Problems Solved and Not Solved in UCG

Embed Size (px)

Citation preview

  • 8/10/2019 Problems Solved and Not Solved in UCG

    1/12

    PROBLEMS SOLVED

    AND

    PROBLEMS NOT SOLVED I N

    UCG

    Robert

    D.

    Gunn

    Un iv er s i ty o f Wyoming and the

    Energy Research and Development Administration

    Laramie Energy -Research Center

    P. 0.

    Box 3395, Un ive r s i t y S t a t i on

    Laramie, Wyoming 82071

    I

    NTRODUCT

    ION

    Several d i f f e re n t p rocesses o f U C G (Underground Coal Gasif icat ion)

    are be ing i nves t iga t ed i n f lo r th Amer ica . O f these, t he l i nked ve r t i c a l

    w e ll proc ess, deve lop ed by th e Laramie Energy Research Center, has been

    f i e l d tes ted most ex te ns ive ly and i s c loses t to eventual commerc ia l iza tion .

    There i s , c o ns eq ue nt ly , s u b s t a n t ia l p a r t i c i p a t i o n i n f u r t h e r f i e l d

    t e s t i n g o f t h e l i n k e d v e r t i c a l w e l l p ro ce ss o r mino r v a r i a t i o ns o f

    i t .

    P a r t i a l o r c omp le te i n d u s t r i a l p a r t i c i p a t i o n i s i n vo l ve d i n th e f i e l d

    test ing programs

    o f

    th e Al be rt a Research Counci l , Texas A6M Un iv er si ty ,

    and Texas U t i l i t i e s .

    Problems, some so lv ed and

    some

    not solved, which ar e associated

    w i t h U C G are d iscussed i n th i s work . D iscussion o f these problems out l ines

    t he cu r r en t s t a t us of t he l ink ed ve r t ic a l w e l l p rocess. The purpose is

    t o prov id e per sp ect iv e concerning what has been accomplished alre ady and

    what remains y e t

    t o

    be done on the road t o commerc ia l izat ion o f UCG.

    PROBLEMS SOLVED

    1 .

    Low Gas Q u a l i t y

    An app r a i sal o f wo r ld - w ide r esea rch e f f o r t s i n

    U C G

    through

    1971

    showed

    t ha t no f i e l d exper im en ts us ing a i r i n je c t i o n had cons i s t en t l y p roduced gas

    wi th a heat ing va lue o f more than 4.7 -

    5.1

    MJ/m3 (120-130 Btu/scf).

    most cases the gas hea ti ng values averaged l es s than 3.9 tlJ/m3 100 Btu /sc f )

    I ) .

    I n co nt ra st a l l exper iments conducted a t Hanna, Wyoming, l iave r es ul te d

    i n heat ing values above

    4.7

    tlJ/m3

    120 Bt u / sc f ) . Du r ing t he bes t con t r o l l ed

    o f a l l o f th e Hanna experiment s, th e Phase I I lianna I te st , the gas

    heat ing value averaged

    6.7

    MJ/m3

    (171

    B t d s c f ) a t p r o du c ti o n r a t es ex -

    ceeding

    215 ,000

    m3/day

    8

    m i 1 1 i on sc f / day ) .

    I n

    The favorab le res u l t s a t Hanna stem f rom th ree we l l de f ined con d i t i ons :

    1 .

    Favorab le geo log ic a l cond i t ion s

    2 ,

    3). An impervious sh al e

    over l ies the Hanna No.

    1

    coal seam. The seam i s r e l a t i v e l y th i ck , 9

    m.

    I t l i e s a t s u f f i c i e n t depth,

    82-122

    in, so t ha t gas leakage t o the su rf ac e

    has not occurred.

    A

    s i n g l e a q u i f e r , o f ve ry l ow p r o d u c t i v i t y , o v e r l i e s

    th e coa l seam.

    64

  • 8/10/2019 Problems Solved and Not Solved in UCG

    2/12

    2. Subbituminous coal . Mathemat ical m d e l calc ula t io ns show th at

    t he hea t i ng va lue o f gas p roduced f rom e i t h e r l i g n i t e o r b it um inous coa l

    should be lower than the hea t ing value o f gas f rom subbi tuminous coal .

    Gases produced by car bo niz at ion o f the coal make up a su bs ta nt ia l p a r t

    of th e fuel gases produced by UCG. Subbituminous coa l has a h igh v o l a t i l e

    content ; i n add i t ion , the carbon iza t ion gases are r i c h i n methane.

    In boreholes and la rge channels, probably the most cr i t i c a l chemical

    rea ct i on i s the steam-carbon rea ct i on

    C

    +

    H20

    ->

    C O

    +

    H 2

    which requ ire s a lo ng residence t ime compared t o simple combustion. I n an

    open borehole, o r a bo reho le p a r t i a l l y f i l l e d w i t h rubb le and l a rge p ieces

    of coa l , there i s poor contac t between the so l id coa l char and the m ix ture

    o f water vapor and h ot combustion gases.

