14
Supporting Information Rich N/O/S Co-Doped Porous Carbon with High Surface Area from Silkworm Cocoon for Superior Supercapacitors Jianyu Huang, Simin Liu, Zifang Peng, Zhuoxian Shao, Yuanyuan Zhang, Hanwu Dong, Mingtao Zheng, Yong Xiao * and Yingliang Liu * College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China Fig. S1 SEM images of SC-PC-900 Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Supporting Information

Rich N/O/S Co-Doped Porous Carbon with High Surface Area from

Silkworm Cocoon for Superior Supercapacitors

Jianyu Huang, Simin Liu, Zifang Peng, Zhuoxian Shao, Yuanyuan Zhang, Hanwu

Dong, Mingtao Zheng, Yong Xiao* and Yingliang Liu*

College of Materials and Energy, South China Agricultural University, Guangzhou

510642, China

Fig. S1 SEM images of SC-PC-900

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Page 2: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Fig. S2. The thermal gravimetric analysis curve of SC-PC-900.

Fig. S3 (a) XRD profiles and (b) Raman spectra of the as-synthesized SC-PCs.

Fig. S4 (a) N2 adsorption-desorption isotherms and (b) pore-size distribution (PSD)

curves of control sample.

Page 3: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Fig. S5 XRD patterns of WAW-SC-PC-900.

Fig. S6 CV curves of (a) SC-PC-600, (c) SC-PC-700 and (e) SC-PC-800 at different

scan rates from 5 to 100 mV s-1. GCD curves of (b) SC-PC -600, (d) SC-PC-700 and

(f) SC-PC-800 from 0.5 to 50 A g-1.

Page 4: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Fig. S7 GCD curves of SC-PCs at a current density of 0.5 A g-1.

Fig. S8 Nyquist plots of SC-PCs in three-electrode systems by using 6 M KOH

aqueous solution as electrolyte.

Page 5: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Fig. S9 Electrochemical measurements of the SC-PC-900-based supercapacitors in 6

M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various

current densities. (c) Specific capacitance of single electrode in supercapacitors at

different current density. (d) Ragone plot of the SC-PC-900-based supercapacitors.

Fig. S10 Specific capacitance of SC-PC-900-based supercapacitor at different current

density using 1 M Na2SO4 as electrolyte.

Page 6: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Table S1 Comparison the heteroatom content and surface area of porous carbon

derived from silkworm cocoon.

Element contentSource SBET

(m2 g-1) Total content N O S

Ref.

Silkworm cocoon 2826 21.9 wt. % 7.3 wt. % 13.0 wt.% 1.6 wt. % This work

Silkworm cocoon 2557 15.8 wt. % 5.1 wt. % 10.7 wt. % - [1]

Silkworm cocoon 796 15.5 at. % 4.5 at. % 11.0 at. % [2]

Silkworm cocoon 3134 10.8 at. % 1.7 at. % 9.1 at. % - [3]

Silkworm cocoon 3841 8.33 at. % 3.24 at. % 5.09 at. % - [4]

Silkworm cocoon 2494 8.2 wt. % 4.1 wt. % 4.1 wt. % [5]

Silkworm cocoon 230 6.7 at. % 6.7 at. % [6]

Silkworm cocoon 2797 6.6 at. % 2.25 at. % 4.05 at. % 0.30 at. % [7]

Silkworm cocoon 2181 5.9 wt. % 5.9 wt. % [8]

Silkworm cocoon 768 5.12 at. % 5.12 at. % - - [2]

Silkworm cocoon 1333 4.16 at. % 4.16 at. % - - [9]

Silkworm cocoon 3514 1.58 at. % 1.58 at. % - [10]

Silkworm cocoon 3243 1.5 wt. % 1.5 wt. % - [8]

Page 7: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Table S2. Contents of C 1s, O 1s, N 1s and S 2p of the as-resulted samples.

