195

RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT
Page 2: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT «MESURES ET SIMULATIONS EN MÉTROLOGIE DE LA MESURE D’ACTIVITÉ PAR SCINTILLATION LIQUIDE ET CHAMBRE D’IONISATION PRESSURISÉE» Résumé - Les travaux de recherche « Mesures et simulation en métrologie de la mesure d’activité par scintillation liquide et chambre d’ionisation pressurisée » ont été présentés pour en vue d’obtenir l’habilitation à diriger des recherches. Le fil d’Ariane des deux thématiques, mesures par scintillation liquide et chambre d’ionisation pressurisée, réside dans l’amélioration des techniques de mesure de radioactivité de radionucléides. La métrologie de la radioactivité intervient dans de nombreux domaines, de la recherche à l’industrie incluant l’environnement et la santé, qui sont des sujets de préoccupation constante pour la population mondiale ces dernières années. A cette grande variété d’applications répond un grand nombre de radionucléides de schémas de désintégrations très divers sous des formes physiques également très variées. Les travaux présentés réalisés au sein du Laboratoire National Henri Becquerel ont pour objectif, d’une part d’assurer la traçabilité des étalonnages d’appareils de mesure de radioactivité et d’autre part, d’améliorer les méthodes de mesure d’activité dans le cadre de projets de recherche et développement. L’amélioration des méthodes primaires et secondaires pour l’étalonnage consiste à parfaire l’exactitude des mesures notamment par une meilleure connaissance des paramètres influençant les rendements de détection. Il s’agit également de maîtriser le calcul de leurs incertitudes et si possible de les diminuer. Les travaux de développement de mesure d’activité primaire par scintillation liquide présentés concernent principalement l’étude de la réponse de scintillateurs aux électrons monoénergétiques de basse énergie ainsi que la mesure de leurs coefficients d’absorption linéique à l’aide du rayonnement synchrotron. Les travaux de recherche sur les chambres d’ionisation pressurisées ont consisté en l’étude expérimentale et par simulation à l’aide de code Monte-Carlo, de leur réponse afin de déterminer par calcul les coefficients d’étalonnage de radionucléides émetteurs de photons et d’électrons. Par ailleurs, la conception d’un nouveau type de chambre d’ionisation à pression variable et maîtrisée, est présentée. Ce nouveau projet a été développé pour garantir la précision de la mesure de l’activité injectée au patient dans le cadre d’examens de diagnostic et de radiothérapie interne. Mots clés : scintillation liquide, chambre d’ionisation, Simulation Monte-Carlo

2014 – Commissariat à l’Énergie Atomique et aux Énergies Alternatives – France RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT « ACTIVITY MEASUREMENTS OF RADIOACTIVE SOLUTIONS BY LIQUID SCINTILLATION COUNTING AND PRESSURIZED IONIZATION CHAMBERS AND MONTE CARLO SIMULATIONS OF SOURCE-DETECTOR SYSTEMS FOR METROLOGY » Abstract - The research works "Activity measurements of radioactive solutions by liquid scintillation and pressurized ionization chambers and Monte Carlo simulations of source-detector systems " was presented for the graduation: “Habilitation à diriger des recherches”. The common thread of both themes liquid scintillation counting and pressurized ionization chambers lies in the improvement of the techniques of radionuclide activity measurement. Metrology of ionization radiation intervenes in numerous domains, in the research, in the industry including the environment and the health, which are subjects of constant concern for the world population these last years. In this big variety of applications answers a large number of radionuclides of diverse disintegration scheme and under varied physical forms. The presented works realized within the National Laboratory Henri Becquerel have for objective to assure detector calibration traceability and to improve the methods of activity measurements within the framework of research projects and development. The improvement of the primary and secondary activity measurement methods consists in perfecting the accuracy of the measurements in particular by a better knowledge of the parameters influencing the detector yield. The works of development dealing with liquid scintillation counting concern mainly the study of the response of liquid scintillators to low energy electrons as well as their linear absorption coefficients using synchrotron radiation. The research works on pressurized ionization chambers consist of the study of their response to photons and electrons by experimental measurements compared to the simulation of the source-detector system using Monte Carlo codes. Besides, the design of a new type of ionization chamber with variable pressure is presented. This new project was developed to guarantee the precision of the amount of activity injected into the patient within the framework of diagnosis examination and internal radiotherapy. Keywords: liquid scintillation, ionization chamber, Monte Carlo Simulation 2014 – Commissariat à l’Énergie Atomique et aux Énergies Alternatives – France

Page 3: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

- Rapport CEA-R-6383 -

CEA Saclay Direction de la Recherche Technologique

Laboratoire d’Intégration des Systèmes et des Technologies Département Métrologie, Instrumentation et Information

Laboratoire National Henri Becquerel

MESURES ET SIMULATIONS EN MÉTROLOGIE DE LA MESURE D’ACTIVITÉ PAR SCINTILLATION LIQUIDE ET CHAMBRE D’IONISATION PRESSURISÉE

par

Marie-Noëlle AMIOT

- Novembre 2014 -

Page 4: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

MÉMOIRE

Présenté

Devant l’UNIVERSITÉ PARIS-SUD

Spécialité : PHYSIQUE

en vue d’obtenir :

L’HABILITATION À DIRIGER DES RECHERCHES

par

Marie-Noëlle Amiot

MESURES ET SIMULATIONS EN

MÉTROLOGIE DE LA MESURE D’ACTIVITÉ

PAR SCINTILLATION LIQUIDE ET CHAMBRE

D’IONISATION PRESSURISÉE

Soutenue le 21 novembre 2013 devant la commission d’examen :

Pr. F. Bochud IRA, Lausanne, Suisse Rapporteur

Pr. L. Makovicka Université de Franche-Comté Rapporteur

Pr. A.-M. Nourreddine Université de Strasbourg Rapporteur

Pr. T. Suomijärvi Université de Paris-Sud Examinateur

Dr. I. Gardin HDR, C. H. Becquerel, Rouen Examinateur

Dr. G. Ratel B. I. P. M., Sèvres Examinateur

Page 5: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

2

CURRICULUM VITAE DÉTAILLÉ

1. POSTE ACTUEL .............................................................................................. 7

2. DIPLOMES UNIVERSITAIRES ................................................................................ 7

3. PARCOURS .................................................................................................... 7

4. ACTIVITES D’ENSEIGNEMENTS ............................................................................ 7

5. ACTIVITES LIEES A L’ADMINISTRATION .................................................................. 8

6. ACTIVITES LIEES A LA RECHERCHE ....................................................................... 8

7. ENCADREMENT .............................................................................................. 9

8. SYNTHESE DES TRAVAUX ................................................................................ 10

9. LISTE DE PUBLICATIONS ................................................................................. 16

TABLE DES ABRÉVIATIONS

RÉSUME DE LA THÈSE

MÉMOIRE DE RECHERCHE

Introduction

1 CONTEXTE .......................................................................... 31

1.1 HISTORIQUE DE LA MÉTROLOGIE ..................................................... 31

1.1.1 La mÉtrologie du XVIII Ème ET XIXÈme siècle ..................................... 31

1.1.2 La mÉtrologie au XXÈme siecle .................................................... 31

1.1.3 La mÉtrologie au XXIÈme siÈcle ................................................... 32

1.2 ORGANISATION DE LA METROLOGIE .................................................. 33

1.2.1 La mÉtrologie au niveau international ......................................... 33

1.2.2 La mÉtrologie au niveau europÉen .............................................. 34

1.3 LA MÉTROLOGIE POUR LES RAYONNEMENTS IONISANTS .......................... 36

1.3.1 La mÉtrologie des rayonnements ionisants au niveau international ....... 36

1.3.2 La mÉtrologie des rayonnements ionisants au niveau europÉen ............ 38

1.3.3 La métrologie française pour les rayonnements ionisants ................... 38

2 MESURES PRIMAIRES ET ETUDES PAR SCINTILLATION LIQUIDE ........... 43

Page 6: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

3

2.1 BREF HISTORIQUE SUR LA DÉTECTION DES RAYONNEMENTS IONISANTS ........ 43

2.2 INTRODUCTION GÉNÉRALE SUR LA SCINTILLATION LIQUIDE ...................... 43

2.2.1 Principe de fonctionnement des scintillateurs liquides ...................... 44

2.2.2 Vocabulaire international de mÉtrologie ....................................... 44

2.2.3 Description gÉnÉrale des mÉthodes de rÉfÉrence ............................ 45

2.3 DESCRIPTION DES SCINTILLATEURS LIQUIDES ....................................... 46

2.3.1 Composition des scintillateurs liquides ......................................... 46

2.3.2 Principe gÉnÉral d’Émission de lumiÈre des scintillateurs liquides ........ 47

2.3.3 Diminution du rendement lumineux des scintillateurs liquides (Quenching)

....................................................................................................... 47

2.4 LA MÉTHODE RCTD ..................................................................... 50

2.4.1 Le dispositif expÉrimental : ...................................................... 50

2.4.2 Description de la mÉthode RCTD : .............................................. 52

2.5 LA MÉTHODE CIEMAT/NIST ............................................................ 64

2.5.1 Le dispositif expÉrimental : ...................................................... 64

2.5.2 Calcul des rendements de dÉtection du traceur et du radionuclÉide À

mesurer ............................................................................................. 65

2.6 AVANTAGES ET INCONVÉNIENTS DE CHACUNE DES MÉTHODES .................. 69

2.7 QUELQUES EXEMPLES D’INTERCOMPARAISON....................................... 70

2.8 LES AXES DE RECHERCHE ACTUELS EN SCINTILLATION LIQUIDE ................. 74

2.8.1 introduction ........................................................................ 74

2.8.2 La perte d’énergie des Électrons de basse Énergie par unitÉ de longueur

parcourue ........................................................................................... 74

2.8.3 Étude du quenching d’IONISATION .............................................. 76

2.8.4 Etude de l’isotropie de l’émission lumineuse ................................. 82

2.8.5 dÉVELOPPEMENT DU SIGNAL NUMÉRIQUE ...................................... 83

2.8.6 L’utilisation des codes de Monte-Carlo pour la simulation des mÉthodes

RCTD et CIEMAT/NIST ............................................................................. 84

2.8.7 Étude des micelles dans les scintillateurs liquides ........................... 85

2.9 CONCLUSION ............................................................................ 85

2.10 PERSPECTIVES ......................................................................... 86

3 LA MÉDECINE NUCLÉAIRE ........................................................ 88

3.1 INTRODUCTION ......................................................................... 88

3.2 HISTORIQUE DE LA MEDECINE NUCLEAIRE ........................................... 88

3.3 LES EXAMENS ISOTOPIQUES ........................................................... 91

3.3.1 Les EXAMENS isotopiques utilisants les Émetteurs gamma .................. 91

Page 7: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

4

3.3.2 LES EXAMENs isotopiques utilisant des Émetteurs bÊta+ : la TEP ........... 93

3.3.3 Les machines hybrides ............................................................ 94

3.4 LA RADIOTHERAPIE INTERNE EN MÉDECINE NUCLÉAIRE ........................... 94

3.4.1 Le principe de la radiothÉrapie interne vectorisÉe (RIV) .................... 94

3.5 LA MÉDECINE NUCLÉAIRE ET LA MÉTROLOGIE ...................................... 97

3.5.1 EFFETS des rayonnements ionisants dans les tissus .......................... 97

3.5.2 Niveaux de rÉfÉrence diagnostique ............................................. 98

3.5.3 Importance de la dosimÉtrie ..................................................... 99

3.5.4 Optimisation et prÉcision de l’activitÉ administrÉe ......................... 105

4 MESURES D’ACTIVITÉ Á L’AIDE DE CHAMBRES D’IONISATION

PRESSURISÉES ............................................................................... 107

4.1 INTRODUCTION ........................................................................ 107

4.1.1 Divers types de chambre d’ionisation et applications ....................... 107

4.2 MESURE D’ACTIVITÉ Á L’AIDE D’UNE CHAMBRE D’IONISATION PRESSURISÉE .. 109

4.2.1 Principe de fonctionnement .................................................... 109

4.2.2 Mesure du courant d’ionisation ................................................. 111

4.2.3 ContrÔle de fidÉlitÉ de l’Installation .......................................... 112

4.2.4 DÉtermination des coefficients d’Étalonnage expÉrimentaux ............. 113

4.2.5 DÉtermination des Facteurs d’Étalonnage d’activimÈtres .................. 113

4.2.6 Mesure d’activitÉ d’un radionuclÉide .......................................... 114

4.2.7 Tracabilité mÉtrologique ........................................................ 117

4.3 ÉTAT DE L’ART ......................................................................... 118

4.3.1 Détermination expÉrimentale de la courbe de rÉponse d’une chambre

d’ionisation ........................................................................................ 118

4.3.2 DÉtermination expÉrimentale de Facteurs d’Étalonnage d’activimÈtres 121

4.3.3 Détermination par simulation de la courbe de réponse d’une chambre

d’ionisation ........................................................................................ 124

4.4 ÉTUDE DE LA RÉPONSE DES CHAMBRES D’IONISATION Á L’AIDE DE LA

SIMULATION MONTE CARLO ....................................................................... 128

4.4.1 PrÉsentation des codes de transport rayonnement matiÈre ............... 128

4.4.2 Étude de la rÉponse des chambres d’ionisation aux photons .............. 130

4.4.3 Étude de la rÉponse des chambres d’ionisation aux Électrons ............. 144

4.5 PROJET, RÉALISATION ET EXPLOITATION D’UNE CHAMBRE D’IONISATION Á

PRESSION VARIABLE CONTRÔLÉE ................................................................. 151

4.5.1 PrÉsentation des objectifs du projet .......................................... 151

4.5.2 Les premiÈres Étapes du projet ................................................ 152

Page 8: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

5

4.5.3 Contraintes pour la conception du prototype de chambre d’ionisation (C.

golabek) ........................................................................................... 152

4.5.4 Étude de la rÉponse du dÉtecteur.............................................. 160

4.5.5 Sélection de la gÉométrie de la chambre d’ionisation ...................... 164

4.6 ÉTUDE DE LA RÉPONSE D’ACTIVIMÈTRES EN FONCTION DU VOLUME (C.

