Session A3 Part 2 Multirate DSP Wireless 2011

Embed Size (px)

Citation preview

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    1/49

    Applications toCommunication Systems

    fred [email protected]

    Part 2

    June -1, 2011

    Multirate Digital Signal Processing

    filter_ten_a, filter_ten_b, filter_ten_c

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    2/49

    Critically Sampled

    Analysis/Synthesis Filter BankH (Z)0 G (Z)0 H (Z)0

    H (Z)1 G (Z)1 H (Z)1

    H (Z)2 G (Z)2 H (Z)2

    H (Z)3 G (Z)3 H (Z)3

    4-Point

      IFFT4-Point

      FFT

    Non-Critically SampledAnalysis/Synthesis Filter Bank

    H (Z)0

    H (Z)4

    G (Z)0

    G (Z)4

    H (Z)0

    H Z)4

    H (Z)1

    H (Z)5

    G (Z)1

    G (Z)5

    H (Z)1

    H (Z)5

    H (Z)2

    H (Z)6

    G (Z)2

    G (Z)6

    H (Z)2

    H (Z)6

    H (Z)3

    H (Z)7

    G (Z)3

    G (Z)7

    H (Z)3

    H (Z)7

    8-Point

      IFFT

    8-Point

      FFT

    f f 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    3/49

    0 20 40 60 80-0.2

    0

    0.2channel 0

    0 20 40 60 80-2

    0

    2channel 1

    0 20 40 60 80-0.4

    -0.2

    0

    0.2channel 2

    0 20 40 60 80-0.1

    0

    0.1

    channel 3

    0 20 40 60 80-0.1

    0

    0.1channel 4

    0 20 40 60 80-0.1

    0

    0.1channel 5

    0 20 40 60 80-0.1

    0

    0.1channel 6

    0 20 40 60 80-0.1

    0

    0.1channel 7

    Channel Time Series

    Channelizer Time Response toTone Burst

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 0

       d   B

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 1

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 2

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 3

       d   B

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 4

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 5

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 6

    Frequency

       d   B

    -1 -0.5 0 0.5 1

    -150

    -100

    -50

    0channel 7

    Channelized Spectra

    Frequency

    Channelizer Spectral Response toTone Burst

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    4/49

    0 50 100 150 200 250 300 350 400-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5Reconstructed Signal

       A   m   p   l   i   t  u   d   e

    -4 -3 -2 -1 0 1 2 3 4

    -100

    -50

    0

    Spectrum: Reconstructed Signal

    Normalized Freq uency (f/f BW

    )

       d   B

    Reconstructed Tone Burst fromAnalysis Filter Bank

    16 fsfs

    h (n)0

    h (n)2

    h (n)= h(r+ nM)r 

    h (n)30

    h (n)1

    h (n)16

    h (n)15

    h (n)31

    FDM

    32-PNT  IFFT

    .

    .

    .

    .

    .

     .

     .

     .

     .

     .

     . . .

    16 ActiveInput Ports

      InputSample Rate

      12 Mhzper Channel

    f lg= 0

    flg= 0

          f      l    g      =     1   f      l      g    

    =    1     

    Circular Buffer 

    1-to-16 Up-Sample in 32-Point IFFT 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    5/49

    Z

    Z

    Z

    Z

    Z

    -1

    -15

    -16

    -30

    -31

    H ( Z )032

    H ( Z )132

    H ( Z )1532

    H ( Z )1632

    H ( Z )30

    32

    H ( Z )3132

     . . . .

     . . . .

     . . . .

     . . . .

    1:16

    Z

    Z

    Z

    Z

    Z

    -1

    -15

    -16

    -30

    -31

    H ( Z )0

    2

    H ( Z )1

    2

    H ( Z )15

    2

    H ( Z )16

    2

    H ( Z )30

    2

    H ( Z )31

    2

     . . . .

     . . . .

     . . . .

     . . . .

    1:16

    1:16

    1:16

    1:16

    1:16

    1:16

    32-Path Polyphase Partition with

    First Step of 1-to-16 Up-Sampling

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    -1

    -15

    -1

    -1

    -1

    -14

    -15

    H ( Z )02

    H ( Z )12

    H ( Z )152

    H ( Z )162

    H ( Z )302

    H ( Z )312

     . . . .

     . . . .

     . . . .

     . . . .

    1:16

    1:16

    1:16

    1:16

    1:16

    1:16

    Z

    Z

    Z

    Z

    Z

    Z

    Z

    -1

    -15

    -1

    -1

    -1

    -14

    -15

    H ( Z )02

    H ( Z )12

    H ( Z )152

    H ( Z )162

    H ( Z )30 2

    H ( Z )312

     . . . .

     . . . .

     . . . .

     . . . .

    1:16

    1:16

    1:16

    1:16

    1:16

    1:16

    32-Path Polyphase Partition with Secondand Third Steps of 1-to-16 Up-Sampling

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    6/49

    Z

    Z

    Z

    -1

    -1

    -1

    H ( Z )02

    H ( Z )12

    H ( Z )152

    H ( Z )162

    H ( Z )302

    H ( Z )312

     . . . .

     . . . .

