76
Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong Drs. M.J. Moens Prof.dr.ir. C.M. Steenbergen http://team.bk.tudelft.nl

Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Embed Size (px)

Citation preview

Page 1: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Sun wind water earth life living legends for design

(AR1U010 Territory (design),AR0112 Civil engineering (calculations))

Prof.dr.ir. Taeke M. de Jong

Drs. M.J. Moens

Prof.dr.ir. C.M. Steenbergen

http://team.bk.tudelft.nl

Page 2: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Publish on your website:

AR1U010how you could take water, networks, traffic and civil works into account in your•earlier,•actual and•future work.

AR0112calculation and observations of streams in any

location and your design, check your

observations 

As soon as you are ready with all subjects (Sun, Wind, Water, Earth, Life, Living, Traffic, Legends), send a message mailto:[email protected] referring your

web adress, student number and code AR1U010 or AR0112.

Page 3: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

STREAMSWATER

TRAFFICNETWORKS

CIVIL WORKS

Page 4: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Total amount of water on Earth

1000 km3 salt fresh total m3/m2 mmatmosphere 12,9 12,9 0,025 25sea 1 338 000 1 338 000 2 624 2 624 021land, from w hich 12 957 35 004 47 960 94 94 057

snow and ice 24 364 24 364 48 47 782

subterranean 12 870 10 530 23 400 46 45 891

lakes 85,4 91 176,4 0,346 346

soil moisture 16,5 16,5 0,032 32

sw amps 2,1 2,1 0,004 4

life 1,1 1,1 0,002 2

total 1 350 957 35 004 1 385 960 2 718 2 718 079

Page 5: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Yearly gobal evaporation, precipitation and runoff

evaporation precipitation runoff evaporation precipitation runoff

sea 419 382 1157 1055land 69 106 37 467 717 250total 488 488 957 957

1000 km3/a mm/a

Page 6: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Global distribution of precipitation

Page 7: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

European distribution of precipitation

Page 8: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Precipitation minus evaporation in The Netherlands

Page 9: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

European river system

Page 10: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Soil types and average annual runoff

Page 11: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Simulating runoff

Page 12: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Distinguishing orders

1 2 3 4 51

10

100

1 103

Number( )Order

Length( )Order

Order

Page 13: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Theoretical orders of urban traffic infrastructure

km km km/km2

nominal mesh km/metropolis inclusive density exclusive mv/hdistrict roads 1 72000 2 1,33 1000city highways 3 24000 0,67 0,47 3000local highways 10 7200 0,2 0,13 10000regional highways 30 2400 0,07 0,05 30000national highways 100 720 0,02 0,02 100000

and so on nearly 3.00 2.00 total

Page 14: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Orders of dry and wet connections in a lattice

Page 15: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Opening up feather and tree like

Feather like Tree likedensity 29 sections 29 sectionsbifurcation ratio 18 2number of ‘orders’ 2 5

Page 16: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Wat’s efficient?

Feather like Tree likedensity 96 sections 98 sectionsbifurcation ratio 18 2number of ‘orders’ 2 6 or 9

Page 17: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Forms of deposit

Page 18: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Meandering and twining

Page 19: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Twining at R=100km,

meandering at R=30km

Page 20: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Deltas

Page 21: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Q by measurement

The velocity v of water can be measured on different vertical lines h with mutual distance b in a cross section of a river. You can multiply v x b x h and summon the outcomes in cross section A to get Q = (v*b*h).

Page 22: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Data from profile

0 5 104

2

0

hi

Bi

h .

0

1

3

3

1

0

mb .

0

2

2

2

2

2

m

Bi

= 0

i

x

bx

v .

0

1

2

3

2

1

m

sec

height h witdh b velocity v

Page 23: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Drainage subdivision

i ..0 5

ai

.bi

hi

..1

2b

ih

ih

i 1

A

i

ai

=A 16 m2

Qi

.vi

ai

Q

i

.vi

ai

=Q 36 m3 sec 1

vi

..0 m sec 1

..1 m sec 1

..2 m sec 1

..3 m sec 1

..2 m sec 1

..1 m sec 1

ai

.0 m2

.1 m2

.4 m2

.6 m2

.4 m2

.1 m2

Qi

..0 m3 sec 1

..1 m3 sec 1

..8 m3 sec 1

..18 m3 sec 1

..8 m3 sec 1

..1 m3 sec 1

Page 24: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Q on different water heights