    I n con t ras t i n t he l i n ked ve r t i ca l w e l l p rocess , no open bo reho le

    ex is ts between the a i r i n j ec t i on and gas produc t ion we l l s . Ins tead gases

    permeate th rough the dr ied , p a r t i a l l y de vo la t i l i z ed coa l . Average

    pa r t i c l e si ze , a t l e as t f o r t he Hanna

    No. 1

    Seam, i s on th e or de r o f one

    mi l l im et er . Because ther e i s in t im ate contac t be tween gases and so l i d ,

    the ga s i f i c a t io n reac t io ns are more ex tens ive ; and gas hea t ing va lues,

    consequent ly, a r e h igher . B i tum inous coa l conta in s less v o l a t i l e mat ter

    and, the refo re, produces a lower hea t ing value gas. L ig ni t e has a h igh

    v o l a t i l e c on te nt , b u t on d e v o l a t i l i z a t i o n r e l a t i v e l y l i t t l e methane i s

    produced and a lower qu al i ty gas i s obtained.

    3 .

    Cont ro l o f water in f l ux . Sov ie t da ta from f i e l d te s t s and com-

    m erc ia l ope ra t i ons (4,

    51,

    mathematical model calculat ions (6,

    7, 8 ) ,

    and expe rime nta l r e s u l t s from Hanna, Wyoming, (9,

    IO)

    a l l v e r i f y t h at a

    too h i gh w ater i n f l u x can produce a m ajor de t e r i o ra t i on o f gas q ua l i t y .

    The phys ica l reasons f o r the de le t er io us e f fe c t o f water have been

    discussed elsewhere (5,

    6

    8,

    IO).

    Ejost western Te r t i a r y coa l seams ar e

    aq ui fe rs . The Hanna No. 1 coal seam, however, i s a re la t i v el y unproduct ive

    aqu i fe r . There fore , i t i s r e l a t i v e l y easy t o a d ju s t a i r i n j e c t i o n r a t es

    t o main ta in a near optimum a i r / water ra t io .

    2. Decreasing Heating Value

    In many f i e l d t es t s t he gas p roduced s ta r t ed i n i t i a l l y w i t h a

    reasonab le heat ing va lue which then d ec l ined gr adua l l y t o unacceptab le

    val ues . Two mechanisms a r e known wh ic h can cause th i s beh av io r:

    1 .

    Use o f boreholes. One method of coal g a si f ic a t i on inv olv es the

    d r i l l i n g o f b o re ho le s t o c on ne ct t h e i n j e c t i o n and t h e p r o d u c ti o n w e l l .

    The coa l i s ig n i t ed then and ga s i f ie d a long the le ngth o f the boreho le.

    I n t h i s process the coal burns ra d ia l ly outward, and the borehole increases

    i n siz e. As th e borehol e grows i n si ze , more gas by-passes th e coa l; and

    the gas heat ing va lue dete r io r a tes cor responding ly .

    65

  • 8/10/2019 Problems Solved and Not Solved in UCG

    3/12

    2 Hi gher wat er i nf l ux f or l arger burned ar eas. Si nce many coal

    beds i n t he Vest ar e aqui f ers , wat er i nf l ux t ends t o i ncrease as mor e and

    more sur f ace i s exposed by t he combust i on f r ont . I n addi t i on, f or l ar ger

    burned out ar eas subsi dence occur s est abl i shi ng communi cat i on w t h

    over l yi ng aqui f ers wi t hi n t he subsi dence zone.

    Wt h an except i on di scussed l at er i n t hi s paper, a dr ast i c decl i ne

    i n

    gas heat i ng val ue has not occur r ed du r i ng t he Hanna f i el d t est s. The

    maj or r eason i s t hat t he l i nked ver t i cal wel l pr ocess used at Hanna i s

    not a borehol e met hod but a permeat i on met hod, t hat i s, i t i s essent i al l y

    a packed bed pr ocess. Packed beds ar e wi del y used i n t he chem cal process

    i ndustr i es . A pr i nci pl e, wel l known among pr ocess chem st s and engi neer s,

    is t hat f or sat i sf act or y r esul t s channel i ng must be avoi ded in packed bed

    equi pment such as chem cal r eact ors, l i qui d- l i qui d extr acti on col umns, and

    di st i l l at i on t ower s. None

    o

    t he Hanna f i el d test s have yi el ded any

    def i ni t e evi dence t hat open channel s have been cr eat ed.

    Thermal data f r om i nst r ument ed obser vat i on wel l s 1 1 ) . f l ow r at e and

    gas composi t i on i neasurement s

    9 ,

    121 , and mat hemat i cal model i ng

    6 , 7)

    have been used ext ensi vel y

    i n

    devel opi ng t he f or egoi ng descr i pt i on of t he

    mechani cs of t he l i nked ver t i cal wel l pr ocess. A s mor e s l ear ned about

    t he pr ocess, i t becomes i ncr easi ngl y cl ear t hat l i gni t e and subbi t um nous

    coal pr opert i es ar e especi al l y amenabl e to UCG. Both t ypes of coal shr i nk

    on heat i ng, and dr yi ng al one i ncr eases t he coal permeabi l i t y by about t wo

    order s of magni t ude

    1 3 ) .

    t i s t hese pr oper t i es whi ch per m t r ever se

    combust i on l i nki ng and a permeat i on t ype gasi f i cat i on pr ocess t o be used.

    3 . Vari abi l i t y i n Gas Qual i t y and Gas Product i on Rat es

    A

    wi de var i abi l i t y i n gas qual i t y and pr oduct i on r ates has been

    observed on an hour l y or dai l y basi s

    i n

    many f i el d exper i ment s. The need

    f or a const ant gas f l ow r at e, however , pr esent s no real pr obl em t i s

    r eadi l y achi eved w th a const ant ai r i nj ect i on r at e and w t h t he use of a

    f l ow cont r ol val ve on t he pr oduct i on l i ne.