    H (Z )k2

    Z H (Z )-1

    (k+ 16)2

    h(k)

    h(k+ 16)

    h(k+ 32)

    h(k+ 48)

    h(k+64)

    h(k+80)

    h(k+ 96)

    h(k+112)

    h(k+128)

    h(k+ 144)

    32-Path Polyphase Partition withFinal Step of 1-to-16 Up-Sampling

    Two Versions of PathFilters in Partition

    0

    T

    T 2T 3T 4T

    T T T

    0 0 0IIIIIIIV

    fs

    32-PNT  IFFT

      .

      .

      .

      .

      .

    flg= 0

    flg= 0

          f      l    g      =     1   f      l      g    

    =    1     

    Circular Buffer 

    Phase Continuity

    Embedded 2-to-1 Down-Sampler in 32-path Polyphase Filter

    Requires Circular Buffer to Align Phase of SinusoidsIn Successive Output Blocks from IFFT

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    7/49

    Single Channel Polyphase Filters

    Down-Sampler and Up-SamplerEmbedded in Filter

    Constant Workload Single Channel Filter

    Nyquist Sample Criterion

    f sf s f s/M

    M-to-1Filter 

    H(Z)

    x(n) y(n) y(nM)

    f s

    f sf 

    s/M

    0

    0

    2BWΔf 

    2BW f  +Δ

    = + Δ2S f BW f    

    harris 

    > 2S f BW  

    Nyquist 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    8/49

    Interesting Relationship

     

    ( )

    22

    2 ; (Protect from Aliasing When Down Sampling)

     f    A dB N 

     f 

     f  BW 

     M α 

    =

    Filter Length at Input Sample Rate :

    Signal 2-Sided BW as Fraction of Output Sample Rate:

    Transition BW, ∆f as Fraction of Output Sample

    (1 ) ; (Allowable Aliasing When Down Sampling)

     

    ( ) 1 ( )

    (1 ) / 22 (1 ) / 22

    1 ( ) (Ops/Output);

    (1 ) 22 (I

     f  f 

     M 

     f A dB A dB N 

     f M M 

     N A dB N 

     M M 

    α 

    α α 

    α 

    Δ = −

    = =− −

    =−

    Rate:

    Substitute in Filter Length at Input Sample Rate :

    Dividing both sides by M

    (Ops)

    nput/Output) ( Input)

     N 

     M =

      N-Tap

    Lowpass

      Filter 

    M-to-1

    f  f  f s s sM

    x(n) y(n) y(nM)

    f /Ms-f /Ms 0

    Δf= (1-α)f /Ms 

    2BW = f /Mα s 

    ........

    Efficient Filtering WhenSample Rate is LargeCompared to Bandwidth

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    9/49

    Bad Mismatch: Sample Rate LargeCompared to Bandwidth

    200 Hz

    80 dB

    0.1 dB

    200 Hz

    20 kHz

    -6 dB/Octa ve

    365 Tap

    FIR Filter 

     20 kHz Input

    Sam p le Rate20 kHz Output

     Sample Rate

    Nyquist Rate for Filter is 200 Hz+200Hz = 400 Hz or fs/50

    Long Filters, High Sample Rate: Expensive!

    -200 -150 -100 -50 0 50 100 150 200-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    365 Tap Protype Low Pass Filter 

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2-100

    -80

    -60

    -40

    -20

    0

    Spectrum

    Frequency (kHz)

       L  o  g

       M  a  g  n

       i   t  u

       d  e   (

       d   B   )

    -0.2 -0.1 0 0.1 0.2-0.2

    -0.1

    0

    0.1

    0.2Spectrum: Zoom to P ass-Band Ripple

    Frequency (kHz)   L  o  g

       M  a  g  n

       i   t  u   d  e

       (   d   B   )

    Sample Rate: 20.0 kHz

    Pass Band: 0.0-to-0.1 kHzStop Band: 0.4-to-10 kHzStop Band Atten: 80 dB

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    10/49

    Filter to Extract Low BandwidthSecondary Signal

    Primary Signa l

    Second ary SignalLow BW

    Primary Signa l

    -10,000 10,000100 300-300 -100

    0

    Reduce Sample Rate at Input to Filter:Very Efficient Implementation!

     …  …  …

    φ0

    φ1

    φ2

    φ49

    φ48

    50-to-1

    365 Tap s

    20 kHz

    20 kHz

    400 Hz

    400 Hz

      Polyphase

    Low Pa ss Filter 

    8-taps

    8-tap

    20 kHz 400 Hz

    Coefficient

      Bank

     Select

      Path

    Weights

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    11/49

    Down Sample to Reduce Sample RateProportional to Bandwidth Reduction and

    Up Sample to Preserve Input Sample Rate.

     … … … … … …

    φ0   φ0

    φ1   φ1

    φ2   φ2

    φ49   φ49

    φ48   φ48

    50-to-1 1-to-50

    365 Tap s 365 Tap s

    20 kHz 20 kHz

    20 kHz 20 kHz

    400 Hz

    400 Hz

      Polyphase

    Low Pa ss Filte r   Polyphase

    Low Pass Filte r 

    8-taps 8-taps

    Efficient Polyphase Filter

    8-tap 8-tap

    20 kHz 20 kHz400 Hz

    Coefficient

      Bank

    Coefficient

      BankSelect Selec t

    365 TapFIR Filte r 

     20 kHz Inp ut

    Sample Rate20 kHz Output Sa m ple Ra te

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    12/49

    Two Processes in Boxes: How can you

    tell which is which from outside box?

