Author
vunhu
View
245
Download
2
Embed Size (px)
RepeatedMeasuresANOVAMultivariateANOVA
andTheirRelationshiptoLinearMixedModels
EPSY905:MultivariateAnalysisSpring2016
Lecture#12– April20,2016
EPSY905:RMANOVA,MANOVA,andMixedModels
Today’sClass
• RepeatedmeasuresversionsoflinearmodelsØ HowRMANOVAmodelsaremixedmodelswithvaryingassumptions
• MultivariateANOVAØ HowMANOVAmodelsaremixedmodelswithvaryingassumptions
• Anintroductiontomultilevelmodels
• Foralltoday:ModelsassumedataiscompleteØ Everyobservation isrecorded ::nomissingdata
EPSY905:RMANOVA,MANOVA,andMixedModels 2
ExampleData
• Ahealthresearcherisinterestedinexaminingtheimpactofdietaryhabitsandexerciseonpulserate
• Asampleof18participantsiscollectedØ Dietfactor(BETWEEN SUBJECTS):
w Ninearevegetariansw Nineareomnivores
Ø Exercise factor(BETWEEN SUBJECTS) withrandomassignment:w Aerobicstairclimbingw Racquetballw Weighttraining
Ø Threepulse rates (WITHINSUBJECTS):w Afterwarm-upw Afterjoggingw Afterrunning
EPSY905:RMANOVA,MANOVA,andMixedModels 3
REPEATEDMEASURESANOVA
EPSY905:RMANOVA,MANOVA,andMixedModels 4
RepeatedMeasures
• Insteadoffocusingonasingledependentvariable,wecanfocusonallthree
Ø Repeatedmeasures analysis
• InrepeatedmeasuresGLM,theeffectsofinterestare:Ø Between subjectseffects
w Differences betweenDietandExercise TypeØ Withinsubjects effects
w Differences betweenwhenpulseratewastakenw Notusuallyaconsideration inMultivariateGLM(MANOVA)
Ø Interactions betweenwithinandbetween subjectseffects
• Aswewillsee,repeatedmeasuresGLMusesmultivariatedataandmultivariatedistributions
EPSY905:RMANOVA,MANOVA,andMixedModels 5
RepeatedMeasuresDistributionalSetup
• Becausewehaverepeatedobservations,wenowhaveasetofvariablestopredictinsteadofjustone
Ø Ourexampledatasethadthree response variablesperpersonØ Moregenerally,wewillhave𝑝 response variables perperson
𝐲# = 𝑦#& 𝑦#' ⋯ 𝑦#)
• TheGLMisextendedtomodelmultivariate outcomes𝑓 𝐲# 𝐗# ∼ 𝑁) 𝐗#𝛃, 𝐕
• Now,𝛃 issize(1 + 𝑘)𝑥𝑝
• LSEstimates:𝛃8 = 𝐗9𝐗 :&𝐗9𝐘Ø Where𝐘 issize𝑁𝑥𝑝
EPSY905:RMANOVA,MANOVA,andMixedModels 6
UnpackingtheRepeatedMeasuresDesign
• Thedistributionalassumptionsareverysimilar𝑓 𝐲# 𝐗# ∼ 𝑁) 𝐗#𝛃, 𝐕
• MODELFORTHEMEANS:Ø Themodelforthemeans isthesame(onlyhasmore terms)Ø IVs𝐗# andlinearmodelweights𝛃 providepredicted values foreachobservation
• MODELFORTHEVARIANCES:Ø Becausewehaverepeated observations, themodelforthevariances isnowacovariancematrix ofsizepxp
w Diagonalelements: varianceoferrorforeachoutcomew Off-diagonalelements: covarianceoferrorsforpairsofoutcomes
EPSY905:RMANOVA,MANOVA,andMixedModels 7
MoreonVariances
• ThekeytorepeatedmeasuresandmultivariateANOVAisthecovariancematrix𝐕 structure
Ø Typeofmodeldictates typesofoptionsforcovariancematrixØ Theclassicalstatisticsdiscussed todayareoneofthethree