GOLABEK) ............................................................................................ 165

4.6.1 Étude de la réponse d’activimÈtres en fonction du volume contenu dans

une seringue pour les radionuclÉides Émetteurs de photons .............................. 165

4.6.2 Étude de la rÉponse d’activimÈtres en fonction du volume contenu dans

une seringue pour le 90Y ......................................................................... 167

4.7 PERSPECTIVES .......................................................................... 169

4.7.1 Étude de la rÉponse des activimÈtres en fonction du conditionnement .. 169

4.7.2 Étude de la rÉponse des activimÈtres en fonction de la matrice du

radiopharmaceutique ............................................................................ 170

4.7.3 Étude de la rÉponse des chambres aux Électrons ............................ 171

4.7.4 ModÉlisation de la Collection des Électrons dans le dÉtecteur ............ 171

4.7.5 Étude de l’énergie moyenne nécessaire pour la création d’une paire d’ions

pour diffÉrentes natures de gaz et diffÉrentes pressions .................................. 172

Conclusion générale………………………………..172

Références………………………………………..174

Page 9: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

6

CURRICULUM VITAE DÉTAILLÉ

Page 10: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

7

CURRICULUM VITAE DÉTAILLÉ

AMIOT Marie-Noëlle

Née le 07 avril 1967 à Paris.

Mariée, 2 enfants.

1. Poste actuel

Ingénieur chercheur depuis 1995,

expert sénior du CEA depuis 2011,

au Laboratoire de Métrologie de l’Activité du

Laboratoire National Henri Becquerel (LNHB).

Adresse professionnelle :

DRT/LIST/LNHB - point courrier 111

91191 Gif-sur-Yvette

Tel : 01 69 08 36 89

Fax : 01 69 08 26 19

Courriel : [email protected]

2. Diplômes universitaires

1995 Thèse de Doctorat-ès-Sciences (Université PARIS-SUD 11) réalisée au Laboratoire National

Henri Becquerel (LNHB).

Spécialité : mesures en physique nucléaire.

1992 DEA Radioéléments, Rayonnements, Radiochimie (Université PARIS-SUD 11) effectué

durant 6 mois à l’institut des Transuraniens KfK à Karlsruhe, Allemagne.

Spécialité : cristallochimie et synthèse de composés d’actinides.

3. Parcours

2011-2013 Direction des projets de recherche et développement du pôle de mesures par chambre

d’ionisation au Laboratoire de Métrologie de l’Activité (LMA) du Laboratoire National Henri

Becquerel (CEA/DRT/LIST/LNHB).

2004-2011 Responsable technique chargée des prestations d’étalonnage notamment pour les services

de médecine nucléaire et responsable de recherche du pôle de mesures par chambre

d’ionisation au LNHB/LMA.

1995-2004 Chercheur au Laboratoire National Henri Becquerel (CEA/DRT/LIST/DeTeCS/LNHB),

Laboratoire de Métrologie des Rayonnements Ionisants (LMRI).

4. Activités d’enseignements

Depuis 2007 Cours et Travaux Pratiques sur les activimètres utilisés en médecine nucléaire pour le

DESC (Diplôme d’études spécialisées complémentaires) de Radiopharmacie et Radiobiologie

à l’INSTN (Institut National des Sciences & Techniques Nucléaires).

Page 11: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

8

2003-2004 Cours et Travaux Pratiques en détection de rayonnements alpha pour le stage de formation

continue « Analyse par spectrométrie alpha » à l’INSTN.

2003-2004 Cours et Travaux Pratiques en détection de rayonnements alpha pour le stage de formation

continue « Analyse par spectrométrie alpha » à l’INSTN.

5. Activités liées à l’administration

5.1 Activités d’expertises auprès d’industriels

2010-2011 Activité d’expertise auprès des sociétés LEMER PAX, MEDRAD et CERCA-LEA pour

l’amélioration et l’étalonnage de leurs détecteurs destinés aux services de médecine nucléaire ;

2011 Activité d’expertise auprès de l’HÔPITAL BEAUJON à Clichy pour l’analyse d’écarts sur les

mesures d’activité d’In-111 et de Cs-317 dans le service de médecine nucléaire.

5.2 Membre de groupes de travail

2006-2012 Membre expert du groupe de travail international « Realization of the becquerel at the

basic level » du Comité Consultatif des Rayonnements Ionisants (CCRI) coordonné par le

Bureau International des Poids et Mesures (BIPM) ;

2007-2008 Membre expert du groupe de travail de l’AFSSAPS (Association Française de Sécurité

SAnitaires des Produits de Santé). Rédaction de l’annexe de la décision du 08/12/2008 JORF

n° 0300 ;

2003-2005 Membre expert du groupe de travail de la SFPM (Société Française des physiciens

médicaux). Rédaction « Guide d’utilisation et de contrôle des activimètres ».

5.3 Transfert de technologie

2006-2007 Responsable scientifique :

- du transfert de technologie à la société CERCA-LEA du groupe AREVA ;

- de la formation du personnel et du développement du logiciel pour l’activité de « Prestation

d’étalonnage d’activimètres sur site hospitalier » ;

- et du transfert de licence du logiciel « Normandy » V1.2.1.

6. Activités liées à la recherche

6.1 Participation à l’organisation de congrès

2006 Participation à l’organisation de la conférence EXRS European Conference on X-Ray

Spectrometry, June 19–23, 2006 Paris, France.

6.2 Programmes d’échanges, collaborations, projets Européens, réseaux internationaux

Depuis 2012 Participation au projet européen Metro MRT (Metrology for Molecular RadioTherapy);

Depuis 2012 Collaboration avec l’IRSN-LMDN (Institut de Radioprotection et de Sûreté Nucléaire-

Laboratoire de Métrologie et de Dosimétrie des Neutrons) sur le projet « Développement d’un

banc d’alimentation de gaz sous pression » ;

Depuis 2006 Membre du groupe de travail international « Becquerel at the Basic Level » (BIPM),

expertise en simulation Monte-Carlo ;

Page 12: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

9

2004 Collaboration avec le « Mendeleyev Institute for Metrology » (VNIIM), Russie, sur le projet

« Study of XK and gamma photon emission following the decay of Eu-154 » ;

1997-1998 Collaboration avec le « «Radioisotope Center », Pologne, sur le projet « Standardization of

Ce-139 by the liquid scintillation counting using the triple-to-double coincidence ratio

method».

6.3 Actions de valorisation, brevets, logiciels/matériel

2007 Dépôt de brevet (WO/2007/054575) « Méthodologie de détermination de coefficients

d’étalonnage par calcul » ;

2005 Développement d’un logiciel de mesure d’activité de produits radiopharmaceutiques diffusé sous

licence d’exploitation pour l’entreprise CERCA-LEA (Logiciel Normandy).

6.4 Administration liée à la recherche

2011-2013 Direction de projets de recherche de l’équipe du pôle chambres d’ionisation constituée

d’un chercheur, d’un étudiant post Doctoral et d’un technicien ;

2004-2011 Responsable technique des prestations d’étalonnage et chargée de recherches d’une équipe

constituée de deux techniciens et un ingénieur.

7. Encadrement

7.1 Post-doctorants

2011-2013 M. C. Golabek. Encadrement 100 %. Réalisation d’une chambre d’ionisation à pression

variable pour la mesure de produits radiopharmaceutiques et simulation de sa réponse à l’aide

du code de Monte Carlo PENELOPE (2011-2012) ;

2009-2010 M. M.R. Mesradi. Encadrement 100 %. Etude de la réponse d’une chambre d’ionisation de

haute sensibilité aux radionucléides émetteurs de photons gamma à l’aide du code de Monte-

Carlo PENELOPE (2009-2010).

Publication : M.N. Amiot, M.R. Mesradi, V. Chisté, M. Morin, F. Rigoulay, Comparison of

experimental and calculated calibration coefficients for a high sensitivity ionization chamber,

Appl. Radiat. Isot. (2012) ;

2000-2001 Mme A. de Vismes. Encadrement 100 % Conception d’une chambre d’ionisation réglable

en pression à l’aide du code de simulation Monte Carlo PENELOPE.

Publication : A. de Vismes, M.N. Amiot, Towards absolute activity measurements by

ionisation chambers using Penelope Monte-Carlo code, Appl. Radiat. and Isot. 59/4 p 267

(2003).

7.2 Diplôme d’Etudes Approfondies

2002-2003 M. A. Bolivar-Suarez Encadrement 80 %. DEA rayonnements et imagerie en médecine de

l’université Paul Sabatier de Toulouse. Sujet : Application du code de Monte Carlo

PENELOPE à l’étude d’une chambre d’ionisation : portabilité de la méthode aux activimètres

(2003).

Page 13: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

10

7.3 Stagiaires IUT

2004-2005 M. C. Bellanger. Encadrement 100 %. Etudiant IUT mesures physiques. Sujet :

Développement d’un logiciel de mesure d’activité de produits radiopharmaceutiques ;

1997-1998 M. S. Staat. Encadrement 100 %. Scientifique du contingent. Tests et mise en service de

chambres d’ionisation.

8. Synthèse des travaux

Ce dossier de candidature pour l’habilitation à diriger des recherches porte sur vingt années de

recherches effectuées entre 1992 et 2012 au Commissariat à l’énergie atomique et aux énergies

alternatives (CEA). Il inclut le troisième cycle universitaire. Mes activités de recherche ont toutes été

réalisées au Laboratoire National Henri Becquerel (LNHB) en charge de la métrologie des

rayonnements ionisants pour le LNE (Laboratoire National de métrologie et d’Essais), au CEA. Le

LNHB fait partie du réseau mondial des instituts nationaux de métrologie des rayonnements ionisants.

A ce titre, il a pour mission de garantir la traçabilité au Système International (SI) des unités dérivées

du SI, le becquerel et le gray qu’il transfère ensuite au niveau national. Afin d’atteindre cet objectif, le

LNHB participe aux comparaisons internationales organisées par le CCRI (Comité Consultatif des

Rayonnements Ionisants) et EURAMET (European Association of National Metrology Instituts) et au

Système International de Référence (SIR) coordonné par le Bureau International des Poids et Mesures

(BIPM). Sur le plan international, il s'agit de garantir et maintenir la cohérence entre les étalons

nationaux de référence des différents pays. Par le biais d'étalons de transfert ou d'étalonnage, ces

références nationales sont utilisées pour raccorder les instruments de mesure des utilisateurs français.

Le LNHB réalise ces missions en assurant la maintenance et le développement de ses installations de

mesures primaires et secondaires mais également en développant de nouveaux équipements et de

nouvelles méthodologies de mesure. Les projets de recherche du LNHB sont soutenus par le

Laboratoire National de métrologie et d’Essais (LNE) dans le cadre d’un contrat de programmes

évalués annuellement par un conseil scientifique.

Je me suis inscrite dans les thématiques du LNHB, notamment celles qui concernent la

caractérisation de solutions étalons primaires et secondaires à l’aide de diverses techniques de mesure,

l’étalonnage de détecteurs pour les services de médecine nucléaire et le développement de nouvelles

installations de mesure. Ces activités ont été réalisées, pour la plupart, dans le cadre de collaborations

et de groupes de travail internationaux.

8.1 Études de scintillateurs liquides pour leur utilisation en métrologie des rayonnements ionisants

8.1.1 Étude de la réponse lumineuse des scintillateurs liquides aux électrons monoénergétiques de

basse énergie

Cette première étude a fait l’objet de ma thèse de troisième cycle universitaire. Le sujet

consistait en la détermination de la réponse de scintillateurs liquides aux électrons de basse énergie

(inférieure à 11 keV). Ce travail s’inscrivait dans une démarche d’amélioration de la qualité du modèle

employé dans le cadre des mesures primaires d’activité par scintillation liquide.