    365-TapLowpass

      Filter 

    20kHz

    20kHz

    20kHz

    400 Hz20kHz

    8-Tap Filter 

    8-Tap Filter 

    Coefficient

      BankCoefficient

      Bank

    State Mac hineSelec tSelec t

    White Box

    White Box

    365-ops/input

    16-ops/input

    (The Wet Finger Test)

    Clean-Up Filter BetweenPolyphase Resampling Filters

    Coefficient

      BankCoefficient

      BankSelect Selec t

    20 kHz400 Hz 400 Hz

    20 kHz

    8-tap 16-tap 8-tap

    -200 200100-100

    0

    Clean-up

      Filter 

    Filter BankResponse

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    13/49

    Commercial FM Signal Structure

    X 2 X 2 Pilot

    19-kHz

    19-kHz

    76-kHz38-kHz

    LL+ R

    Composite  Stereo

    L-RR

    -

    SCA

    0 1915 23 100

    f(kHz)

    Sam ple Rate : 200

    Transition BW  4 kHz 

    Attenuation  60 dB 

    38 7653

    Pilot

    Pilot Filter 

    L+ RL-R SCA SCA

    L-R

    Stereo FM Receiver

    X 2 X 2PilotFilter 

    19-kHz 76-kHz

     38-kHz

    2L

    Composite  Stereo

    2R

    -SCA

    Low

    Pass

    Low

    Pass

    Low

    Pass

    The Difficult One

    to Implement

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    14/49

    Extracting Pilot Signal From

    Composite Stereo FM Signal

     FIR

    Filter 

    140 Tap s

    DLY

    19 kHz Pilot

    38kHz Pilot

    019

    2315 38 53f 

    pilot

    L+ R L-R L-R

    100

    =>

    Sf atten(dB) 200 60

    N = = = 136.6 140df 22 4 22

    Polyphase Pilot Extraction

    H (Z)H (Z )

    Low Pass

      Filter 

    H (Z)H (Z)

    H (Z )H (Z)

    H (Z )H (Z )

    00

    11

    22

    99

         .     .

         .     .     .

         .

         .     .

         .     .

         .     .

    x(n)p(n)

    y(nM,1) p(nM,1)

    e 1010

    2π2π

    e 1010

     j 0k 0

    2π2π

    e 1010 j 2

    2π2π

    e10

    10 j 92π 2π

      200 kHz

    Comp osite  Stere o

      (Real)

      200 kHz

    Up Sam pled

    and Translated

    38-kHz Pilot

     (comp lex)

      200 kHz

    Double Frequency

    38-kHz Pilot

      (Rea l)

     2 0 kHz

     Aliased toBaseband

      Pilot

    (Complex)

      20 kHz

     Aliased to Baseba nd

    Filtere d Pilot

     (Complex)

      20 kHz

      Frequency

    Doubled Aliased

     Baseband Pilot

      (Real)

    2

    2

    2

    2

    2 2

     j 1

    cos( )

    cos( )2

    cos( )4

    cos(18 )

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    15/49

    Prototype Filter with Multiple StopBands and Don’t-Care Bands

    -15 -10 -5 0 5 10 15-0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Impulse Response, 10-to-1 Downsample Prototyple Low Pass Filter 

    Time Samples

       A  m  p   l   i   t  u   d  e

    -100 -80 -60 -40 -20 0 20 40 60 80 100-80

    -60

    -40

    -20

    0

    Frequency (kHz)

       L  o  g  -   M  a  g

      n   i   t  u   d  e   (   d   B   )

    Batman Filter

    Input and Output Spectra from

    Nyquist Zone 1 in 10 Stage Polyphase Filter

    0 5 10 15 20 25 30 35 40 45 500

    0.2

    0.4

    0.6

    0.8

    1

    Input Spectrum: Pilot at 19 kHz

    Frequency (kHz)

       M  a  g  n   i   t  u   d  e

    Nyquist Zone Centered at 20 kHz

    Input Polyphase Filter Frequency Responsein First Nyquist Zone

    -10 -8 -6 -4 -2 0 2 4 6 8 100

    0.2

    0.4

    0.6

    0.8

    1

    1st Nyquist Zone Polyphase Output Spectrum: Pilot at -1 kHz

    Frequency (kHz)

       M  a  g  n   i   t  u   d  e

    Frequency Response of Baseband Clean-up Filter

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    16/49

    Extracted and Processed AliasedPilot Signal

    -10 -8 -6 -4 -2 0 2 4 6 8 100

    0.2

    0.4

    0.6

    0.8

    1

    Low-pass Output Spectrum: Pilot at -1 kHz

    Frequency (kHz)

       M  a  g  n   i   t  u   d  e

    -10 -8 -6 -4 -2 0 2 4 6 8 100

    0.2

    0.4

    0.6

    0.8

    1

    Doubler Output Spectrum: Pilot at -2 kHz

    Frequency (kHz)