0 100 200 300 4000

1

2

3

4

m3/sec

m

Mi

H( ),,a B Q

36

,.10 i Q

Page 25: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Q(height)

Q = 0,0003H8,7398

R2 = 0,9782

0

10

20

30

40

0 1 2 3 4

height in m

dra

ina

ge

in m

3/s

ec

Q = 0,0003H8,7398

R2 = 0,97820,1

1

10

100

1 10

height in m

dra

ina

ge

in m

3/s

ec

Normal representation Logarithmic representation

Page 26: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Hydrolic radius

0 5 100

2

4

f( )x

H

l1

r1

x

P

= l1

r1

j

Xj 1

Xj

2 Yj 1

Yj

2

A( )H .H r1

l1

dl1

r1

xf( )x

R( )HA( )H

P

Cross length (Natte omtrek) by Pythagoras:

Surface wet cross section:

AP

H

Hydrolic radius:

Page 27: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Method Chézy

The average velocity of water v = Q/A in m/sec is dependent on this hydrolic radius R, the roughness C it meets, and the slope of the river as drop of waterline s, in short v(C,R,s).

According to Chézy v(C,R,s)=CRs m/sec, and Q = Av = ACRs m3/sec.

Calculating C is the problem.

Page 28: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Method Strickler-Manning

Instead of v=CRs, Strickler-Manning used

v ..R

2

3 s

1

2

n

m

sec

Characteristics of bottom and slopes

from until

Concrete 0.010

0.013Gravel bed 0.02

00.03

0Natural streams:

Well maintained, straight 0.025

0.030Well maintained, winding 0.03

50.04

0Winding with vegetation 0.040

0.050Stones and vegetation 0.05

00.06

0River forelands:

Meadow

Agriculture

Shrubs

Tight shrubs

Tight forest

n

0.035

0.040

0.050

0.070

0.100

Page 29: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Method StevensInstead of v=CRs Stevens used v=cR considering Chézy’s Cs as a constant c to be calculated from local measurements.So, Q = Av = cAR m3/sec When we measure H and Q several times (H1, H2 …Hk and Q1, Q2 …

Qk), we can show different values of A(H)R(H) resulting from earlier

calculation as a straight line in the graph below.

0 1 2 3 4 5 6 7 8 9 10 11 1213 141516 1718 192021 222324 2526 272829 303132 3334350

10

20

30

40

.A( )H1 R( )H1.A( )Hk

R( )Hk

.A( )Hk

R( )Hk

H1 Q1

,H

k

m

Qk

m3

sec

A( )H .H r1

l1

dl1

r1

xf( )x

R( )HA( )H

P

Surface wet cross section:

Hydrolic radius:

Page 30: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Reading Q from H by Stevens

When we read today on our inspection walk a new water level H1 on the sounding rod of the profile concerned we can interpolate H1 between earlier measurements of H and read horizontally an estimated Q1 between the earlier corresponding values of Q to read Q from graph.

0 1 2 3 4 5 6 7 8 9 10 111213 141516 1718 192021 222324 2526 272829 303132 3334350

10

20

30

40

.A( )H1 R( )H1.A( )Hk

R( )Hk

.A( )Hk

R( )Hk

H1 Q1

,H

k

m

Qk

m3

sec

Page 31: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Hydrographs

River with continuous base discharge

River with periodical base discharge

Page 32: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Using drainage data

Duration line Dataset with peak discharges

Page 33: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Peak discharges

The peak discharge QT exceeded once in average T years (‘return

period’) is called ‘T-years discharge’.

The probability P of extreme values is called ‘extreme value distribution’.

The complementary probability P = 1 ‑ P’ discharge Q will exceed an observation (Q>X) is 1/T and the reverse P’ = 1 – P = 1 – 1/T. So, the ‘reduced variable’ y = -ln(-ln(1 – 1/T)).

P1

TP' 1 P 1

1

Te e

y

P( )y 1 e ey

T( )y1

( )exp( )exp( )y 1

Now we put in a graph:

and

Page 34: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Constructing Gumble I paper

   

T(y) and P(y) Logaritmically Gumbel I paper

Page 35: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Gumble I paper

Page 36: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Level and discharge regulators

Page 37: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Regulation principles

Page 38: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Retention in Rhine basin

Page 39: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Reservoirs

Page 40: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Storage

1

0

)(h

dhhA

When surface A varies with height h storage S is not proportional to height. By measuring surfaces on different heights A(h) you get an area-elevation curve. The storage on any height S(h) (capacity curve) is the sum of these layers or integral

Page 41: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Capacity calculation

You can simulate the working of a reservoir (‘operation study’) showing the cumulative sum of input minus output (inclusive evaporation and leakage). The graph is divided in intervals running from a peak to the next higher peak to start with the first peak. For every interval the difference between the first peak and its lowest level determines the required storage capacity of that interval. The highest value obtained this way is the required reservoir capacity.