Samples XPS (at%) Element analysis (wt%)

C O N S C O N S

SC-PC-600 74.65 14.26 9.25 0.20 66.3 18.6 11.2 0.9

SC-PC-700 75.13 14.20 8.86 0.24 67.1 17.0 11.1 1.3

SC-PC-800 76.65 14.68 7.84 0.31 70.4 14.0 10.5 1.4

SC-PC-900 78.21 13.25 7.08 0.50 74.9 13.0 7.3 1.6

Page 8: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Table S3. Porosity parameters of the as-prepared samples.

SamplesSBET

(a)

[m2 g-1]Smicro

(b)

[m2 g-1]Smeso

(c)

[m2 g-1]Vt

(d)

[cm3 g-1]Vmicro

(e)

[cm3 g-1]DHK

(f)

[nm]DBJH

(g)

[nm]Capacitance

(F g–1)(h)

SC-PC-600 1528 1078 450 0.65 0.42 0.77 2.45 288

SC-PC-700 1866 1454 412 0.78 0.55 0.79 2.37 331

SC-PC-800 2549 2068 481 1.09 0.89 0.82 2.18 393

SC-PC-900 2826 2356 470 1.20 0.93 0.84 2.25 435

Control

sample34 0 34 0.02 0 - 5.39 39

(a) Specific surface area from multiple BET (Brunauer–Emmett–Teller) method.

(b) Micropore surface area from t-plot method.

(c) T-plot method external surface area (Smeso=SBET –Smicro).

(d) Total pore volume at P/P0= 0.99.

(e) The volume of micropores was determined by t-plot method.

(f) DHK represents the median micropore size by the Horvath-Kawazoe (HK) method.

(g) DBJH stands for the Barrett-Joyner-Halenda (BJH) desorption average pore width.

(h) At a current density of 0.5 A g−1.

Page 9: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Table S4 Summary of BET surface areas, activation method and activation agent for

the reported hierarchal porous carbons derived from different precursors.

Refer.Number

SBET (m2 g-1)

Activation Method Activation Agent Biomass

This work 2826 Chemical KOH Silkworm Cocoon

[11] 3251 Chemical KOH Starch

[12] 1510 Chemical KOH Starch

[13] 2316 Chemical KOH Wheat straw

[14] 2157 Chemical KOH Pig bone

[15] 2273 Chemical KOH Fish scale

[16] 1273 Chemical KOH Cherry stones

[17] 416 Chemical KOH Waste news paper

[18] 2405 Chemical KOHEnteromorpha

prolifera

[18] 1204 Chemical KOHEnteromorpha

prolifera

[19] 2106 Chemical KOH Fermented rice

[20] 1413 Chemical KOH Bamboo

[21] 169 Chemical KOH Bamboo

[22] 2073 Chemical KOH Algae

[23] 2855 Chemical KOH Silk

[24] 2496 Chemical ZnCl2+FeCl3 Silk

[25] 2454 Chemical KOH Silk fibroin

[26] 2490 Chemical KOH Bluestem

[26] 1616 Chemical NaOH Bluestem

[26] 552 Chemical NaHCO3 Bluestem

[27] 2111 Chemical KOH Coffee grounds

[28] 1758 Chemical KOH Artemia cyst shell

[29] 491 Chemical H3PO4 Bacterial cellulose

[30] 3270 Chemical KOH Seaweed

Page 10: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

[30] 2170 Chemical KOH Seaweed

[31] 3054 Chemical KOH Corncob

[32] 1776 Chemical KOH Willow catkins

[33] 1589 Chemical KOH Willow catkins

[34] 1586 Chemical KOH Willow catkins

[35] 1929 Chemical KOH Olive pits

[36] 1081 Chemical KOH Shiitake mushroom

[36] 2988 Chemical H3PO4+KOH Shiitake mushroom

[36] 1315 Chemical H3PO4 Shiitake mushroom

[37] 3398 Chemical KOH Bean dregs

[37] 2555 Chemical KOH Bean dregs

[38] 2130 Chemical H3PO4 Soybean residue

[39] 580 Chemical KOH Soybean

[40] 1124 Physical Air Grape seed

[41] 3350 Chemical KOH Sisal fiber

[42] 2140 Chemical KOH Cornstalks

[43] 2296 Chemical KOH Bagasse

[44] 1154 Chemical KOH Plane tree

Page 11: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

Table S5 Collection of Rs, Rct , Rw, RESR of typical sample according to fitting ESI

data.