       M  a  g  n   i   t  u   d  e

    Pilot Aliased into Nyquist Zone-2 in 10-Stage Polyphase Up Sampler

    0 5 10 15 20 25 30 35 40 45 500

    0.2

    0.4

    0.6

    0.8

    1

    2nd Polyphase Output Spectrum: Pilot at 38 kHz

    Frequency (kHz)

       M  a  g  n   i   t  u   d  e

    0 5 10 15 20 25 30 35 40 45 50

    -1

    -0.5

    0

    0.5

    1

    Time Series: Pilot and Double Frequency Pilot

    Time Samples

       A  m  p   l   i   t  u   d  e

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    17/49

    InterpolatorsAnd Interpolation

    Applications Fixed Up-Sampler Interpolators

    Fixed Down-Sample Filters

    Reduced Cost Filtering When Large Ratio ofSample Rate to Bandwidth

    Timing Recovery Re-Sampling of Time Series

    Timing Recovery Re-Sampling of Matched

    Filter Clock Domain Alignment

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    18/49

    Spectrum of Interpolator andPeriodic Spectrum of

    Zero-Packed Shaping Filter

    -30 -20 -10 0 10 20 30-80

    -60

    -40

    -20

    0

    Spectrum of Shaping Filter and 1-to-32 Interpolating Filter 

    Normalized Frequency

       G  a   i  n   (   d   B   )

    -8 -6 -4 -2 0 2 4 6 8-80

    -60

    -40

    -20

    0

    Zoom to Spectrum

    Normalized Frequency

       G  a   i  n   (   d   B   )

    Spectrum of 1-to-32 InterpolatedShaping Filter

    -30 -20 -10 0 10 20 30-80

    -60

    -40

    -20

    0

    Spectrum of Interpolated Shaping Filter 

    Normalized Frequency

       G  a   i  n   (   d   B   )

    -8 -6 -4 -2 0 2 4 6 8-80

    -60

    -40

    -20

    0

    Zoom to Spectrum

    Normalized Frequency

       G  a   i  n   (   d   B   )

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    19/49

    Polyphase Partition of M-PathResampling Filter

    H (Z )

    H (Z )

    H (Z )

    H (Z )

    0

    1

    2

    M-1

    x(n) y(m)

    N/M= 4

     . . . .

     . . . .

    Efficient Hardware Implementationof 1-to-M Polyphase Interpolator

    N/M= 4

    H (Z )r 

         .     .

         .     .

         .     .

    x(n) y(m )

    h(0+ nM)

    h(1+ nM)

    h(2+ nM)

    h(M-1+ nM)

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    20/49

    Interpolation Options

    Initial Sa m ple G rid,Unit distanc e

    Between Sam ples

    Sam e Rate Samp le Grid,

      Unit Distanc e  Between Sam ples

    Highe r Rate Sam ple Grid, Less Tha n Unit Distanc e  Between Sam ples

    Lowe r Rate Sam ple Grid,More Than Unit Distanc e  Between Sam ples

    Interpolated Sample PositionsInitial Sa mple Positions

    M-Path, 1-to-M/Q Interpolator

    H (Z )

    H (Z )

    H (Z )

    H (Z )

    0

    1

    2

    M-1

    x(n)y(m )

    N/M= 4

     . . . .

     . . . . Q:1

    Q:11:Mx(n) y(m)

    H(Z)

    Polyphase Filter 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    21/49

    5/3, Rational Ratio Re-Sampling

    3-to-1

    phs(0)

    phs(1)

    phs(2)

    phs(3)

    phs(4)

    x(n)

    y (m)= x(n+ k/5)5

    y(m)= x(n+ 3k/5)

    n n+ 1 n+ 2 n+ 3

      0 1 2 3 4  0 1 2 3 4  0 1 2 3 4  0 1 2 3 4

    x x x x xx x x xx x x x

     In Out

      n 0,3n+ 1 1,4n+ 2 2

    K(m+1)=[k(m)+3] modulo(5)

    Rational Ratio Interpolation.Example; up 8, down 3

    n+ 1

    m+ 1 m+ 3

    m+ 6

    n+ 2

    m+ 2 m+ 4

    m+ 7

    m+ 5

    m+ 8

    n+ 3

    n

    m

     Input Samp les and ava ilable

      1-to-8 Interpolated Sam ples 

    3-to-8 Interpolated Sa m ples  (up 8, down 3) 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    22/49

    Interpolation To Time Position BetweenAvailable Interpolation Points

    (Arbitrary Ratio Interpolation)

    n n+ 1

    Desired Sample

    Position n+ k/M+ Δ

    Desired Sample Value

     Availab le Sample Value

    Nearest Available Sample Position  n+ k/M

     InputSample

    Error 

    Zero Order Hold Model ofNearest (Left) Neighbor Interpolation

    n n+ 1

    Desired Sample Position n+ k/M+ Δ

    Error 

    Interpolated Sample Values

    Zero-Order-Hold

     Analog Levels

    Δ

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    23/49

    Spectrum of Up-Sampled Signal atInput and Output of Virtual DAC

    BW= 1

    BW= 1

    0

    0

    N

    N

    2N

    2N

    Output Sam ple Rate

    Output Sam ple Rate

    DAC Response

    Frequency Response of DACat First Spectral Null

    NN-0.5 N+0.5

    DAC ResponseH( f )= -Δ Δf 1N

    1 1 1 1  | ( ) | : | ( ) | : 2

    2 2 2

    ( 1) 7  2 , 8( ), 2 128

      When signal is already 4-times oversampled

     Need 32 stage up-sampler to suppress spectral artifact

     