    At Hanna var i at i ons i n gas heat i ng val ues on t he or der of 5 to 10

    percent have been obser ved at a si ngl e wel l on a dai l y basi s. Thi s f al l s

    w t hi n the accept abl e l i m ts f or the f i r i ng of l arge boi l ers . F o i a

    commerci al oper at i on, however , many pr oduct i on wel l s woul d be i n use

    si mul t aneousl y and the var i abi l i t y

    i n

    t he gas

    composi t i on^

    woul d tend t o

    average out . t

    i s

    al so not ed t hat gas vari abi l i t y has been mr e ext r eme

    i n the bor ehol e or st r eam ng methods of UCG.

    4. Low Thermal Col d Gas) Ef f i ci ency

    n

    t hi s work t her mal ef f i ci ency i s def i ned as t he upper heat i ng

    val ue of dr y gas and l i qui ds pr oduced di vi ded by t he heat i ng val ue of t he

    coal consumed. Consi st ent wi t h t hi s def i ni t i on, sensi bl e heat i s not

    i ncl uded nor i s t he l at ent heat of any water vapor i n t he gas.

    The i nst r ument at i on used dur i ng t he Hanna f i el d t ests per m t s a

    accur at e det er m nat i on of t he t hermal ef f i ci ency. These ef f i ci enci es

    are the hi ghest ever r ecor ded. The Phase

    I I

    Hanna

    I I

    t est achi eved an

    66

  • 8/10/2019 Problems Solved and Not Solved in UCG

    4/12

    e f f i c i en c y o f

    89

    percent f o r t he en t i r e 25 days o f t he t e s t du r ing wh ich

    2300 tonnes (2500 tons)

    o f

    coal were consumed.

    Such h ig h e f f i c i en c i es are r ea d i ly achieved under good opera t ing

    The mn y fe e t o f ear th ov er l y i ng and under ly ing the coal

    ond i t ions .

    seam prov ide exc e l le n t insu la t io n . In t h i c k coa l seams, there fore , the

    LiCG process operates nea r ly ad ia ba t i ca l l y . Most of the thermal energy

    released f rom th e combust ion o f co al

    char and a i r must be produced a t t he

    su r f ace i n t he f or m o f sens i b le and l a t en t heat and i n the heat i ng va lue

    o f th e gas produced, i.e., chemical heat. The se ns ib le hea t i s a les s

    convenient form o f energy because i t can be t rans por te d on ly over very

    shor t d is tances .

    I n the boreho le or s t reaming method o f

    U G

    a subs tan t ia l p o rt i on o f

    . t he t o t a l energy re leased appears a t the sur face i n t he f o rm o f sens ib l e

    the

    hot

    combust ion gases by-pass the coal and a consi derabl e p or t i on o f

    heat. In permeat ion processes on ly a small

    po r t io n o f th e energy goes

    i n t o sensi b le heat. The combust ion gases in t i ma te ly contac t the coal ,

    and most o f t he sensi b le heat i s used up fo r the h ig hl y endothermic

    steam-char re ac ti on which produces a comb ust ibl e gas.

    A

    number

    o f

    cond i t ions can lead t o lower thermal e f f i c i en c i es as

    we l l as lower gas he at i ng values.

    1 .

    Thin coal seams. A l a r g e r p o r t i o n o f t h e energy i s l o s t to t he

    surrounding rock format ions.

    2. Very h ig h ash coal (over 50 percent ) .

    A

    s u b s t a n t i a l p o r t i o n o f

    th e thermal energy i s taken up by the ash.

    3 . Low a i r in je c t io n ra tes . Gas res idence t i m e underground i s

    longer, and a l a rger por t io n o f t he energy i s l o s t to the surroundings .

    Very low a i r f l ow ra tes a ls o r es u l t i n lower reac t i on zone tempera tures.

    4. Gas channeling . Th is r es ul ts i n poor co nt ac t between gases and

    coa l .

    5. Too hi gh water in f l ux . Vapo r iza t ion o f the water uses up much

    o f th e av ai la bl e thermal energy.

    6 .

    Gas leakage.

    The mathematical model mentioned

    i n

    t h i s paper can be used t o qu an t i fy

    i nd i v idua l e f f e c t s l i s t e d above.

    syne r g i s t i c i n f l uence o f two o r more o f t hese e f f ec t s ac t i ng s im ul t aneous ly .

    More de t a i l e d d i scuss ions o f t he d i s t r i bu t i on o f ene rgy du r ing t he U G

    process have been repo rte d f o r t he Hanna f i e l d te st s (5, 6,

    7,

    10).

    5. Low Resource Recovery

    It

    can a l so be used t o qua nt i f y th e

    I n the borehol e or streamin g method o f UC6, th e combust ion f r o n t tends

    t o t ra ve l down the boreho le ra ther rap id ly and t o b reak th rough to th e pro-

    duc t i on we l l .

    below acceptable levels . Cnder these c i rcumstances, a larg e po r t io n o f the

    Once th i s occurs the gas qu a l i t y de ter i o ra tes very rap i d l y

    67

  • 8/10/2019 Problems Solved and Not Solved in UCG

    5/12

    coa l

    i s

    l i k e l y t o be by-passed, and energy recovery i s low.

    I n

    a l l t es ts o f

    th e l i nk ed ve r t i c a l we l l process a t Hanna, Wyoming, th e combustion zone

    advanced along a broad f ro nt , and m s t o f the coa l i n p lace was consumed.