w Moremodernapproachesmakethismoreflexible
EPSY905:RMANOVA,MANOVA,andMixedModels 8
ThreeStructuresofClassicalGLM• Threestructures:1. Independence:𝐕 = 𝜎='𝐈)
Ø ModelsifallobservationsasiftheycamefromseparatepeopleØ NomorestatisticalparametersthanoriginalGLMapproachØ Don’tuse:shownforbaselinepurposes
2. RepeatedMeasures:AssumessphericityofobservationsØ Sphericityisaconditionthatismorestrictlyenforcedbycompoundsymmetry
of𝐕 havingtwoparameters:Ø Sphericityiscompoundsymmetryofpairwisedifferences
w Diagonalelements:samevariancew Off-diagonal elements: samecovariance
Ø Nosphericity?AdjustmentstoFtests
3. MultivariateANOVA/GLM:Assumesnothing– estimateseverythingØ Everyuniqueelementin𝐕 ismodeledØ Needmorepower(i.e.,samplesize)tomakeworkwellØ Mostgeneralprocedure
EPSY905:RMANOVA,MANOVA,andMixedModels 9
WorkingExample
• Wereturntoourexample,onlythistimetobuildtherepeatedmeasuresandmultivariateversions
• Wewillbeginwiththeunconditionalmodel(“emptymodel”)
Ø Providedasabaseline toshowhowrepeatedmeasuresworks, conceptually–youlikelywouldnever runthismodel
• Torunthismodel,Iconvertedourdatafromwideformat(alldataforoneobservationperrow)tolongformat(onlyoneobservationpercolumn)
EPSY905:RMANOVA,MANOVA,andMixedModels 10
ExampleSyntax:DataTransformation
EPSY905:RMANOVA,MANOVA,andMixedModels 11
UnconditionalModel:IndependenceAssumptionSyntax
EPSY905:RMANOVA,MANOVA,andMixedModels 12
UnconditionalModel:IndependenceAssumption
• Parsingthroughtheoutputofthepreviouspage,wecandeterminethefollowingforourdata:
𝑓 𝐲# 𝐗# ∼ 𝑁) 𝐗#𝛃, 𝐕
• Where𝛃89 = 87.5 46.6 102.1
• And
𝐕 = 𝜎='𝐈G =507.7 0 00 507.7 00 0 507.7
EPSY905:RMANOVA,MANOVA,andMixedModels 13
RepeatedMeasuresModel• Therepeatedmeasuresversionoftheunconditionalmodelchangesthestructureofthe𝐕matrix:
𝐕 =𝜎=' + 𝜏 𝜏 𝜏𝜏 𝜎=' + 𝜏 𝜏𝜏 𝜏 𝜎=' + 𝜏
• ThedesignaboveiscalledcompoundsymmetryØ Diagonalelements:variance ofoutcomeshaserror varianceandcompoundsymmetryparameter
Ø Off-diagonal elements: compoundsymmetryparameter givescovariance ofobservations
• Becauseobservationscomefromthesamepersonobservationsarelikelytobecorrelated
Ø Repeatedmeasures incorporates thiscorrelation through sphericity (aweakerformofcompound symmetry)
EPSY905:RMANOVA,MANOVA,andMixedModels 14
UnconditionalModel:RepeatedMeasuresCSAssumption
EPSY905:RMANOVA,MANOVA,andMixedModels 15
ImpossibletoseecovariancestructurefromRoutput
ComparingIndependencevsCSOutput
EPSY905:RMANOVA,MANOVA,andMixedModels 16
TheMixedModelVersionofRMANOVA(Part1)
• Wecangetthesameresultsfromthegls()function:
EPSY905:RMANOVA,MANOVA,andMixedModels 17
ComparingRMANOVAwiththeLMEModelVersion
EPSY905:RMANOVA,MANOVA,andMixedModels 18
InvestigatingtheVMatrixfromtheLMEModel
