SLN Colloidal Handout-portugal_2007

Embed Size (px)

Citation preview

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    1/51

    1

    A.J. Almeida, 2007

    SOLID LIPID NANOPARTICLES AS COLLOIDAL

    DRUG CARRIER SYSTEMS

    Antnio J. Almeida

    Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL),Faculdade de Farmcia

    Universidade de Lisboa

    Portugal

    [email protected]

    Universidad de Sevilla, Facultad de Farmacia, November 2007

    A.J. Almeida, 2007

    MICROPARTICLES AND NANOPARTICLES:

    THE BASIC CONCEPTS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    2/51

    2

    A.J. Almeida, 2007

    The recent t remendous advances in health science technology and inexorable

    progress in related scient if ic innovat ions, coupled with changes in populat ion

    demographics and the colouring of pol it ical agendas w i th the economics of

    d isease, are al l ac ting in concer t to take the pharmaceutical industry into

    excit ing and challenging new dimensions.

    G. Gregoriadis (2002)

    INOVATIVE DRUGS

    A.J. Almeida, 2007

    Inovative

    Drugs

    AIDS

    Cancer

    Ebola

    Tuberculosis

    Alzheimer

    SARS

    Economics

    Demographic changes

    Globalization

    New drug delivery systems

    Genomics

    Biotechnology

    Neurosciences

    Gene Therapy

    BioinformaticsProteomics

    Metalolomics

    INOVATIVE DRUGS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    3/51

    3

    A.J. Almeida, 2007

    PHYSICAL APPROACH

    Macroscopic systems activated by physicalprocesses (capsules, granules, etc)

    CHEMICAL APPROACH

    Chemical modification of drugs (derivativepreparation, salts, pro-drugs, association to

    polymers, etc.)

    BIOCHEMICAL / BIOTECHNOLOGICAL APPROACH

    Naturally occurr ing m acromolecules Cells

    Colloidal polymeric or l ipid systems

    DIFFERENT APPROACHES

    PHARMACEUTICAL

    APPROACH

    (pharmaceutical formulation)

    A.J. Almeida, 2007

    in v it ro

    in v ivo

    C

    Time

    0 6 12 18

    Time (hour)

    Drugconcentration

    inserum

    t

    GENERAL CONCEPTS IN MODIFIED DRUG RELEASE

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    4/51

    4

    A.J. Almeida, 2007 Chien (1992). Novel Drug Delivery Systems

    GENERAL CONCEPTS IN MODIFIED DRUG RELEASE

    Convencional Release

    Modified Release

    Delayed Release

    Prolonged Release

    Controlled Release

    Drug Targeting

    A.J. Almeida, 2007

    NEW DRUG DELIVERY SYSTEMS

    SKF

    Spansule

    ALZA

    Oros OcusertProgestasert

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    5/51

    5

    A.J. Almeida, 2007

    Physicochemical problems

    Molecular weight and size

    Complex struture

    Conformational stability

    Solubility

    Sensitivity (light, temperature, pH)

    Crystallization

    Molecularar interactions

    Adsorp tion

    Aggregat ion

    Presence of pr otein impuri ties

    Biological problems

    Biodegradation by digestive enzymes

    Short in vivo half-life

    Imunogenicity

    Complex metabolism

    Dificulty in crossi ng mucosal barriers

    No access to some compartments

    Pharmacokinetic Problems

    Analytical Problems

    FORMULATION OF NEW DRUG MOLECULES

    PROTEIN DRUGS

    A.J. Almeida, 2007

    9 Investigation of alternative administration routes (nasal, rectal, pulmonary, etc.);

    9 Investigation of alternative prolonged or pulsed release drug delivery systems;

    9 Investigation of new dosage forms that can provide pr otection against premature

    degradation;

    9 Invstigation of new site specific drug delivery systems.

    PROTEIN DRUGS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    6/51

    6

    A.J. Almeida, 2007

    PARTICULATE SYSTEMS

    liposomes

    microemulsions

    nanosuspensions

    microspheres

    nanoparticles

    niosomes

    virosomes

    cubosomes

    Particulate

    Systems

    iscoms

    cochleates

    nanocapsules

    micelles

    transfersomes

    A.J. Almeida, 2007

    Definition IUPAC

    COLLOIDAL

    The term refers to a state of subdivision, implying that the moleculesor polymolecular par ticles dispersed in a medium have at leas t in

    one direction a dimension roughly between 1 nm and 1 m, or that in

    a system discontinuities are found at distances of that order.

    COLLOIDAL SYSTEMS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    7/51

    7

    A.J. Almeida, 2007

    Microparticles

    Solid particles made of polymeric or solid lipid materials

    Podem conter o frmaco disperso, encapsulado ou adsorvido superfcie.

    Microspheres (1 m) Microcapsules (reservoir systems)

    Microparticles (matrix systems)

    Nanospheres (

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    8/51

    8

    A.J. Almeida, 2007

    Biodegradation Mechanisms

    Type I

    Type II

    A B A C

    Type III

    POLYMERIC MICRO- AND NANOPARTICULATE SYSTEMS

    A.J. Almeida, 2007

    BIODEGRADABLE IMPLANTS

    POLYMERIC MICRO- AND NANOPARTICULATE SYSTEMS

    Poly(lactide-co-glycolide) (PLGA)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    9/51

    9

    A.J. Almeida, 2007

    9 Drug release by polymer enzymatic degradation.

    9 Drug release rate is contr olled by t he rate of the enzymatic reaction.

    9 Predominat use in controll ed release from biodegradable polymers often used in

    particulate carriers (e.g. albumine, gelatine, polyalkylcianoacrylates).