    s

     

    to -

    b H f f H 

     N N N 

    b N Say b bits N 

    −Δ = Δ = <

    −> = > =

    48 dB

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    24/49

    Shaping Filter: Time and FrequencyResponse, Four Times Over Sampled

    -5 0 5 10 15 20 25 30 35 40 45 50-0.1

    0

    0.1

    0.2

    0.3time response of shaping filter 

    time

      a  m  p   l   i   t  u   d  e

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    -60

    -40

    -20

    0

    spectral response of shaping filter 

    frequency

       l  o  g  m  a  g

      n   i   t  u   d  e

    Time and Frequency Response of32/6.4 Left Neighbor Interpolator

    0 50 100 150 200 250

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    -10 -8 -6 -4 -2 0 2 4 6 8 10-80

    -60

    -40

    -20

    0

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    25/49

    Time and Frequency Response of 32/6.37Left Neighbor Interpolator

    0 50 100 150 200 250

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    -10 -8 -6 -4 -2 0 2 4 6 8 10-80

    -60

    -40

    -20

    0

    Prototype Interpolator Length for 8-bit data, initially Over Sampled by 2.

    0

    0

    2

    2

    -2

    -2

    -0.5

    -0.5

    0.5

    0.5

    1.5

    1.5

    -1.5

    -1.5

    -4

    -4

    4

    4

    Δf= 1

    Δf= 1

    DCDCDC DC

    To Obtain 128 Over Sample, M=64, N=(128/1)(66/22)=384N/M=6: Need 64 6-tap filters in Polyphase Interpolator

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    26/49

    Prototype Interpolator Length for 8-

    bit data, initially Over Sampled by 4.

    0 8-8

    -8

    -0.5 0.5 3.5

    3.5

    -1.5

    -3.5

    -4

    -4

    4

    4 8

    Δf= 3

    Δf= 3

    DCDC

    DCDC

    0-0.5 0.5

    To Obtain 128 Over Sample, M=32, N=(128/3)(66/22)=128N/M=4: Need 32 4-tap filters in Polyphase Interpolator

    Address Control:Modulo Accumulator

     . . .

    Mod(M) Int(--)Z-1

    d-acc

    acc(m)

    -

    k(m)

    δ(m)

    Filter x(n) y(m)

    Polyph ase

      Weights

    n n+ 1 n+ 2

      Input

    Sam ples

      Output

    Sam ples

      0 1 2 3 4 5 6 9  8 9   0 1 2 3 4 5 6 9  0 1 2........ ....

    TINTOUT

    Input Time index ”n”Polyphase inde x ”k”

    = =Fractional Offset: d-acc

    -   Out In  

    In Out  

    T f  d acc M M  

    T f  

    On Overflow,Insert New Input

    Fractional Part(For later use)

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    27/49

    Two Neighbor,Linear Slope Interpolator

    n

    n+ 1

    Desired Samp le

    Position k+ Δ

    DesiredSampleValue

     InterpolatedSamp le Value

     Left Available  InterpolationSample Position

     Left Available  InterpolatedSamp le Value

    Right Available  InterpolationSamp le Position

    Right Available  InterpolatedSample Value

      InputSample value

      InputSam ple value

      Linear Interpolator 

    n+ k/Mn+ (k+ 1)/M

    Δ

    Equivalent Interpolating Kernel

    k-1 k+ 2Δ

    TRI(k)TRI(k+ 1)

    k k+ 1

    x(k)

    x(k+ )Δ

    x(k)

    x(k+ 1)

    x(k+ 1)

    M M M M

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    28/49

    Spectrum of Up-Sampled Signal at

    Input and Output of Virtual LinearInterpolator

    BW= 1

    BW= 1

    0

    0

    N

    N

    2N

    2N

    Output Sample Rate

    Output Samp le Rate

    Triangle Spec tral

      Response

      RepeatedSpectral Zeros

    Frequency Response at FirstSpectral Null of Linear Interpolator

    NN-0.5 N+ 0.5

    Triangle

    Response

    H( f)=Δ Δf 1N

    [ ]2

    2 2 211 1 1 / 2  | ( ) | : | ( ) | : 2 : 2

    2 2 2( / 2 1) 7

      2 , 16( ), 2 128

      When signal is already 4-times ov

     1

    2

    b b H f f H 

     N N N 

    b N Say b bits N 

     N 

    ⎛ ⎞ ⎛ ⎞ ⎛ ⎞   − −Δ = Δ = < = > =

    ersampled

     Need 32 stage up-sampler to suppress spectral artifacts by -96 dB

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    29/49

    Estimate y(n+k/M) & y(n+k/M)

    With 3 Arms of Polyphase Filter

    PHS-(k-2)

    PHS-(k)

    PHS-(k-1)

    PHS-(k+ 1)

    PHS-(k+ 2)

    y(n+ k/M)

    y(n)

    - y(n+ k/M) .

    .

    Estimate y(n+k/M) & y(n+k/M)With 2 Polyphase Filters

    PolyphaseDerivativeMatched

      Filter 

    Polyphase

    Matched

      Filter 

    y(n+ k/M)

    y(n)

    y(n+ k/M) .

