Solved Problems Maclaurin's

Embed Size (px)

Citation preview

  • 7/28/2019 Solved Problems Maclaurin's

    1/13

    1

    Q 1 : Using the Maclaurins series or otherwise establish the series for thefollowing functions :

    (i) sec2 x (ii) log (1 +x+x2 +x3)

    (i) sec2x

    Let y= sec2x

    Integrating w.r.t. xboth sides, we get

    ydx = sec2xdx+ c= tanx+ c

    y dx =x+3

    1x3 +

    15

    2x5+ + c

    Now differentiating w.r.t. xwe get

    y = 1 +x2 +3

    2x4+

    (ii) log (1 + x+x2 +x3)

    Let y = log (1 +x+x2 +x3)

    x

    x n

    1

    1

    =xn1 +xn2 +xn3 + + 1

    We getx

    x

    1

    1 4=x3 +x2 + x +1 = 1 +x+x2 +x3

    log (1 +x+x2 +x3) = log

    x

    x

    1

    1 4

    = log (1 x4) log (1x)

  • 7/28/2019 Solved Problems Maclaurin's

    2/13

    2

    =

    ....

    2

    84 x

    x

    ....

    432

    432 xxxx

    y =x+2

    2x+

    3

    3x+x4

    1

    4

    1+

    y =x+2

    2x

    +3

    3x

    4

    3x4+

    Q 2 : Using the Machlaurins series prove the following :

    (i) Ifx= y2

    1y2 +

    3

    1y3

    4

    1y3

    4

    1y4+ then

    y =x+!2

    2x

    +!3

    3x

    + and viceversa.

    (ii) tan1

    cos1

    sin

    x

    x=xsin +

    2

    2x

    sin 2 +3

    3x

    sin 3.

    (i) Given thatx= y2

    1y2 +

    3

    1y3

    4

    1y3

    4

    1y4+

    Observe R.H.S. its log (1 + y)

    x = log (1 + y)

    Which is also, 1 + y= ex

    or 1 + y = 1 +!1

    x+

    !2

    2x+

    !3

    3x+ (series ofexon RHS)

    y =!1

    x+

    !2

    2x

    +!3

    3x

    +

  • 7/28/2019 Solved Problems Maclaurin's

    3/13

    3

    (ii) Let y = tan1

    cos1

    sin

    x

    x

    tan y =

    cos1

    sin

    x

    x

    Now by Eulers formula for tan y

    tan y =)(

    )(iyiy

    iyiy

    eei

    ee

    )(

    )(iyiy

    iyiy

    eei

    ee

    =

    cos1

    sin

    x

    x

    or1

    12

    2

    iy

    iy

    e

    e=

    cos1

    sin

    x

    ix

    Using componendo and dividendo

    i.eNumeratoratorDeno

    NumeratoratorDeno

    min

    minon both sides, we get

    1

    2iye=

    sincos1

    sincos1

    ixx

    ixx

    e2iy =

    i

    i

    xe

    xe

    1

    1 ( ei = cos i sin )

    or 2iy = log

    i

    i

    xe

    xe

    1

    1

    = log (1 xe-i ) log (1 xei)

    =

    ....

    32

    3322

    iii exexxe

    ....

    3

    3

    2

    322

    eiii xexxe

  • 7/28/2019 Solved Problems Maclaurin's

    4/13

    4

    Taking common coefficients ofx,x2,x3

    =x(ei ei)+2

    2x(e2i e-2i)+

    3

    3x(e3ie-3i)+

    2iy = 2isin x+ 2isin 2

    2x+ 2isin 3

    3

    3x+

    (using the formula 2i sin n = ei ein)

    y =xsin +2

    2x

    sin 2 +3

    3x

    sin 3

    Q 3 : Expand the following functions into a series with a minimum of threenonzero terms :