    For example, Fi gu re

    1

    shows th e we l l la yo ut f o r Phases and

    l l

    o f t he

    Hanna

    I I

    experiment. Wel ls 5, 6, 7, and

    8

    a r e p r o du c t io n and a i r i n j e c t i o n

    w e l l s . L e t t e r s A t o 0 i nd i ca te i ns trum en ted obse rva t i on w e l l s w i t h

    the rm coup les a t seve ra l l eve l s w i t h i n t he coa l seam. W i th t he t he rm al

    data

    i t

    i s p o s s i b l e t o t r a c k t h e pr og re ss

    o f

    t h e combustion zone. These

    data show tha t th e combust ion f r on t burned through a l l we l l s w i t h i n the

    60

    foo t square pa t t e r n except we l l

    K. I t

    i s conc luded , t he re fo re , t h a t

    t he a rea l sweep e f f i c i e nc y i s w e l l ove r

    80

    percent .

    The square w e l l p at te rn shown i n Figur e

    1

    conta ined

    4170

    tonnes

    4600

    tons) o f coa l . Mate r ia l ba lance ca lc u l a t io ns based on the carbon content

    o f produced gases show t ha t abo ut 6070 tonnes

    6690 tons) o f coa l were

    consumed 9 , 1 4 . Obviously cons iderab le bur n ing occur red outs ide th e

    square pat t e rn .

    I n

    fa ct , th e combustion zone burned through

    t o

    w e l l

    A

    b u t

    n o t t o w e l l

    N

    on t h e o p p os i t e s i d e o f t h e p a t t e r n . A t the same time cores

    o f coal taken near burned ou t reg ions have shown no re a l ev idence o f p a r t i a l

    u t i l i z a t i o n o f coa l . i .e ., cored coa l samples i nd i ca te no subs tan t i a l

    ca rbon i za t i on

    15).

    I t

    i s

    i n f e rr e d , t h e re f o re , t h a t p r a c t i c a l l y a l l co al

    contac ted by the combust ion f ro n t i s comple te ly qas i f ie d .

    A two dimens ional mathem atical model developed f o r U C G shows reasonable

    agreement w i t h f i e l d performance determined by thermal measurements and

    m ate r i a l ba lance ca l cu l a t i ons

    16).

    When work on t h i s model i s completed,

    i t w i l l

    be poss ib le to pr ed ic t the shape o f the combust ion zone

    for

    any

    g i ven w e l l pa t t e rn .

    6.

    O vera l l P rocess E f f i c i en cy

    The ove r a l l p rocess e f f i c i en cy i s de f i ned he re as t he upper hea t i ng

    va lue o f d r y gas and l i qu id s p roduced d i v i ded by t he hea t i ng va lue o f t he

    coal consumed pl us a l l energy consumed on s i t e f o r

    gas

    compression,

    u t i l i t i e s , etc.

    A l l

    t e s t s w i t h t h e l i n k e d v e r t i c a l w e l l p ro ce ss a t Hanna,

    Wyoming, have shown t h a t

    U C G

    i s an e f f i c i e n t m ethod o f ene rgy recove ry IO).

    Typ ica l l y about

    I4

    percent

    o f

    th e energy produced i s consumed f o r gas

    compression and oth er purposes. Most o f th e energy consumpt ion i s f o r

    gas compression. Th ere for e, th e

    1 4

    percent f ig ur e can be gre at l y reduced

    by o p t i mi z i n g t h e s i z e o f w e l l

    c a s i n g and s ur f a c e p i p i n g and u t i l i z i n g

    ef f i c i en t a i r compression equipment .

    f o r a w e l l spac ing o f

    18 m

    60 fee t ) , p ressure losses ar e on ly 0.7-2.0

    N/m2

    1-3 p si ) even a t a i r i n j e c t i o n r at es o f 120,000 m3/day 4.5 m i l l i o n s cf /d ay ).

    Thus, v e r y l i t t l e e ne rg y i s l o s t i n f o r c i n g a i r t hr ou gh t h e c o a l seam

    because o f t he g re a t pe r m eab i l i t y o f l i g n i t e and subbi tuminous coal a f t e r

    dry i ng and de vo la t i l i za t i on by reverse combust ion. Overa l l p rocess e f -

    f i c i en c i es range from

    65

    t o

    74

    p e rc e nt f o r t h e l i n k e d v e r t i c a l w e l l t e s t s

    cond ucted a t Hanna, Wyoming IO).

    Pressure measurements show that

    7. Control of Combustion Front

    In a permeat ion t ype method o f

    U C G

    such as t he l i nke d ve r t i c a l w e l l

    p rocess , con t ro l o f t he d i r e c t i o n and ra te o f p rog ress o f t he com bust ion

    68

  • 8/10/2019 Problems Solved and Not Solved in UCG

    6/12

    f ront

    i s ach ieved through se le c t io n o f the pa t t e r n fo r p roduc t ion and

    i n j e c t i o n w e l l s and th ro ug h c o n t r o l o f t h e a i r i n j e c t i o n r a t e . A two

    dimensional mathematical model descri bed by Jennings e t a l . IO) has been

    used to pre d i c t loca t ion and shape o f the combust ion zone w i th s a t i s fa c to ry

    accuracy. The theory requ i res f u r t he r ve r i f i ca t i on w i t h m u l t iw e l l pa t t erns .