     .

     .

     .

     .

     .

     .

     .

    .

    k

    k

    .

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    30/49

     y(n+k/M) & y(n+k/M) With 2Efficient Polyphase Filters

    1-Stage Filter 

    1-Stage Filter 

    y(n+ k/M)

    y(n+ k/M)y(n)

     .

     PolyphaseMatched Filter Coefficients

     Polyphase  DerivativeMatched Filter 

    Coefficients

    CoefficientSelec tion

    .

    Interpolation with Polyphase Low-pass

    Filter and Polyphase Derivative Filterfor Local Slope Correction

    Mod(M) Int(--)Z-1

    d-acc

    acc(m)

    -

    k(m)

    k(m)

    δ(m)

    δ

    Filter 

    Filter 

    x(n)x(n)

    x(n)

    y(n+ k/M)y(n+ k/M+ /M) =δ

    y(n+ k/M)+ y(n+k/M)δ

    y(n+ k/M)

    h (n)k

    dh (n)k

    .

    .

    Derivative Polyphase Filter

    dh=conv(h,[1 0 -1]*M/2

    dh=dh(2:length(dh)-1);

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    31/49

    Input Shaping Filter at4-Samples per Symbol

    Spectra of 64/10.49 Interpolated Signal

    0 200 400 600 800 1000 1200

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Interpolated Shaping Filter 

    -20 -15 -10 -5 0 5 10 15 20-120

    -100

    -80

    -60

    -40

    -20

    0

    Frequency Response

    Normalized Frequency (f/f sym

    )

       L  o  g  m  a  g  n

       i   t  u

       d  e

       (   d   B

       )

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    32/49

    Signal Conditioning and Processing

    Spectral Centers 1.7 MHz SeparationChannel BW: 1.7 MHzChannels Span ≈ 30 MHz (≈ 17 Channels)

    24-Channel Channelizer: 24*1.7=40.8MHz12-to-1 Down Sample in ChannelizerOutput Sample Rate; 3.4 MHz/Channel

    160 MHz

    ADC Half Band Filter 

     Half Band Filter 

     Interpolate  Filter 

    DDSDDS

      PhaseAccumulator 

    160MHz

    81.6MHz

    40.8MHz

    40.8MHz

    163.2 MHz

    3.4MHz

    3.4MHz

     3.4MHz

    22 22

    2

    2

      24-PathPolyphase  Filter 

    24-PNT  FFT

    Interp Bank

     . . .

       1   6   C   h   a   n   n   e   l   s

       C   i   r   c  u

       l   a   r   B  u

       f   f   e   r

    12-to-1

    Wide Dynamic Range Resampler

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    33/49

    Spectra from 24-channel Channelizerat 3.4 MHz Sample Rate

    -1.5 -1 -0.5 0 0.5 1 1.5

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1. 5 - 1 - 0.5 0 0. 5 1 1.5

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1.5 -1 -0. 5 0 0.5 1 1. 5

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1.5 -1 -0.5 0 0.5 1 1.5

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1.5 -1 -0.5 0 0.5 1 1. 5-150

    -100

    -50

    0

    -1 0 1-150

    -100

    -50

    0

    -1 0 1-150

    -100

    -50

    0

    -1 0 1-150

    -100

    -50

    0

    -1.5 -1 -0. 5 0 0.5 1 1. 5

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    -1 0 1

    -150

    -100

    -50

    0

    Time Series from 24-channelChannelizer at 3.4 MHz Sample Rate

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

    0 50 100 150 200-2

    0

    2

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    34/49

    Equipment Bay: 192-Stereo FM Modulators

    Conversation with Client! How big a room will we need to house the DSP

    version of this Transceiver?

    Answer: I think it will fit on one chip.

    Response: Don’t be Absurd, You Can’t Pack aRoom into a Single Chip!

    Results: 48-Analog Devices Blackfin Processorsto Demodulate 192 MP3 Stereo Channels.

    1 Virtex V-4 for 192 Digital Stereo FMModulators and 256 Channel Channelizer @ 293kHz Bandwidth per channel. (60% of Chip)

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    35/49

    Prototype Analog Stereo FM Modulator

      dbxEncode

      d bxEncode

     50- secPre-emph

    μ

     75- secPre-emp h

    μ

     50- secPre-emph

    μ

      LPF14 kHz

      LPF14 kHz

      LPF7.5 kHz

      BPF15-50 kHz

      BPF60-90 kHz

     VCO32 kHz

     VCO80 kHz

    −100   .   .

    −40   .   .

