27
Review Review : tecniche di : tecniche di rivelazione di attività rivelazione di attività elettrica neuronale elettrica neuronale Jacopo Lotti Jacopo Lotti Laboratorio Europeo di Spettroscopia Non-lineare Università di Firenze NJC, Febbraio 2009 Neuroscience Neuroscience Journal Club Journal Club

Review : tecniche di rivelazione di attività elettrica neuronale

  • Upload
    arissa

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

NJC, Febbraio 2009. Neuroscience Journal Club. Review : tecniche di rivelazione di attività elettrica neuronale. Jacopo Lotti. Laboratorio Europeo di Spettroscopia Non-lineare Università di Firenze. NJC, Febbraio 2009. Neuroscience Journal Club. Neurone e Impulso. corpo cellulare - PowerPoint PPT Presentation

Citation preview

Page 1: Review : tecniche di rivelazione di attività elettrica neuronale

ReviewReview: tecniche di rivelazione di attività : tecniche di rivelazione di attività elettrica neuronaleelettrica neuronale

Jacopo LottiJacopo Lotti

Laboratorio Europeo di Spettroscopia Non-lineareUniversità di Firenze

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Page 2: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

corpo cellulare(soma o pirenoforo)

assonesinapsidendriti

INPUT

OUTPUTImpulso elettrico

Neurone e Impulso

Page 3: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

L'attività elettrica spontanea dei neuroni nel SNC regola molti

processi fondamentali di sviluppo del sistema nervoso, tra cui:

migrazione neuronale (Komuro & Rakic, 1992, 1998), escrescenza degli assoni (Gu et al.. 1994; Catalano & Shatz, 1998), selezione del fenotipo del trasmettitore (Gu et al., 1994), modellamento dendritico (Wong & Ghosh, 2002), attivazione dei recettori del trasmettitore (Liao et al., 2001), protrusione sinaptica (Shatz & Stryker, 1988; O'Leary et al., 1994), espressione di, liberazione di, e ricettività alle neurotrofine (Blochl & Thoenen, 1995;

Meyer-Franke et al., 1998; Shieh & Ghosh, 1999), apoptosi (morte cellulare programmata) (Svoboda ed altri. 2001), sviluppo di tipologie di canale ionico maturi (Desarmenien & Spitzer, 1991; Linsdell &

Moody, 1994, 1995; Dallman et al., 1998; Grosse et al., 2000).

Letteratura: alcune funzioni note

Page 4: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Comunicazione e Codificazione

Sinapsi: aree circoscritte deputate alla trasmissione unidirezionale dell’informazione nervosa

Informazione: codificata in termini di transienti di attività elettrica chiamati Potenziali d’Azione (inglese “spikes”).Meccanismo di azione: ON / OFF

Neuroni: comunicano tra loro con “linguaggio” elettro-chimico tramite le sinapsi

Page 5: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Collocazione spaziale: area cerebrale interessata

Dominio temporale: frequenza di firing

Stimolo: Dove e Quando

tempo

Occhio: retina e nervo ottico

colore rosso

Quali e quanti neuroni? Sincronie tra neuroni? Quali e quanti neuroni? Sincronie tra neuroni? Pathway dello stimolo? Ripetizione dello stesso pathway? Pathway dello stimolo? Ripetizione dello stesso pathway?

Page 6: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Stato dell’arte

Microelettrodi

• Patch-clamp • Micro electrode array (MEA)• Elettroencefalografia (EEG)• EEG intracranica (iEEG)

Ottica

• Lineare: - Singolo-fotone• Non-lineare: - Due-fotoni - Generazione Seconda Armonica (SHG)

Elettromagnetica (?)

• Magnetoencefalografia (MEG)

Page 7: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

MICROELETTRODI

Page 8: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Patch-clampPermette di studiare le correnti ioniche cellulari trans-membranarie, cioè le variazioni di conduttanza della membrana cellulare potenziali d’azione.