    F F FF

    POLYMERIC MICRO- AND NANOPARTICULATE SYSTEMS

    A.J. Almeida, 2007

    Main Technologic and Therapeutic Uses

    Diagnostic systems

    Controlled drug delivery systems

    Implants Aerosols Solid dosage forms Vaccines Site-specific drug delivery

    POLYMERIC MICRO- AND NANOPARTICULATE SYSTEMS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    10/51

    10

    A.J. Almeida, 2007

    MAIN MICRO / NANOENCAPSULATION TECHNIQUES

    1. Spray coating; Pan-coating, Spray-drying

    2. Droplet extrusion

    3. Coacervation / Phase separation

    4. Emulsion solidif ication

    4.1. Solvent evaporation (simple or multiple emulsion)

    4.2. Solvent extraction (simple or multiple emulsion)

    4.3. Melting and solidification (simple or multiple emulsion)

    5. Polymerization methods

    5.1. Interfacial polymerization

    5.2. Emulsion polymerization

    Colloidal Systems

    A.J. Almeida, 2007

    A

    Aqueous phase+

    surfactant

    Polymer in organic

    solvent

    Drug suspended in

    polymer solution

    Drug

    Evaporation orExtraction

    of organic solvent

    Particle isolation by

    filtration or centrifugation

    simple [A] or multiple [B]

    emulsion

    w/o

    emulsion

    Aqueous phase

    + surfactant

    Polymer in

    organic solventDrug +water +

    emulsifying agent

    B

    Solvent Evaporation/ Extraction

    simple emulsion multiple emulsion

    MAIN MICRO / NANOENCAPSULATION TECHNIQUES

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    11/51

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    12/51

    12

    A.J. Almeida, 2007

    Emulsion Polymerization

    MAIN MICRO / NANOENCAPSULATION TECHNIQUES

    9 A si ngl e liq uid (or d iso lved ) reacti ng m ono mer

    9 Drug disolved or suspended

    9 Polymerisation started by chemical agent or radiation

    9 Polymer MW and particle size dependent on:

    9monomer concentration

    9Initiator concentration

    9Temperature

    9 Emulsion stabilizer needed

    9 Particles >20 nm

    Ex.: PIBCA; polyacrylamide

    A.J. Almeida, 2007

    CaCl2

    Ferreira Almeida and Almeida (2004). J Control Release.

    Gelatine +

    alginate + drug

    Washing

    Fluid-bed drying

    Droplet Extrusion

    MAIN MICRO / NANOENCAPSULATION TECHNIQUES

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    13/51

    13

    A.J. Almeida, 2007

    CONTROL OF FORMULATIONS

    Particle size

    9Electron microscopy

    9Electric sensing zone

    9Laser diffraction

    9Photon correlation spetroscopy (PCS)

    9Optical sensing zone

    Encapsulation efficiency

    Drug loading

    Surface charge (zeta potential)

    Hydrofobicity

    9Contact angle9Partition coeficient

    9Hydrophobic interaction chromatography

    Release profile

    Sterilization

    Stability

    MICRO- AND NANOPARTICULATE SYSTEMS

    A.J. Almeida, 2007

    General drug release kinetics

    Dependent on:

    9 Drug location inside the particle

    9 Type and amount of polymer

    9 Particle size and density

    9 Cross-linking

    9 Physicochemical properties of drug and polymer

    9 Drug MW and concentration

    9 Presence of excipients

    9 Release medium

    DRUG RELEASE

    MICRO- AND NANOPARTICULATE SYSTEMS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    14/51

    14

    A.J. Almeida, 2007

    PARTICULATE CARRIERS IN THE PHARMACEUTICAL MARKET

    LIPOSOMES

    9physical and chemical stability problems

    9no cheap liposome available

    9marketed products but behind expectations

    POLYMERIC NANOPARTICLES

    9input : 30 years of research

    9no output: no products on the market

    A.J. Almeida, 2007

    SITE-SPECIFIC DRUG DELIVERY

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    15/51

    15

    A.J. Almeida, 2007

    SITE-SPECIFIC DRUG DELIVERY

    The magic bullet concept

    The term used to describe a specific c ure

    for syphilis, which would attack the

    syphilis spirochaete while having no

    effect whatsoever on human tissue.

    Paul Ehrlich (1854-1915)

    A.J. Almeida, 2007

    RATIONALE FOR SITE-SPECIFIC DRUG DELIVERY

    Target site

    Other sites

    Carrier

    Drug

    SpecificityTranslocation across

    biological barriersProtection against inactivation

    Puisieux and Roblot-Treupel (1989) STP Pharma

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    16/51

    16

    A.J. Almeida, 2007

    Exclusive delivery to specific c ompartments (and/or di seases)

    Access to previously inaccess ib le s ites (e.g . in tracel lu lar in fections)

    Protection of drug and body from unwanted deposition, which could lead tounwanted reactions and metabolism, etc.

