43
Space fractional Schrödinger equation for a quadrupolar triple Dirac- potential Jeffrey D. Tare* and Jose Perico H. Esguerra National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 *Presenter Presented at the 7th Jagna International Workshop Research Center for Theoretical Physics, Jagna, Bohol 6–9 January 2014

Space fractional Schrödinger equation for a quadrupolar triple Dirac - potential

  • Upload
    rasia

  • View
    54

  • Download
    1

Embed Size (px)

DESCRIPTION

Space fractional Schrödinger equation for a quadrupolar triple Dirac - potential. Jeffrey D. Tare* and Jose Perico H. Esguerra National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101 *Presenter. Presented at the 7th Jagna International Workshop - PowerPoint PPT Presentation

Citation preview

Page 1: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

Space fractional Schrödinger equation for a quadrupolar triple

Dirac- potential

Jeffrey D. Tare* and Jose Perico H. EsguerraNational Institute of Physics, University of the Philippines, Diliman, Quezon City 1101

*Presenter

Presented at the 7th Jagna International WorkshopResearch Center for Theoretical Physics, Jagna, Bohol

6–9 January 2014

Page 2: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

2

Objective

Obtain the solutions to the time-independent space fractional Schrödinger equation for a quadrupolar triple Dirac- potential for all energies E

Page 3: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

3

I. Time-independent space fractional Schrödinger equation A. Position representation B. Momentum representation

II. Quadrupolar triple Dirac- potentialIII. MethodologyIV. Solutions to the time-independent space fractional

Schrödinger equationA. (bound state) B. (scattering state)

V. Evaluation of some integrals in terms of Fox’s H-functionVI. Summary

Contents

0E

0E

Page 4: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

4

I. Time-independent space fractional Schrödinger equation

A. Position representation

(1)

Riesz fractional derivative

(2)

Fourier-transform pair

(3)

When , , with m being the mass of the particle.

22 , 1 2D x V x x E x

22 1

2ipx ipxx dpe p e x dx

1,2

ipx ipxp x e dx x p e dp

2 2 1 2D m

Page 5: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

5

B. Momentum representation

(4)

Fourier convolution integral

(5)

(6)

2

V pD p p E p

V p V p p p dp

ipxV p V x e dx

I. Time-independent space fractional Schrödinger equation

Page 6: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

6

In the framework of standard quantum mechanics the quadrupolar triple Dirac-delta (QTD-delta) potential has been considered by Patil1 and has the form

(7)

Figure 1. QTD-delta potential

1S. H. Patil, Eur. J. Phys. 30, 629 (2009)

II. Quadrupolar triple Dirac- potential

0 02 , 0V x V x a x x a V

Page 7: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

7

III. Methodology

TISFSE with QTD-delta potential

Fourier transform to obtain the corresponding momentum representation

Consider the cases E < 0 for bound state and E ≥ 0 for scattering state

For E < 0 obtain energy equations for V0 > 0 and V0 < 0 and solve graphically to

determine the number of bound states

For E ≥ 0 obtain an expression for the wave function

Obtain the wave function and normalize it

Inverse Fourier transform the wave functions to obtain the corresponding

position representation

Express the wave functions in terms of Fox’s H-function

Page 8: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

8

After Fourier transforming the TISFE with a QTD-delta potential the following expression for the wave function in the momentum representation is obtained:

(8)

where

(9)

IV. Solutions to the time-independent space fractional Schrödinger equation

00 1 22 0 ,

2iap iap Vp e C a C e C a

Dp E D

0 2 1, 0iapC a C a e p dp C p dp

Page 9: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

9

For this case we define

(10)

Then

(11)

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

0E

, 0ED

0 1 22 0iap iapp e C a C e C ap

Page 10: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

10

A. (bound state)

(12)

with (13)

(14)

0E

IV. Solutions to the time-independent space fractional Schrödinger equation

0 0

1 1

2 2

0 2 22 0 0 0

2 2 0

T T a T a C a C aT a T T a C CT a T a T C a C a

1 1

0

cos2 ,

1yq

T y dq q pq

Page 11: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

11

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state) To obtain nontrivial solutions we impose the condition

(15)

where

(16)

0E

0 T I

0 2 2 1 0 02 0 , 0 1 0

2 2 0 0 0 1

T T a T aT a T T aT a T a T

T I

Page 12: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

12

A. (bound state)

Energy equation

(17)

where (18)

(19)

(20)

3 11 3R A R B

IV. Solutions to the time-independent space fractional Schrödinger equation

0E

10, 2a R D a V

2 2 23 0 4 2A T T T

2 2 2 22 0 0 2 2 2 2B T T T T T T

Page 13: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

13

A. (bound state)

Figure 2. Plots of the functions and for some values of α and R = 2. Red dots mark the intersection points.

