Click here to load reader
View
254
Download
9
Embed Size (px)
Resistive RAM (Resistive RAM (ReRAMReRAM) Technology ) Technology for High Density Memory Applicationsfor High Density Memory Applicationsfor High Density Memory Applicationsfor High Density Memory Applications
Sunjung KimSunjung [email protected]@samsung.com
S i d t R&D C tS i d t R&D C tSemiconductor R&D Center Semiconductor R&D Center SAMSUNG ElectronicsSAMSUNG Electronics
4th Workshop on Innovative Memory Technologies
Contents
Introduction NAND Scaling Technologies & Barriers
Samsung Vertical ReRAM (VRRAM) VRRAM vs. 3D cross-point
ALD/CVD ReRAM Properties
VRRAM Integration & Challenges
Selector-less Cell for VRRAM
Review on Self-Rectifying Cell (SRC) TechnologiesReview on Self Rectifying Cell (SRC) Technologies
Conclusions
2 /33
Scaling Technology of NAND Flash
Lith Sh i k A F i D bl PT Q d l PT Litho. Shrink : ArF-imm. Double-PT Quadruple-PT # of cells increase : 64 128 ? Vertical 3-D Stack Multi-Bit : 2 3 4 bit ? (data processing + ECC )
QPT/DPT
0.1
]
CG
PlanarFGMultibit
/DPT
64cellNAND1
10Rul
e [n
m]
FG
Air
PhysicalDR100Des
ign
STI
AirGap
3DNVMera2DNANDera
10001994 2004 2014 2024
Y2xnm NAND YearSource : 2010 IEDM, page 98 & page 103
2xnm NAND
3 /33
Scaling Barriers of NAND Flash
Scaling Barriers seem difficult to be overcome from 10 nodes.WL-WL leakage : High PGM_V, Tun_Oxide (Etun.OX. ~ EWL) # of electron decrease : Cstorage (High-K) Bigger cell coupling : Thin storage, ECC
3D NVM[Parasiticcapacitance
coupling ofFG]
J.D.Lee,IEEEEDL,pp.264266,2002
3DNVM
4 /33
Scaling Breakthrough with 3D Structures
Planar > VNAND for sub 20nm > VRRAM for sub 10nm scaling
TCAT (VNAND)
Planar > VNAND for sub-20nm > VRRAM for sub-10nm scaling
VRRAM (Vertical ReRAM)
ReRAM Cell
J H Jang Samsung 2009 VLSI Tech p 192 I G Baek Samsung 2011 IEDM p 737J.H.Jang,Samsung,2009VLSITech.,p.192. I.G.Baek, Samsung,2011IEDM,p.737.
5 /33
Contents
Introduction NAND Scaling Challenges
Samsung Vertical ReRAM (VRRAM) VRRAM vs. 3D cross-point
ALD/CVD ReRAM Properties
VRRAM Integration & Challenges
Selector-less Cell for VRRAM
Review on Self-Rectifying Cell (SRC) TechnologiesReview on Self Rectifying Cell (SRC) Technologies
Conclusions
6 /33
3D ReRAM Technology
7
Traditional 3D x-point array vs. innovative VRRAM structure
/33
C t # f C iti l k
Fabrication Cost of 3D X-point ReRAM
Cost ~ # of Critical masks The # of stacks is limited by the
affordable # of masks Cost effective # of stacks
< 8 stacks (4 stacks with DPT)
Cost ~ Lithography tools EUV must be used to reach
> 512Gb even with 2bit MLC Only 2 more generations may be
covered with 3D X-point ReRAM
Chip area x Cell efficiency 100mm2
3D X-point is only a temporary solution
8
ChipareaxCellefficiency=100mm2,2bitMLC,4F2 unitcellassumed
I.G.Baek, Samsung,2011IEDM,p.737.
/33
Scalability of VRRAM
Compared to 3D X-point, the # of critical masks relatively independent of the # of stacks.
Compared to VNAND, ~ smaller cell area and ~ shorter stack height
V-RRAMV-NANDPoly Switching material
~ shorter stack height.
WLWL e
ee
eee
Short ch. effect
Vertical coupling
Poly channel
CTF stackElectrode
Switching material(direct tunneling limited > 5 nm)
WL leakage
WLWL
Vertical coupling
Charge spreading
g
9
J.D.Choi, Samsung,2011VLSI,p.178.
/33
Process Requirements of VRRAM
Cell material deposition with high step coverage
High A/R dry etching High A/R dry etching
Selective wet etching, treatment
Good diffusion barrier etch stopper materials Good diffusion barrier, etch stopper materials
Low heat budget
3D inspection methodology 3D inspection methodology
10/33
Contents
Introduction NAND Scaling Challenges
Samsung Vertical ReRAM (VRRAM) VRRAM vs. 3D cross-point
ALD/CVD ReRAM Properties
VRRAM Integration & Challenges
Selector-less Cell for VRRAM
Review on Self-Rectifying Cell (SRC) TechnologiesReview on Self Rectifying Cell (SRC) Technologies
Conclusions
11/33
TMO : PVD Ta / ALD Ta2O5 ( ~ Ta2O5 x )
Reference Planar ReRAM
TMO : PVD Ta / ALD Ta2O5 ( Ta2O5-x ) Electrodes : PVD TiN (TE), CVD TiN (BEC) I_sw < 100uA, V_sw < 2.5V (pulse)
10
10-5R ead @ 0.2 V
10-3SET V G :2 V
t_sw ~ 10ns Endurance > 1E6
10-7
10-6
10-5
ent (
A)
@
10-610-510-4
ent (
A)
SET V G : 2 VRESET V G :3 V
10-9
10-8
10
Cur
re
SET: 10ns/2.5V
RESET: 10ns/-2.5V10-910-810-7
Cur
re
SetReset
100 101 102 103 104 105 106 10710
Cycles (N)-2 -1 0 1 210
Drain Voltage (V)
1 order of S/W window with >1E6 endurance
12
I.G.Baek, Samsung,2011IEDM.,p.737.