    Controlled rate and modality of delivery to pharmacological receptor

    Reduction in the amount of drug employed

    RATIONALE FOR SITE-SPECIFIC DRUG DELIVERY

    Drug safety Drug efficacy Patient compliance

    A.J. Almeida, 2007

    ACTIVE TA RGETING

    Magnetic fieldsLynphotropic adjuvants

    MPS blockingReceptor mediated processes

    Immunotherapy

    0,1 4

    0,01

    PASSIVE TARGETING

    Uptake by MPS and tropism for the lysosomesmacrophagesKupffer cells

    Translocation to the tissues hepatocytesbone marrowsplenocitestumors (?)

    Capillar embolismlung targeting (iv) specific regions (ia)

    4 7 10 100

    Diametre (m)

    SITE-SPECIFIC DRUG DELIVERY: DRUG TARGETING

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    17/51

    17

    A.J. Almeida, 2007

    Utilizao de lipossomas como

    transportadores de frmacos

    Crommelin et al. (http://www.drugdeliverypartnerships.com/lip.html)

    DRUG TARGETING

    A.J. Almeida, 2007

    Soluble carriers (monoclonal antibodies, dextrans, soluble s ynthetic polym ers)

    Particulate carriers (liposomes, microspheres, nanoparticles, etc.)

    Target-specific recognition moieties (monoclonal antibodies, carbohydrates)

    Antibody-di rected enzyme/prodrug therapy

    Virus-directed enzyme/prodrug therapy

    MAIN DRUG TARGETING SYSTEMS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    18/51

    18

    A.J. Almeida, 2007

    SOLID LIPID NANOPARTICLES

    A.J. Almeida, 2007

    LIPID NANOPARTICLES

    9 Lipophilic colloidal delivery system (R.H. Mller, Berlin; M.R. Gasco, Turin);

    9 Efficient and non-toxic drug carrier specially for li pophilic drug molecules;

    9 Composed of physiological / well tolerated excipients e.g. GRAS (= similar to

    emulsions and liposomes);

    9 Possess solid matrix (= similar to polymeric nanoparticles);

    9 Protective properties

    9 Controlled release properties

    9 Colloidal dimensions and controlled release behaviour enable drug protection

    and administration by parenteral and non-parenteral routes.

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    19/51

    19

    A.J. Almeida, 2007

    LIPID NANOPARTICLES

    9 Versatility

    9Parenteral administration (Fundar et al, 2000)

    9Brain delivery (Fundar et al, 2000)

    9Ocular delivery (Cavalli et al, 2002)

    9Rectal delivery (Sznitowska et al, 2001)

    9Oral deli very (Garca-Fuentes et al, 2002)

    9Topical delivery (Souto et al, 2004)

    9 Potential vaccine delivery systems (Almeida et al, 1997)

    9 Large scale production possibl e using l ines available in pharmaceutical plants (i.e.

    lines for parenteral emulsions (Mlleret al, 2001)

    A.J. Almeida, 2007

    SLN PREPARATION

    High Pressure Homogenization (R.H. Mlleret al.)

    -SkyePharma PLC, Berlin, Germany

    -PharmaSol GmbH, Berlin, Germany

    Microemulsion Technology (M.R. Gasco)

    - Vectorpharma/Eurand Spa, Turin, Italy

    Solvent Evaporation

    Phase Inversion Type

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    20/51

    20

    A.J. Almeida, 2007

    A

    Aqu eous ph ase

    at same

    temperature

    Melted Lipid

    Drug solution in

    melted lipid

    Drug

    Emulsion

    w/oAqu eou s ph ase

    at same

    temperature

    Melted LipidDrug + Water

    + surfactant

    B

    Cooling for solidification

    and particle hardening

    SLN suspension

    High-Pressure Homogenisation

    Emulsification using Ultra-turrax

    single [A] or double [B]

    SLN PREPARATION BY HIGH PRESSUE HOMOGENIZATION (HPH)

    HOT HOMOGENIZATION PROCESS

    A.J. Almeida, 2007

    HIGH PRESSURE HOMOGENIZATION (HPH)

    E. Souto (2005) PhD Thesis Dept. Pharmaceutics, Biopharmaceutics and Biotechnology, Free University of Berlin

    APV Gau lin LAB 40 dis continuo us

    (40 g batch)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    21/51

    21

    A.J. Almeida, 2007

    SLN PREPARATION BY HPH

    HOT HOMOGENIZATION PROCESS

    Basic principles:

    9equipment can be qualified and validated

    9accepted by regulatory authorities in product ion li nes used for parenterals

    9existing industri al production l ines for i.v. parenteral emulsions can be used

    9all production lines developed for SLN are usable

    A.J. Almeida, 2007

    SLN PREPARATION BY HPH

    APV Gaul in L AB40 c ont inu ous

    (0.5-2 Kg batch )APV Gau lin LAB 60

    (2-10 Kg batc h)

    APV Gau lin 5.5

    (150 Kg/h)

    Dept. Pharmaceutics, Biopharmaceutics and Biotechnology, Free University of Berlin