Le dispositif que j’ai mis au point consistait à créer des électrons dans le scintillateur liquide

par effet Compton. Les rayonnements utilisés provenaient d’une source de Am-241 externe et

collimatée dont les rayons x avaient été préalablement absorbés. L’énergie des photons gamma de

59,54 keV diffusés par effet Compton était déterminée à l’aide d’un détecteur germanium. Le nombre

moyen de photons lumineux émis par le scintillateur était détecté par un photomultiplicateur. Le

système électronique de coïncidences entre les signaux délivrés par les deux détecteurs (détecteur

germanium et scintillateur liquide) permettait la représentation spectrale biparamétrique des

événements coïncidents. Une coupe du spectre biparamétrique sur l’axe correspondant à l’énergie des

photons Compton diffusés représentait la réponse du scintillateur liquide à des électrons

monoénergétiques. J’ai développé un programme de simulation Monte Carlo afin de corriger les

Page 14: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

11

spectres des diffusions multiples à l’intérieur du scintillateur. Les courbes de réponse des scintillateurs

aux électrons monoénergétiques ont ensuite été interprétées à l’aide de l’expression semi-empirique de

Birks (Birks, 1964). Leur variation en fonction de la concentration en agent d’atténuation a été étudiée

et j’ai proposé une formule semi-empirique décrivant le rendement lumineux du scintillateur en

fonction de la concentration en agent de quenching (Péron et Cassette, 1996a). Enfin, les valeurs des

paramètres décrivant le modèle semi-empirique de Birks ont été déterminées pour différents

scintillateurs liquides utilisés pour les mesures primaires d’activité (Péron et Cassette, 1994 ; 1996b).

8.1.2 Mesure primaire d’activité d’un radionucléide émetteur bêta-gamma : le Ce-139

L’objectif de ce travail était de réaliser une solution étalon de Ce-139 à l’aide de la technique

de mesure primaire par scintillation liquide « Rapport des Coïncidences Triples à Doubles » (RCTD,

Pochwalski and Radoszewski, 1979). Cette technique de mesure est bien adaptée pour la mesure

d’activité des radionucléides émetteurs simultanément de rayonnement pur bêta et d’un autre

rayonnement et de ceux se désintégrant par capture électronique suivie d’émission de photons x de

basse énergie comme par exemple le Fe-55 (Grau-Malonda, 1982, Cassette et al., 1998). En revanche,

la méthode de mesure RCTD, dans sa version initiale, ne permet pas de mesurer précisément l’activité

des radionucléides se désintégrant par capture électronique suivie d’émission de photons de ré-

arrangement de plus de 10 keV. En effet, cette méthode utilise un programme de calcul de rendement

de détection qui ne tient pas compte des diffusions subies pas les photons émis (Broda et al., 1988) et

(Vatin, 1991). Le Ce-139 se désintègre par capture électronique et émet notamment des photons

d’énergie 165,86 keV avec une intensité d’émission de 79,9 % suivi de rayonnements xK de ré-

arrangement électronique d’énergie supérieure à 30 keV. A ces énergies, la probabilité d’interaction de

ces photons par effet Compton n’est plus négligeable et implique alors le traitement des diffusions

dans le scintillateur. Afin de faire évoluer le programme de calcul de rendement RCTD pour prendre

en compte les diffusions des photons xK et xL du Ce-139, j’en ai développé une nouvelle version avec

l’un des auteurs du programme initial, M. Broda, chercheur au laboratoire homologue polonais dans le

cadre d’une collaboration. Cette nouvelle version intègre également une fonction d’ajustement de la

fonction de transfert linéique d’énergie des électrons calculée pour la composition du solvant du

scintillateur. Cette fonction avait été développée dans le cadre de ma thèse. Elle est utilisée dans le

calcul de la formule de Birks pour le calcul du rendement lumineux du scintillateur.

L’installation de mesure RCTD comprend trois photomultiplicateurs placés de manière

symétrique à 120° les uns des autres autour d’une chambre optique dans laquelle est positionné un

flacon contenant le scintillateur liquide. Quelques milligrammes de la solution radioactive contenant le

radionucléide à mesurer, (déterminés précisément par pesée), sont mélangés au scintillateur. Une

électronique rapide (la durée des impulsions délivrées par les photomultiplicateurs est de quelques

nanosecondes), développée au LNHB, permet de sélectionner les événements coïncidents entre les

photomultiplicateurs deux à deux (coïncidences doubles) puis entre les trois photomultiplicateurs

(coïncidences triples) et ainsi de déterminer le rapport des coïncidences triples aux coïncidences

doubles.

L’activité absolue de la solution de Ce-139 est déterminée à partir de cette mesure (rapport des

coïncidences triples aux coïncidences doubles) et de la nouvelle version du programme de calcul du

rendement de détection des événements triples sur doubles. Nous avons mesuré les activités des

sources de Ce-139, réalisées dans le cadre de cette étude, dans les installations RCTD de chacun des

deux laboratoires. Les excellents accords obtenus entre les deux systèmes ont permis de valider la

détermination de l’activité primaire d’une solution de Ce-139, solution étalon. Ce travail a fait l’objet

d’une publication en 1998 (Broda et al., 1998).

Aujourd’hui, en 2012, les codes de simulation Monte Carlo sont systématiquement utilisés pour

modéliser les diffusions multiples des photons dans le scintillateur et son environnement. Ainsi

l’activité primaire des radionucléides se désintégrant par capture électronique et émettant des photons

de basse et haute énergie peut être mesurée par la méthode RCTD de manière plus précise car le calcul

du rendement du scintillateur est plus complet (Broda et al., 2007) (Bobin et al., 2010) ; (Thiam et al.,

2012).

Page 15: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

12

8.1.3 Étude de scintillateurs liquides à l’aide du rayonnement synchrotron du Laboratoire pour

l'Utilisation du Rayonnement Electromagnétique (LURE à Orsay).

Lors de l’étude concernant la mesure primaire du Ce-139 par la méthode RCTD, nous

nous sommes interrogés sur la précision des coefficients d’absorption du scintillateur pour les photons

xK et les xL du Ce-139. Ils ont été calculés, dans le cadre de l’étude, à l’aide des tables publiées par le

National Institute of Standards and Technology (NIST) (Berger and Hubbell, 1987) avec la

composition du scintillateur liquide déterminée par le laboratoire homologue allemand (Günther,

1996). La mesure directe de ces coefficients nécessite un rayonnement photonique mono-énergétique.

Le rayonnement synchrotron du LURE délivrait ce type de rayonnement sur certaines de ses lignes de

lumière. Ce rayonnement photonique mono-énergétique pouvait également être mis à profit pour

compléter les études du rendement de scintillateurs liquides. J’ai alors soumis des dossiers de

proposition d’expérience au conseil scientifique du LURE pour les lignes de lumières SB3 de l’anneau

de stockage Super-ACO, D15A et DW31B de l’anneau de stockage DCI afin de disposer de temps de

faisceau. Les projets ayant été acceptés, les expérimentations ont été réalisées sur plusieurs campagnes

de mesures durant trois ans de 1997 à 1999. La première phase du projet a consisté à développer et

réaliser des dispositifs expérimentaux spécifiques à chaque expérience et adaptés à l’environnement

technique de chacune des lignes de lumière.

La deuxième phase a consisté en la mesure du rendement d’un scintillateur liquide

commercial couramment utilisé lors des mesures primaires d’activité par scintillation liquide :

l’Ultima Gold®. L’objectif était de déterminer la réponse du scintillateur pur et soumis à un quenching

chimique sur une gamme d’énergie des électrons de quelques keV à 50 keV. Cette étude permettait

d’améliorer le modèle physique utilisé dans le programme de calcul de la méthode RCTD et ainsi de

diminuer l’incertitude sur la mesure d’activité primaire.

Le principe de l’étude du rendement de scintillateur consistait à créer par effet photoélectrique des

électrons au sein du scintillateur contenu dans une cuve en aluminium. Un photomultiplicateur couplé

optiquement à la cuve permettait de mesurer la réponse du liquide scintillant. Cette expérimentation

fut réalisée principalement sur la ligne DW31. Les courbes de rendement ont été mesurées sur le

scintillateur Ultima Gold® pur puis quenché successivement avec 1,5 %, 5 % et 10 % d’eau et ensuite

de HCl.

Les interprétations de ces courbes en utilisant la formule de Birks ont conduit à des

valeurs du paramètre kB supérieures d’environ 30 % à celles publiées dans la littérature. Différentes

hypothèses ont été émises pour expliquer cet écart. Afin d’améliorer l’interprétation des résultats

expérimentaux trois actions étaient prévues. La première consistait à changer le lot d’Ultima Gold®

utilisé (des variations de rendement entre lots des scintillateurs avaient déjà été observées), la

deuxième à prendre en compte les diffusions multiples des photons incidents dans le scintillateur.

Enfin, la troisième prévoyait de déterminer les photons de fluorescence de l’aluminium et du

collimateur en plomb, excités par le rayonnement incident. En effet, ces photons de fluorescence

interagissent dans le scintillateur et contribuent à augmenter le nombre moyen de photons lumineux

émis en réponse par le scintillateur. La simulation de l’interaction du faisceau incident avec le

dispositif expérimental et son environnement, réalisée à l’aide de codes Monte-Carlo, aurait pu alors

permettre de corriger les spectres de photoélectrons. Cependant ces expérimentations et travaux

complémentaires n’ont pas pu être poursuivis. Une réorganisation interne du laboratoire m’a contrainte

à arrêter le projet au profit d’une autre thématique développée ci-après dans le paragraphe 8.2.

Dans un troisième temps, je me suis intéressée à la mesure de coefficients d’absorption

des scintillateurs commerciaux Ultima Gold® et Insta Gel® et également du toluène. J’avais choisi ce

dernier solvant organique car sa composition étant parfaitement connue, je pouvais comparer les

résultats expérimentaux avec ceux obtenus en utilisant des tables publiées par le NIST (Berger and

Hubbell, 1987). La composition précise des scintillateurs liquides commerciaux est un secret

industriel. Or, la connaissance précise des coefficients d’absorption des scintillateurs liquides

industriels est nécessaire au calcul du rendement de détection de radionucléides se désintégrant par

capture électronique pour les mesures absolues d’activité par scintillation liquide comme dans le cas

du Ce-139 par exemple. Cette expérimentation permettait de mesurer directement ces coefficients

Page 16: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

13

d’absorption des scintillateurs étudiés pour des photons incidents d’énergie comprise entre 5 keV et

23 keV.

Les coefficients d’absorption ont été déterminés à partir du rapport de la mesure du flux

transmis à travers une cuve de mesure avec et sans scintillateur suivant la loi de Beer-Lambert. La

mesure du rapport des flux (avec et sans scintillateur dans la cellule de mesure) est réalisée à partir des

pics d’absorption totale des spectres d’acquisition des photons transmis, détectés à l’aide d’un

détecteur SiLi. Le dispositif expérimental a été placé face au faisceau sur la ligne SB3 (domaine

énergétique des photons de 5 keV à 10 keV) et à 90° par rapport au faisceau sur la ligne D15A afin de

réduire le flux incident à l’aide d’un dispositif de diffusion (domaine énergétique des photons de

8 keV à 23 keV).

Les résultats obtenus ont mis en évidence une excellente concordance entre les mesures

réalisées sur la ligne SB3 et la ligne D15A. La continuité des courbes des coefficients d’absorption en

fonction de l’énergie a été assurée en rassemblant les résultats obtenus sur les deux lignes de lumière

sur toute la plage énergétique de 5 keV à 23 keV et également sur le domaine énergétique commun où

les résultats étaient compatibles. Les coefficients d’absorption expérimentaux du toluène étaient, de

plus, en parfait accord avec ceux calculés à partir des tables du NIST (Berger and Hubbell, 1987). Ces

excellents résultats ont permis de déterminer les coefficients d’absorption des scintillateurs liquides

étudiés avec une incertitude type relative de 2 % et ont fait l’objet d’une publication (Amiot et al.,

2000). Ces travaux ont été repris en 2006 et complétés avec un autre scintillateur, l’Hionic Fluor®

(Cassette et al., 2006).

8.2 Étude de la réponse de chambres d’ionisation à l’aide de codes de simulation Monte-Carlo

8.2.1 Détermination des coefficients d’étalonnage d’une chambre d’ionisation pressurisée sous azote

En 2000, j’ai pris en charge la technique de mesure d’activité secondaire à l’aide de chambres

d’ionisation à puits pressurisées. Ces détecteurs sont utilisés pour la mesure des radionucléides

émettant des photons et de ceux se désintégrant par émission bêta (dont l’énergie maximale est

supérieure à 1 MeV). Ils servent notamment à la mesure d’activité de produits radiopharmaceutiques

injectés aux patients pour le radiodiagnostic, la radiothérapie interne et la curiethérapie. Renfermant un

gaz sous pression, ces chambres d’ionisation sont scellées et leur fidélité est contrôlée sur des périodes

de temps allant jusqu’à plus de trente ans.

Au LNHB, ces instruments, très stables dans le temps, servent également de mémoire des mesures

primaires d’activité pour une cinquantaine de radionucléides au travers de leurs coefficients

d’étalonnage. Toutefois, ils ne peuvent pas être étalonnés pour tous les radionucléides. En effet,

certains radionucléides ne peuvent être mesurés car il n’est pas possible de les obtenir en quantité

suffisante.

Ce problème est particulièrement crucial pour la mesure du Tl-201, radionucléide utilisé dans

le domaine médical. En effet, sa production s’accompagne de Tl-200, souvent de Tl-202 et parfois

même d’isotopes du plomb. Il est alors nécessaire de corriger l’activité du Tl-201 de la contribution

des impuretés présentes. Ces impuretés ne sont pas accessibles en quantité suffisante pour pouvoir

étalonner les chambres d’ionisation expérimentalement.