    8.

    Equipment Re1 i a b i 1 i y

    Equipment f a i l u re s have severely p lagued research on sur f ace coal

    ga s i f i ca t io n processes. Th is has not been t r ue w i th U C G (19). The hi gh

    leve l o f equipment dep endab i l i t y i n U C G re su l t s from two cond i t i ons , the

    g r ea t s i m p l i c i t y o f t h e su rf ac e i n s t a l l a t i o n s r e qu i re d and t he r e l a t i v e l y

    low

    temperatures o f gases produced.

    9.

    Lack o f P red i c tab i 1

    i

    y

    A f requent complaint has been that U C G i s h i g h l y u n p r e d i c t ab l e ;

    there fo re , re l i ab le eng ineer ing des ign was not poss ib le present ing a

    major obs tac le t o commerc ia l i za t ion o f

    i n

    s i t u c o a l g a s i f i c a t i o n. I n t h e

    past th is has undoubtedly been t rue , bu t th e res u l ts f rom the l a t es t te s t

    a t Hanna s t rong l y i nd i ca te t ha t t he p roblem i s c l ose t o so lu t i on .

    Although

    U C G

    i s no t ye t ready fo r commerc ia l i za t ion , tha t t ime i s

    approaching rapid ly.

    A t

    the present , unders tand ing o f the phys ica l and

    chemical mechanisms control l ing

    U C G

    i s f a r more complete than o f many

    compet ing coal gasi f icat ion processes.

    has resu l ted from three developments: ex tens i ve ins t rumenta t ion o f f i e l d

    exper iments , a v a i l a b i l i t y o f computers la rg e and small

    (20) ,

    and the

    development o f soph is t i c a ted models capab le o f p r ed ic t i ng accura te ly f i e l d

    t e s t performance.

    Th is g re at l y increased unders tanding

    IO.

    S i t e S p e c i f i c i t y

    The very fav orab le re su l ts obta in ed f rom

    U C G

    f i e l d t es t s a t H anna,

    Wyoming, have no t been du pl ic at ed anywhere e l s e

    i n

    the world.

    I t

    might

    be concluded that success i s sp ec i f i c t o the Hanna s i te . Th is i s no t the

    case, however. Most o f th e parameters ess ent ia l t o successful

    U C G

    have

    been id e nt i f i ed through the use o f mathemat ical models and o f massive

    amounts o f data acqui red du r i ng f ou r yea rs o f f i e l d t es t i ng .

    a number

    o f

    f avorab le f ac to rs have con t r i bu ted g r ea t l y t o success ful t es t s

    a t Hanna, Wyoming; sev era l o f these f a c t o r s have been discuss ed al re ad y

    ( r e f e r t o i t em 1 . Low Gas Qu al i t y) . These fa ct o rs , however, a re by no

    means unique to the Hanna coal f i e l d b ut occ ur i n many i f n o t m s t areas

    o f th e West.

    Undoubtedly

    PROBLEMS NOT SOLVED

    No

    at tempt i s made here t o d iscuss a l l research problems which remain

    unsolved because,

    even wi t h proven processes, new problems freq ue nt ly

    ar i se. Instead problems which remain unsolved ar e c la s si f i e d as one o f

    th ree types as a bas is fo r d iscuss ion.

    69

  • 8/10/2019 Problems Solved and Not Solved in UCG

    7/12

    C r i t i c a l problems. These ar e problems which,

    i f

    not reso lved favor -

    ably,

    w i l l

    have a major harmful

    impact on the c ommerc ia l i za t io n o f

    U C G .

    Only

    t w o

    problems o f t h i s type a re known, subsidence and excessive water

    i n f l u x .

    No n -c ri t i ca l problems. These ar e problems which can have a major

    economic impact, bu t whi ch

    w i l l

    no t prevent commerc ia l izat ion even

    i f

    no

    favorab le so lu t i on i s found. Uncer ta in ty concern ing maximum we l l spac ing

    i s such a problem.

    Developmental problems. These a r e problems which re qu ir e ap pl ic at io n

    o f of f - the -s hel f technology, o r are problems which may requ i re new tech-

    nology b ut w i l l no t have a major economic impact on th e process. Gas

    clean.-up i s such a problem.

    1 1.

    Subsidence

    Subsidence i s proba bly th e most important s i ng le ob sta cle t o com-

    m e r c i a l i z a t i o n o f UCG. Because o f f i s ca l l i m i t a t i on s , t he t e s t s a t Hanna

    have been l i m i t e d

    to

    two and fou r w e l l pa t t e rns w i t h

    60

    fo ot spacing. Wi th

    t h i s spacing no subsidence has been observed a t t he sur face, a l though

    subsur face cav ing o f t he

    roof has occur red d i r e c t l y over areas o f burned

    o u t c o al .

    When l a r g e r

    UCG

    pat t erns a re used, subsidence o f the sur fac e

    w i

    1 1

    occu r i nev i t ab l y . A t many l oca t i ons i n t he w es te rn s ta tes t h i s i s no t an

    insurmountable problem. Even w i t h ext ens ive subsidence, the sur fac e i s

    less d is t urbe d than

    i t

    would be by s t r i p m in ing.

    There are, however, thr ee m j o r problems associated

    w i t h

    subsidence:

    1. D i s r u p t i o n o f o v e r l y i n g a q u i f er s .

    A

    v er y s e n s i t iv e p o l i t i c a l

    i ss ue i n a r i d r e g io n s.