Sample Rs Rct Rw RESR

SC-PC-600 0.29 <0.01 129 129.29

SC-PC-700 0.18 <0.01 18.38 18.56

SC-PC-800 0.30 0.26 2.33 2.89

SC-PC-900 0.20 0.17 1.54 1.91

Page 12: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

References: [1] Young Soo Y, Se Youn C, Jinyong S, Byung Hoon K, Sung-Jin C, Seung Jae B, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. ADV MATER. 2013;25(14):1993-8. [2] Liang Y, Wu D, Fu R. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci Rep. 2013;3(7):1119. [3] Sun J, Zhang Z, Jing J, Dou M, Feng W. Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon. APPL SURF SCI. 2017;405:372-9. [4] Chao L, Zhuang J, Yong X, Zheng M, Hang H, Dong H, et al. Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J POWER SOURCES. 2016;310:145-53. [5] Jianhua H, Chuanbao C, Faryal I, Xilan M. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS NANO. 2015;9(3):2556. [6] Du FH, Yizhou N, Wang Y, Wang D, Ge Q, Chen S, et al. Green Fabrication of Silkworm Cocoon-Like Silicon-Based Composite for High-Performance Li-Ion Batteries. ACS NANO. 2017;11(9):7b-3830b. [7] Jia L, Ng DHL, Peng S, Chao K, Yi S, Ping Y. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption. BIOMASS BIOENERG. 2015;75:189-200. [8] Zhang B, Xiao M, Wang S, Han D, Song S, Chen G, et al. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications. ACS APPL MATER INTER. 2014;6(15):13174-82. [9] Jing S, Zhang M, Liang H, Shen B, Yin S, Yang X. Facile synthesis of 3D binder-free N-doped

carbon nanonet derived from silkworm cocoon for Li–O 2 battery. J MATER SCI. 2017;53(6):4395-405.[10] Sun J, Niu J, Liu M, Ji J, Dou M, Wang F. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. APPL SURF SCI. 2018;427:807-13.[11] Du S, Wang L, Fu X, Chen M, Wang C. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. BIORESOURCE TECHNOL. 2013;139:406-9.[12] LI Q, WANG H, DAI Q, YANG J, ZHONG Y. Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. SOLID STATE IONICS. 2008;179(7-8):269-73.[13] Li X, Han C, Chen X, Shi C. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. MICROPOR MESOPOR MAT. 2010;131(1-3):303-9.[14] Wei S, Zhang H, Huang Y, Wang W, Xia Y, Yu Z. Pig bone derived hierarchical porous carbon

and its enhanced cycling performance of lithium–sulfur batteries. ENERG ENVIRON SCI. 2011;4(3):736.[15] Chen W, Zhang H, Huang Y, Wang W. A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. Journal of Materials Chemistry. 2010;20(23):4773.

Page 13: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

[16] Olivares-Marín M, Fernández JA, Lázaro MJ, Fernández-González C, Macías-García A, Gómez-Serrano V, et al. Cherry stones as precursor of activated carbons for supercapacitors. MATER CHEM PHYS. 2009;114(1):323-7.