En conséquence, une courbe d’étalonnage expérimentale est établie à partir de la mesure de

radionucléides émettant des photons monoénergétiques pour permettre de corriger les activités

mesurées de la contribution des impuretés. Cependant, il n’existe pas de source gamma

monoénergétique pour les énergies comprises entre 20 keV et 100 keV, plage énergétique de la plupart

des photons x de réarrangement électronique consécutifs à une désintégration de radionucléide. Les

corrections sont donc dans certains cas impossibles sans une forte altération de l’incertitude. La

simulation de l’interaction rayonnement matière à l’aide de codes Monte-Carlo est alors d’une grande

utilité afin de déterminer la réponse du détecteur dans cette gamme d’énergie mais également pour les

photons de plus haute énergie.

J’ai confié cette problématique à Mme Anne de Vismes, étudiante en Post Doc, en 2000.

L’objectif du travail consistait à déterminer, par calcul, les coefficients d’étalonnage d’une chambre

d’ionisation du laboratoire. Cette chambre d’ionisation, de type Vinten a été fabriquée par le National

Page 17: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

14

Physical Laboratory (Royaume-Uni) ; elle est pressurisée avec de l’azote à 11 bars. Mme De Vismes a

déterminé les coefficients d’étalonnage à l’aide du code de simulation Monte Carlo Penelope (Salvat

et al., 2001). Les excellents résultats qu’elle a obtenus ont fait l’objet d’une publication (de Vismes et

Amiot, 2003) et sont toujours actuellement appliqués en routine pour les corrections d’impuretés lors

des mesures d’activité.

8.2.2 Détermination des coefficients d’étalonnage d’une chambre d’ionisation pressurisée sous un

mélange d’argon et de xénon

Ce sujet s’inscrivait dans la continuité de l’étude précédente. Je l’ai confié à M. M. R.

Mesradi, étudiant Post Doctoral. L’objectif consistait à déterminer les coefficients d’étalonnage d’une

autre chambre d’ionisation du LNHB (chambre fabriquée par la société Vacutec en Allemagne). Cette

chambre d’ionisation présente la particularité de contenir un mélange de gaz argon et xénon ce qui lui

confère une meilleure sensibilité que la chambre décrite précédemment (paragraphe 8.2.1). La

difficulté de ce travail résidait dans la détermination de la proportion massique et la pression partielle

de chacun des deux gaz. Ces données restent d’ailleurs inconnues au fabriquant lui-même. La

confrontation des résultats de la simulation avec ceux obtenus expérimentalement a permis de les

déterminer. Par ailleurs, les résultats des simulations ont mis en évidence une discontinuité de la

courbe de réponse du détecteur aux photons. L’ensemble de ce travail permet de calculer les

coefficients d’étalonnage de radionucléides émetteurs de photons pour lesquels la chambre n’est pas

étalonnée avec une incertitude de l’ordre de 1 %. Désormais, l’activité d’une solution radioactive

contenant des impuretés peut être corrigée de la contribution des impuretés radionucléidiques (comme

décrit dans le paragraphe n° 8.3.2). Ce travail a fait l’objet d’une publication (Amiot et al., 2012).

8.2.3 Développement d’une nouvelle chambre d’ionisation à pression variable et contrôlée

Ce projet a été développé pour garantir la précision de la mesure de l’activité injectée au

patient dans le cadre d’examens de diagnostic et de radiothérapie interne. L’objectif consiste à

appliquer la méthode décrite précédemment afin de déterminer, par calcul, les coefficients

d’étalonnage pour les nombreuses géométries d’échantillons utilisées dans les services de médecine

nucléaire. En effet, parfois, certains services de médecine nucléaire utilisent le même coefficient

d’étalonnage pour des échantillons de volumes différents et dans des conditionnements différents

(flacon, mini-flacon, seringues, …). Or, les écarts sur les mesures d’activité peuvent varier de quelques

pour mille à 10 pour cent pour certains radionucléides utilisés pour le diagnostic et jusqu’à plus de 30

pour cent pour le Y-90, radionucléide utilisé en radiothérapie interne.

La méthode de détermination des coefficients d’étalonnage des chambres d’ionisation à l’aide

de la simulation Monte Carlo, appliquée au laboratoire, nécessite l’utilisation d’un paramètre

ajustable. Ce paramètre est identique pour tous les radionucléides. Il s’agit principalement de la masse

volumique du gaz. En effet, elle n’est pas renseignée précisément par le constructeur et des écarts de

plus de 10 % ont été obtenus entre les données du constructeur et les valeurs déterminées à l’aide la

simulation. Afin de vérifier cette hypothèse, j’ai proposé un nouveau programme de recherche, validé

par le conseil scientifique du LNE.

La première étape de ce projet concerne la conception d’un nouveau dispositif expérimental constitué

d’un système d’alimentation en gaz et d’un prototype de chambre d’ionisation. Le système

d’alimentation en gaz permettra de maîtriser la valeur de la pression du gaz porteur avec une

incertitude de 0,15 % sur une gamme de pression de 1bar à 20 bars. Il permettra également de faire

varier la pression imposée à la chambre de mesure et de confronter les valeurs de pression mesurées à

celles utilisées pour la simulation. La chambre d’ionisation pourra être alimentée par trois gaz

différents successivement (argon, azote, xénon) ou par des mélanges de gaz binaires et ternaires. Le

système d’alimentation en gaz a été livré au LNHB en avril 2012 et ses performances sont conformes

au cahier des charges.

La deuxième étape consiste au développement du prototype de chambre d’ionisation à l’aide

de simulation Monte Carlo. J’ai confié ce sujet de recherche à M. Cédric Golabek étudiant Post

Page 18: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

15

Doctoral. Ses travaux ont permis de rédiger un cahier des charges. Des entreprises sont actuellement

consultées pour la réalisation du détecteur.

Ce travail pourra être poursuivi dans le cadre d’une thèse qui débutera à l’automne 2013 et

portera sur l’étude de la nouvelle chambre d’ionisation à pression variable et contrôlée. Au cours de ce

travail, la chambre d’ionisation développée au LNHB pourra être mise en service et étalonnée pour les

produits radiopharmaceutiques dans les divers conditionnements utilisés en routine clinique. Il s’agira

alors de confronter ces résultats avec ceux obtenus par la simulation Monte Carlo. Ces travaux

pourront être réalisés pour différentes natures de gaz porteur et différentes valeurs de masse

volumique. Par ailleurs, nous envisageons d’explorer d’autres paramètres à l’aide de cette installation.

Nous nous attacherons à mesurer l’énergie moyenne nécessaire pour créer une paire d’ions (W) dans

un gaz sous pression de manière relative. En effet, ce paramètre est très mal connu pour les gaz

comme le xénon, le krypton, les mélanges de gaz et pour les gaz pressurisés en général. Le présent

dispositif expérimental sera tout à fait adapté pour ces mesures et pourra contribuer à l’apport de

données dans un domaine encore peu exploré des gaz pressurisés.

Références

Amiot, M.N., M.R. Mesradi, V. Chisté, M. Morin, and F. Rigoulay, Comparison of experimental and

calculated calibration coefficients for a high sensitivity ionization chamber, Applied Radiation and

Isotopes, 70, 2232-2236, 2012.

M.N. Amiot-Péron, P. StemmLer, G. Soullié, V. Greiner, P. Populus, P. Chevallier, J.C. Protas.

Measurements of linear absorption coefficients of liquid scintillators using synchrotron radiation.

Applied Radiation and Isotopes, 52, 649, 2000.

Berger, M.J., Hubbell, J.H., Photon Cross-sections. Program XCOM ver 1.2. on a Personal Computer,

NBS, Washington DC,1987.

J.B. Birks. The Theory and Practice of Scintillation Counting (Oxford: Pergamon), 1964.

C. Bobin, C. Thiam, J. Bouchard, F. Jaubert. Application of a stochastic TDCR model based on

Geant4 for Cherenkov primary measurements. Applied Radiation and Isotopes, 68 (12), 2366, 2010.

R. Broda, K. Pochwalski, and T. Radoszewski. Calculation of liquid-scintillation detector efficiency

Applied Radiation and Isotopes, 39, 159, 1988.

R. Broda, M.N. Péron, P. Cassette, T. Terlikowska, and D. Hainos. Standardization of Ce-139 by the

liquid scintillation counting using the triple to double coincidence method. Applied Radiation and

Isotopes 49 , 1035, 1998.

R. Broda, P. Cassette, K. Kossert Radionuclide metrology using liquid scintillation counting.

Metrologia, 44, S36–S52, 2007.

P. Cassette, I. Tartes, F. Maguet, J. Plagnard, M.C. Lépy, F. Jaubert. Measurement of photon

absorption coefficients of liquid scintillators in the 5 to 12 keV energy range using a monochromatic

X-ray source. LSC, 2005 Advances in Liquid Scintillation Spectrometry, S. Chalupnik, F.

Schoenhofer, J. Noakes RADIOCARBON, 125, 2006.

P. Cassette, T. Altzitzoglou, R. Broda, R. Collé, P. Dryák, P. De Felice, E. Günther, J.M. Los Arcos,

G. Ratel, B. Simpson, F. Verregen. Comparison of activity concentration measurement of Ni-63 and

Fe-55 in the framework of the EUROMET 297 project. Applied Radiation and Isotopes, 49, 1403–

1410, 1998.

Page 19: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

16

A. De Vismes, M.N. Amiot. Towards absolute activity measurements by ionisation chambers using

Penelope Monte Carlo code, Applied Radiation and Isotopes, 59/4, 267, 2003.

A. Grau Malonda. Counting efficiency for electron capture radionuclides. International Applied

Radiation and Isotopes, 33, 371, 1982.

E. Günther. Private communication, 1996.

M.N. Péron, P. Cassette. Coco, a Compton coincidence experiment to study liquid scintillator response

in the 1-20 keV energy range. Nuclear Instruments & Methods in Physics Research, A 353, 41, 1994.

M.N. Péron, P. Cassette. A Compton coincidence study of liquid scintillator response to low-energy

electrons. Nuclear Instruments & Methods in Physics Research, A 369, 344, 1996a.

M.N. Péron, P. Cassette. Mesure de la réponse lumineuse de scintillateurs liquides à des électrons

monoénergétiques d’énergie inférieure à 100 keV. Bulletin du BNM 105, 34, 1996b.

K. Pochwalski, and T. Radoszewski. Disintegration rate determination by liquid scintillation counting

using triple to double coincidence ratio (TDCR) method IBJ Report INR 1848/OPiDI/E/A, ´ Swierk,

Poland, 1979.

Salvat, F., Fernandez-Varea, J.M., Acosta, E. and Sempau, J., 2001. PENELOPE, A Code System for

Monte Carlo Simulation of Electron and Photon Transport, Proceedings of workshop / training

Course, OECD/NEA 5-7 November 2001, NEA/NSC/DOC(2001)19, ISBN:92-64-18475-9, 2001.

C. Thiam, C. Bobin, B. Chauvenet, J. Bouchard. Application of TDCR-Geant4 modeling to

standardization of (63)Ni. Applied Radiation and Isotopes, Doi:10.1016/j;apradiso.2012.02.092, 2012.

R. Vatin. Mesure absolue de l’activité des radionucléides émetteurs bêta purs par scintillateur liquide à

l’aide d’un détecteur à 3 photomultiplicateurs Bulletin du BNM, No 85, 1991.

1. Liste de publications

1.1 Articles dans les revues internationales avec comité de lecture

M.N. Amiot, M.M. Bé, T. Branger, P. Cassette, M.C. Lépy, Y. Ménesguen, I. Da Silva.

Standardization of 64

Cu using an improved decay scheme. Nuclear Instruments & Methods in Physics

Research, 10.1016/j.nima.2012.05.025, 2012.

C. Michotte, G. Ratel, S Courte, E Verdeau and M.N. Amiot. Activity measurements of the

radionuclide 111

In for the LNE–LNHB, France in the ongoing comparison BIPM.RI(II)-K1.In-

111Metrologia 47 06019, 2010.

M.M. Bé, B. Chauvenet, M.N. Amiot, C. Bobin, M.-C. Lépy, T. Branger, I. Lanièce, A. Luca, M.

Sahagia, A.C. Wätjen, K. Kossert, O. Ott, O. Nähle, P. Dryák, J. Sochorov, P. Kovar, P. Auerbach, T.

Altzitzoglou, S. Pommé, G. Sibbens, R. Van Ammel, J. Paepen, A. Iwahara, J.U. Delgado, R. Poledna

International exercise on 124

Sb photon emission intensities determination. Nuclear Instruments &

Methods in Physics Research 68 / 10, 2026-2030, 2010.

B. Chauvenet, M.M. Bé, M.N. Amiot, C. Bobin, M.-C. Lépy, T. Branger, I. Lanièce, A. Luca, M.

Sahagia, A.C. Wätjen, K. Kossert, O. Ott, O. Nähle, P. Dryák, J. Sochorovà, P. Kovar, P. Auerbach, T.

Altzitzoglou, S. Pommé, G. Sibbens, R. Van Ammel, J. Paepen, A. Iwahara, J.U. Delgado, R. Poledna,

C.J. da Silva, L. Johansson, A. Stroak, C. Bailat, Y. Nedjadi and P. Spring. International exercise on

Page 20: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

17

124Sb activity measurements. Nuclear Instruments & Methods in Physics Research, 68 / 7-8,1207-

1210, 2010.

