambert T, Kellermair J, Nahler A,

Kiblboeck D, Schwarz S, Steinwender C. Subcutaneous Double "Purse String Suture"-A Safe

Method for Femoral Vein Access Site Closure after Leadless Pacemaker Implantation. Pacing

and Clinical Electrophysiology. 2016 Jul;39(7):675-9.

Wrong research

question.

7. Arias MA, Rubio MA, Miguel R, Pachón M. Thrombus formation at the tip of a leadless

pacemaker causing multiple unnecessary repositioning. Heart Rhythm. 2016 Jul 5.

Wrong research

question.

8. Rutzen-Lopez H, Silva J, Helm RH. Leadless Cardiac Devices-Pacemakers and Implantable

Cardioverter-Defibrillators. Current Treatment Options in Cardiovascular Medicine. 2016

Aug;18(8):49.

Background.

9. Da Costa A, Romeyer-Bouchard C, Guichard JB, Gerbay A, Isaaz K. Is the new Micra-

leadless pacemaker entirely safe? International Journal of Cardiology. 2016 Jun 1;212:97-9.

Wrong study

design.

10. Cay S, Ozeke O, Ozcan F, Topaloglu S, Aras D. An important advantage of the leadless Wrong study

Page 62: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

62

pacemakers: magnetic resonance imaging compatibility. Europace. 2016 Apr;18(4):628-9. design.

11. Fudim M, Fredi JL, Ball SK, Ellis CR. Transcatheter Leadless Pacemaker Implantation for

Complete Heart Block Following CoreValve Transcatheter Aortic Valve Replacement.

Journal of Cardiovascular Electrophysiology. 2016 Jan;27(1):125-6.

Wrong

population.

12. Sperzel J. Leadless pacemakers and MRI compatibility: authors' reply. Europace. 2016

Apr;18(4):629.

Wrong study

design.

13. Huynh K. Device therapy: Newly designed leadless pacemaker. Nature Reviews: Cardiology.

2016 Jan;13(1):5.

Wrong study

design.

14. Pachón M, Puchol A, Arias MA. Leadless Pacemaker After Complicated Hematoma. Revista

Espanola de Cardiologia (English ed.). 2016 Jun;69(6):607.

Wrong study

design.

15. Ubrich R, Kreiser K, Sinnecker D, Schneider S. Magnetic resonance imaging at 1.5-T in a

patient with implantable leadless pacemaker. European Heart Journal. 2016 Aug

7;37(30):2441.

Wrong study

design.

16. Jung W, Sadeghzadeh G, Kohler J, Jäckle S, Beyersdorf F, Siepe M. Successful retrieval of

an active fixation leadless pacemaker in a 74-year-old woman 506 days post-implant.

Europace. 2016 Jul 1.

Wrong research

question.

17. Tjong FV, Brouwer TF, Kooiman KM, Smeding L, Koop B, Soltis B, Shuros A, Wilde

AA, Burke M, Knops RE. Communicating Antitachycardia Pacing-Enabled Leadless

Pacemaker and Subcutaneous Implantable Defibrillator. Journal of the Americal College of

Cardiology. 2016 Apr 19;67(15):1865-6.

Wrong study

design.

18. Huynh K. Newly designed leadless pacemaker. Nature Reviews: Cardiology. 2016

Mar;13(3):123.

Wrong study

design.

19. Bhargava R, Bhargava B. Leadless pacemaker and cremation. Heart of Asia. 2016 Jan

7;8(1):1-2.

Wrong research

question.

20. Wilson DG, Yue A, Roberts PR, Morgan JM. Leadless pacing: The old with the new.

International Journal of Cardiology. 2016 Jan 15;203:407-8.

Wrong study

design.

21. Kypta A, Blessberger H, Kammler J, Lambert T, Lichtenauer M, Brandstaetter W, Gabriel M,

Steinwender C. Leadless Cardiac Pacemaker Implantation After Lead Extraction in Patients

With Severe Device Infection. Journal of Cardiovascular Electrophysiology. 2016 Jun 14.

Wrong research

question.