IV. Solutions to the time-independent space fractional Schrödinger equation

0E

1,f R A 3 13,g R B

Page 14: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

14

A. (bound state)

The wave function can be obtained by inverse Fourier transforming

(21)

that is,

(22)with

(23)

IV. Solutions to the time-independent space fractional Schrödinger equation

0E

x

0 1 22 0iap iapp e C a C e C ap

1

1 0x C W T x a T x Z T x a

0 2

1 1 0

cos, , 2

2 0 2 0 1C a C a yq

W Z T y dq q pC C q

Page 15: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

15

A. (bound state)

To normalize the technique of de Oliveira et al.2 is adapted.

Parseval’s theorem

(24)

2E. C. de Oliveira, F. S. Costa, and J. Vaz, Jr., J. Math. Phys. 51, 062102 (2010)

IV. Solutions to the time-independent space fractional Schrödinger equation

0E

x

12

x x dx p p dp

Page 16: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

16

A. (bound state)

For the wave function be normalized to unity,

(25)

with

(26)

(27)

2 1

1 0 , ,4

C F W Z

IV. Solutions to the time-independent space fractional Schrödinger equation

0E

x

1 2

2 2 2, , 1 1 csc 4 2 2F W Z W Z W Z I a WZ I a

2

0cos 1 ,I y yq q dq q p

Page 17: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

17

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Normalized wave function

(28)

where (29)

(30)

0E

1 1 ,1 , 1 2, 22,12,3

0, , 1 1 ,1 , 1 2, 2y H y

x N W x a x Z x a

, ,N F W Z

Page 18: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

18

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Figure 3. Plots of the wave function as a function of for some values of α and W = Z = 2.

0E

N x x

Page 19: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

19

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Consider the case when the strength of the QTD-delta potential .

Let . Then the QTD-delta potential becomes

(31)

0E

2 , 0V x g x a x x a g

0 0V

0 0V g g

Figure 4. QTD-delta potential when V0 < 0

Page 20: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

20

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Equations for Cn (n = 0,1,2)

(32)

(33)

0E

0 0

1 1

2 2

0 2 22 0 0 0

2 2 0

T T a T a C a C aT a T T a C CT a T a T C a C a

1 1g

Page 21: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

21

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Energy equations

(34)

(35)where

0E

1(2 ) 0T T Q

1 2 2 20 2 2 9 0 6 2 0 2 16T T Q T T T T T

1, 2a Q D a g

0

cos2 ,

1yq

T y dq q pq

Page 22: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

22

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Figure 4. Plots of the energy equation (34) for Q = 2 and some values of α. Red dots mark the intersection points.

0E

Page 23: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

23

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Figure 5. Plots of the energy equation (35) for Q = 2 and some values of α. Red dots mark the intersection points.

0E

Page 24: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

24

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Normalized wave function

(36)

where (37)

(38)

0E

1 1 ,1 , 1 2, 22,12,3

0, , 1 1 ,1 , 1 2, 2y H y

g x N W x a x Z x a

, ,N F W Z

Page 25: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

25

IV. Solutions to the time-independent space fractional Schrödinger equation

A. (bound state)

Figure 6. Plots of the wave function as a function of for W = Z = 2 and some values of α.

0E

g N x x

Page 26: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

26

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

For this case define (39)

and use the property of the delta-function to write

(40)

0E

, 0ED

0f x x f x

1 2 0 1 22 0iap iapp A p A p e C a C e C ap

Page 27: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

27

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

Equations for

(41)where

42)

(43)

0E

0,1,2nC n

0 0 01

1 1 1

2 2 2

0 2 20 0 2 0 0

2 2 0

C a M a S S a S a C aC M S a S S a CC a M a S a S a S C a

0 2 1 2 1 1 2, 0ia iaM a M a Ae A e M A A

1

02 cos 1S y yq q dq q p

Page 28: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

28

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

Equations for

(44)

(45)

(46)

0E

0,1,2nC n

2

1 2 2 10 0 1 2

2 2

2 3 1 22 0

1 1

l l l lUC a M a M M a

l l

1 0 2 1 20 1 0UC M a l M M a

2 1 12 0 1 2

2 2

2 2 2 10

1 1l l l

UC a M a M M al l

Page 29: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

29

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

Notation

0E

1 11 1 11 0 , 1 2 0 ,S S S a

11 2, 4 1jl S ja U l l

Page 30: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

30

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

The wave function after inverse Fourier transforming

now reads

(47)

where

0E

x

1 2 0 1 22 0iap iapp A p A p e C a C e C ap

1

1 2 0 12 02

i x i xx A e A e C a S x a C S x

2C a S x a

1

02 1,2 , 2 cos 1j jA A j S y yq q dq q p

Page 31: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

31

IV. Solutions to the time-independent space fractional Schrödinger equation

B. (scattering state)

In terms of Fox’s H-function

(48)

with

(49)