M.C. Lépy, M.N. Amiot, M.M. Bé, P. Cassette. Determination of the intensity of X- and gamma-ray

emissions in the decay of 153

Sm. Nuclear Instruments & Methods in Physics Research, 64, 1428, 2006.

M.N. Amiot, J. Bouchard, M.M. Bé, J.A. Adamo. Half-life determination of 88

Y and 89

Sr. Applied

Radiation and Isotopes 62, 11, 2005.

E. Terechtchenko, M. Rasko, S. Sepman, A. Zanevsky, A. Tuan, M.N. Amiot, C. Bobin, J. Morel.

Study of XK and gamma photon emission following decay of 154

Eu. Applied Radiation and Isotopes

60 (2-4), 329, 2004.

M.N. Amiot. Ionization chamber activity measurement of 18

F, 111

In, 123

I and 99

Tcm using the Penelope

Ionization Chamber Simulation Method. Applied Radiation and Isotopes 60 (2-4), 529, 2004.

A. de Vismes, M.N. Amiot. Towards absolute activity measurements by ionisation chambers using

Penelope Monte Carlo code. Applied Radiation and Isotopes, 59/4, 267, 2003.

A. Lucas, M.N. Amiot, J. Morel. Determination of half-life and photon emission probabilities of 65

Zn.

Applied Radiation and Isotopes, 58, 607, 2003.

M.N. Péron, Y. Kergadalan. A new family of actinide ternary intermetallic compounds. Journal of

Alloys and Compounds, 201, 203, 1993.

1.2 Articles dans les revues nationales avec comité de lecture

M.N. Péron, P. Cassette. Mesure de la réponse lumineuse de scintillateurs liquides à des électrons

monoénergétiques d’énergie inférieure à 100 keV. Bulletin du BNM 105, 34, 1996.

1.3 Brevet

M.N. Amiot, I. Aubineau-Lanièce. « Méthodologie de détermination de coefficients d’étalonnage par

calcul » (WO/2007/054575).

1.4 Articles dans des conférences internationales avec comité de lecture

Amiot, M.N., M.R. Mesradi, V. Chisté, M. Morin, and F. Rigoulay, Comparison of experimental and

calculated calibration coefficients for a high sensitivity ionization chamber, Applied Radiation and

Isotopes, 70, 2232-2236, 2012.

M.M. Bé, P. Cassette, M.C. Lépy, M.N. Amiot, K. Kossert, O. J. Nähle, O. Ott, C Wanke, P. Dryák,

G. Ratel, M. Sahagia, A. Luca, A. Antohe, L. Johansson, J. Keightley, A. PearceStandardization,

decay data measurements and evaluation of Cu-64. Applied Radiation and Isotopes, 28, 2012.

M.N. Amiot-Péron, P. StemmLer, G. Soullié, V. Greiner, P. Populus, P. Chevallier, J.C. Protas.

Measurements of linear absorption coefficients of liquid scintillators using synchrotron radiation.

Applied Radiation and Isotopes, 52, 649, 2000.

T. Terlikowska, P. Cassette, M.N. Péron, R. Broda, D. Hainos, I. Tartes and T. Kempisty. Study of the

stability of 63

Ni sources in Ultima Gold liquid scintillation cocktail. Applied Radiation and Isotopes,

49 p 1041, 1998.

Page 21: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

18

R. Broda, M.N. Péron, P. Cassette, T. Terlikowska, and D. Hainos. Standardization of 139

Ce by the

liquid scintillation counting using the triple to double coincidence method. Applied Radiation and

Isotopes, 49, 1035, 1998.

M.N. Péron, P. Cassette, 1996. Absolute efficiency of LS cocktails using a Compton coincidence

method. Liquid Scintillation Spectrometry. G.T. Cook, D.D. Harknessn A.B. MacKenzie, B.F. Miller,

E.M. Scott. RADIOCARBON, 209,1994.

M.N. Péron, P. Cassette. A Compton coincidence study of liquid scintillator response to low-energy

electrons. Nuclear Instruments & Methods in Physics Research, A 369, 344, 1996.

M.N. Péron, P. Cassette. Coco, a Compton coincidence experiment to study liquid scintillator response

in the 1-20 keV energy range. Nuclear Instruments & Methods in Physics Research, A 353, 41, 1994.

1.5 Communications orales, posters dans des conférences internationales

M.R. Mesradi, M.N. Amiot, M. Morin, F. Rigoulay. Comparison of Monte Carlo simulations of a high

sensitivity pressurized ionization chamber. Le 2ème

Congrès International Radiations Médicales :

Recherche et Applications

7-9 Avril 2010 à Marrakech – Maroc.

1.6 Rapports de recherche

M.N. Amiot. Livraison du système d’alimentation en gaz par la société 2M Process.

Note Technique LNHB 12-20 (2012).

M.N. Amiot. Réception en usine d'un système d'alimentation en gaz neutre.

Note Technique LNHB 12-18 (2012).

L. Lebreton, M.N. Amiot. Développements de systèmes d'alimentation en gaz

Note Technique LNHB 12-10 (2012).

M.N. Amiot, C. Golabek. Specifications regarding the realization of a special pressurized ionization

chamber.

Note Technique LNHB 12-09 (2012).

C. Golabek, M.N. Amiot. Etude de conception d'une chambre d'ionisation à l'aide du code de

simulation Monte Carlo PENELOPE.

Note Technique LNHB 12-07 (2012).

M.N. Amiot. Analyse des offres de réalisation et montage d’un banc d’alimentation en gaz.

Note Technique LNHB 10-63 (2010).

M.N. Amiot, M. Morin, F. Rigoulay, I. Le Garreres, S. Morelli, D. LaCour, T. Branger, F. Jaubert, P.

Cassette, L. Ferreux, M.C. Lépy, F. Dupanloup, G. Beaudoin. Etude de l’influence de la nature de la

solution sur la réponse de chambre d’ionisation pour l’étalonnage en Zévalin en flacon de réaction.

Note Technique LNHB 10-06 (2010).

M.N. Amiot. Cahier des charges pour la réalisation d’un banc d’alimentation en gaz d’un détecteur.

Note Technique LNHB 09-52 (2009).

M.C. Lépy, M.N. Amiot, M.M. Bé, C. Bobin, T. Branger, M. Morin, F. Rigoulay. Mesure d’activité et

étude du schéma de désintégration du 124Sb.

Note Technique LNHB 09-20 (2009).

Page 22: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

19

M.N. Amiot. État des lieux et contribution du LNE-LNHB au groupe de travail « Realization of the

Becquerel at the basic level » du Comité Consultatif des rayonnements ionisants CCRI(II).

Note Technique LNHB 08-48 (2008).

M.N. Amiot Mode opératoire pour l’étude de linéarité et l’étalonnage de deux chambres d’ionisation

HDR1000.

Note technique 08-47 (2008).

M.N. Amiot. Proposition de Projet Européen SHARP FP7-Fission-2007

Note Technique LNHB 08-42 (2008).

M.N. Amiot. Etude expérimentale de l’influence de la nature de la solution sur la réponse de chambres

d’ionisation pour le 111In.

Note Technique LNHB 08-31 (2008).

M. Morin, M.N. Amiot, F. Rigoulay. Etude de la répétabilité et de la reproductibilité des mesures en

chambre d’ionisation 6D.

Note Technique LNHB 08-22 (2008).

M. Morin, M.N. Amiot, F. Rigoulay. Etude de la répétabilité et de la reproductibilité des mesures en

chambre d’ionisation 2A.

Note Technique LNHB 08-21 (2008).

M. Morin, M.N. Amiot. Synthèse de la validation du dossier de méthode R22 « Etalonnage des

activimètres ». Note Technique LNHB 08-17 (2008).

M. Morin, M.N. Amiot. Synthèse de la validation du dossier de méthode R21 « Utilisation des

chambres d’ionisation à puits ».

Note Technique LNHB 08-11 (2008).

M.N. Amiot. Cahier des charges pour une prestation de programmation du logiciel Normandy.

Note Technique LNHB 06-10 (2006).

M.N. Amiot. Validation du logiciel Normandy V1.2.1.

Note Technique LNHB 05-57 (2006).

M.N. Amiot. Validation du programme Normandy (V1.0).

Note Technique LNHB 05-51 (2005).

P. Blanchis, M.N. Amiot, M. Moune, I. Gardin, A. Martineau, M. Ricard, S. Bonnot-Lours, A.

Dumont, V. Lemercier, N. Rizzo-Padoin. Guide d’utilisation et de contrôle des activimètres.

Note Technique LNHB 06-33 (2006).

M.M. Bé, M.N. Amiot, C. Bobin, M.C. Lépy, J. Plagnard, J.M. Lee, K.B. Lee, T.S. Park, A. Luca, M.

Sahagia, A.M. Razdolescu, L. Grigorescu, Y. Sato, Y. Hino, K. Kossert, R. Klein, M.K.H. Schneider,

H. Schrader, P. Dryák, J. Sochorová, P. Kovar, P. Auerbach, M. Havelka, T. Altzizoglou, A. Iwahara,

M.A.L. da Silva, J.U. Delegado, C.J. da Silva, L. Johansson, S. Collins, A. Stroak. Activity

measurements and gamma emission intensities determination in the decay of 65

Zn.

Rapport CEA-R-6081 CEA Saclay, Gif-sur-Yvette, France (2005).

M.N. Amiot, C. Bobin. Mesure d'activité massique du Cs-134, collaboration avec E. Terechtchenko

(VNIIM)

Note Technique LNHB 03-05 (2003).

Page 23: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

20

M.N. Péron, J. Bouchard, D. Hainos, M.C. Lépy, J. Plagnard, C. Dulieu, P. Cassette, J. de Sanoit, N.

Coursol. Mesures d’activité de Sr-90 (SIR oct. 1996) et de Y-90 pur.

Note Technique LPRI 97/002 (1997).

M.N. Péron, I. Tartes, D. Hainos, J. de Sanoit, P. Cassette. Absolute measurements of Ni-63 and

stability of Ni-63 and Fe-55 by liquid scintillation counting for the Euromet 297 Intercomparison.

Note Technique LPRI 97/003 (1997).

M.N. Péron. Etude de la réponse lumineuse des scintillateurs liquides à des électrons

monoénergétiques de basse énergie. Thèse de doctorat, Université Paris XI (1995).

Page 24: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

21

TABLE DES ABRÉVIATIONS

A

ADN : Acide désoxyribonucléique

AFSSAPS : Association Française de Sécurité SAnitaires des Produits de Santé

AIEA : Agence Internationale pour l’Energie Atomique

ALARA : « as low as reasonably achievable »

AMM : Autorisations de Mise sur le Marché

ANSTO : Australian Nuclear Science and Technology Organisation

ASNM : Agence Nationale de Sécurité du Médicament et des produits de santé

ATEX : ATmosphères EXplosibles

AZ91A : alliage de magnésium

B

BARC : Bhabha Atomic Research Centre of India

BGO : Scintillateur composé de Bismuth Germanate Bi4Ge3O12

BIPM : Bureau International des Poids et Mesures

BNM : Bureau National de Métrologie

Butyl-PBD : le 2-(4-ter-butylphenyl)-5-(4-biphénylyl)-1,3,4-oxadiazole

C

CCEMRI : Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants

CCRI : Le Comité Consultatif International pour les rayonnements ionisants

CDF : Cellule de Données Fondamentales du LNHB

CEA : Commissariat à l’Energie Atomique et aux énergies alternatives

DRT/SAR : Direction des Technologies Avancées / Service des Applications des

Radionucléides

CEI : Commission Electrotechnique et Internationale

CERCA/LEA : Compagnie pour l'Etude et la Réalisation de Combustibles Atomiques /

Laboratoire Étalon d’Activité

CERN : Conseil européen pour la recherche nucléaire

CGPM : Conférence Générale des Poids et Mesures

Page 25: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

22

Choline : Vitamine B (2-hydroxyethyl-trimethylazanium)

CIEMAT : laboratoire primaire national de métrologie espagnol

CIPM : Comité International des Poids et Mesures

CIPR : Commission Internationale pour la Protection Radiologique

CMC : Calibration and Measurements Capabilities

ČMI : Czech Metrology Institute/Ceský metrologický institute, République tchèque

CNEA : National Commission of Atomic Energy, Argentine

COFRAC : Comité Français d’Accréditation

CRC-15R, CRC-35R et CRC-12

CSIR-NML : National Metallurgical Laboratory of the Council of Scientific & Industrial

Research of India

CZT : Cadmium zinc telluride, (CdZnTe) or CZT detector

D

DDEP : collaboration entre les laboratoires homologues internationaux dans le cadre du

« Decay Data Evaluation Project »

DIN : Di-IsopropylNaphtalène

DM2I : Département Métrologie, Instrumentation et Information du LNHB

DOPA : 3,4-dihydroxyphénylalanine, précurseur de neurotransmetteur

DSM : Direction des Sciences de la Matière du CEA à Saclay

DRT : Direction de la Recherche Technologique du CEA

E

ENEA : AtomicaNational Agency for Atomic Energy (Ente Nazionale per l'Energia) of Italy