• UsingtheGetVarCov()functionfortheLMEmodel,wecanseetheformofthe(residual)covariancematrix:
EPSY905:RMANOVA,MANOVA,andMixedModels 19
UnconditionalModel:IndependenceAssumption
• Parsingthroughtheoutputofthepreviouspage,wecandeterminethefollowingforourdata:
𝑓 𝐲# 𝐗# ∼ 𝑁) 𝐗#𝛃, 𝐕
• Where𝛃89 = 87.5 46.6 102.1
• And
𝐕 =𝜎=' + 𝜏 𝜏 𝜏𝜏 𝜎=' + 𝜏 𝜏𝜏 𝜏 𝜎=' + 𝜏
=74.2 + 433.5 433.5 433.5
433.5 507.7 433.5433.5 433.5 507.7
EPSY905:RMANOVA,MANOVA,andMixedModels 20
(RE)MLAllowsforTestingCovarianceStructures
• WiththeLMEmodelwecanseeiftheCScovariancestructureimprovedmodelfitfromtheindependencemodel:
• Thenullhypothesisisthat𝜏 = 0
• Werejectthenullhypothesis
EPSY905:RMANOVA,MANOVA,andMixedModels 21
RepeatedMeasures:FullAnalysis
• Thefullrepeatedmeasuresanalysisofourdatagives:Ø Between subjectseffects
w Differences betweenDietandExercise TypeØ Withinsubjects effects
w Differences betweenwhenpulseratewastakenw Notaconsideration inMultivariateGLM(MANOVA)
Ø Interactions betweenwithinandbetween subjectseffects
• Withinsubjectseffectscanhaveadjustmentstop-valuesØ JustincasedatadonotmeetassumptionofsphericityØ SASandSPSShaveadjustments built-in…Rdoesnot
• WithLMEmodels,wedon’tneedadjustmentsØ Wehave theabilitytofit(andtestthefitof)therightmodel!
EPSY905:RMANOVA,MANOVA,andMixedModels 22
FullRepeatedMeasuresANOVAModel
EPSY905:RMANOVA,MANOVA,andMixedModels 23
SameAnalysiswithLMEModel
EPSY905:RMANOVA,MANOVA,andMixedModels 24
TheANOVATable:SameResults(forF-values)
• Thep-valuesdifferduetoLMEhavingmultiplemethodsfordeterminingthedenominatorDF
EPSY905:RMANOVA,MANOVA,andMixedModels 25
TheLMEResidualCovarianceMatrix
• FromtheEmptymodel:
• FromtheFullmodel:
• Note:withCSassumptionR2isthesameforallDVs:Ø =507.66-386.15/507.66=.239
• Multivariateversion:
EPSY905:RMANOVA,MANOVA,andMixedModels 26
CLASSICALMANOVAVSLMEMODELS
EPSY905:RMANOVA,MANOVA,andMixedModels 27
MultivariateApproaches
• Likerepeatedmeasures,multivariateapproachesfocusonalldependentvariables,simultaneously
Ø Repeatedmeasures analysis
• InmultivariateGLM,theeffectsofinterestare:Ø Between subjectseffects – Impliesdifferences inmeanvectors
w Differences betweenDietandExercise Type
• WithinsubjectseffectsarelesscommonlyinspectedØ Butcertainlycanbe
• Keydifferencebetweenmultivariateapproachandrepeatedmeasuresapproachcomesfromassumptionsabout𝐕matrix
EPSY905:RMANOVA,MANOVA,andMixedModels 28
MultivariateApproachAssumptions
• MANOVAestimatesallelementsoftheVmatrix:
𝐕 =𝜎=J' 𝜎=J=K 𝜎=J=L
𝜎=J=K 𝜎=K' 𝜎=K=L
𝜎=J=L 𝜎=K=L 𝜎=L'
• Contrastthatwiththerepeatedmeasuresversionofcompoundsymmetrystructureforthe𝐕matrix:
𝐕 =𝜎=' + 𝜏 𝜏 𝜏𝜏 𝜎=' + 𝜏 𝜏𝜏 𝜏 𝜎=' + 𝜏
EPSY905:RMANOVA,MANOVA,andMixedModels 29
MultivariateVersusRepeatedMeasures