    2.

    Estab l i shment o f communicat ion w i th ov er ly in g a qu i f e rs th rough

    subsidence and consequent f lo od in g o f th e combustion zone.

    3. Gas leakage t o aqu i fe rs and pos sib ly

    to

    the sur face.

    O nl y f u t u r e f i e l d t e s t s w i t h l a r g e p a t t e r n s c an d e te rm in e t o what

    ex tent the fo rego ing harmfu l e f fec ts can be m in im ized.

    O f

    course, i f t h e e f f e c t s o f subsidence shou ld prove in to le ra b l e i n

    a g i ve n s i t u a t i o n ,

    i t

    c o u l d be a vo id ed e n t i r e l y b y u t i l i z i n g sm a ll i s o l a t e d

    burn pa t t e rns . Th i s w ou ld be p ra c t i ca l o n l y

    i f

    the roc k overburden had

    s u f f i c i e n t s t r u c t u r a l s t r e ng t h as

    i t

    does a t Hanna.

    i n

    an unf or tu nat e red uct i on i n the amount o f recoverab le coa l .

    I t w ou ld re su l t a l so

    12. Excessive Water In f l u x

    V i rg in c oa l i n the Hanna No. 1 seam has low per me ab i l i t y and i s a very

    unproduct i ve aqu i fe r . For t h i s reason,

    i t

    i s p o s s ib l e t o m a i nt a in a n e a rl y

    optimum w a te r /a i r r a t i o

    (moles water produced from th e co al seam/moles a i r

    70

  • 8/10/2019 Problems Solved and Not Solved in UCG

    8/12

    i n j ec ted ) a t r easonab le a i r i n j e c t i o n ra tes . Th i s was t r ue f o r Phases

    I

    and

    I I

    o f th e Hanna

    I I

    experimen t. B o th o f t hese t es t s i nvo l ved on l y two w e l l s

    spaced 16

    m

    apa rt f o r Phase

    I

    and

    18 m

    ap ar t f o r Phase

    I I

    Both

    the heat i ng va lue o f gas produced and the thermal e f f i c i en cy o f

    th e pro cess were much lower f o r Phase

    l l

    t han f o r t he prev ious

    tw

    t e s t s .

    F i e l d d at a 9, IO) and ca lc u l a t io ns w i t h the mathemat ica l model 8) b o t h

    con f irm ed tha t t h e de te r i o r a t i ng res u l t s ob ta i ned i n t he Phase

    l l

    t e s t

    r e s u l t e d fr om an e x ce s si ve i n f l u x o f w at e r. P h y s i ca l l i m i t a t i o n s o f t h e

    a i r i n j e c t i o n system p re v en t ed a d ju s tm e nt o f t h e w a t e r / a i r r a t i o .

    Phase

    I l l

    i nvo lv ed a fou r we l l t e s t pa t te r n . Thus, the reac t io n zone

    was exposed t o a much

    la rg er area o f water drainage f rom th e coal seam.

    Als o the lar ger burn area may have promoted gre at er c avi ng of th e roof and

    communication w i th an ov er ly in g aq ui f er .

    E xcess ive w a ter i n f l ux can be con t ro l l e d

    i n

    four ways:

    1 . Use of dewater ing wel ls .

    2. Carefu l p ressure con t ro l .

    3.

    Adj us tmen t o f t h e a i r i n j e c t i o n r a t e .

    4.

    G a s i f i c a t i o n i n an up d i p d i r e c t i o n .

    The degree o f success t h a t can be achieved wi t h these c o nt ro l measures can

    o n l y b e p ro ve n w i t h t h e u se o f l a r g e w e l l p a t t e r n s i n f u t u r e t e s t s .

    13.

    Maximum Wel l Spa cing and Depth

    Fact ors a f f e c t i n g maximum we1

    1

    spacing and depth a re l a r ge l y con jec tu ra l

    and have not been i nv est iga ted i n f i e l d te sts . Maximum depth a t which the

    process i s workable i s an impor tant in d i ca to r o f t he amount o f coa l t h a t may

    b e s u i t a b l e f o r UCG. Maximum we l l spacing i s impor tant because the dr i l l i n g

    and com p let i on o f w e l l s

    i s a m aj or c o s t i t e m i n t h e o p e r a t i o n

    o f

    a

    U C G

    pro j ec t . Ne i ther i s a c r i t i c a l prob lem, however. There ar e vas t depos i ts

    o f c o al a v a i l a b l e a t d ep th s a l r e a dy t e s t e d s u c c e s s f u l l y w i t h U C G . Economic

    s t u d i es i n d i c a t e t h a t

    U C G

    even wi t h t he cl os e spac ing used a t Hanna, Wyoming,

    may be compet i t i ve a l re ady w i t h some in t r as ta te natura l gas pr i c es 21).

    14.

    Bituminous Coal

    I t has been emphasized ea r l i e r t h a t t he l i nk ed ve r t i ca l w e l l p rocess i s

    a permeat ion method and t ha t t h i s fa ct has been res pon sib le f o r much o f the

    success o f the Hanna tes ts. L i g n i t e and subbi tuminous coal sh r in k on

    dry i ng and carbon iza t io n . Th is perm i ts the use o f reverse combustion

    l ink ing, and the es tab l i shment o f a permeat ion process dur ing fo rward ga s i f i -

    c a t i o n . A t t h i s t i m e i t i s n o t c e r t a i n t h a t t h e l i n k e d v e r t i c a l w e l l p ro ce ss

    can be used succes s fu l l y i n eas tern b i tum inous coa l wh ich swel l s on heat ing .