EMPIR : European Metrology Program for Innovation and Research

EMRP : Programme européen de recherche en métrologie

EURAMET : Organisation régionale Européenne (European Association of National

Metrology Institutes)

EXRS : European Conference on X-Ray Spectrometry

F

Page 26: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

23

FDG : molécule de fluorodesoxyglucose

FPGA : Field-Programmable Gate Array, réseau de portes programmables in situ

G

GEP-NETs : tumeurs métastatiques neuroendocrines gastroentéro-pancréatiques

GUM : Guide d’expression des incertitudes et mesures (Guide to the Expression of

Uncertainty in Measurement)

H

-

I

IBA / Cisbio : Société CIS bio du groupe IBA

ICRM : Internatinal Conference on Radionuclide Metrology

ICRU : International Commission on Radiation Units and Measurements

IFIN-HH : Horia Hulubei National Institute of Physics and Nuclear Engineering, Roumania

ILAC : Organisme mondial pour la reconnaissance de l’accréditation des laboratoires et des

organismes (International Laboratory Accreditation Cooperation)

IMNC : Laboratoire d’Imagerie et Modélisation en Neurobiologie et Cancérologie à Orsay

IRA : Institut de RAdiophysique en Suisse

IRM : Imagerie par Résonance Magnétique fonctionnelle

IRMM : Joint research center of Institute of Reference Materails and Measurements

IRSN-LMDN : Institut de Radioprotection et de Sûreté Nucléaire-Laboratoire de Métrologie

et de Dosimétrie des Neutrons

ISO : l’Organisation Internationale de Normalisation

ISO/CEI 17025 : norme édictée par l’Organisation Internationale de Normalisation (ISO) et

par la Commission Electrotechnique Internationale (CEI)

IUT : Institut Universitaire de Technologie

J

JORF : Journal Officiel de la République Française

Page 27: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

24

K

-

L

LIST Laboratoire d'Intégration des Systèmes et des Technologies de la DRT du CEA

LMA : Laboratoire de Métrologie de l’Activité du LNHB

LMDN : laboratoire de métrologie de la dosimétrie des neutrons de l’IRSN

LMRI : ancien nom du LNHB

LNE : Laboratoire National de métrologie et d’Essais

LNHB : Laboratoire National Henri Becquerel

LNMR : National Laboratory for Ionizing Radiation Metrology, Brasil

LNMRI : Laboratoire Natational de Métrologie des Rayonnements Ionisants, Brésil

LPP : Laboratoire de Physique et Plasmas (LPP) de quel organisme ?

LURE : Laboratoire pour l'Utilisation du Rayonnement Electromagnétique

LSO : OxyorthoSilicate de Lutécium, cristal scintillant

M

MAC 3 : Module électronique de gestion des coincidence pour la méthode RCTD

MetroMRT : projet européen Metrology for Molecular Radiotherapy

MIRD : Committee on Medical Internal Radiation Dose

MKS : le Mètre, le Kilogramme et la Seconde (système MKS)

MNM : groupe de Mesure Nucléaire et de Modélisation

MRA : Arrangement de reconnaissance mutuelle (Mutual Recognition Arrangement)

N

NAC : National Acclerator center, south Africa

NIST : National Institute of Standards and Technology

NMIJ : National Metrology Institute of Japan

NMISA : National Metrology Institute of South Africa

NPL : Laboratoire primaire anglais

Page 28: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

25

NRD : Niveau de Référence Diagnostique

O

OIML : Organisation Internationale de la Métrologie Légale

P

PETNET

PI : Propriété Intellectuelle

PMMA : poly-methylmethacrylate

POLATOM : Institut de l’énergie atomique polonais

PPO : le 5-diphenyloxazole

PTB : laboratoire primaire allemand

PXE : PhenylXylylEthane

Q

-

R

RIDIC : Radiation Internal Dose Information Center

RIV : radiothérapie interne vectorisée

RMO : Regional Metrology Organisation

RTCD : Rapport des Coïncidences Triples à Doubles

S

SI : système international d’unité

SIR : Système International de référence

SFPM : Société Française des physiciens médicaux

SMR : Section de Mesure des Radioéléments

SPEC : Service CEA de Physique de l’Etat Condensé

Page 29: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

26

T

TDCR : : les programmes TDCRB-1 ; TDCRB-02B ; TDCRB-02P et TDCREC

TDM : Tomodensitométrie

TEMP : Tomographie par Emission Monophotonique

TEP : Tomographie par Emission de Positrons

TSIE : ce paramètre est encore nommé ESRC ou SQPE ?

Triton X-100 : iso-octyl phenoxy-polyethoxyéthanol

U

V

VIM : Vocabulaire International de Métrologie

W – Z.

Page 30: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

27

RÉSUMÉ DE LA THÈSE

Les mesures primaires d’activité de radionucléides nécessitent la détermination de l’efficacité

de détection, en particulier lors des mesures primaires en scintillation liquide de radionucléides

émetteurs bêta purs d’énergie inférieure à 20 keV, tel le tritium, pour lesquelles la méconnaissance du

rendement lumineux est un facteur limitant.

Un dispositif expérimental original a été mis au point afin d’étudier le nombre moyen de

photoélectrons détectés de la réponse du scintillateur liquide en fonction de l’énergie déposée dans le

milieu par les électrons. Une source externe d’américium 241 permet de créer par effet Compton, des

électrons au sein du scintillateur. Un détecteur germanium est utilisé pour déterminer l’énergie des

photons diffusés et un photomultiplicateur est employé pour déterminer le nombre moyen de photons

émis par le scintillateur liquide. Un système de coïncidence entre les deux détecteurs permet de

sélectionner la réponse du scintillateur liquide pour des photons diffusés d’énergie déterminée qui

correspondent à des électrons Compton monoénergétiques. L’énergie de ces électrons est alors

associée à un nombre moyen de photoélectrons à l’aide de la modélisation de la réponse du

photomultiplicateur.

Une courbe expérimentale de la réponse du scintillateur liquide en fonction de l’énergie

déposée par les électrons est ainsi obtenue pour chaque scintillateur liquide étudié. Ces courbes sont

interprétées à l’aide des formules de Birks, Voltz et Wright. Les valeurs des paramètres de ces

équations, jusqu’alors estimées, sont déterminées avec une incertitude-type combinée relative de

l’ordre de 10 pour cent.

L’influence de la variation de la concentration en agent de quenching sur les paramètres de

l’expression de Birks a aussi été étudiée. Une diminution de ces paramètres avec l’augmentation en

agent de quenching a été observée. Une formule semi-empirique est proposée pour décrire ce

phénomène.

Ce nouveau dispositif expérimental peut également être utilisé pour les mesures directes

d’activité de radionucléides émetteurs bêta purs de basse énergie.

Page 31: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

28

MÉMOIRE DE RECHERCHE

Page 32: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

29

Introduction

Les problématiques liées à l’environnement et à la santé figurent parmi les plus importantes

préoccupations du XXIème

siècle parmi lesquelles le changement climatique, le taux de toxines ou de

substances dangereuses dans l’eau, l’air ou les aliments font partie des principales. Depuis les

accidents nucléaires de Tchernobyl puis de Fukushima et dans le domaine médical, les accidents de

surdosage en radiothérapie (l’affaire d’Épinal en France, l’hôpital Saint Vincent à New York, …), la

population mondiale se sent aujourd’hui particulièrement concernée par les rayonnements ionisants au

travers de leur dangerosité. Par ailleurs, dans nombre de pays en voie de développement, les activités

nucléaires ont connu depuis quelques années une rapide extension. On emploie des techniques

nucléaires dans des domaines très divers comme l'agriculture, la zoologie, l’hydrologie et également

en médecine (pour le diagnostic et la thérapie). Toutes ces activités exigent une protection fiable du

personnel contre les rayonnements, mais également celle des patients en radiothérapie et en médecine

nucléaire. Les services de radiothérapie et de médecine nucléaire doivent disposer de sources de

rayonnement et de techniques de mesures des rayonnements ionisants convenablement étalonnés ; il

faut aussi que ces services soient reliés au réseau mondial afin que les mesures puissent être vérifiées

par rapport aux étalons primaires.

Les organisations nationales et internationales expriment un intérêt grandissant pour la qualité

et la crédibilité des mesures et des essais. Il est donc important de mettre en œuvre des mesures fiables

et les plus exactes possible, agréées et approuvées par toutes les autorités concernées dans le monde.

La traçabilité, la fiabilité et la précision de leurs mesures est critique dans le domaine médical

notamment pour le traitement des cancers par radiothérapie ainsi que pour les examens isotopiques. En

France, 60 % des patients soignés pour un cancer suivent un traitement par radiothérapie, ce qui

représente pas moins de 180 000 traitements chaque année. Du fait du vieillissement de la population

et des diagnostics de plus en plus précoces, ce nombre est en constante augmentation. En effet, le

nombre des examens de médecine nucléaire ont augmenté de 38 % entre 2002 et 2007. Mais si la

radiothérapie externe et interne et les examens de médecine nucléaire sont actuellement en pleine

mutation, la connaissance actuelle des sciences pour les rayonnements ionisants n’autorise qu’une très

faible marge d’erreur, entre les exactitudes demandées en milieu médical et les références primaires

élaborées par les laboratoires nationaux de métrologie. Le rapport des incertitudes entre étalon de

référence souhaité par l'utilisateur et étalon primaire varie selon les secteurs d’application. En

dosimétrie, dans le cadre de la radiothérapie, ce rapport entre le niveau d’incertitudes demandées par

les utilisateurs et l’incertitude de la mesure primaire délivrée par les instituts nationaux de métrologie

est seulement d’un facteur 3. Il est d’un facteur 5 dans le cadre des examens isotopiques et de certaines

analyses nucléaires et d’environ un facteur 10 pour l'irradiation industrielle et la radioprotection.

De plus, il convient de souligner l'exigence croissante de la société en matière de qualité des

soins médicaux qui se décline au niveau de l’utilisation des rayonnements ionisants dans le domaine

de la radiothérapie, la curiethérapie et également en médecine nucléaire. Cette exigence de qualité des

soins s’est traduite en Europe par la publication de la directive 97/43 relative à la protection sanitaire

des personnes contre les dangers des rayonnements ionisants lors d’expositions à des fins médicales.

Elle conduit à l’amélioration de la précision de la dose reçue par le patient et à son optimisation dans

le respect du principe ALARA « as low as reasonably achievable » qui stipule qu’il convient de

Page 33: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

30

« maintenir toutes doses aux valeurs les plus faibles possibles auxquelles on peut parvenir, compte

tenu des aspects sociétaux et économiques ». En effet, l’objectif du traitement ou du diagnostic est de

déposer la dose au plus près de la tumeur, et/ou de l’organe cible tout en minimisant les effets

secondaires quand elle concerne les tissus sains à son voisinage tout en respectant la prescription du

médecin (dose reçue à la tumeur ou qualité de l’image dans le cadre de l’examen isotopique). De

même, une bonne mesure va protéger les patients des risques d’une surexposition qui peut s’avérer

grave ou d’une sous-exposition qui ne permettrait pas la récession de la maladie ou l’interprétation du

diagnostic à partir d’une image insuffisamment contrastée. La métrologie des rayonnements ionisants

se situe au cœur de ces préoccupations. Le Laboratoire National Henri Becquerel (LNHB) est l’un des

laboratoires nationaux de métrologie fédérés par le Laboratoire National de métrologie et des Essais

(LNE) pour notamment garantir la traçabilité au niveau international des mesures de dose et d’activité

réalisées dans les services de médecine utilisant les rayonnements ionisants. Il met au point des

méthodes primaires d’analyse et crée des étalons. Ils sont ensuite utilisés par des laboratoires de terrain

pour étalonner différents instruments de mesure, et valider leurs techniques de mesure.

Mes activités au sein du Laboratoire National Henri Becquerel ont consisté d’une part à assurer la

traçabilité des activités d’étalonnage et à maintenir les installations de mesure d’activité et d’autre part

à améliorer les méthodes de mesure dans le cadre de projets de recherche et développement. Ces

activités métrologiques ont été appliquées spécifiquement à la technique de mesure par scintillation

liquide puis aux mesures d’activité réalisées à l’aide de chambres d’ionisation scellées, pressurisées,

instruments utilisés dans les services de médecine nucléaire. La traçabilité des étalonnages consiste à

permettre aux utilisateurs de réaliser des mesures d’activité justes et précises, traçables au niveau

international. La traçabilité au niveau international est assurée par la participation du laboratoire aux

comparaisons internationales des étalons de radioactivité. Les résultats de ces comparaisons

permettent de vérifier la qualité des étalons primaires réalisés au laboratoire. La traçabilité est ensuite

assurée par l’étalonnage de nos installations de mesure secondaires à l’aide de ces étalons puis au

transfert de ces étalons secondaires aux utilisateurs au travers de prestations d’étalonnage de solutions

radioactives ou de détecteurs. Les activités de recherche et développement ont pour objectif

l’amélioration des méthodes primaires et secondaires d’étalonnage. Cela consiste à parfaire

l’exactitude des mesures notamment par une meilleure connaissance des paramètres influençant les

rendements de détection. Il s’agit également de maîtriser le calcul de leurs incertitudes et si possible de

les diminuer.