• Multivariate:Ø Moremodelparameters; lessparsimonyØ FewerassumptionsØ Better ifassumptions ofRMareviolated (LMEmodelsdon’tneedthis)
• Repeatedmeasures:Ø Fewermodelparameters;moreparsimonyØ StrictassumptionsØ Morepowerthatmultivariate ifassumptions aremet
EPSY905:RMANOVA,MANOVA,andMixedModels 30
MultivariateTestStatistic(s)
• Themultivariateapproachhasanewclassofstatisticsusedfortestingmultivariatehypotheses
Ø Relyonsummaries ofkeymatrixproducts
• MorethanoneteststatisticisavailableØ Noneareuniformlymostpowerful (across allsamplesizesandtypesofindependent variables)
• Teststatistics:Ø Wilks’lambdaØ Pillai’s traceØ Hotelling-Lawley traceØ Roy’slargest root
EPSY905:RMANOVA,MANOVA,andMixedModels 31
FormingMultivariateTestStatistics
• Aswithunivariatelinearmodels,multivariatelinearmodelsdecomposevariabilityintovarioussources
Ø Butnowdecomposition ismultivariate
• Univariatedecomposition:Ø Sumsofsquares treatment:∑ 𝑛O 𝑦PQO − 𝑦PQQ
'SOT&
Ø Sumsofsquares error:∑ ∑ 𝑦#O − 𝑦PQO'S
OT&UV#T&
• F-ratiowasformedbycomparingtheseterms(dividedbytheirdegreesoffreedom)
EPSY905:RMANOVA,MANOVA,andMixedModels 32
MultivariateDecomposition
• MultivariatedecompositionisbasedonmeanvectorsØ Eachvariable isrepresented
• Sumsofsquaresandcross-productsfortreatment(theHmatrix…standsforhypothesis):
𝐇 = X 𝑛O 𝐲PQO − 𝐲PQQ 𝐲PQO − 𝐲PQQ9
S
OT&
• Sumsofsquaresandcross-productsforerror(theEmatrix…standsforerror):
𝐄 =XX 𝐲#O − 𝐲PQZ 𝐲#O − 𝐲PQO9
S
OT&
UV
#T&
EPSY905:RMANOVA,MANOVA,andMixedModels 33
Wilks’Lambda
• Oncebothmatricesareformed,Wilks’lambdacanbeobtained:
𝜆∗ =𝐄
𝐇 + 𝐄
• Equivalently(andshowntotrytorelatetounivariateteststatistics),Wilks’lambdacanbeformedfromtheeigenvalues(𝜆) of𝐄:&𝐇:
𝜆∗ =^1
1 + 𝜆#
_
#T&
• Where𝑠 = min(𝑝, 𝑔 − 1)EPSY905:RMANOVA,MANOVA,andMixedModels 34
MultivariateEmptyModel
• Returningthefocusawayfromtheteststatistics,let’sexaminethemultivariateapproachusingourempty(unconditional)model
• Theresultsareprettysparse(noeffectstested):
EPSY905:RMANOVA,MANOVA,andMixedModels 35
LMEModelVersionofMANOVA:EmptyModel
EPSY905:RMANOVA,MANOVA,andMixedModels 36
Note:ThediagonalelementsareequaltotheMSEsfromthepreviousslide
EmptyModel:UnstructuredCovarianceMatrix
• Parsingthroughtheoutputofthepreviouspage,wecandeterminethefollowingforourdata:
𝑓 𝐲# 𝐗# ∼ 𝑁) 𝐗#𝛃,𝐑
• Where𝛃8 = 87.5 46.6 102.1
• And
𝐑 =1
𝑁 − 1 𝐄 =𝜎=J' 𝜎=J=K 𝜎=J=L
𝜎=J=K 𝜎=K' 𝜎=K=L
𝜎=J=L 𝜎=K=L 𝜎=L'
=279.9 333.5 395.7333.5 473.0 571.2395.7 571.2 770.0
EPSY905:RMANOVA,MANOVA,andMixedModels 37
BuildingtheFullModel:ClassicalMANOVA
EPSY905:RMANOVA,MANOVA,andMixedModels 38
BuildingtheFullModel:LMEModel
EPSY905:RMANOVA,MANOVA,andMixedModels 39
THEBENEFITSOFMIXEDMODELSOVERCLASSICALRMANOVA ANDMANOVA
EPSY905:RMANOVA,MANOVA,andMixedModels 40
So..Which V MatrixisRight?