    3.2 MHz

    3.2 MHz

    Left

    Right

    SCA

    L+ R

    L - R  IFOutput

    DSP Based Stereo FM Modulator

      db x

    Encod er 

      db xEncod er 

      LPF

    14-kHz

      LPF14-kHz

      LPF

    14-kHz

      BPF

    35-kHz

      BPF30-kHz

    DDSFM-MOD

      &

    Up-Converter 

    DDS FM-MOD  &

    Up-Converter 

     50-usec

    Pre-emph

     50-usecPre-emph

     75-usec

    Pre-emph

     48-to-293

      Arbitrary

    Re-Sam ple

     48-to-293

      Arb itraryRe-Sam ple

     48-to-293

      Arb itrary

    Re-Sam ple

    Gain

    Gain

    Gain

    Gain

    IIR

    IIR

    K ACC

    K ACC

    IIR IIR

    IIR

    IIRIIR

    IIRSCA

    Left

    Right

    (L+ R)

    (L-R)

    32 kHz

    32 kHz

    CORDIC

    CORDIC

    Satellite Cloc k Dom ain Transceiver Cloc k Doma in

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    36/49

    256 Channel Channelizer for 50-MHz

    Digital IF Sampled at 225.024 MHz

    Radix-2 Butterfly of two 128-Point FFT’s

       2   5   6   C   h  a  n  n  e

       l  s   1  :   2

       U  p

    _   S  a  m  p

       l  e  r

       2   5   6   C   h  a  n  n  e

       l  s   A   d   d  e  r

      OddSamp les

      EvenSamples

       1   2   8   P  o   i  n   t   F   F   T

       1   2   8   P  o   i  n   t   F   F   T

       1   2   8   P  a   t   h   P  o

       l  y  p

       h  a  s  e

       F   i   l   t  e  r

     

       1   1  -   T  a  p  s

       P  e  r

       P  a

       t   h

       1   2   8

       P  a   t   h   P  o

       l  y  p

       h  a  s  e

       F   i   l   t  e  r

     

       1   1  -   T  a  p  s

       P  e  r

       P  a

       t   h

       H  a   l   f

       B  a  n

       d   P   h  a  s  e

       S   h   i   f   t

      1-to-3Up-Samp le

    DDS

    Quantize DAC

    50 MHz

    225.024 Mhz

    225.024 Mhz

    75.008 Mhz

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    37/49

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    38/49

    New Directionsin

    Channelized Receivers

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    39/49

    M-Channel Channelizer

    Resampled M-Path Narrowband Filter

    with Rotators Replaced by M-Point IFFT

    Armstrong to Tuned RF with AliasDown Conversion to Polyphase Receiver

      DigitalBand-Pass

    M-to-1

    H(Ze )-jθ k

      DigitalLow-Pass

    M-to-1

     H(Z)

    e-j θkn

    Rather than selecting center frequency at input and reducesample rate at output, we reverse the order, reduce samplerate at input and select center frequency at output. Weperform arithmetic operations at low output raterather than at high input rate!

    M-Path Digital

    Polyphase

    M-to-1

    H(Z)r 

    e-j 2π

    Mrk

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    40/49

    Channelizer Parameters

    Center frequencies, hence channel spacing, andthe number of paths in filter partitiondefined by length M of IFFT.

    Channel bandwidth and spectral characteristics,in-band ripple, out-of band attenuation,and transition BW defined by prototypelow-pass filter in polyphase partition.

    Channelizer output sample rate determined byinput commutator span of P inputs per M-point IFFT output.

    Three Parameters are independent and adjustable.

    Two Channelizer BW Options

    Crossover 

      BW

    Channel BWTransition BW

    Transition BW

    Channel Spa c ing

    Channel Spa c ing

    Channelizer for High Quality Spectrum Analyzer 

    Channelizer for High Quality FDM Receiver 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    41/49

    Overlapped Channel BW and

    Output Sample Rate Options

    The Winner!

    Fast Channelizer:

    Time Series and Spectrum From Same Channelizer

    Fast Channelizer:

    Spectrum and Time Series from same Channelizer

    Variable Bandwidth Filter:

    Fast Convolution, Efficient, Low Workload

    Multiple Bandwidth Channelizer

    Arbitrary Channel Spacing Channelizer

    Interesting 

    Variations 

    of  

    Channelizer

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    42/49

    Block Diagram of Parallel Processor SpectralSniffer Steered Digital Drop Receiver

    720

    Path

    8192Path

     16-Sets:

    Channel

      Pha se Rotator 

     Vectors

    8192

    Point

     IFFT

      Poly-

    Pha se

      Filter 

    32,768

      Point

    4-FoldFolded

    Window

    720 Cha nnel Channelizer 

    8192 Bin Spec trum Analyzer 

    Ensemble

     Average| |

    Log 10

    2.

    Spectral

     Mask &

    Channel

     Selec t

      Channel

    Processing

      andMultiplexing

    f S=90 MHz

    f BW=11 kHz

    f S =11 kHz

    f BW =125 kHz

    f S =500 

    kHz 

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    43/49

    16 Digital Drop Receivers, Brute Force

    16-Copies of 

    Same Filter

    Low Pass

    Low Pass

    Low Pass

    DDS

    DDS

    DDS

    fs=9 0 MHz

    fs= 500 kHz

    f = 12 5 kHzBW

    f = 125 kHzBW

    f = 12 5 kHzBW

    fs= 500 kHz

    fs= 500 kHz

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    180:1

    180:1

    180:1

    fc

    fc

    fc

    1440 Tap

    1440 Tap

    1440 Tap

     . . . . . . . . . .

     . . . . . . . . . .

    1

    2

    16

    Resample in Single Polyphase Filter, useRotators to Extract 16 Specific Aliases

    0

    179

    180

    359

    360

    539

    540

    719

    Sample  Data

     Buffer 

      720-path Polypha se

    Coefficients

    Rotators

    Rotators

    Rotators

    Rotators

      720Complex

    720

    2

    720

    2 720

    2

    2

    720

     . . . . . .