L’objectif de ce rapport consiste à présenter mes activités de recherche et développement durant

les 20 années que j’ai passées au service de la métrologie des rayonnements ionisants. Il se décline en

quatre parties. La première partie situe le contexte métrologique des activités de prestations et de

recherche. La deuxième partie présente les études développées pour l’amélioration de nos

connaissances sur les scintillateurs liquides pour la mesure primaire d’activité. La troisième partie

présente la médecine nucléaire, domaine principal d’application des mesures d’activité à l’aide de

chambres d’ionisation pressurisées présentées dans une quatrième et dernière partie. L’objectif final,

commun à toutes ces études, consiste à assurer et fiabiliser les mesures d’activité et, si possible,

diminuer leur incertitude.

Page 34: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

31

1 CONTEXTE

1.1 HISTORIQUE DE LA MÉTROLOGIE

1.1.1 LA MÉTROLOGIE DU XVIII ÈME

ET XIXÈME

SIECLE

C’est au cours du 18ème

siècle que commença à se manifester le besoin d’un système unifié de

mesure. En effet, en 1775 il existait en France plus de sept cents unités de mesure différentes. Elles se

basaient principalement sur les dimensions caractéristiques du corps humain. Les mesures de volume

et de longueur n’avaient aucun lien entre elles et chaque unité de mesure avait ses propres subdivisions

d’unité (la toise, unité de mesure de longueur était divisée en 6 pieds, la canne, autre unité de mesure

de longueur utilisée en Provence était divisée en 10 palmes). La variété des systèmes de mesures

impliquait des calculs laborieux lors des transactions commerciales et était une source d'erreurs et de

fraudes. A mesure que l'industrie et le commerce prenaient de l'ampleur, la nécessité d'une

harmonisation se faisait de plus en plus pressante. C’est ainsi qu’à partir du 22 août 1790 Louis XVI

demande à l'Académie des Sciences de nommer une commission pour définir les poids et mesures.

Elle propose alors, en mars 1791, d’appliquer le système décimal pour les poids, les mesures et la

monnaie et de faire référence au quart du méridien terrestre pour définir l’unité de longueur. C'est au

milieu du 19ème

siècle que se manifesta le besoin d’un système décimal international de poids et

mesures. L’uniformisation des étalons est apparue indispensable lorsqu'en 1851, à l'occasion de la

première exposition universelle de Londres, on se trouva en présence de l'immense variété de produits

dont la valeur, ainsi que les quantités, étaient rapportées à toutes sortes d’étalons de mesure (de toutes

les contrées du monde). Afin de faciliter les échanges commerciaux au niveau international, une

Commission du Mètre, internationale, fut créée en 1870. Elle fut le prélude à l'internationalisation du

Système Métrique. Après deux années de réunions, une quarantaine de résolutions furent prises

concernant la confection de nouveaux prototypes métriques et leur comparaison aux étalons des

Archives Françaises. L’aboutissement de ces travaux se traduisit par la signature, à Paris, de La

Convention du Mètre en 1875 par dix-sept États. Cette convention établit le Comité international des

Poids et Mesures et la Conférence générale des Poids et Mesures puis créa le Bureau International des

Poids et Mesures (BIPM) ayant son siège au Pavillon de Breteuil à Sèvres. Ainsi la France n’était pas

le dépositaire des étalons des poids et mesures, mais un organisme international, le BIPM en était

chargé, dont le siège resta néanmoins en France. La mission initiale du BIPM était d’assurer

l'établissement du Système Métrique dans le monde entier par la construction et la conservation des

nouveaux prototypes du mètre et du kilogramme, de leur comparer les étalons nationaux qui seraient

fournis aux différents états et de perfectionner les procédés de mesure pour favoriser le progrès dans

tous les domaines de la métrologie.

1.1.2 LA MÉTROLOGIE AU XXÈME

SIECLE

Les fondements de l’organisation de la métrologie mondiale ayant été institués à la fin du

XIXème

siècle, la métrologie s’est développée au cours du XXème

siècle en fonction des besoins générés

par les progrès scientifiques et techniques sans précédents dont l’expansion s’est considérablement

accélérée au cours des quarante dernières années. Les premières unités de base à savoir, le Mètre, le

Kilogramme et la Seconde (système MKS) établies à la fin du XIXème

siècle ont été complétées en

1954 par l’ampère, le kelvin et la candela, unités de base pour le courant électrique, la température

thermodynamique et l’intensité lumineuse respectivement. Mais, c’est seulement en 1960 qu’a été

établie la règlementation d’ensemble des unités de mesure et adopté le système international d’unité

Page 35: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

32

(SI) et les unités dérivées par la Conférence générale des poids et mesures. En 1971, la mole fut

ajoutée au SI pour l’unité de base de la quantité de matière. L’organisation de la métrologie

fondamentale a également évolué au cours du XIXème

siècle avec la création d’organisations régionales

de métrologie pour faciliter les échanges entre pays, de comités consultatifs pour la coordination des

travaux métrologiques et le système international de référence dans le domaine de la métrologie des

rayonnements ionisants. L’événement marquant de la métrologie mondiale à la fin du XXème

siècle

reste la signature de l’arrangement de reconnaissance mutuelle (MRA : Mutual Recognition

Arrangement) le 14 octobre 1999 entre les directeurs d’Instituts Nationaux de Métrologie de trente-

huit états membres du BIPM et deux représentants d’organisations internationales, AIEA et IRMM.

Cet arrangement permet la reconnaissance mutuelle entre états signataires de l’accord, des étalons de

mesure et des certificats d’étalonnage. Ces différents organismes sont décrits dans le paragraphe 1.2.

1.1.3 LA MÉTROLOGIE AU XXIÈME

SIÈCLE

La métrologie, science de la mesure, se retrouve, aujourd’hui, dans de nombreux domaines, de

la protection des consommateurs en passant par le commerce, la protection industrielle et la

transformation des produits jusqu’à l’énergie, l’environnement, la santé, la sécurité, les

télécommunications et les transports. La métrologie est un outil essentiel de la recherche fondamentale

ainsi que de l’innovation dans divers domaines. Le fait d’avoir accès à des mesures fiables est

essentiel pour les secteurs de l’industrie, de la science, pour l’élaboration des réglementations et la vie

quotidienne en général. Aujourd’hui, dans un contexte marqué par l’émergence des technologies

innovantes, par les enjeux sociétaux accrus (changement climatique, environnement, sécurité, santé,

énergie, …) et par l’accroissement des échanges économiques, la métrologie mondiale doit s’adapter

aux nouvelles technologies, optimiser ses performances pour assurer une meilleure traçabilité des

mesures dans tous les domaines. Il est donc important de mettre en œuvre des mesures fiables et

exactes, agréées et approuvées par toutes les autorités concernées dans le monde. C'est pourquoi les

métrologistes ne cessent de mettre en œuvre de nouvelles techniques de mesure, d’étalonnage, de

concevoir de nouveaux instruments et procédures, afin de satisfaire la demande sans cesse croissante

de l’industrie, du domaine médical, de la recherche, des consommateurs... Par exemple, en ce qui

concerne l’unité SI du kilogramme, un projet de recherche sur la balance du watt a été engagé au

niveau international dont l’objectif est de raccorder le kilogramme à la constante de Planck. Cette

dématérialisation de l’unité de masse permettra de s’affranchir du kilogramme étalon conservé au

BIPM et dont la quantité de matière varie au cours du temps. Dans un autre domaine, face à la

nécessité de promouvoir les économies d’énergie dans le cadre du développement durable, les diodes

électroluminescentes de lumière blanche de forte puissance sont appelées à remplacer les lampes à

incandescence conventionnelles. L’enjeu ici consiste à développer des nouvelles techniques permettant

de déterminer la qualité rayonnement émis et de le quantifier. Dans le domaine de la santé, de

nouvelles machines ont été récemment développées par les industriels pour la radiothérapie externe

notamment, afin de limiter l’exposition des tissus sains avoisinant la tumeur à irradier (radiothérapie

conformationnelle à modulation d’intensité, cyberknife, tomothérapie…). Les dimensions des champs

d’irradiation étant, de part ces nouvelles techniques, réduites et les conditions d’utilisation devant être

au plus proche des conditions de référence, de nouveaux détecteurs sont développés au laboratoire

national français de métrologie des rayonnements ionisants (le LNHB) afin de mettre au point une

référence pour les petits champs (2x2 cm2). L’utilisation de nouveaux radionucléides émerge dans les

services de médecine nucléaire pour l’imagerie isotopique (Tomographie par Emission de Positons

(TEP) et Tomographie par Emission MonoPhotonique (TEMP)) et également en thérapie interne

Page 36: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

33

vectorisée ou en radio-immunothérapie. Le LNHB veille et est sollicité par le milieu médical pour la

réalisation d’étalons pour ces radionucléides émergeants. Etant peu connus, leur caractérisation précise

est nécessaire en ce qui concerne leur schéma de désintégration mais également dans le choix de

techniques de mesure d’activité adaptées. Aussi de nouveaux programmes ont été engagés au LNHB

en ce sens (évaluation de données nucléaires, calcul de spectres bêta, mesures primaires et secondaires

d’activité, …) dont la finalité consiste à améliorer l’évaluation dosimétrique liée à l’injection de ces

produits radiopharmaceutiques.

1.2 ORGANISATION DE LA METROLOGIE

1.2.1 LA MÉTROLOGIE AU NIVEAU INTERNATIONAL

La métrologie a été initiée au niveau international par la signature de la convention du mètre

en 1875 (cf. paragraphe 1.1.1.). Aujourd’hui, elle est régie par deux entités internationales : le Bureau

International des Poids et Mesures (BIPM) chargé de la métrologie scientifique et l’Organisation

Internationale de la Métrologie Légale (OIML) chargée de la métrologie légale. L'objectif général de

l’OIML est la coordination et l'harmonisation à l'échelon international, des règlements administratifs et

des techniques de mesures, promulgués par les divers pays. Le BIPM avait, à l’origine, pour objectif

d’établir et de diffuser le système métrique dans le monde par la conservation des prototypes

internationaux du mètre et du kilogramme afin de promouvoir la métrologie et donc d'assurer

l'unification mondiale des mesures. Il a actuellement pour mission d'assurer l'unification mondiale des

mesures physiques et d'assurer leur traçabilité au Système International d'unités (SI). Ce travail couvre

de nombreuses activités de la propagation directe des unités (comme pour les masses et le temps) à la

coordination des comparaisons internationales des étalons nationaux (comme pour l'électricité et les

rayonnements ionisants).

1.2.1.1 La Conférence Générale des Poids et Mesures (CGPM)

Aux termes de la convention du Mètre, le BIPM fonctionne sous la surveillance exclusive du

Comité International des Poids et Mesures (CIPM), lui-même sous l'autorité de l’organe décisionnel de

la convention du Mètre, la Conférence Générale des Poids et Mesures. La CGPM élit les membres du

CIPM et réunit de façon périodique, actuellement tous les quatre ans, les représentants des

gouvernements des États membres. Ces personnalités examinent les mesures à mettre en œuvre pour

promouvoir et améliorer le système international d'unités. Le rôle de la CGPM consiste également à

examiner et décider des nouvelles déterminations métrologiques fondamentales, à adopter les

résolutions scientifiques de portée internationale et enfin à prendre les décisions importantes

concernant le fonctionnement et le développement du BIPM (en particulier de décider de sa dotation).

C’est en 1960 lors de la 11ème

conférence du CGPM que fut établie la réglementation d’ensemble des

unités de mesure et adopté le système international d’unités. Ce système comprend les unités de base

au nombre de sept (le mètre (m), le kilogramme (kg), la seconde (s), l'ampère (A), le kelvin (K), la

candela (cd), la mole (mol)) et les unités dérivées.

1.2.1.2 Le Comité International des Poids et Mesures (CIPM)

La tâche du CIPM, sous l’autorité déléguée de la CGPM, consiste à promouvoir l’uniformité

mondiale des unités de mesure, initier et coordonner les activités de métrologie et superviser et diriger

le travail du BIPM. Le CIPM remet un rapport annuel de la situation administrative et financière du

Page 37: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

34

Bureau aux gouvernements des États membres de la Convention du Mètre. Dans le cadre de la

coordination de la métrologie, le CIPM oriente et coordonne les travaux métrologiques que les États

membres décident de faire en commun (CIPM, 1998). Dans cet objectif, il s’appuie sur des Comités

consultatifs, au nombre de onze, qui rassemblent plusieurs dizaines d’experts mondiaux dans des

domaines particuliers des états, membres de la Convention du Mètre, et qui sont ses conseillers sur

toutes les questions scientifiques et techniques. À partir des actions engagées et des résultats des

travaux des comités consultatifs et du BIPM, le CIPM prépare la Conférence générale des poids et

mesures en lui soumettant des projets de résolutions.

1.2.1.3 L’arrangement de reconnaissance Mutuelle (MRA)

Depuis 1998, les comités consultatifs ont également pour rôle de promouvoir et maintenir

l’arrangement de reconnaissance mutuelle entre laboratoires de métrologie (CIPM, 1999 et 2003) qui

permet la reconnaissance mutuelle, entre états signataires de l’accord, des étalons de mesure et des

certificats d'étalonnage, sous certaines conditions (une des conditions essentielles imposées aux

signataires de l’accord concerne la mise en place d’un système d’assurance qualité et sa maintenance).