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    22/51

    22

    A.J. Almeida, 2007

    SLN PREPARATION BY HPH

    COLD HOMOGENIZATION PROCESS

    Melted Lipid

    Drug suspension

    in melted lipid

    Drug

    SLN suspension

    High-Pressure Homogenisation

    Suspension in water using Ultra-turrax

    Liquid nitrogen

    Micronization

    Dept. Pharmaceutics, Biopharmaceutics and Biotechnology, Free University of Berlin

    A.J. Almeida, 2007 Mller et al (2000). Eur J Pharm Biopharm

    DRUG ENTRAPMENT INTO SLN

    A m.p. drug m.p. lipid homogeneous matrix

    B m.p. drug < m.p. l ipid lipid-enriched core

    C m.p. drug > m.p. l ipid drug-enriched core

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    23/51

    23

    A.J. Almeida, 2007

    PROBLEMS ASSOCIATED WITH SLN

    Formation of perfect crystalline structure during storage ( modification) drugexpulsion

    DRUG ENTRAPMENT INTO SLN

    Souto (2007)

    A.J. Almeida, 2007

    9 Physical stability of aqueous solution

    9 Gel formation

    9 Particle aggregation

    9 High water content of dispersions (70 - 95%)

    9 Need to remove too much water in tablet / pellet production

    9 Dosing problems (e.g. dispersion for soft gelatin capsules, lipid

    particl e content max. 30%)

    SLN PROCESSING DISADVANTAGES

    Souto (2007)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    24/51

    24

    A.J. Almeida, 2007

    SLN PROCESSING DISADVANTAGES

    SLN Solid Lipid Nanoparticles

    9Produced from solid lipids

    9Tend to form perfect crys tals drug expulsion

    NLC Nanostructured Lipid Carriers

    9Produced from blend of solid and liquid lipi ds

    9Particles are in solid state at body temperature

    9 Inhibit crystallization process by mixing spatially

    very different m olecules imperfections in lattice not just mixing solid lipids but: controlled nanostructuring of lipid matrix

    9 to accommodate drug

    9 to control release

    9 to tr igger release

    Souto (2007)

    A.J. Almeida, 2007

    LIPID NANOPARTICLES

    Solid lipid

    particleOil-loaded

    particle

    Souto et al (2007) Pharm Tech Europe (in press)

    NLC a multiple carrier

    SLN: one phase (=solid lipid)

    NLC: multiple O/F particle (oil nanodroplets in solid fat nanoparticles)

    Advantages:

    higher drug load, firm incorporation (e.g. 1% Retinol in SLN, 6% in NLC)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    25/51

    25

    A.J. Almeida, 2007

    LN AS A POTENTIAL PROTEIN / ANTIGEN

    DELIVERY SYSTEM

    A.J. Almeida, 2007

    Lipid compositionHard fats (Softisan 142and WitepsolE85)Cetyl alcoholPropyleneglycol palmitostearate (Monosteol)PEG 300 mono-, di-stearate (Superpolystate)

    Surfactant

    Poloxamer 188Tween 80

    PROTEIN NANOENCAPSULATION IN SLN

    Lipid +

    poloxamer 188

    Aqu eous

    Lysozyme

    melting

    Solubilisationusinga rotary evaporator

    Micronisation in a

    powder-mill

    Pre-mix using a high-

    speed homogeniser

    HPH at room

    temperature

    Solidification in

    liquid nitrogen

    Almeida et al (1997). Int J Pharm

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    26/51

    26

    A.J. Almeida, 2007

    0

    100

    200

    300

    400

    500

    Distilledwater

    3%Tween 80

    3% NaCholate

    3% Poloxamer188

    Lysozymeactivity(Units/ml)

    Day 1

    Day10

    Almeida et al (1997). Int J Pharm

    STABILITY OF LYSOZYME THROUGHOUT FORMULATION

    MW rt 0,5h 1h 2h 3h 4h 5h

    Influence of temperature (50)

    MW Ct 3 4 5 6 7 8 9 10

    Influence of HPH treatment

    (N cycles/Pressure)

    500 bar/1 cy/ 25C 1000 bar/3 cy/ 50C

    A.J. Almeida, 2007

    MW Water S/CA W/CA Mono Sup

    NANOENCAPSULATION OF LYSOZYME IN LN

    Almeida et al (1997). Int J Pharm.

    0

    1000

    2000

    3000

    4000

    5000

    Softisan

    142/Cetylalcohol

    Witepsol

    E85/Cetylalcohol

    Monosteol Superpolystate

    Lysozymeactivity

    (Unit/goflipid)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    27/51

    27

    A.J. Almeida, 2007

    0

    20

    40

    60

    80

    100

    120

    140

    Lysozymeactivity(%)

    Wit/CASoft/CA

    Initial Sup LN Initial Sup LN

    MW Ct 3 4 5 6 7 8

    97.0 KDa66.2 KDa45.0 KDa

    31.0 KDa

    21.5 KDa14.4 KDa

    NANOENCAPSULATION OF LYSOZYME IN LN

    Almeida et al (1997). Int J Pharm

    -9.80.75497.0D50 0.580.00

    D90 0.930.01

    0.30W E85/CA

    -11.00.264412.9D50 0.600.00

    D90 1.860.02

    0.22S 142/CA

    Zeta Potential

    (mVsd)

    Particle Size

    PCS

    (nm sd)

    Particle Size

    Laser diffraction

    (m sd)Lys

    Content

    (%)