Tecnica: isolare elettricamente un’area piccolissima (patch) di membrana, e registrare le correnti ioniche che fluiscono attraverso i canali ionici presenti.

Il potenziale in uscita è proporzionale alla corrente applicata all’ingresso invertente (-), cioè alla corrente che passa nel patch di membrana isolato dalla bocca dell’elettrodo.

Pipetta di vetro con microelettrodo all’interno

Page 9: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Patch-clamp

Cell-attached: registrazione delle correnti di pochi o singoli canali.

Whole-cell: registrarzione delle correnti ioniche che attraversano tutta la membrana

CONFIGURAZIONI:

Grafico di potenziali di membrana indotti tramite patch-clamp in configurazione whole-cell (voltage-clamp)

Ogni linea colorata corrisponde al potenziale di membrana raggiunto da una cellula del Purkinje con un “holding potential” di –70 mV in seguito all’induzione di transienti elettrici ad amperaggio crescente. In alto a sinistra, tabella con i rispettivi valori di elettricità indotta ad ogni ripetizione.

Page 10: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Patch-clamp

Applicazioni

• Registrazioni molto accurate in singola cellula (extra- e intracellulari)

• Difficilmente estendibile a:

- più di due cellule per volta

- cellule molto vicine

- diverse aree della stessa cellula contemporaneamente

• Ottimo per esperimenti in vitro

• Ottimo, ma invasivo, in vivo

Page 11: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Micro-electrode array (MEA)

Particolare centrale della retina: vi confluiscono 60 microelettrodi disposti ordinatamente in un’area di 800 m2; la distanza tra due elettrodi adiacenti è di 100m. (www.ayanda-biosys.com/mea_biochips.html)

MEA chip commerciale (Ayanda Biosystems SA): camera di registrazione (circolare) circondata da 60 microelettrodi che confluiscono nell’area centale della camera di registrazione (retina).

Page 12: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Micro-electrode array (MEA)

Registrazione MEA: profilo laminare ippocampo area CA1. A) Fettina di ippocampo spessa 350 μm posizionata su 800 × 800 MEA. Elettrodo rosso: stimolazione fibre collaterali.Elettrodi gialli: elettrodi allineati in parallelo ai dendriti apicali di neuroni piramidali in area CA1. Registrazione risposta sinaptica in vari strati. Linea verde: strato corpi cellulari.Distanza tra gli elettrodi: 100 μm.

B) Grafico attività eccitatoria registrata dagli elettrodi gialli (da 1 a 5) in risposta ad un transiente elettrico applicato all’elettrodo di stimolazione.

Kopanitsa et al., BMC Neuroscience 2006, 7: 61

Page 13: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Micro-electrode array (MEA)

Applicazioni • Registrare attività di campo

• Esperimenti in vitro o ex vivo (fette acute di tessuto)

• Difficilmente estendibile in vivo

• Impossibile registrare attività con risoluzione di singola cellula

100m

Singolo corpo cell8 - 20m

Page 14: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Elettroencefalografia (EEG)

Registra attività ritmica e transienti elettrici encefalici

Attività elettrica: corrente post-sinaptica (la corrente extracellulare genera il voltaggio) registrata tramite elettrodi posizionati sullo scalpo. Rivela la somma dell’attività sincrona di migliaia di neuroni aventi simile orientamento spaziale, perpendicolare rispetto allo scalpo

Attività ritmica: è divisa in bande di frequenza (onde alfa, beta, gamma, delta e teta).

Limiti:- risoluzione temporale dell’ordine del millisecondo- scarsa risoluzione spaziale - sensibilità selettiva: > strati superficiali della corteccia, sulle creste (radiali allo scalpo) < dendriti in profondità o producenti corrente tangenziale allo scalpo - oscuramento sorgente intracranica: meningi, liquor cerebrospinale

Benefici:- non invasiva- non necessita collaborazione del soggetto esaminato

Applicazioni

Page 15: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

EEG intracranica (iEEG)

Si inseriscono elettrodi nel cranio, nei pressi della superficie encefalica, sotto la superficie della dura. Ciò avviene in seguito ad una craniotomia. Questa tecnica prende varie denominazioni: EEG intracranica (iEEG), elettrocorticografia (ECoG) e EEG subdurale (sdEEG).