22. Kypta A, Blessberger H, Lichtenauer M, Steinwender C. Temporary leadless pacing in a

patient with severe device infection. BMJ Case Report. 2016 May 17;2016.

Wrong study

design.

23. Arkles J, Cooper J. The Emerging Roles of Leadless Devices. Current Treatment Options in

Cardiovascular Medicine. 2016 Feb;18(2):14.

Background.

24. Omdahl P, Eggen MD, Bonner MD, Iaizzo PA, Wika K. Right Ventricular Anatomy Can

Accommodate Multiple Micra Transcatheter Pacemakers. Pacing and Clinical

Electrophysiology. 2016 Apr;39(4):393-7.

Wrong

population.

25. Lau CP, Lee KL. Transcatheter Leadless Cardiac Pacing with Limited Venous Access. Pacing

and Clinical Electrophysiology. 2016 May 25.

Wrong study

design.

26. Bongiorni MG, Zucchelli G, Coluccia G, Soldati E, Barletta V, Paperini L, Menichetti F, Di

Cori A, Segreti L, Del Prete E, Ceravolo R. Leadless cardiac pacemaker implant in a patient

with two deep brain stimulators: A peaceful cohabitation beyond prejudices. International

Journal of Cardiology. 2016 Aug 8;223:136-138.

Wrong study

design.

27. Falk V, Starck CT. Cardiac pacing - Will the future be exclusively leadless? Expert Review

of Medical Devices. 2016 May;13(5):421-2.

Wrong study

design.

28. Bhargava M, Bhargava R. A Leadless Cardiac Pacemaker. The New England Journal of

Medicine. 2016 Feb 11;374(6):593.

Wrong study

design.

29. Xiao Y, Zhou S, Liu Q. A Leadless Cardiac Pacemaker. The New England Journal of

Medicine. 2016 Feb 11;374(6):593-4.

Wrong study

design.

30. Dizon JM, Nazif TM, Hess PL, Biviano A, Garan H, Douglas PS, Kapadia S, Babaliaros V,

Herrmann HC, Szeto WY, Jilaihawi H, Fearon WF, Tuzcu EM, Pichard AD, Makkar R,

Williams M, Hahn RT, Xu K, Smith CR, Leon MB, Kodali SK. Chronic pacing and adverse

outcomes after transcatheter aortic valve implantation. Heart. 2015 Oct;101(20):1665-71.

Wrong

population.

31. Seifert M, Butter C. Evaluation of wireless stimulation of the endocardium, WiSE,

technology for treatment heart failure. Expert Review of Medical Devices. 2016

Jun;13(6):523-31.

Wrong study

design.

32. Austin C, Kusumoto F. Innovative pacing: Recent advances, emerging technologies, and

future directions in cardiac pacing. Trends in Cardiovascular Medicine. 2016 Jul;26(5):452-

63.

Wrong study

design.

Page 63: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

63

33. Kypta A, Blessberger H, Lichtenauer M, Steinwender C. Dawn of a new era: the completely

interventionally treated patient. BMJ Case Reports. 2016 Mar 18.

Wrong study

design.

34. Bordachar P, Marquié C, Pospiech T, Pasquié JL, Jalal Z, Haissaguerre M, Thambo JB.

Subcutaneous implantable cardioverter defibrillators in children, young adults and patients

with congenital heart disease. International Journal of Cardiology. 2016 Jan 15;203:251-8.

Wrong

intervention.

35. Baruteau AE, Pass RH, Thambo JB, Behaghel A, Le Pennec S, Perdreau E, Combes N,

Liberman L, McLeod CJ. Congenital and childhood atrioventricular blocks: pathophysiology

and contemporary management. European Journal of Pediatrics. 2016 Jun 28.

Wrong research

question.

36. Tsiachris D, Tousoulis D. Conventional pacing system: It cannot be done better, it can only

change. Hellenic Journal of Cardiology. 2016 Mar-Apr;57(2):107-8.

Wrong study

design.

37. McCune C, McKavanagh P, Menown IB. A Review of the Key Clinical Trials of 2015:

Results and Implications. Cardiology and Therapy. 2016 Jun 8.

Wrong research

question.