    Because

    of

    t h e l a r g e p o p u l a t i on o f t h e e a s t e rn s t a t e s ,

    i t

    i s i mp or ta nt t o

    t e s t t he v i a b i l i t y o f

    U C G

    i n eas te rn coa l . However, t h i s i s no t c l assed as

    71

  • 8/10/2019 Problems Solved and Not Solved in UCG

    9/12

    a c r i t i c a l p ro bl em, t h a t i s , a pro bl em c r i t i c a l t o c om me rc ia li za ti on o f UCG.

    Regardless

    o f

    t he outcome o f eastern tes ts,

    UCG

    remains a workable process

    i n l i gn i t e and subbi tuminous coa l.

    15

    Gas Clean-up

    Gas trea tment i s c l a s s i f i e d as an unsolved problem because

    i t

    has not

    been at tempted o r demonstrated i n the f i e l d . Gas analyses, however, in di -

    c a te t h a t o n l y e x i s t i n g t ec hn ol og y i s r e q u i r e d

    for

    gas c lean-up which i s

    primari ly a developmental problem.

    Coal gas f ro m coke ovens o r Lur gi g as i f ie rs con tain s heavy t ar s and

    much pa r t i c u l a t e mat ter . Ex tens ive and r e l a t i v e l y expensive c lean-up i s

    requ i red fo r these gases, and the h ig h ly v iscous coa l ta rs tend to p lug

    valves o r ot her equipment.

    In

    contrast gas f rom U C G i s much cle ane r. The condensed l i q u i d s cause

    fewer problems tha n ty pi ca l coal t ar s because

    o f

    t he d i f f e re n c e i n t h e i r

    phys i ca l p rope r t i es . The l i qu id s f r om

    U C G

    have a l ow v i sc os i t y s im i l a r

    t o t h a t o f o i l s . None

    o f

    the mater ia l has a b o i l i n g po in t above 780

    K

    (950 F ) . A l m s t a qua r te r o f t he more t yp i ca l coa l t a r de r i ved f rom the

    lab ora tor y ca rbo niz at i on o f Hanna No. 1 co al was composed o f resid ue wi t h

    a b o i l i ng p o in t above 810

    K l O O O o F)

    (17) .

    Pa rt ic u la te conce ntra t ion s and composi tions have been re por ted as wel l

    as t race meta l ana lyses (18). Dur ing fo rward combust ion pa r t i c u l a t e load ing

    has var ied f rom

    0.05

    t o

    0.90

    gm/m3. About

    1/2

    to

    2 /3

    w ei gh t f r a c t i o n o f

    t h e pa r t i c u l a t e m a t te r co l l ec ted f a l l s i n t he submicron range. A na lyses

    i n d i c a t e t h a t

    i t

    cons i s t s o f p a r t i a l l y ca rbon i zed coa l ,and coa l char .

    Su l fu r i s p roduced i n ' th e fo rm o f hydrogen s u l f i d e and no su l f u r

    dioxide has been measured.

    much more eas i l y f rom th e gas than s u l f u r d i ox id e.

    Hydrogen su lf id e, o f course, can be scrubbed

    Gas p ro du ct io n temperatures u su al ly range between 510-590 K (450-600 F).

    Thus, h i gh temperature c lean-up i s not needed, and e xi s t i n g technology

    appears t o be adequate f o r gas tr eatme nt.

    SUMMARY AND CONCLUSIONS

    Fi f t ee n major techn ic a l p roblems assoc ia ted w i th

    U C G

    have been discussed.

    Ten problems have been la rg el y solved, f i v e remain unsolved. O f t h e f i v e ,

    i t

    i s be l ie ved t h a t on l y two, subsidence and excess ive water in f l ux , can

    p resen t po te n t i a l l y ma jo r obs tac les t o com merc ia l i za t i on o f UCG. The Laramie

    Energy Research Center has had v i r t u a l l y no f i e l d exper ience 'w i th e i th er

    problem because t hey become major ones onl y wi t h lar ge wel l pa tte rn s which

    have y e t t o be f i e l d t e s t ed .

    should determine wi th in the next few years i f these two problems can be

    reso lved favorab ly .

    However, proposed la rg e area f i e l d experiments

    7 2

  • 8/10/2019 Problems Solved and Not Solved in UCG

    10/12

    ACKNOWLEDGMENT

    Dennis F is ch er and Mike Boyd o f the Laramie Energy Research Center

    have reviewed th e manusc ript and pr ov id ed many he lp fu l comments.

    1 .

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    IO.

    1 1 .

    REFERENCES

    A r thu r D. L i t t l e , I n c . ,

    A

    Curren t Appr ai sal o f Underground Coal

    Gasi f icat ion, p.

    38,

    76, BuMines Rept. C-73671, 1971.

    Campbell, G .

    G . , C .

    F. Brandenburg, and R. M. Boyd, Prel iminary

    Ev al ua ti on o f Underground Coal Ga s i f ic a t i o n a t Hanna, Wyo., BuMines,

    TPR 82, Oct.,

    1974.

    Schrider, L.

    A.,

    and J.

    W.

    Jennings,

    SPE

    P r e p r i n t

    4993,

    SOC.

    Petroleum

    Eng. Annual Fa1

    1

    Mtg., Oct. 6-9, 1974.