Gli elettrodi possono anche essere inseriti in strutture encefaliche profonde (amigdala, ippocampo etc), aree non facilmente accessibili tramite EEG convenzionale.

Il segnale elettrocorticale è processato nello stesso modo dell’EEG, tramite una coppia di cavetti

(A) MRI strutturale. Posizione elettrodi 8x8 cm.In rosso: elettrodo 55.

(B) ECoG: risposta dell’elettrodo 55 (tempo-frequenza) Rosso: alta potenzaBlu: bassa potenza

Page 16: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

OTTICA

Page 17: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Coloranti voltaggio-sensibili (VSD)

• Risoluzione temporale: fino a ~ 0,1 ms • Risoluzione spaziale: fino ad 1 m ; dipende dal tipo di microscopia ottica combinata • Tossicità: da moderata ad elevata• Tempo di vita: da 10 min ad alcune ore• Applicazioni: in vivo ed in vitro, ma non sull’uomo• Vantaggi principali: indicano “dove” e “quando”; indagine non invasiva

Le molecole di VSD si intercalano perpendicolarmente alla membrana plasmatica. Durante un potenziale d’azione, tali molecole si dispongono parallelamente al campo elettrico indotto.

intensità segnale emesso intensità transiente elettrico

(Peter Baker, Dept. of Biology, Arizona State University).

Page 18: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Eccitazione elettronica (spettro del visibile):

• Lineare = interazione 1 fotone ad alta energia + 1 elettrone

• Non-lineare = interazione simultanea 2 fotoni a bassa energia + 1 elettrone alta probabilità spazio – temporale di interazione

LineareLineare Non-lineareNon-lineare

Microscopia Lineare e Non-lineare

Fluorescenza

Non-lineare dipende in maniera non-lineare dalla densità fotonica:

L- eccitazione del mezzo nei coni superiore ed inferiore rispetto al fuocoN- confinamento spaziale del volume di eccitazione nella regione focale

L- elevato scattering (diffusione luminosa nel mezzo)N- scattering estremamente ridotto

Comunemente l’assorbimento non-lineare di sonde fluorescenti avviene nello spettro dell’infrarosso ( 700 - 1000 nm):

N- maggiore capacità di penetrazione nel tessuto e minore foto-danneggiamento tissutale (rispetto ad L)

Microscopia Non-lineare = Risoluzione Micrometrica in Profondità nei Tessuti

pianofocale

Page 19: Review : tecniche di rivelazione di attività elettrica neuronale

IN VIVO: IMPOSSIBILE: quasi totalità del segnale è direzionale in “forward scattering”

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal ClubMicroscopia Lineare e Non-lineare

IMAGING

IN VITRO: • molti neuroni simultaneamente; • assenza di vincoli spaziali; • buona risoluzione della singola cellula in vitro o in sezioni estremamente superficiali di tessuto

IN VIVO: diffusione della luce in profondità in tessuti intatti inomogenei (es.: in vivo ed ex vivo) degradazione irreversibile della risoluzione spaziale

LINEARE NON-LINEARE

IN VITRO e EX VIVO: • molti neuroni simultaneamente; • assenza di vincoli spaziali; • ottima risoluzione delle membrana della singola cellula

IN VIVO: NO diffusione di luce in profondità in tessuti intatti inomogenei (es.: in vivo ed ex vivo) ottima risoluzione spaziale (micrometrica)

2-PE2-PE(Fluorescenza ad

Eccitazione a due-fotoni)

INCOERENTEINCOERENTE

SHGSHG(Generazione di

Seconda Armonica)

COERENTECOERENTE

IN VITRO : • molti neuroni simultaneamente; • assenza di vincoli spaziali; • ottima risoluzione della singola cellula