    (i) tan1xa

    xa

    Let y = tan1xa

    xa

    Putx= a tan or tan1

    a

    x

    Now, y = tan1)/1(

    )/1(

    axa

    axa

    = tan1

    tan4/tan1

    tan4/tan

    1

    4tan

    = tan1 tan (/4 + ) = /4 +

    =4

    + tan1a

    x

    y =4

    +

    ax

    31

    3

    a

    x +51

    5

    a

    x +

  • 7/28/2019 Solved Problems Maclaurin's

    5/13

    5

    (ii) tan1x

    x1

    Let y = tan1x

    x 112

    tan1x

    x 11 2

    Putx= tan or = tan1 x

    y = tan1

    tan

    tan1 2= tan1

    tan

    1sec

    = tan1

    cos

    sin

    1cos

    1

    = tan1

    sin

    cos1

    = tan1

    2cos

    2sin2

    22sin2

    = tan 1

    2tan

    =2

    =

    2

    1tan1x

    y =2

    1tan1x=

    2

    1

    ....

    53

    53 xxx

    (iii) tan12

    1

    2

    x

    x

    Let y = tan1

    21

    2

    x

    x

    tan1

    21

    2

    x

    x

    Putx= tan or = tan1 x

    y = tan1

    2tan1

    tan2= tan1 (tan 2)

    = 2

    y = 2 tan1x

  • 7/28/2019 Solved Problems Maclaurin's

    6/13

    6

    y = 2

    .....

    53

    53 xxx

    (iv) cos1

    1

    1

    xx

    xx

    Let y = cos1

    1

    1

    xx

    xx

    = cos1

    xx

    xx

    1

    1

    = cos1

    1

    12

    2

    x

    x (1)

    = cos1

    2

    2

    1

    1

    x

    x

    Putx= tan or = tan1x

    y = cos1

    2

    2

    tan1

    tan1

    = cos1 (cos2) = cos1 (cos (2))

    = 2 = 2 tan1x

    y = 2

    .....

    53

    53 xxx

    (v) cos1 (tanh logx)

    Let y = cos1 tanh logx

    Trick! Since

    tanh =

    ee

    ee=

    1

    12

    2

    e

    e

    and elogA = A,

    we get y = cos1

    1

    1log2

    log2

    x

    x

    e

    e= cos1

    1

    12log

    2log

    x

    x

    e

    e

  • 7/28/2019 Solved Problems Maclaurin's

    7/13

    7

    = cos1

    1

    12

    2

    x

    x

    = 2 tan1x

    y = 2

    .....

    53

    53 xxx

    (vi) tan1pxq

    qxp

    Let y = tan1

    pxq

    qxp

    Tip 1

    = tan1)./1(

    )/(

    xqpq

    xqpq

    = tan1

    xq

    p

    xq

    p

    .1

    Tip 2

    Since tan1 A tan1B = tan1AB

    BA

    1

    We get, y = tan1q

    p tan1x Tip 3

    y = tan1q

    p

    .....

    53

    53 xxx Tip 4

  • 7/28/2019 Solved Problems Maclaurin's

    8/13

    8

    Q 4 : Find the series expansions of the following function :

    tan122

    22

    11

    11

    xx

    xx

    Let y = tan122

    22

    11

    11

    xx

    xx

    Rationalizing denominator we get,

    y = tan1

    2222

    2222

    )1()1(

    )11)(11(

    xx

    xxxx

    = tan1

    22

    222

    11)1()1(

    xxxx

    = tan1

    2

    2222

    2

    112)1()1(

    x

    xxxx

    = tan1

    2

    4

    2

    122

    x

    x= tan1

    2

    411

    x

    x

    Putx2 = sin or = sin1 (x2)

    y = tan1

    sin

    sin11 2

    = tan1

    sin

    cos1= tan1

    2/cos2/sin2

    2/cos2 2

    = tan1

    2cot = tan1 tan

    22

    y =2

    2

    =

    2

    2

    1sin1 (x2)

    Using series for sin-1

    y =2

    2

    1

    .....

    7642

    531

    542

    31

    32

    114106

    2 xxxx

  • 7/28/2019 Solved Problems Maclaurin's

    9/13

    9

    Q 6 : Expand the function in an ascending powers ofxto a minimum of

    3 nonzero terms xsin1 .