    1

    2

    3

    16

    fs= 90 MHz

    180-to-1

       1   4   4   0   T   a   p   s 16-Sets of 

    Complex Rotators

    720 Mult & Addper Output

    1 PolyphaseFilter

    Down

    Samples

    And Services

    all Channels

    46,080 Multiplies

    At 500 kHz Rate

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    44/49

    Replace 16-Sets of Rotators withSingle 720 Point IFFT

    0

    179

    180

    359

    360

    539

    540

    719

    Sample  Data Buffe r 

      720-path PolyphaseCoe ffic ients

    720PointIFFT

    720

    2

    720

    2 720

    2

    2720

     . . . . . .

    1

    2

    3

    720

    fs= 90 MHz

    180-to-1

       1   4   4   0   T  a  p  s

    A 720 point IFFT,

    Prime Factors: 5,8,9

    Implemented with

    Winograd Transform

    Workload is

    2,400 Multiplies.

    5.2% of workload to

    compute 16 Outputs

    Three Options for Digital Drop Receiver

    720

    Path720

    Point

     IFFT  Poly-

    Phase

      Filter 

    720 Channel Channelizer 

    720Path

     16-Sets:Channel  Phase Rota tor  Vec tors

      Poly-Phase  Filte r 

    16 Cha nnel Channe lizer 

    Low Pass

    DDS

    2 22

    fc

    1440 Tap

    16 Cha nnel Channelizer 

    16 Sets

    5,300 Multiplies at

    500 kHz Rate

    49,000 Multiplies at

    500 kHz Rate

    58,000 Multiplies at

    500 kHz Rate

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    45/49

    Spectrum Analyzer:Polyphase Partition of Overlapped Window

    H ( Z )0

    H ( Z )1 

    H ( Z )2

    H ( Z )M-2

     

    H ( Z )M-1

     . . . .

     . . . .

    x(n)

    y(nM,0)

    y(nM,k)

    y(nM,1)

    y(nM,2)

    y(nM,M-1)

    y(nM,M-2)

    M-Point

      IFFT

    8,192 Point IFFT

    160,000 Multiplies

    Per Transform

    At 11-KHz Rate

    32,768 Point Window65,000 MultipliesPer Transform At 11-KHz Rate

    Window and IFFT193,000 MultipliesPer Transform At 11-KHz Rate

    We have accounted for the Two Major Blocks:Spectrum Analyzer and Channelizer!

    720

    Path

    8192

    Path

     16-Sets:

    Channel

      Pha se Rotator 

     Vec tors

    8192

    Point

     IFFT

      Poly-

    Pha se

      Filter 

    32,768

      Point

    4-FoldFolded

    Window

    720 Channel Channelizer 

    8192 Bin Spec trum Analyzer 

    Ensemble

     Average| |

    Log 10

    2.

    Spectral

     Mask &

    Channel Selec t

      Channel

    Processing

      andMultiplexing

    f S=90 MHz

    f BW=11 kHz

    f S =11 kHz

    f BW =125 kHz

    f S =500 kHz

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    46/49

    Block Diagram of Cascade Channelizer andSpectrum Analyzers

    720

    Path720

    Point

     IFFT  Poly-

    Phase

      Filter 

    720 Channel Channelizer 

      180 45-Bin

    Spectrum Analyzers

    Ensemble

     Average| |

    Log 10

    2.

    Spectral

     Mask &

    Channel Selec t

      Channel

    Processing

      andMultiplexing

    Window

    Window

    Window

    Window

    IFFT

    IFFT

    IFFT

    IFFT

    M-to-2 Down-SampledM-path Polyphase Channelizer0 0

    1 1

    2 2

    3

    M/2-1

    M-1

    M/2

    M/2+ 1

    M-2M-1

    M MM

     . . . .

     . . . . . . . .

     … .

        M  -   P

       a   t   h   P   o   l  y   p   h   a   s   e   F   i   l   t   e   r

       M  -   P

       o   i   n   t   I   F   F   T

    FDM

    TDM

       M  -   P

       a   t   h   I   n   p  u

       t   D   a   t   a   B  u

       f   f   e   r

     

       C   i   r   c  u

       l   a   r   O  u

       t   p  u

       t   B  u

       f   f   e   r

    State Eng ine

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    47/49

    Spectrum and Zoom Detail of Input Test Signal

    Course Spectrum and Zoom Detail: Power Output from180 Channelizer Filters

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    48/49

    Time Series from 60 Channels of 180 Path InputChannelizer Simulation

    Spectrum from 60 Channels of 180 Path Input Channelizer Simulation

  • 8/20/2019 Session A3 Part 2 Multirate DSP Wireless 2011

    49/49

    Power Spectra from Selected Channels

    Closing Comments(on this Topic)

    Full Channelizers are SurprisinglyEfficient and Inexpensive

    Don’t Waste Bandwidth Reduction andSample Rate Reduction Offered byChannelizer

    Perform Spectrum Analysis at Output of

    Channelizer Rather than at Input Noise Figure Improvement due to

    Spectrum Analysis of Decoupled Channels