    Gregg, D . W., R. W. H i l l , and D.

    U.

    Olness, An Overview of t he Sov iet

    E f f o r t i n Underground G as i f i ca t i o n o f Coal , Lawrence Livermore Lab.,

    UCRL-52004, Jan. 29, 1976.

    Gunn,

    R.

    D., D.

    W.

    Gregg, and

    D.

    L. Whitman, A Theore t i ca l A na l ys i s

    o f Soviet In S i t u Coal Ga si f i ca t i on F i e l d Tests, Second Annual

    Underground Coal G a s i f i c a t i o n Symp., Morgantown, W. Va., Aug.

    10-12,

    1976.

    Gunn, R. D. , and D. L. Whitman, An I n S i t u Coal Gas if ic at io n Model

    (Forward Mode) f o r F e a s i b i l i t y Studi es and Design, LERC/RI-76/2,

    U.

    S.

    E.R.D.A.,

    Feb.. 1976.

    Gunn,

    R.

    D., D . D. Fischer, and D . L. Whitman, The Ph ys ic al Beha vio r

    o f Forward Combustion i n the Underground Ga si f i ca t i on o f Coal , SPE

    P repr i n t 6149,

    SOC.

    Petr ole um Eng. Annual F a l l Mtg., Oct.

    3-6, 1976.

    Gunn,

    R. D., D.

    L. Whitman, and

    D. D.

    Fischer , paper presented a t

    Am.

    Nuclear SOC Mtg., Energy Mi ne ra l Recovery Research, Golden, Colo.,

    Apr. 12-14, 1977.

    Fischer , D. D., C. F. Brandenburg, S .

    B.

    King, R.

    M.

    Boyd, and

    H.

    L.

    Hutchinson, Status o f the Linked Ve rt i ca l Wel l Process i n Underground

    Coal Ga si fi ca ti on , Second Annual Underground Coal G a s if i c a t i o n Symp.,

    Morgantown, W. Va., Aug.

    10-12,

    1976.

    Fischer ,

    D. D., J.

    E. Boysen, and

    R.

    D. Gunn, An Energy Balance f o r

    t he Second Underground Coal G a s i f i c a t i o n Experiment, Hanna, Wyoming,

    presented a t the

    1977

    N at i ona l Meet ing o f

    SME

    o f AIME, At la nt a, Ga.,

    Mar. 6-8, 1977.

    Beard, S. G., and R.

    P.

    Reed, Some In si g h ts f ro m Temperature Measurements

    on Recent Underground Coal Ga si f ic at io n Experiments, Second Annual

    Underground Coal Ga s i f i c a t i o n Symp., Morgantown,

    W.

    Va., Aug. 10-12 1976.

    73

  • 8/10/2019 Problems Solved and Not Solved in UCG

    11/12

    12. Brandenburg,

    C .

    F., R.

    P.

    Reed,

    R .

    M. Boyd,

    D.

    A.

    Northrop, and

    J.

    W.

    Jennings,

    SPE

    P r e p r i n t

    5654,

    SOC Pet rol eu m Eng. Annual F a l l

    Mtg., Da ll as , Tex., Sept. 28-Oct. 1 , 1975.

    1 3 . Jennings,

    J.

    W., I n i t i a l Resu l ts - -Coal Permeabi l i t y Tes ts Hanna,

    Wyoming, EPRl Gr ant No. R P 542-1, Q u a r t e r l y Rept., Feb., 1976.

    14. Brandenburg, C . F., D. D. Fischer , D. A. Northrop, and L. A. Schr ider ,

    Results and Status o f the Second Hanna I n S i t u Coal Ga si f i ca t i on

    Experiment, Second Annual Underground Coal G a s i f i c a t i o n Symp.,

    Morgantown, W. Va., Aug. 10-12, 1976.

    15. Boyd,

    R.

    M.,

    Post Burn Ana ly sis Techniques Appl i ca bl e t o Underground

    Coal Gas

    i f

    a t o n

    ,

    i

    i d.

    16. Jenn ings , J.

    W., R. D.

    Gunn,

    C.

    F. Brandenburg, and

    D. L.

    Whitman,

    SPE Pr ep r i n t 6181, SOC Petr ole um Eng. Annual F a l l Mtg., New Orle ans ,

    La., Oct. 3-6.

    1976.

    17. King, S. B., P re l im ina ry U C G Tar Analyses, Second Annual Underground

    Coal G a s i f i c a t i o n Symp., Morgantown,

    W.

    Va., Aug. 10-12, 1976.

    18. Fischer,

    D. D.,

    Moni tor i ng o f Emiss ions f rom an I n S i t u Coal Ga s i f i -

    cat io n Exper ment ,

    i i

    d.

    19. Campbell,

    G. G.,

    T. E. Sterner, and

    A.

    E. Humphrey, Practical

    Cons iderat ions i n Des ign ing an

    U C G

    Test , ib id.

    20.

    Eastwood,

    D.

    E. ,

    D . F.

    Moore,

    S .

    6. King,

    W. J.

    Lanum, J. K. Ea st la ck ,

    and J. W. Jennings, Real Time Process Mon ito r i ng

    i n

    Underground Coal

    G a s i f i c a t i o n, i i d.

    21. Moll, A. J., The Economics o f Underground Coal Ga si fi ca ti on , ib id .

  • 8/10/2019 Problems Solved and Not Solved in UCG

    12/12

    1

    75