    Solution:

    Let y = xsin1

    y =2

    cos2

    sin22

    cos2

    sin 22xxxx

    y =2

    cos2

    sin22

    cos2

    sin 22xxxx

    or y = sin2x + cos

    2x

    Now using the series for sin xand cosxwe get

    y =

    ....

    25

    1

    2!3

    1

    2

    53xxx

    +

    ....

    2!4

    1

    2!2

    11

    42xx

    Collecting the coefficients we get

    = 1 +2

    x

    8

    2x

    48

    3x+

    384

    4x

    +3840

    5x

    Q 7 : Expand the function in an ascending powers ofxto a minimum of 3 nonzero terms excosx.

    Solution.:

    Using the series for ex where x has to be treated as xcosx

    y = 1 +!1

    xcosx+

    !2

    2x

    cos2x+!3

    3x

    cos3x+

    = 1 +!1

    x

    .....

    !4!21

    42 xx

  • 7/28/2019 Solved Problems Maclaurin's

    10/13

    10

    +!2

    1x2

    242

    .....!4!2

    1

    xx

    +!3

    1x3

    342

    .....!4!2

    1

    xx

    +

    = 1 +x2

    3x+

    24

    5x

    +2

    2x

    2

    4x+

    +6

    3x+

    = 1 +x+2

    3x+x3

    6

    1

    2

    1

    = 1 +x+2

    2x

    2

    1x3 +

    Q 8 : Expand in powers ofx, exsinx.

    Solution :

    Letxsinx= y

    ....!4!3!2

    1432

    sin yyy

    yee yxx

    .....)sin(!3

    1)sin(

    !2

    1sin1 32sin xxxxxxe xx

    ........!3

    2....!3!2

    .....!5!3

    13

    33253

    x

    xxx

    xxxxx

    ........)(!3

    ....)!3(!3

    2

    !2....

    !5!31 3

    3

    2

    642

    253

    x

    xxxx

    xxxxx

    ....!3!3!2120!3

    166464

    2 xxxxx

    x

    ....120

    1

    3

    11 642 xxx

  • 7/28/2019 Solved Problems Maclaurin's

    11/13

    11

    Q 9: Expand in powers ofx,1xe

    x.

    Hence, prove that ....720

    1

    12

    11

    1

    1

    2

    42

    xxe

    ex

    x

    x

    .

    Solution :

    We have

    1....!3!2

    11 32

    xx

    x

    x

    e

    xx

    ....!5!4!3!2

    5432

    xxxx

    x

    x

    ....!5!4!3!2

    1

    1432 xxxx

    1432

    ....!5!4!3!2

    1

    xxxx

    232432

    ....!4!3!2

    ....!5!4!3!2

    1

    xxxxxxx

    ........!2....!3

    2

    !2

    43

    xxx

    ....243664

    ....1202462

    14432432

    xxxxxxxx

    ....16

    ....88

    443

    yxx

    ....720122

    142

    xxx

    Now,

    1

    21

    21

    21

    21

    1

    2 xx

    x

    x

    x

    e

    x

    e

    ex

    e

    ex

    12

    xe

    xx

    ....72012

    1....720122

    121

    1

    2

    4242 xxxxxx

    e

    exx

    x

  • 7/28/2019 Solved Problems Maclaurin's

    12/13

  • 7/28/2019 Solved Problems Maclaurin's

    13/13

    13

    Q 11 : Expand log (1 +x+x2 +x3) up tox8.

    Solution :

    log (1 +x+ 2x+x3) = log (1 +x)(1 +x2)

    x

    xxxxxx

    1

    )1)(1)(1(log)1log(

    232

    )1log()1log(1

    1log 4

    4

    xxx

    x

    ...

    8765432...

    2

    876543284 xxxxxxxx

    xx

    ....8

    3

    7654

    3

    32

    8765432

    xxxxxxx

    x

    Q 12 : Prove that ....32

    )1log(32

    32 xxxxxx .

    Solution :

    log(1 x+x2x3) = log (1 x) (1 +x2)

    = log (1 x)+ log (1 +x2)

    ....2

    ....32

    42

    32

    x

    xxx

    x

    ....32

    32

    xx

    x