[17] Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG. Recycled waste paper—A new source of raw material for electric double-layer capacitors. J POWER SOURCES. 2009;190(2):587-91.[18] Gao X, Xing W, Zhou J, Wang G, Zhuo S, Liu Z, et al. Superior capacitive performance of active carbons derived from Enteromorpha prolifera. ELECTROCHIM ACTA. 2014;133:459-66.[19] Gao S, Chen Y, Fan H, Wei X, Hu C, Luo H, et al. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J MATER CHEM A. 2014;2(10):3317.[20] Kim Y, Lee B, Suezaki H, Chino T, Abe Y, Yanagiura T, et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. CARBON. 2006 2006-01-01;44(8):1592-5.[21] Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials. ELECTROCHIM ACTA. 2015;180:241-51.[22] Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, et al. N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J MATER CHEM A. 2016;4(16):5973-83.

[23] Wang M, Bai L, Zhang L, Sun G, Zhang X, Dong S. A microporous silk carbon–ionic liquid composite for the electrochemical sensing of dopamine. The Analyst. 2016;141(8):2447-53.[24] Hou J, Cao C, Idrees F, Ma X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS NANO. 2015 2015-03-24;9(3):2556-64.[25] Zhang J, Cai Y, Zhong Q, Lai D, Yao J. Porous nitrogen-doped carbon derived from silk fibroin

protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. NANOSCALE. 2015;7(42):17791-7.[26] Jin H, Wang X, Gu Z, Hoefelmeyer JD, Muthukumarappan K, Julson J. Graphitized activated carbon based on big bluestem as an electrode for supercapacitors. RSC ADV. 2014;4(27):14136.[27] Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin H. Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS APPL MATER INTER. 2015 2015-02-18;7(6):3684-90.[28] Zhao Y, Ran W, He J, Song Y, Zhang C, Xiong D, et al. Oxygen-Rich Hierarchical Porous Carbon Derived from Artemia Cyst Shells with Superior Electrochemical Performance. ACS APPL MATER INTER. 2015 2015-01-21;7(2):1132-9.[29] Liang H, Wu Z, Chen L, Li C, Yu S. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. NANO ENERGY. 2015;11:366-76.

[30] Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D. “Egg-Box”-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS NANO. 2015 2015-11-24;9(11):11225-33.[31] Wang D, Geng Z, Li B, Zhang C. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. ELECTROCHIM ACTA. 2015;173:377-84.[32] Xie L, Sun G, Su F, Guo X, Kong Q, Li X, et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J MATER CHEM A. 2016;4(5):1637-46.

Page 14: Supporting Information · M KOH electrolyte: (a) CV curves at various scan rate and (b) GCD curves at various current densities. (c) Specific capacitance of single electrode in supercapacitors

[33] Li Y, Wang G, Wei T, Fan Z, Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. NANO ENERGY. 2016;19:165-75.[34] Wang K, Zhao N, Lei S, Yan R, Tian X, Wang J, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. ELECTROCHIM ACTA. 2015;166:1-11.[35] Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. ELECTROCHIM ACTA. 2015;160:178-84.[36] Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, et al. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. CARBON. 2015;93:315-24.[37] Ruan C, Ai K, Lu L. Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC ADV. 2014 2014-07-10;4(58):30887.[38] Ferrero GA, Fuertes AB, Sevilla M. From Soybean residue to advanced supercapacitors. SCI REP-UK. 2015;5(1).[39] Long C, Jiang L, Wu X, Jiang Y, Yang D, Wang C, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. CARBON. 2015;93:412-20.[40] Jiménez-Cordero D, Heras F, Gilarranz MA, Raymundo-Piñero E. Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. CARBON. 2014;71:127-38.[41] Liang Y, Wu B, Wu D, Xu F, Li Z, Luo J, et al. Ultrahigh surface area hierarchical porous carbons based on natural well-defined macropores in sisal fibers. Journal of Materials Chemistry. 2011;21(38):14424.[42] Zhang F, Ma H, Chen J, Li G, Zhang Y, Chen J. Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. BIORESOURCE TECHNOL. 2008;99(11):4803-8.[43] Feng H, Hu H, Dong H, Xiao Y, Cai Y, Lei B, et al. Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J POWER SOURCES. 2016;302:164-73.[44] Zhang Y, Liu X, Wang S, Dou S, Li L. Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J MATER CHEM A. 2016;4(28):10869-77.