    Lipid matrix

    A.J. Almeida, 2007 Videira and Almeida (1998). Proceed III SPLC-CRS Conf

    Lipid compositiongliceryl behenate(Compritol888 ATO)gliceryl palmitosterarate (Precirol ATO 5)

    cetylAlcohol Surfactant

    Tween 80

    Speed rate8 000 - 10 000 rpm

    Lipid

    Aq.p hase

    melting

    heatingheating

    emulsification

    high-speed homogenization8 000 -10 000 rpm

    solidification

    DEVELOPMENT OF OVA-CONTAINING LN

    Particle s ize (PCS)

    100-400 nm

    PI - 0,250

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    28/51

    28

    A.J. Almeida, 2007

    SLN (nm) OVA SLN (nm)

    Lipid (%) dmt=3d dm t=30d dm t=3d dm t=30d

    Pr 103 115 128 153

    6 Cp 171 168 196 205

    W/AC 284 280 314 320

    Pr 196 205 214 206

    8 Cp 240 253 280 305

    W/Ac 252 265 290 312

    Pr 230 200 300 nd

    10 Cp 373 378 390 ndW/Ac 307 289 400 nd

    NANOPARTICLE CHARACTERISATION: PHYSICAL STABILITY

    Videira et al. (2002). Proceed V SPLC-CRS Conf

    A.J. Almeida, 2007

    330

    330

    330

    330

    330

    330

    330

    330

    330

    Lipid

    10%

    Pr

    Cp

    W/CA

    8%

    Pr

    Cp

    W/CA

    Pr

    Cp

    W/CA

    6%

    Tween 80

    2%

    60% 100%

    OVA-6SLN 92% EE with 2% surfactant

    ENTRAPMENT EFFICIENCY

    Videira et al (2002). Proceed V SPLC-CRS Conf

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    29/51

    29

    A.J. Almeida, 2007

    Protein Integrity

    97.0 KDa66.2 KDa

    45.0 KDa

    31.0 KDa

    21.5 KDa14.4 KDa

    MW LNsup 1W 2W 3W

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 5 10 15 20 25 30 35

    Time (day)

    OVAreleased(%)

    FORMULATION STUDIES OF OVA OF LYSOZYME IN LN

    0

    10

    20

    30

    40

    0 50 100 150 200 250 300 350 400

    time (min)

    Conc.O

    VA

    (%)

    Videira et al (2002). Proceed V SPLC-CRS Conf

    A.J. Almeida, 2007

    ADSORPTION STUDIES

    Desorption profiles

    OVA/lipid (%) 4 7 10

    25C 90 80 82

    15C 80 70 79A.E

    (%)

    0

    20

    40

    60

    80

    100

    0 250 500 750 1000 1250 1500

    time(min)

    Conc.

    OVA(%)

    25C

    15C

    Videira et al (2002). Proceed V SPLC-CRS Conf

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    30/51

    30

    A.J. Almeida, 2007

    9 LN are potential protein carriers with high protein binding

    9 Formulations are stable

    9 Partial adsorption of protein may not be precluded

    9 Production conditions seem not to damage protein integrity

    9 Following a burst effect, a sustained release profile is obtained

    9 Loading capacity is suitable to the usual antigen doses

    LN AS A POTENTIAL PROTEIN / ANTIGEN DELIVERY SYSTEM

    Videira et al (2002). Proceed V SPLC-CRS Conf

    A.J. Almeida, 2007

    PULMONARY DELIVERY OF SLN

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    31/51

    31

    A.J. Almeida, 2007

    PULMONARY ADMINISTRATION

    The Lung

    Unique features that can facilitate systemic delivery via pulmonary administration of drugs:

    Large surface rea (75 m2).

    Good vascularisation.

    Large capacity for solute exchange.

    Ultra-thineness of the alveolar epithelium (0.1-0.5 mm). First-pass metabolism is avoided.

    A.J. Almeida, 2007

    PULMONARY DELIVERY USING PARTICULATE CARRIERS

    Advantages

    An alternative non-invasive means for both local andsystemic drug delivery using particulate carriers.

    Avoids instability in blood stream and uptake by the MPS.

    Allows high concentrations of drug in the lungsminimizing side toxic effects.

    A potential route for drugtherapy and immunisation.

    Poyner et al (1995).J Controlled Release

    Free

    Liposomal (0,7 m)PLGA Microencapsulated (0,7 m)

    Lung

    0

    20

    40

    60

    80

    100

    Kidney

    0

    20

    40

    60

    80

    6 24

    Time (hour)

    Tobr

    amycin(%)

    Blood

    0

    2040

    60

    80

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    32/51

    32

    A.J. Almeida, 2007

    LYMPHATIC TARGETING AND LUNG CANCER THERAPY

    A leading cause of death around the world, accounting for13% of newly diagnosed cancers and 30% of all cancerdeaths.

    Very low survival rate (14% in 5 years; mean survival time14 months).

    Metastatic disease starts at very early stages, particularly inSCLC, the majority of patients with lung cancer havingmetastatic disease at the time of diagnosis.

    Metastasis spread mainly via the lymphatics to the lymphnodes, liver, brain, bones and adrenal glands.

    Early diagnosis is crucial to increase survival rate and stagingis critically dependent upon the involvement of the lymph

    nodes that drain the region containing the tumour.