Page 20: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Generazione di Seconda Armonica (SHG)

NON-LINEARE: Interazione simultanea 2 fotoni a bassa energia + 1 elettrone

NO Fluorescenza: Interazione simultanea (NO assorbimento / emissione): “trasferimento” di energia totale ed immediato

2-PE:2-PE: IncoerenteIncoerente Molecole orientate casualmenteMolecole orientate casualmente

e allineate: Pe allineate: Psegnale segnale N N

SHG:SHG: CoerenteCoerente Molecole orientate casualmente PMolecole orientate casualmente Psegnale segnale N N

Molecole allineate: PMolecole allineate: Psegnalesegnale N N 22

IMAGING

Neuroni di Aplysia in coltura. (Sacconi et al., 2006)

Page 21: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Registrazione SHG di Potenziali d’Azione

Misura dell’attività elettrica lungo un neurite di Misura dell’attività elettrica lungo un neurite di AplysiaAplysia mediante registrazione SHG da varie mediante registrazione SHG da varie posizioni dello stesso neurone posizioni dello stesso neurone (Sacconi et al., 2006)(Sacconi et al., 2006)

(Sacconi et al., 2006)

(Dombeck et al., 2005)

(a)(a) Sezione sagittale di cervelletto, Sezione sagittale di cervelletto, profondità 90profondità 90mm

(b)(b) Attività elettrica simultanea di 5 Attività elettrica simultanea di 5 cellule del Purkinjecellule del Purkinje

(c)(c) Sovrapposizione tracce (b): Sovrapposizione tracce (b): studio sincronie studio sincronie

(Sacconi et al., 2008)(Sacconi et al., 2008)(Sacconi et al., 2008)

RASH Microscopy :RASH Microscopy :

Page 22: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

ELETTROMAGNETICA (?)

Page 23: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Magnetoencefalografia (MEG)

• Non invasiva: non richiede né iniezioni di isotopi né esposizioni a raggi-X• Misura campi magnetici generati dall’attività neuronale: misura diretta delle funzioni cerebrali• Complementare ad imaging anatomico (es. risonanza magnetica)• Risoluzione temporale: 1 ms• Risoluzione spaziale: 1mm

Attività neuronale: campi magnetici sono situati ovunque ci sia un passaggio di corrente ELETTRICA, sia in un filo sia in una cellula nervosa…

Si misura l’attività di campo e non della singola cellula

Page 24: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Magnetoencefalografia (MEG)

• Il campo magnetico passa inalterato attravarso il tessuto cerebrale e le ossa del cranio: può essere registrato fuori dalla testa

• Il campo magnetico è estremamente piccolo: viene rivelato da sofisticati sensori basati sulla superconduttività (SQUID)

Page 25: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Analizzando la distribuzione spaziale del campo magnetico, usando come modello un singolo dipolo, è possibile stimare la localizzazione intracranica della sorgente generatrice e sovrapporla ad un Imaging in Risomanza Magnetica (MRI)

Magnetoencefalografia (MEG)

Page 26: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Conclusioni

• In generale, il numero delle unità funzionali che formano una rete neuronale (il numero di cellule

interrogate) è inversamente proporzionale alla specificità del segnale raccolto dalle singole unità funzionali:

Patch-clamp e 1-PE (in vitro): una sola cellula (o al massimo due nel patch-clamp) attività altamente

caratterizzata

MEA, EEG e MEG: molte cellule visione di un’attività media di gruppo

• Microscopio RASH (ex vivo), o un RA 2-PE (anche in vivo!) è possibile superare tale limite studiando

l’attività elettrica di gruppi di neuroni mantenendo l’acquisizione di dati al livello delle singole cellule

Page 27: Review : tecniche di rivelazione di attività elettrica neuronale

NJC, Febbraio 2009

NeuroscienceNeuroscience Journal Club Journal Club

Grazie dell’attenzione