38. Chan KH, McGrady M, Wilcox I. A Leadless Intracardiac Transcatheter Pacing System. The

New England Journal of Medicine. 2016 Jun 30;374(26):2604.

Wrong study

design.

39. Reynolds DW, Ritter P. A Leadless Intracardiac Transcatheter Pacing System. The New

England Journal of Medicine. 2016 Jun 30;374(26):2604-5.

Wrong study

design.

40. Kypta A, Blessberger H, Lichtenauer M, Steinwender C. Complete encapsulation of a

leadless cardiac pacemaker. Clinical Research in Cardiology. 2016 Jan;105(1):94.

Wrong study

design.

41. Kypta A, Blessberger H, Kammler J, Lichtenauer M, Lambert T, Silye R, Steinwender C.

First Autopsy Description of Changes 1 Year After Implantation of a Leadless Cardiac

Pacemaker: Unexpected Ingrowth and Severe Chronic Inflammation. Canadian Journal of

Cardiology. 2015 Dec 29.

Wrong

population.

42. Garweg C, Ector J, Willems R. Leadless cardiac pacemaker as alternative in case of

congenital vascular abnormality and pocket infection. Europace. 2016 Feb 18.

Wrong study

design.

43. Borgquist R, Ljungström E, Koul B, Höijer CJ. Leadless Medtronic Micra pacemaker almost

completely endothelialized already after 4 months: first clinical experience from an explanted

heart. European Heart Journal. 2016 Apr 7.

Background.

44. Reddy VY. A Leadless Cardiac Pacemaker. The New England Journal of Medicine. 2016 Feb

11;374(6):594.

Background.

Page 64: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

64

APPENDIX 3: QUALITY ASSESSMENT OF SELECTED STUDIES

Quality assessment of the selected case series

Table VII. Quality assessment of the selected case series. LEADLESS I

(NCT01700244)

LEADLESS II

(NCT02030418)

Micra Transcatheter

Pacing Study

(NCT02004873)

Reference/ID [24,25] [33] [42,43]

Study objective

1. Is the hypothesis/aim/objective of the study

stated clearly in the abstract, introduction, or

methods section?

Yes Yes Yes

Study population

2. Are the characteristics of the participants

included in the study described?

Yes Yes Yes

3. Were the cases collected in more than one

centre?

Yes Yes Yes

4. Are the eligibility criteria (inclusion and

exclusion criteria) for entry into the study explicit

and appropriate?

Yes Yes Yes

5. Were participants recruited consecutively? Yes Yes Unclear

6. Did participants enter the study at similar point

in the disease?

No No No

Intervention and co-intervention

7. Was the intervention clearly described in the

study?

Yes Yes Yes

8. Were additional interventions (co-interventions)

clearly reported in the study?

No No No

Outcome measures

9. Are the outcome measures clearly defined in the

introduction or methods section?

Yes Yes Yes

10. Were relevant outcomes appropriately

measured with objective and/or subjective

methods?

Yes Yes Yes

11. Were outcomes measured before and after

intervention?

No No No

Statistical Analysis

12. Were the statistical tests used to assess the

relevant outcomes appropriate?

Yes Yes Yes

Results and Conclusions

13. Was the length of follow-up reported? Yes Yes Yes

14. Was the loss to follow-up reported? Yes Yes Yes

15. Does the study provide estimates of the random

variability in the data analysis of relevant

outcomes?

No No Yes

16. Are adverse events reported? Yes Yes Yes

17. Are the conclusions of the study supported by

results?

Yes Yes Yes

Competing interest and source of support

18. Are both competing interest and source of

support for the study reported?

Yes Yes Yes

Overall Risk of bias Low Low Low

Page 65: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

65

The IHE checklist for case series

Case Series: 18-criteria checklist

Study objective

1.Is the hypothesis/ aim/ objective of the study stated

clearly in the abstract, introduction, or methods section?

Study population

2.Are the characteristics of the participants included in the

study described?

3.Were the cases collected in more than one centre?

4.Are the eligibility criteria (inclusion and exclusion

criteria) for entry into the study explicit and appropriate?

5.Were participants recruited consecutively?