RestrictiveAssumptions
FewParameters
RelaxedAssumptions
MoreParameters
RegularANOVA RepeatedMeasuresANOVA
CompoundSymmetry UnstructuredIndependence
MultivariateANOVA
279.9 333.5 395.7333.5 473.0 571.2395.7 571.2 770.0
507.7 0 00 507.7 00 0 507.7
507.7 433.5 433.5433.5 507.7 433.5433.5 433.5 507.7
Classicalmethodstaughttodayhavenogoodwayofdeterminingwhichismostappropriate𝐕matrix
EPSY905:RMANOVA, MANOVA, andMixed Models 41
LMEModelsCanTestfortheBestStructure• WecanuseLikelihoodRatioTeststotestforthebestcovariancematrixstructureinLMEmodels:
• TheLRTaboveisnotrescaled(notavailableinnlmepackage:BADR!)
• WecouldalsocomeupwithanewstructurealtogetherØ Notatallpossible inclassicalapproach
• Onnextslide:HeterogeneousCompoundSymmetryØ Different covariances perDVØ Samecorrelation
EPSY905:RMANOVA,MANOVA,andMixedModels 42
NewModel:HeterogeneousCompoundSymmetry
EPSY905:RMANOVA,MANOVA,andMixedModels 43
LMEMODELEXTENSIONS:RANDOMCOEFFICIENTS
EPSY905:RMANOVA,MANOVA,andMixedModels 44
AnÀ lacarteApproachtoModelBuilding
Choices for Model for the Variances
Empty Means
Saturated Means
eti only1a 1b
BP ANOVA
U0i + etiCompound Symmetry (CS)
2a 2bUniv. RM ANOVA
All variances and covariances (Unstructured; UN)
3a 3b Multiv. RM ANOVA
Choices for Model for the Means
The labels for the models (1a – 3b) correspond to example 2c.
MLM generally begins with 2a, which is used as a baseline model.
EPSY905:RMANOVA,MANOVA,andMixedModels 45
EmptyMultilevelModel(U0i +eti):NewTerminology
VarianceofYà 2sources:
Level2Random InterceptVariance (ofU0i):
à Between-Person Variance(τU02)à DifferencefromGRANDmeanà INTER-Individual Differences
Level1ResidualVariance (ofeti):à Within-Person Variance(σe2)à DifferencefromOWNmeanà INTRA-Individual Differences
140
120
100
80
60
40
20
EPSY905:RMANOVA,MANOVA,andMixedModels 46
EmptyMultilevelModelModelforMeans;ModelforVariances
GeneralLinearModel
yi =β0 + eiMultilevel Model
L1: yti =β0i +eti
L2: β0i =γ00 +U0i
Sample Grand Mean Intercept
Individual Intercept
Deviation
3 Model Parameters1 Fixed Effect:
γ00 à fixed intercept
1 Random Effect (intercept): U0i àperson-specific deviation
à mean=0, variance = τU02
1 Residual Error:eti à time-specific deviation
à mean=0, variance = σe2
Combined equation: yti = γ00 + U0i + eti
EPSY 905: RM ANOVA, MANOVA, and Mixed Models 47
EmptyMultilevelModel:UsefulDescriptiveStatisticà ICC
0
0
2U
2 2U e
τ=
τ + σ
IntraClass Correlation(ICC):
• ICC=Proportion ofvariance thatisbetween-persons• ICC=Average correlation acrossoccasions
=Intercept VarianceICC
Intercept Variance + Residual Variance
Between VarianceICCBetween Variance + Within Variance
=
EPSY905:RMANOVA,MANOVA,andMixedModels 48
MatricesUsedinLongitudinalModelsfortheVariances
• Twomatricesofvariancecomponents(piles):Ø GMatrix:Between-person U0i varianceØ RMatrix:Within-person eti varianceØ G andR combinetomakeV,thetotalvarianceofY
• Themostbasic+WPmodel(justU0i +eti)canbeestimatedintwoequivalentways:
Ø “Random InterceptOnlyModel”:GandRtogether =Vw Randomintercept onlyinGw “Identity”(SPSS)or“VC”(SAS)R(uncorrelated, homogeneous var)
Ø “Compound SymmetryModel”: JustuseR(soR=V)w Nothing inG,Rhas“compoundsymmetry”form