/33
PVD-free Planar ReRAM
TMO : ALD Ta2O5 TMO : ALD Ta2O5 Electrodes : CVD TiN (TE, BEC) No memory switching : leaky
Cl f CVD TiN TE h TiN/T O i i i
TOF-SIMS depth profiles of
Cl from CVD TiN TE enhances TiN/Ta2O5 intermixing TaN, TaO generation at the interface
10-510-410-3
(A)
p pPVD TiN/ALD Ta2O5, CVD TiN/ALD Ta2O5
10-810-710-6
Cur
rent
CV D TiN / A LD Ta2O 5
-3 -2 -1 0 1 2 310-9
Voltage (V)
No S/W window poor CVD TiN interface quality
13
No S/W window, poor CVD TiN interface qualityI.G.Baek, Samsung,2011IEDM.,p.737.
/33
ALD based diffusion barrier with optimum thickness
S/W Properties with a Diffusion Barrier
10-410-3
ALD based diffusion barrier with optimum thickness
10-710-610-5
rren
t (A
)
10-910-810
Cur
CV D TiN
Barrier + CV D TiN TaO x
Barrier layer
CV D TiN
-2 -1 0 1 210-10
Voltage (V)
CV D TiN TaO x
Reference S/W properties are reproduced with only CVD and ALD processes
14
I.G.Baek, Samsung,2011IEDM.,p.737.
/33
10-5
Reliabilities with a Diffusion Barrier
103
105
ail (
hr) 85oC10 years
180oC10-6
10
(A)
R ead @ 0.2 V
101
10
Ti
me
to fa
PV D (Ref.)
Barrier + CV D TiN
250oC
200oC
10-7
Cur
rent
SET: 10ns/2.5VRESET 10 / 2 5V
Barrier + CV D TiN
2.0 2.2 2.4 2.6 2.8 3.010-1
1000/T (1000/K)
T
CV D TiN
100 101 102 103 104 105 106 10710-8
Cycles (N)
RESET: 10ns/-2.5V CV D TiN
Endurance : > 1E6 Retention : ~ 10yrs @85C
No critical reliability degradation was observed with CVD TiN + ALD barrier
15
I.G.Baek, Samsung,2011IEDM.,p.737.
/33
Contents
Introduction NAND Scaling Challenges
Samsung Vertical ReRAM (VRRAM) VRRAM vs. 3D cross-point
ALD/CVD ReRAM Properties
VRRAM Integration & Challenges
Selector-less Cell for VRRAM
Review on Self-Rectifying Cell (SRC) TechnologiesReview on Self Rectifying Cell (SRC) Technologies
Conclusions
16/33
V ti l NAND i l d
Process Integration of VRRAM (1/2)
Vertical NAND processes are mainly used except for the cell stack, vertical electrode and selection Tr.
17
I.G.Baek, Samsung,2011IEDM.,p.737.
/33
Process Integration of VRRAM (2/2)
VNAND (TCAT/BiCS) VRRAMStorage layer ONO TMO/Barrier
Vertical Channel Poly-Si TiN (VE)Horizontal Line W / poly Si (W/L) W (HE)
Selection Tr High V, Low I Low V, High IProcess Temp High (>700C) Low (700C) Low (
TMO : ALD Barrier / ALD Ta O
S/W Properties of VRRAM
TMO : ALD Barrier / ALD Ta2O5 Electrodes : CVD TiN (VE), CVD W/TiN (HE) I_sw < 80uA, V_sw < 4V
10-3
t_sw < 1us (due to high parasitic RC) Endurance > 1e2
10-6
10-5
nt (A
)
Read @ 0.2 V
6
10-510-410-3
nt (A
)
Ireset: 80 A C.C : 50A
8
10-7
10
Cur
ren
SET: 1sec/4V
RESET: 1sec/-5V10-810-710-6
Cur
ren
V R R A M
100 101 10210-8
Cycles (N)-4 -3 -2 -1 0 1 2 3 410
-9
Voltage (V)
First reported results using PVD-free process in a vertical structure
19
p g p
I.G.Baek, Samsung,2011IEDM.,p.737.
/33
Challenges for VRRAM
Demonstrated VRRAM using cost effective 3D process.
But the major challenges for VRRAM include;
Demonstrated VRRAM using cost effective 3D process.
Self-Rectifying Cell (SRC) SRC reduces leakage currents and cell-to-cell disturbance bl l i enables larger array size
- Highly non-linear, asymmetric I-V characteristics are necessary
Hi h ll ffi i High cell efficiency Larger memory block with smaller overhead chip area
- Low operation current needed p- Layout optimization of driving circuits and vertical
interconnection are necessary
20
Developing SRC is most critical for VRRAM/33
Contents
Introduction NAND Scaling Challen