    Chemotherapy plays an important role alongside surgery andradiation therapy, but lung cancer is usually diagnosed at anincurable stage.

    A.J. Almeida, 2007

    IMAGING USING PARTICULATE CARRIERS

    Lung perfusion imaging is based on the trapping of i.v. injectedradiolabelled albumin microspheres (10-50m) in the capillary bed

    of the lung: Technetium [99m Tc] Microspheres Injection (Ph Eur).

    I.v. injected radiolabelled PLGA microspheres have also been

    proposed for lung imaging (Delgado et al. 2000).

    Several particulate carriers have been used forlymphoscintigraphy, such as liposomes, sulfur colloid, PMMA and

    PHCA nanoparticles.

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    33/51

    33

    A.J. Almeida, 2007

    PULMONARY ADMINISTRATION OF LIPID NANOPARTICLES

    To investigate LN as a potential drug carrier to the lungs and, through alveolarairways, to the lymphatic system, thus optimising concentration at the tumour site or

    at distant metastasis sites.

    To evaluate LN in vivo fate after pulmonary absorption upon nebulisation anddelivery to laboratory animals.

    Lipid Nanoparticles

    Administrationhave been studied by parenteraland non-parenteral routes.

    A.J. Almeida, 2007

    NANOPARTICLE PRODUCTION

    Lipid composition

    gliceryl behenate(Compritol888 ATO)gliceryl palmitosterarate (Precirol ATO 5)cetylAlcohol

    SurfactantTween 80

    Speed rate8 000 -10 000 rpm

    Lipid

    Aq.p hase

    melting

    heatingheating

    emulsification

    high-speed homogenization8 000 -10 000 rpm

    solidification

    Videira et al (2002).J Drug Targeting

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    34/51

    34

    A.J. Almeida, 2007

    D,L-hexamethylpropyleneamine oxime

    (HMPAO)

    N

    NH

    N

    NH

    OH OH

    MeMe

    Me

    Me

    Me

    Me

    +99mTcO4-NaCl

    Radiolabelled LN

    LABELLING AND ADMINISTRATION

    Lipid Nanoparticles

    Ultrasonic

    nebulization

    Labelling efficiency

    Particle size

    - Scintigraphy

    anaesthetisedmale Wistar rats

    Videira et al (2002).J Drug Targeting

    A.J. Almeida, 2007

    CHARACTERISATION OF 99mTc-HMPAO-LN

    Beforeaerosolisation

    Afteraerosolisation

    D50 (nm) PI D50 (nm) PI

    197.5 0.231 218.3 0.378

    194.8 0.291 220.3 0.379

    196.1 0.261 219.3 0.379

    PARTICLE SIZE

    Videira et al (2002).J Drug Targeting

    ASPECT

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    35/51

    35

    A.J. Almeida, 2007

    CHARACTERISATION OF 99mTc-HMPAO-LN

    Labellingefficiency: 972%

    Radiochemical Purity (TLC)

    Sys I Sys II

    t0

    t30

    99mTc-HMPAO

    butanone 0.9% aq. NaCl

    Sys I

    t0

    t30

    Sys II

    99mTc-HMPAO-LN

    butanone 0.9% aq. NaCl

    99mTc-HMPAO reduced-hydrolysed99mTc

    Na 99mTcO4

    Other hydrophilic species

    A.J. Almeida, 2007

    99mTc-HMPAO-LN99mTc-HMPAO

    BIODISTRIBUTION

    Videira et al (2002).J Drug Targeting

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    36/51

    36

    A.J. Almeida, 2007

    3 min 8 min 60 min

    99mTc-HMPAO

    99mTc-HMPAO-LN

    BIODISTRIBUTION

    Videira et al (2002).J Drug Targeting

    A.J. Almeida, 2007

    LYMPHATIC DISTRIBUTION OF 99mTc-HMPAO-LN

    Videira et al (2002).J Drug Targeting

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    37/51

    37

    A.J. Almeida, 2007

    Periaortic nodes Inguinal nodes

    Axillarynodes

    LYMPHATIC DISTRIBUTION

    Videira et al (2002).J Drug Targeting

    T1/2 10 minLungs

    A.J. Almeida, 2007

    BIODISTRIBUTION IN RATS 4h AFTER INHALATION

    0

    5

    10

    15

    20

    25

    30

    35

    Lungs

    Serum

    Periaorticlymphnodes

    Axillarylymphnodes

    InguinallymphnodesLiver

    Spleen

    Thyroid

    KidneysHeart

    Brain

    Smallintestine

    Largeintestine

    Testicles

    Urine

    %a

    ctiv

    ity/goftissue

    Videira et al (2002).J Drug Targeting

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    38/51

    38

    A.J. Almeida, 2007

    BIODISTRIBUTION OF 99mTc-HMPAO IN RATS AFTER i.v. INJECTION

    Sharp etal (1986).J Nucl Med

    21.51.519.80.315.80.215.41.7Intestines

    8.61.010.40.410.20.413.91.9Liver

    14.60.39.50.13.20.30.40.4Urine

    8.60.39.40.210.51.111.00.4Blood

    2.80.33.10.13.10.23.70.8Lungs

    6.41.26.60.46.30.26.51.1Kidneys

    % Dose in OrganTissue

    2.00.21.80.22.10.22.10.1Brain

    60 min30 min10 min2 min

    A.J. Almeida, 2007

    RADIOACTIVITY IN RAT LUNGS AFTER ENDOTRACHEAL ADMINISTRATION

    (n=4; meansd)

