1
Thursday 1:30 p.m. Room 1315 March 9, 2017 Chemistry Building Dr. Didier R. Long Laboratory of Polymers and Advanced Materials CNRS/Solvay, France Experiments show that glassy polymers submitted to an applied stress undergo yield at deformations of a few percent and stresses of some 10 MPa, followed by a slow drop in stress under plastic deformation corresponding to the strainsoftening regime. Yield behavior is often described by using the phenomenological Eyring model, according to which stress biases the motion. This model requires the introduction of a socalled activation volume of order typically 1 nm 3 without clear interpretation. Upon increasing the deformation, some polymers of high molecular weight display an increase of stress in the large amplitude regime of deformation. The typical slope of stress versus strain in this regime, G R , is of order 10 7 – 10 8 Pa well below T g . Classical theories involving the entropic response of the rubbery network cannot explain such a high value. G R is also found to increase upon cooling. Regarding the onset of plastic flow and the stress softening regime, we propose that the elastic energy stored in the volume x 3 of dynamical heterogeneities effectively reduces the free energy barriers present for internal relaxation. It allows for calculating yield stresses of order a few 10 MPa which are consistent as compared to experimental data without additional adjustable parameters than the scale of dynamical heterogeneities measured and theoretically calculated in other contexts. Regarding the strain hardening regime, and following Chen and Schweizer, Phys. Rev. Lett. 2009, we assume that local deformation induces a reduction of mobility at the scale of dynamical heterogeneities, by orienting monomers in the drawing direction. We assume that consequent strengthening of monomermonomer interactions results in a local increase of the glass transition temperature. The model is then solved in 3D with a spatial resolution corresponding to the scale of a few nanometers of dynamical heterogeneities. Simulation results are in agreement with experimental data, such as the elastic modulus the yield stress and the yield behavior (strain softening), and the strain hardening regime (G R 10 MPa) with its temperature dependence, and its dependence on reticulation density. Ref: Luca Conca PhD thesis, Lyon, 2016 Strain hardening of glassy polymers : theory and simulation

Strain hardening of glassy polymers : theory and simulation Special Poster.pdfThursday 1:30 p.m. Room 1315 March 9, 2017 Chemistry Building Dr. Didier R. Long Laboratory of Polymers

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Strain hardening of glassy polymers : theory and simulation Special Poster.pdfThursday 1:30 p.m. Room 1315 March 9, 2017 Chemistry Building Dr. Didier R. Long Laboratory of Polymers

Thursday 1:30 p.m. Room 1315 March 9, 2017 Chemistry Building

Dr. Didier R. Long Laboratory of Polymers and Advanced Materials

CNRS/Solvay, France        Experiments  show  that  glassy  polymers  submitted  to  an  applied  stress  undergo  yield  at  deformations  of  a  few  percent  and  stresses  of  some  10  MPa,  followed  by  a  slow  drop  in  stress  under  plastic  deformation  corresponding  to  the  strain-­‐softening  regime.  Yield  behavior  is  often  described  by  using  the  phenomenological  Eyring  model,  according   to  which   stress   biases   the  motion.   This  model   requires   the   introduction   of   a   so-­‐called   activation  volume  of  order  typically  1  nm3  without  clear  interpretation.  Upon  increasing  the  deformation,  some  polymers  of  high  molecular  weight  display  an  increase  of  stress  in  the  large  amplitude  regime  of  deformation.  The  typical  slope  of  stress  versus  strain  in  this  regime,  GR,  is  of  order  107  –  108  Pa  well  below  Tg.  Classical  theories  involving  the  entropic  response  of  the  rubbery  network  cannot  explain  such  a  high  value.  GR  is  also  found  to  increase  upon  cooling.      

Regarding  the  onset  of  plastic  flow  and  the  stress  softening  regime,  we  propose  that  the  elastic  energy  stored  in  the  volume  x3  of  dynamical  heterogeneities  effectively  reduces  the  free  energy  barriers  present  for  internal  relaxation.  It  allows  for  calculating  yield  stresses  of  order  a  few  10  MPa  which  are  consistent  as  compared  to  experimental   data   without   additional   adjustable   parameters   than   the   scale   of   dynamical   heterogeneities  measured  and  theoretically  calculated  in  other  contexts.  Regarding  the  strain  hardening  regime,  and  following  Chen  and  Schweizer,  Phys.  Rev.  Lett.  2009,  we  assume  that  local  deformation  induces  a  reduction  of  mobility  at  the   scale   of   dynamical   heterogeneities,   by   orienting  monomers   in   the   drawing   direction.  We   assume   that  consequent  strengthening  of  monomer-­‐monomer  interactions  results  in  a  local  increase  of  the  glass  transition  temperature.      

The  model   is   then  solved   in  3D  with  a  spatial   resolution  corresponding  to  the  scale  of  a   few  nanometers  of  dynamical   heterogeneities.   Simulation   results   are   in   agreement  with   experimental   data,   such   as   the   elastic  modulus  the  yield  stress  and  the  yield  behavior  (strain  softening),  and  the  strain  hardening  regime  (GR∼10  MPa)  with  its  temperature  dependence,  and  its  dependence  on  reticulation  density.    Ref:  Luca  Conca  PhD  thesis,  Lyon,  2016  

Strain hardening of glassy polymers : theory and simulation