0E

1

1 2 0 1 22 02

i x i xx A e A e C a x a C x C a x a

1 1 ,1 , 1 2 2 , 2 22,12,3

0, , 1 1 ,1 , 1 2 2 , 2 2y H y

1 1 ,1 , 1 2 2 , 2 22,12,3

0, , 1 1 ,1 , 1 2 2 , 2 2H y

Page 32: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

32

V. Evaluation of some integrals in terms of Fox’s H-function

In terms of Fox’s H-function evaluate integral of the form

(50)

Mellin-transform pair

(51)

(52)

0

cos2

1qy

T y dqq

1

0

zf z y f y dy

12

c i z

c if y y f z dz

i

Page 33: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

33

Mellin transform of

(53)

Definitions/properties

(54)

(55)

(56)

T y

0

,2

1I q z dq

T zq

1

0, coszI q z y qy dy

1

0, Re , , , z iqy z zI q z J q z J q z y e dy i q z

, cos sin

2 2z z zJ q z q z i

V. Evaluation of some integrals in terms of Fox’s H-function

Page 34: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

34

Mellin transform of

(57)

Useful formulas

(58)

(59)

T y

0

12 cos 2 cos csc

2 1 2

z zz q zT z z dq zq

sin

1w

w w

1sin cos

2 2z z

V. Evaluation of some integrals in terms of Fox’s H-function

Page 35: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

35

Mellin transform of

(60)

T y

1

2 1 1 1 11 12 2

z z z zT z z

V. Evaluation of some integrals in terms of Fox’s H-function

Page 36: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

36

Fox’s H-function3

Definition

(61)

(62)

3A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications (Springer, New York, 2009)

1 1

1 1

( , ) ( , ), ,( , ), , ,, , ,( , ) ( , ), ,( , )

12

p p p p

q q q q

a A a A a Am n m n m n sp q p q p qb B b B b B L

H z H z H z s z dsi

1 1

1 1

1

1

m n

j j j jj jq p

j j j jj m j n

b B s a A ss

b B s a A s

V. Evaluation of some integrals in terms of Fox’s H-function

Page 37: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

37

Fox’s H-function

Important property (change of independent variable)

(63)

( , )( , ), ,, ,( , ) ( , )

, 0p pp p

q q q q

a kAa Am n m n kp q p qb B b kB

H z kH z k

V. Evaluation of some integrals in terms of Fox’s H-function

Page 38: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

38

Recall the Mellin transform of T(y)

(64)

Inverse transform

(65)

1

2 1 1 1 11 12 2

z z z zT z z

1

2 1 1 1 1 11 12 2 2

c i

z

c i

z z z zT y z y dzi

V. Evaluation of some integrals in terms of Fox’s H-function

Page 39: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

39

Identification of indices and parameters

2, 1, 2, 3m n p q

1 2 1 21 1 , 1 2; 1 , 1 2a a A A

1 2 3 1 2 30, 1 1 , 1 2; 1, 1 , 1 2b b b B B B

V. Evaluation of some integrals in terms of Fox’s H-function

Page 40: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

40

Comparison with the definition of Fox’s H-function

(66)

(67)

1 1 ,1 , 1 2,1 22,1

2,3 0,1 , 1 1 ,1 , 1 2,1 2

2T y H y

1 1 ,1 , 1 2, 22,12,3

0, , 1 1 ,1 , 1 2, 22T y H y

V. Evaluation of some integrals in terms of Fox’s H-function

Page 41: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

41

VI. Summary

The time-independent space fractional Schrödinger equation for a QTD-delta potential is solved for all energies.

For the case E < 0 equations satisfied by the bound-state energy are derived. Graphical solutions show that, for V0 > 0, there is only one bound-state energy

for each fractional order α considered; and, for V0 < 0, there are two bound-state energies for each fractional order α considered. All the eigenenergies shift to higher values as α decreases.

Symmetric bound-state wave function is observed when W = Z; valley-like structures that become steeper with respect to the symmetry axis as α decreases are observed.

For E ≥ 0 an expression for the wave function is obtained as a precursor to analyzing scattering by the QTD-delta potential.

Wave functions are expressed in terms of Fox’s H-function.

Page 42: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

42

References

• N. Laskin, Phys. Lett. A268, 298 (2000).• N. Laskin, Phys. Rev. E 63, 3135 (2000).• N. Laskin, Phys. Rev. E 66, 056108 (2000).• J. P. Dong and M. Y. Xu, J. Math. Phys. 49, 052105 (2008).• X. Y. Guo and M. Y. Xu, J. Math. Phys. 47, 082104 (2006).• J. P. Dong and M. Y. Xu, J. Math. Phys. 48, 072105 (2007).• E. C. de Oliveira, S. F. Costa, and J. Vaz, Jr., J. Math. Phys. 51, 123517 (2010).• M. Jeng, S.-L.-Y. Xu, E. Hawkins, and J. M. Scharwz, J. Math. Phys. 51, 062102

(2010).• S. H. Patil, Eur. J. Phys. 30, 629 (2009).• A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and

Applications (Springer, New York, 2009).

Page 43: Space fractional Schrödinger equation for a quadrupolar triple Dirac -  potential

43

Thank you!