6.Did participants enter the study at a similar point in the

disease?

Intervention and co-intervention

7.Was the intervention clearly described in the study?

8.Were additional interventions (co-interventions) clearly

reported in the study?

Outcome measure

9.Are the outcome measures clearly defined in the

introduction or methods section?

10.Were relevant outcomes appropriately measured with

objective and/or subjective methods?

11.Were outcomes measured before and after intervention?

Statistical analysis

12.Were the statistical tests used to assess the relevant

outcomes appropriate?

Results and conclusions

13.Was the lenght of follow-up reported?

14.Was the loss to follow-up reported?

15.Does the study design provide estimates of the random

variability in the data analysis of relevant outcomes?

16.Are adverse events reported?

17.Are the conclusions of the study supported by results?

Competing interests and sources of support

18.Are both competing interests and sources of support for

the study reported?

Page 66: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

66

Quality assessment of the selected systematic reviews

Table VIII. Quality assessment of the selected systematic review (HTA).

Kisser, 2016 [15]

1.Was an ‘a priori’ design provided? Yes

2.Was there duplicate study selection and data extraction? CA

3.Was a comprehensive literature search performed? Yes

4.Was a status of publication (i.e. grey literature) used as an

inclusion criterion?

Yes

5.Was a list of studies (included and excluded) provided? No

6.Were the characteristics of the included studies provided? Yes

7.Was the scientific quality of the included studies assessed and

documented?

Yes

8.Was the scientific quality of the included studies used

appropriately in formulating conclusions?

Yes

9.Were the methods used to combine the findings of studies

appropriate?

No

10.Was the likelihood of publication bias assessed? No

11.Was the conflict of interest included? No

CA – can‘t answer.

Page 67: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

67

The AMSTAR checklist for systematic reviews

1. Was an 'a priori' design provided?

The research question and inclusion criteria should be established before the conduct of the review.

Note: Need to refer to a protocol, ethics approval, or pre-determined/a priori published research objectives to score a “yes.”

□ Yes

□ No

□ Can't answer

□ Not applicable

2. Was there duplicate study selection and data extraction?

There should be at least two independent data extractors and a consensus procedure for disagreements should be in place.

Note: 2 people do study selection, 2 people do data extraction, consensus process or one person checks the other’s work.

□ Yes

□ No

□ Can't answer

□ Not applicable

3. Was a comprehensive literature search performed?

At least two electronic sources should be searched. The report must include years and databases used (e.g., Central,

EMBASE, and MEDLINE). Key words and/or MESH terms must be stated and where feasible the search strategy should be

provided. All searches should be supplemented by consulting current contents, reviews, textbooks, specialized registers, or

experts in the particular field of study, and by reviewing the references in the studies found.

Note: If at least 2 sources + one supplementary strategy used, select “yes” (Cochrane register/Central counts as 2 sources; a

grey literature search counts as supplementary).

□ Yes

□ No

□ Can't answer

□ Not applicable

4. Was the status of publication (i.e. grey literature) used as an inclusion

criterion?

The authors should state that they searched for reports regardless of their publication type. The authors should state whether

or not they excluded any reports (from the systematic review), based on their publication status, language etc.

Note: If review indicates that there was a search for “grey literature” or “unpublished literature,” indicate “yes.” SIGLE

database, dissertations, conference proceedings, and trial registries are all considered grey for this purpose. If searching a

source that contains both grey and non-grey, must specify that they were searching for grey/unpublished lit.

□ Yes

□ No

□ Can't answer

□ Not applicable

5. Was a list of studies (included and excluded) provided?

A list of included and excluded studies should be provided.

Note: Acceptable if the excluded studies are referenced. If there is an electronic link to the list but the link is dead, select

“no”.

□ Yes

□ No

□ Can't answer

□ Not applicable

6. Were the characteristics of the included studies provided?

In an aggregated form such as a table, data from the original studies should be provided on the participants, interventions and

outcomes. The ranges of characteristics in all the studies analyzed e.g., age, race, sex, relevant socioeconomic data, disease

status, duration, severity, or other diseases should be reported.

Note: Acceptable if not in table format as long as they are described as above.