Page 42: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Cumulative Rippl diagram

Page 43: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Avoiding floodings by reservoirsTo estimate the risk a reservoir can not store runoff long enough you need to know probability distributions of daily discharge.

Page 44: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Water management and hygiene

Page 45: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Strategies

Page 46: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Lowlands with spots of recognisable water management

Page 47: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Water managemant tasks in lowlands

05 Urban hydrology 06 Sewerage 07 Re-use of water 08 High tide management

09 Water management 10 Biological management 11 Wetlands 12 Water quality management

13 Bottom clearance 14 Law and organisation 15 Groundwater management 16 Natural purification

01 Water structuring 02 Saving water 03 Water supply and purificatien 04 Waste water management

Page 48: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Water management map

Page 49: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Overlay of observation points

Page 50: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Overlay of water supply

Page 51: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Need of drainage and flood control

Flooding of a canal in Delft Deep canal in Utrecht

Page 52: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Wet and dry functions

Page 53: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Area of lowlands with drainage and flood control problems

x1000 km2 1 crop 2 crops 3 crops TotalNorth America 170 210 30 400Centra America 20 190 210South America 60 290 1210 1560Europe 830 50 880Africa 300 1620 1920South Asia 10 460 580 1050North and Central Asia 1650 520 20 2190South-East Africa 530 530Australia 310 120 430

9170

Page 54: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Levels in lowland

Page 55: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Pumping stations in The Netherlands

Page 56: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Drainage by one to three pumping stations

Page 57: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

A ‘row of windmills’ (‘molengang’)

Page 58: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

One way sluice

Page 59: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

The belt (‘boezem’) system of Delfland

Page 60: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Rising outside water levels and dropping ground levels

Page 61: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Polders

Page 62: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Distance between trenches

The necessary distance L between smallest ditches or drain pipes is determined by precipation q [m/24h], the maximally accepted height h [m] of ground water above drainage basis between drains and by soil characteristics. Soil is characterised by its permeability k [m/24h]. A simple formula is L=2(2Kh/q).

Page 63: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Soil permeability

Type of soilgravel

coarse sand with gravel 100 1000corse sand, frictured clay

in new polders10 100

middle fine sand 1 10very fine sand 0.2 1

sandy claypeat, heavy clayun-ripened clay 0.00001

Permeability k in m/24h>1000

0.10.01

Page 64: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Hooghoudt formula

A simple formula is L=2(2Kh/q). If we accept h=0.4m and several times per year precipitation is 0.008m/24h, supposing k=25m/24h the distance L between ditches is 100m. However, the permeability differs per soil layer. To calculate such differences more precise we need the Hooghoudt formula desribed by Ankum (2003).

Page 65: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Plot division in polders

Page 66: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Closed sluices

Uitwateringssluis Inlaatsluis

Ontlastsluis Keersluis

Page 67: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Open sluicesUitwateringssluis

IrrigatiesluisOntlastsluis

Inlaatsluis

Page 68: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Sluices

Ontlastsluis

Spuisluis Inundatiesluis

Damsluis

Page 69: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Weirs

Schotbalkstuw Schotbalkstuw met wegklapbare aanslagstijl

Naaldstuw Automatische klepstuw

Dakstuw Dubbele Stoneyschuif

Wielschuif rechtstreeks ondersteund door jukken

Wielschuif via losse stijlen ondersteund door jukken

Page 70: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Locks

Schutsluis Dubbelkerende schutsluis

Page 71: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Locks

Schutsluis Dubbelkerende schutsluis

Page 72: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Locks

Schutsluis Dubbelkerende schutsluis

Page 73: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Tweelingsluis Schachtsluis Driewegsluis

Sluis met verbrede kolk Bajonetsluis

LocksGekoppelde sluis

Page 74: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Entrance and exit constructions

Page 75: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Coastal protection

Page 76: Sun wind water earth life living legends for design (AR1U010 Territory (design), AR0112 Civil engineering (calculations)) Prof.dr.ir. Taeke M. de Jong

Delta project constructions