    0

    20

    40

    60

    80

    100

    120

    3 8 15 30 60

    Time (min)

    %

    activity/g

    %A

    ctivity/g

    Videira et al (2006).J Microencapsulation

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    39/51

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    40/51

    40

    A.J. Almeida, 2007

    ALVEOLAR CLEARANCE

    Uptake of 1.1 m fluor escent polystyrene particles administered i.n. to miceEyles et al (2001). Vaccine

    24 h15 min

    Alv eolar clearance of 400 nm fl uorescent pol yst yrene part icl es admini stered i.n . to m iceByersdorfer et al (1995).J Immunol

    6 h

    Dendritic cells

    24 h

    Peribronchial LN

    A.J. Almeida, 2007 Valentine and Kennedy (2001) In: Principles and Methods of Toxicology

    PARTICLE UPTAKE AT THE LUNGS

    LN

    BALT

    Blood circulation

    Lymphatics

    Alveolus

    Interstitium

    Pleura

    M

    Possible Mechanisms

    Dissolution Macrophage phagocytosis Direct passage Uptake by vascular system Movement into the lymphatic system Axonal translocation to CNS

    Elimination

    Mucociliaryescalator Exhaled air

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    41/51

    41

    A.J. Almeida, 2007

    TREATMENT OF BREAST CANCER LUNG METASTASIS

    non-treated

    LN-paclitaxel aero (last 15 days)

    Taxol i.v. (last 15 days)

    LN aero control

    LN-paclitaxel aero (first 15 days)

    Taxol i.v. (first 15 days)

    LN iv control 100

    100

    25

    100

    100

    75

    100

    % mice metastised pergroup

    PRELIMINARY STUDY

    Videira (2007). PhD Thesis

    A.J. Almeida, 2007

    LIPID NANOPARTICLES AS TOPICAL

    DELIVERY SYSTEMS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    42/51

    42

    A.J. Almeida, 2007

    LIPID NANOPARTICLES AS TOPICAL DELIVERY SYSTEMS

    BACKGROUND

    Topical application of LN have been used with promising results either for therapeutic orcosmetic purposes (J enninget al. 2000; Mller et al. 2002).

    SLN have shown some protective activity on skin surface, such as a UV-blockingpotential (Wissing et al. 2003).

    SLN may be formulated in creams, gels,sprays.

    SLN allow modulated drug release.

    A.J. Almeida, 2007

    MECHANISMS OF UV PROTECTION

    Background:

    Topical application of SLN have been used for therapeutic or cosmeticpurposes.

    SLN act as an efficient particulate UV blocker (scattering effect) SLN andmolecular sunscreens have synergistic effect.

    Reduced release of sunscreens from SLN when compared to emulsi ons

    Reduced side effects

    SLN may be formulated in creams, gels, sprays, allowing modul ated drugrelease.

    Is it so ?

    UV

    Particulate sunscreen

    Jenning et al. (2000); Mller et al. (2002); Wissing et al. (2003)

    Molecular sunscreen

    heath, ligh t

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    43/51

    43

    A.J. Almeida, 2007

    z Lipid composition

    gliceryl behenate(Compritol888 ATO) gliceryl palmitosterarate (Precirol ATO 5)

    z Surfactant

    Tween 80

    z Speed rate

    8 000 - 10 000 rpm

    z Model Drugs

    Octylmethoxycinamate (OMC)

    Emulsification

    Lipid

    Aq.phase

    meltingmelting

    heatingheating

    solidification

    Homogenization

    NANOPARTICLE PRODUCTION

    A.J. Almeida, 2007

    Formulation Time(months)

    PI

    D50 D90 D95

    1 147,0 174,3 206,6 0,516

    C (empty) 12 80,4 320,4 320,4 0,546

    16 102,2 201,8 201,8 0,529

    1 16,5 83,6 105,3 0,541

    C-OMC 12 33,9 41,4 41,4 0,443

    16 14,9 49,5 49,5 0,418

    1 221,6 247,3 247,3 0,541

    P (empty) 6 269,4 269,4 269,4 0,176

    16 289,1 289,1 289,1 0,614

    1 144,7 203,3 241,0 0,204

    P-OMC 6 59,3 139,8 186 0,589

    16 87,2 202,4 268 0,586

    Particle size (nm)

    NANOPARTICLE CHARACTERISATION: PHYSICAL STABILITY

    Toscano et al. (2004) Eur J Pharm Sci, 23 (Suppl. 1)

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    44/51

    44

    A.J. Almeida, 2007

    OMC RELEASE STUDIES

    Membrane: Silicone

    Receiving medium: 2% albumin in phosphate buffer (pH=7.4)

    0

    50

    100

    150

    200

    250

    300

    350

    0,0 0,5 1,0 1,5 2,0 2,5 3,0

    SQRT time (h)

    Amountreleased(g/cm

    2)

    NL PR/OMC NL CP/OMC

    Toscano et al. (2004) Eur Conf Drug Delivery Pharm Technol

    A.J. Almeida, 2007

    0

    3

    6

    9

    12

    15

    0,0 3,0 6,0 9,0 12,0

    Time (h)