EPSY905:RMANOVA,MANOVA,andMixedModels 49
InterceptVariance
Intercept Variance
Random Intercept Model (4 occasions):yti = γ00 + U0i + eti
0
2Uτ⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠
2e
2e
2e
2e
σ
0 σ
0 0 σ
0 0 0 σ
0 0 0 00 0 0 00 0 0 00 0 0 0
Unstructured G Matrix(RANDOM statement)
Identity (VC) R Matrix(REPEATED statement)
Each person gets same 4 x 4 R matrix à equal variances and 0 covariancesacross persons & time
211
221 22
231 32 33
241 42 43 44
σ
σ σ
σ σ σ
σ σ σ σ
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
2e
2e
2e
2e
σ
0 σ
0 0 σ
0 0 0 σ
Level 2, BP Variance
Level 1, WP Variance
Total Observed Data Matrix is called V Matrix
EPSY 905: RM ANOVA, MANOVA, and Mixed Models 50
EquivalentVarianceModels
• “Random InterceptOnlyModel”: GandR=V– Allowsquantifiable estimates ofBPvs.WPvariation(separateestimates) andconstantcorrelationbetweenpersonsovertime
• “Compound SymmetryModel (CS)”:R=V– BPandWPvariancecombined intooneestimate instead,butstillallowsconstantcorrelationbetweenpersonsovertime
“+”
0
2Uτ⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠
G matrix2e
2e
2e
2e
σ
0 σ
0 0 σ
0 0 0 σ
R matrix0
0 0
0 0 0
0 0 0 0
2 2e u
2 2 2u e u
2 2 2 2u u e u
2 2 2 2 2u u u e u
σ +τ
τ σ +τ
τ τ σ +τ
τ τ τ σ +τ
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
Total V matrix
=2T
2T
2T
2T
σ
CS σ
CS CS σ
CS CS CS σ
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
R matrix
Get “Var(eti)” and “Var(U0i)”
Get “Var(eti)” and “CS”à CS = Var(U0i)
0
0 0
0 0 0
0 0 0 0
2 2e u
2 2 2u e u
2 2 2 2u u e u
2 2 2 2 2u u u e u
σ +τ
τ σ +τ
τ τ σ +τ
τ τ τ σ +τ
⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
Total V matrix
EPSY 905: RM ANOVA, MANOVA, and Mixed Models 51
ANALYSISADVICE
EPSY905:RMANOVA,MANOVA,andMixedModels 52
AdviceAboutPickingAnAnalysisMethod
• UseREPEATEDMEASURESif:Ø Youhavecompletedata(nothing ismissing)Ø YouhaveasmallsamplesizeØ Yourdatameetsphericityassumption
• UseMULTIVARIATEif:Ø Youhavecompletedata(nothing ismissing)Ø YouhavealargesamplesizeØ Yourdatadonotmeetsphericityassumption
• Note:bothmethods,althoughclassical,arestillusefulØ However: wewilllearnamodernapproach totheirestimation
w Allowsformorebroadanalysistypesandmissing dataØ Problem:cannottellwhich𝐑matrix isappropriate
EPSY905:RMANOVA,MANOVA,andMixedModels 53
WhenNotToUseEitherMethod
• DoNOTusethisversionofREPEATEDMEASURESorMULTIVARIATEif:
Ø Youhaveindependent variables youwishtostudythatvarywitheachdependent variable (example: time)
w Usemultilevel approachØ Youhavemissingdata
w Wewillusethistodemonstrate imputationmethodsØ Youhavecategoricaldata
w Use link-functionsØ Youhavedatathatcomefrompsychometricmeasures
w UsestructuralequationmodelingØ Youwouldliketodeterminewhich𝐑 matrixtouse
EPSY905:RMANOVA,MANOVA,andMixedModels 54
CONCLUDINGREMARKS
EPSY905:RMANOVA,MANOVA,andMixedModels 55
WrappingUp
• TodaywecoveredtheworldoflinearmodelsinmatricesØ UnivariateØ RepeatedmeasuresØ Multivariate
• Linearmodelsaccountforthemostfrequentlyusedstatisticalmethodsinthesocialsciences
Ø Wewillcovermoremodernversions ofthesemodelsintheweeks tocomeØ Todaywasanintroduction toclassicallinearmodelsanalyses
EPSY905:RMANOVA,MANOVA,andMixedModels 56