□ Yes

□ No

Page 68: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

68

□ Can't answer

□ Not applicable

7. Was the scientific quality of the included studies assessed and documented?

'A priori' methods of assessment should be provided (e.g., for effectiveness studies if the author(s) chose to include only

randomized, double-blind, placebo controlled studies, or allocation concealment as inclusion criteria); for other types of

studies alternative items will be relevant.

Note: Can include use of a quality scoring tool or checklist, e.g., Jadad scale, risk of bias, sensitivity analysis, etc., or a

description of quality items, with some kind of result for EACH study (“low” or “high” is fine, as long as it is clear which

studies scored “low” and which scored “high”; a summary score/range for all studies is not acceptable).

□ Yes

□ No

□ Can't answer

□ Not applicable

8. Was the scientific quality of the included studies used appropriately in formulating conclusions?

The results of the methodological rigor and scientific quality should be considered in the analysis and the conclusions of the

review, and explicitly stated in formulating recommendations.

Note: Might say something such as “the results should be interpreted with caution due to poor quality of included studies.”

Cannot score “yes” for this question if scored “no” for question 7.

□ Yes

□ No

□ Can't answer

□ Not applicable

9. Were the methods used to combine the findings of studies appropriate?

For the pooled results, a test should be done to ensure the studies were combinable, to assess their homogeneity (i.e., Chi-

squared test for homogeneity, I2). If heterogeneity exists a random effects model should be used and/or the clinical

appropriateness of combining should be taken into consideration (i.e., is it sensible to combine?).

Note: Indicate “yes” if they mention or describe heterogeneity, i.e., if they explain that they cannot pool because of

heterogeneity/variability between interventions.

□ Yes

□ No

□ Can't answer

□ Not applicable

10. Was the likelihood of publication bias assessed?

An assessment of publication bias should include a combination of graphical aids (e.g., funnel plot, other available tests)

and/or statistical tests (e.g., Egger regression test, Hedges-Olken).

Note: If no test values or funnel plot included, score “no”. Score “yes” if mentions that publication bias could not be

assessed because there were fewer than 10 included studies.

□ Yes

□ No

□ Can't answer

□ Not applicable

11. Was the conflict of interest included?

Potential sources of support should be clearly acknowledged in both the systematic review and the included studies.

Note: To get a “yes,” must indicate source of funding or support for the systematic review AND for each of the included

studies.

□ Yes

□ No

□ Can't answer

□ Not applicable

Shea et al. BMC Medical Research Methodology 2007 7:10 doi:10.1186/1471-2288-7-10

Additional notes (in italics) made by Michelle Weir, Julia Worswick, and Carolyn Wayne based on conversations with Bev

Shea and/or Jeremy Grimshaw in June and October 2008 and July and September 2010.

Page 69: SVEIKATOS TECHNOLOGIJOS VERTINIMAS: DEŠINIAJAME …sam.lrv.lt/uploads/sam/documents/files/Struktura_ir...1 sveikatos technologijos vertinimas: deŠiniajame skilvelyje implantuojamas

69

Checklist for potential ethical, organisational, social and legal aspects

1. Ethical

1.1. Does the introduction of the new technology and its potential use/nonuse instead of

the defined, existing comparator(s) give rise to any new ethical issues?

Yes

1.2. Does comparing the new technology to the defined, existing comparators point to any

differences which may be ethically relevant?

No

2. Organisational

2.1. Does the introduction of the new technology and its potential use/nonuse instead of

the defined, existing comparators require organisational changes?

Yes

2.2. Does comparing the new technology to the defined, existing comparators point to any

differences which may be organisationally relevant?

No

3. Social

3.1. Does the introduction of the new technology and its potential use/nonuse instead of

the defined, existing comparator(s) give rise to any new social issues?

No

3.2. Does comparing the new technology to the defined, existing comparators point to any

differences which may be socially relevant?

No

4. Legal

4.1. Does the introduction of the new technology and its potential use/nonuse instead of

the defined, existing comparator(s) give rise to any legal issues?

No

4.2. Does comparing the new technology to the defined, existing comparators point to any

differences which may be legally relevant?

No