    OMCamountinreceptorphase

    (ug/cm2)

    NL CP/OMC NL PR/OMC

    IN VITRO PERCUTANEOUS ABSORPTION OF OMC

    Membrane: Human skin

    Receiving medium: 2% albumin in phosphate buffer (pH=7.4)

    Toscano et al. (2004) Eur Conf Drug Delivery Pharm Technol

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    45/51

    45

    A.J. Almeida, 2007

    IN VIVO STUDIES

    16 female volunteers (24 to 54 years old; phototypes II and III 10-day application trial on the antero-external surface of both legs

    3 different areas studied corresponding:

    LN-OMC formulation

    LN blank formulation

    non-treated area (1 negative control per leg).

    Experimental challenge: controlled exposure of volunteers to a UV radiation source(Sunny HB-406 Solarium, Phillips)

    Parameter measured: skin colorimetry (erythema and melanisation indexes), TEWLand elasticity.

    Fonte50 cm de

    Radiao

    A.J. Almeida, 2007

    Erythema

    0123

    456789

    10

    0 3 5 7 10

    Time (days)

    Er

    ythema(AU)

    LN

    Neg Cont

    LN-OMC

    Neg Cont

    Toscano et al. (2004) Eur J Pharm Sci

    56

    5860

    62

    64

    66

    68

    70

    0 3 5 7 10

    Time (days)

    Mel

    anisation(AU

    LN

    Neg cont

    LN-OMC

    Neg Cont

    Melanisation

    IN VIVO RESULTS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    46/51

    46

    A.J. Almeida, 2007

    Cutanova

    Dr. Rimpler GmbH/Germany

    Nanobase

    Yamanouchi/Poland

    MARKETED PRODUCTS

    A.J. Almeida, 2007

    PRODUCTION OF LIPID MICRO- OR NANOPARTICLES

    USING SUPERCRITICAL FLUIDS

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    47/51

    47

    A.J. Almeida, 2007

    AIM

    Production of drug-lipid micro- and nanoparticles by a PGSS (particles fromgas saturated solutions) process, as an alternative method.

    MAIN ADVANTAGES

    9 Avoid the use of solvents

    9 Particles are obtained as a dry powders, instead of suspensions

    9 Mild pressure and temperature conditions

    LIPID MICROPARTICLES USING SUPERCRITICAL FLUIDS

    A.J. Almeida, 2007

    LIPID MICROPARTICLES USING SUPERCRITICAL FLUIDS

    PGSS System

    (A) CO2 supply cylinder(B) Gas compressor(C) CO2 storage cylinder(D) Mixing cell(E) Collecting chamber

    Lipid composition

    Tripalmitin

    Temperature

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    48/51

    48

    A.J. Almeida, 2007

    LIPID MICROPARTICLES USING SUPERCRITICAL FLUIDS

    0

    20

    40

    60

    80

    100

    0 6 12 18 24

    Time (hours)

    %Re

    leased

    T F L c o m m e r c i al

    160 bar

    180 bar

    0,100,46

    2,2

    10

    46120

    140

    160

    180

    0

    2

    4

    6

    8

    10

    12

    14

    Percentage

    ofparticles

    Diameter(m) Pressure

    (bar)

    Rodrigues et al (2004).J Supercrit Fluid

    A.J. Almeida, 2007

    LYSOZYME-CONTAINING LN PREPARED USING SUPERCRITICAL CO2

    Rodrigues et al (2007). submitted

    Lysozyme Biological Activity

    Lysozyme particles produced fromsolutions with an ethanol mole fractionof C =0.28 showed no significant lossof activity.

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    49/51

    49

    A.J. Almeida, 2007

    LN show suitable properties to become one of the most versatile nanoparticulatecarriers for drug and protein delivery.

    Several drug incorporation techniques are applicable, including protein adsorption.

    Inhalation may be an effective route to deliver LN, representing an alternative to theintraperitonial route for targeting colloidal carriers to the lymphatics.

    LN present lymphatic tropism, thus providing the possibility of using radiolabelled LNas a lymphoscintigraphic agent, and allowing the direct delivery of cytotoxic drugs tolung cancer in limited or extensive stage.

    The limited amount of particle retention in lungs may allow the use of LN as asustained release formulation in chronic lung therapy.

    LN show an effective control release of lipophilic drugs, whici is suitable forpercutaneous absorption, with a minimum permeation thus making LN a safe vehiclefor sunscreen agents.

    CONCLUSIONS (I)

    A.J. Almeida, 2007

    CONCLUSIONS (II)

    In vivo results do not confirm early reports, i.e. LN on their own no not improvesignificantly TEWL and elasticity (results not shown).

    Melanisation index was the only parameter that showed a trend, demonstrating thatLN present some protective capacity against UV radiation in vivo.

    SCF techniques can be successfully applied to the formulation of solid lipid micro-

    and nanoparticles with controlled-release characteristics.

    Using a modified SCF technique, it is possible to produce LN containing intact andbiologically active protein molecules.

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    50/51

  • 7/30/2019 SLN Colloidal Handout-portugal_2007

    51/51

    A.J. Almeida, 2007

    MODERN LISBON

    Thank you for your attention !