Cette reconnaissance mutuelle couvre les aptitudes de chaque laboratoire de métrologie en matière

d’étalonnage et de mesures accessibles aux utilisateurs dans des conditions normales. Ces données

sont tout d’abord validées au niveau régional puis par le JCRB (Joint Committee of the Regional

Metrology Organizations and the BIPM) à l’échelle mondiale et enfin communiquées au BIPM par

chaque laboratoire dans un document nommé « Calibration and Measurement Capabilities (CMCs) » ;

elles sont consultables sur le site internet du BIPM. Le contenu des CMCs d’un laboratoire doit être

compris dans le champ couvert par son système d’assurance qualité. La maintenance de ce dernier

ainsi que la participation active et régulière du laboratoire aux comparaisons clés sont des critères

indispensables lors de l’évaluation des CMCs pour leur diffusion par le BIPM. Les comparaisons clés

sont organisées par le CIPM, les organisations régionales de métrologie et le BIPM. Elles permettent

de déterminer une valeur de référence de la grandeur objet de la comparaison et également de

déterminer un degré d’équivalence par rapport à cette référence pour chaque laboratoire participant.

Afin d’assurer l’intégrité, l’efficacité et l’impartialité du système mondial de la métrologie, le CIPM et

l’organisation internationale d’accréditation (ILAC, International Laboratory Accreditation

Cooperation) ont signé un accord en 2005 décrivant le rôle et responsabilité respectives des instituts

nationaux de métrologie et des organismes nationaux d’accréditation reconnus. Ces actions permettent

de renforcer la confiance dans la validité des certificats d'étalonnage et de mesurage émis par les

laboratoires nationaux de métrologie au niveau mondial pour tous les utilisateurs.

1.2.2 LA MÉTROLOGIE AU NIVEAU EUROPÉEN

1.2.2.1 Organisation Régionales de Métrologie

Les organisations de métrologie dans le monde ont pour tâche d’établir des infrastructures de

mesure comprenant les étalons de mesure et les services d’étalonnage de chaque pays. Elles se sont

regroupées par régions pour former des organisations régionales mondiales de métrologie (Regional

Metrology Organisation : RMO), créées à partir des années 1970 afin de faciliter les échanges

scientifiques entre pays voisins. L’organisation régionale européenne (EURAMET, European

Association of National Metrology Institutes) est une association à but non lucratif et regroupe, à ce

jour, 35 pays, dont la France (Schmidt, 2008). Cette organisation a pour rôles principaux, de

développer une collaboration plus étroite entre les états membres sur des projets de recherche sur les

Page 38: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

35

références métrologiques (en particulier dans de nouveaux domaines pour répondre aux besoins

industriels et sociétaux), d’optimiser les utilisations des ressources et services métrologiques offerts

par les états en adéquation avec les besoins, de favoriser le transfert de compétences et de

connaissances d’un pays à l’autre et enfin d’organiser des comparaisons internationales, en lien avec le

BIPM. EURAMET est dirigé par un président élu pour trois ans par l’assemblée générale, et assisté

par un bureau des directeurs composé de neuf membres. Comme le CIPM, des comités techniques ont

été créés pour assurer l’activité technique d’EURAMET. Au nombre de onze, ils rassemblent des

experts du domaine de chacun des pays membres.

1.2.2.2 Implication des RMO dans le cadre du MRA

Depuis l’implémentation du MRA, les RMO ont également pour mission l’organisation de

comparaisons clés et supplémentaires, les évaluations intra et interrégionales des CMCs soumis par les

laboratoires et l’évaluation du système de management de la qualité des instituts nationaux de

métrologie et des instituts désignés signataires de l’arrangement (Pendrill, 2009). Les comparaisons

clés, organisées par les RMO, permettent de propager l’équivalence métrologique établie par les

comparaisons clés du CIPM à un plus grand nombre de laboratoires nationaux de métrologie (incluant

ceux des états et des entités économiques associés à la CGPM) (EURAMET, 2008). Les comparaisons

supplémentaires, quant à elles, répondent à des besoins spécifiques qui ne sont pas couverts par les

comparaisons clés (y compris des comparaisons pour renforcer la confiance dans les certificats

d’étalonnage et de mesurage). La redondance, la cohérence et l’opportunité sont des aspects

importants de ces comparaisons régionales, car elles contribuent à la robustesse de l’ensemble de

l’organisation métrologique.

1.2.2.3 Programme européen de recherche en métrologie (EMRP)

Compte tenu des nouveaux domaines faisant appel à la métrologie comme, par exemple, les

nanosciences, la biotechnologie, la santé et l’imagerie, des moyens complémentaires furent

nécessaires. C’est ainsi qu’EURAMET soumit en 2007, dans le cadre du 7ème

programme-cadre de

recherche de l’union européenne (défini par l’article 185 du traité sur le fonctionnement de l’Union

Européenne), un programme de recherche et développement en métrologie : EMRP, European

Metrology Research Program, cofinancé par l’Union Européenne (à hauteur de 50 %). Ce programme

permit en 2008, dans le cadre de la première phase, de lancer 21 nouveaux projets de recherche en

métrologie, dont la plupart sont à ce jour terminés (Schmid, 2008). En 2009, la deuxième phase du

projet EMRP permit aux instituts nationaux de métrologie participants, de bénéficier de financements

européens pour leurs projets de recherche (correspondant aux thématiques des appels à projet), jusqu’à

la fin de l’année 2017 (400 M euros sur sept ans ; Henson et al., 2009 ). Depuis 2009, une petite

centaine de projets de recherche « joint research projects » ont été lancés dans le cadre des appels à

projet de l’EMRP, sur des thématiques telles que l’énergie, la métrologie pour l’industrie, la

métrologie pour l’environnement, la métrologie pour la santé, l’extension du système international, la

métrologie pour les nouvelles technologies. Actuellement, EURAMET travaille avec la commission

européenne sur un nouveau programme : l’European Metrology Program for Innovation and Research

(EMPIR) qui fera suite à l’EMRP d’ici à 2020 (EURAMET, 2012).

Page 39: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

36

1.2.2.4 La métrologie française

En France, la coordination et l’animation de la métrologie est confiée au Laboratoire National

de métrologie et d’Essais (LNE) depuis 2005. Elle était assurée depuis 1969 par le Bureau National de

Métrologie, ancien groupement d’intérêt public. Le LNE a sa propre histoire qui ne sera pas détaillée

ici. Il a été créé en 1901, au sein du Conservatoire National des Arts et Métiers et avait pour vocation

de répondre aux besoins de mesures et d’essais de l’industrie, principalement dans les domaines des

matériaux, des machines et de la physique. Depuis 2005, le LNE est l’institut national de métrologie

français. Il est également chargé d'accompagner la collectivité dans son évolution et ses progrès, pour

améliorer la compétitivité des entreprises tout en préservant un haut niveau d'exigences en matière de

sécurité des consommateurs, santé publique, protection de l'environnement et maîtrise de l'énergie. Sa

mission de service public est précisée dans le cadre d'un contrat d'objectifs signé tous les quatre ans

avec l'État. Elle implique l'engagement financier de l'État sous forme de subventions annuelles. Grâce

à sa pluridisciplinarité technique, le LNE offre ses services aux entreprises dans les domaines de la

métrologie, de la santé, de la construction, de l'emballage, des transports, de l'environnement et des

produits industriels. Ses services multiples comprennent notamment des prestations d'étalonnages et

d'essais, de l'assistance technique et des prestations de formation. Il est par ailleurs organisme de

certification. Il apporte ainsi aux entreprises les solutions techniques dont elles ont besoin pour valider

la qualité et la conformité de leurs productions, et valoriser celles-ci sur les marchés.

En ce qui concerne la métrologie, le LNE couvre tous ses aspects, de la métrologie légale à la

métrologie fondamentale et il représente la France dans les instances de la Convention du Mètre. A ce

titre, le LNE est l’homologue des grands instituts nationaux de métrologie comme le NIST aux États-

Unis, le NPL en Angleterre ou encore la PTB en Allemagne. Il concourt notamment au maintien et au

développement des étalons français et à leur transfert vers les entreprises et les laboratoires, grâce au

système des chaînes nationales d'étalonnage pour six domaines d’unités. Enfin, il fédère trois autres

laboratoires nationaux de métrologie dont le Laboratoire National Henri Becquerel ainsi que sept

laboratoires associés afin de couvrir l’ensemble des domaines de la métrologie. Le LNE pilote

(notamment au LNHB) un grand nombre de projets de recherche appliquée retenus au niveau national

par le comité de la métrologie. Au niveau international, le LNE participe aux comparaisons clés ainsi

qu’aux travaux internationaux pour l’amélioration du Système International. Il est membre

d’EURAMET. Le LNHB réalise ces actions au nom du LNE pour le domaine des rayonnements

ionisants.

1.3 LA MÉTROLOGIE POUR LES RAYONNEMENTS IONISANTS

1.3.1 LA MÉTROLOGIE DES RAYONNEMENTS IONISANTS AU NIVEAU INTERNATIONAL

1.3.1.1 Le Comité Consultatif International pour les Rayonnements Ionisants (CCRI)

Le CIPM s’appuie sur onze comités consultatifs afin de gérer les questions de métrologie au

niveau mondial. Le comité consultatif pour les rayonnements ionisants a été créé en 1958 sous le nom

de Comité Consultatif pour les Etalons de Mesure des Rayonnements Ionisants (CCEMRI),

aujourd’hui nommé plus simplement le Comité Consultatif pour les Rayonnements Ionisants (CCRI).

Les activités de ce comité concernent principalement les définitions des grandeurs et des unités pour la

mesure de dose et de radioactivité (émissions x, gamma, de particules chargées et de neutrons) et la

coordination de la participation des laboratoires nationaux de métrologie au système international de

Page 40: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

37

référence. Il a pour rôle d’étudier les travaux et les progrès scientifiques et techniques réalisés en

métrologie ainsi que leurs conséquences métrologiques (CIPM, 2012). Le CCRI organise des

comparaisons clés internationales en s’appuyant sur le BIPM qui analyse leurs résultats. Enfin, il

conseille le CIPM pour ce qui concerne les activités scientifiques relatives à la métrologie des

rayonnements ionisants (ce qui inclut également le programme scientifique du BIPM dans ce

domaine). Ainsi, il émet des recommandations qui seront discutées par le CIPM, et présentées à la

CGPM.

Le CCRI est dirigé par un président et un secrétaire exécutif. Il est divisé en trois sections,

chacune dirigée par un président. La section I (CCRI(I)) prend en charge toutes les activités en relation

avec les mesures de dose, la section II (CCRI(II)), les activités relatives à la mesure de radioactivité et

la section III ((CCRI)(III)) se charge des activités relatives à la mesure des neutrons. Chaque section a

créé ses propres groupes de travail en fonction des thématiques qu’elle souhaite développer. La section

I a actuellement missionné trois groupes de travail, pour la section II, ils sont au nombre de quatre et

enfin la section III en a missionné un seul. Le CCRI a également missionné un groupe de travail

spécifique chargé de discuter des programmes des Organisations Régionales de Métrologie (RMO) en

particulier en ce qui concerne les comparaisons clés et les CMCs.

1.3.1.2 Le Système International de Référence (SIR)

Depuis 1976, le BIPM a mis en place un système de comparaisons internationales spécifique

aux radionucléides émetteurs gamma, nommé le Système International de Référence (SIR) (Rytz,

1978, 1983 ; Ratel, 2007). Il s’agit d’un dispositif expérimental constitué de deux chambres

d’ionisation qui permet, via la mesure de sources de radium-226 (appelées sources de référence), de

comparer les aptitudes de mesures d’activité de radionucléides émetteurs de rayonnement photonique

des laboratoires participant et cela sur de nombreuses années. De fait, un même laboratoire peut

comparer son aptitude actuelle à mesurer l’activité d’un radionucléide à celle qu’il avait présentée au

SIR, 20 ans auparavant. En effet, l’installation fonctionne depuis 1976 et sa stabilité est garantie par le

BIPM par le suivi de cinq sources de référence (Ratel, 2007). Cette installation présente de nombreux

avantages notamment par rapport aux comparaisons internationales prises en charge par les

laboratoires. Outre la pérennité des aptitudes des laboratoires à mesurer l’activité d’un radionucléide

donné, l’avantage principal du SIR réside dans l’absence de corrélation concernant la préparation des

échantillons (composition de la solution radioactive contenant le radionucléide et méthode de pesée).

Près de 1000 résultats de comparaisons SIR en provenance d’une trentaine d’instituts nationaux de

métrologie et d’instituts ou laboratoires désignés sont inclus dans les résultats des comparaisons clés et

consultables sur le site du BIPM. La participation des laboratoires au SIR contribue à la validation de

leur aptitude à mesurer l’activité de radionucléides et de leur participation à une comparaison clé. Le

SIR permet au BIPM d’améliorer et maintenir les valeurs de référence du système international pour

plus d’une soixantaine de radionucléides. L’installation SIR du BIPM est donc l’instrument de mesure

d’activité de radionucléides émetteurs gamma le mieux étalonné au monde. Sa courbe d’étalonnage

déterminée au BIPM (Michotte, 2002) permet de corriger de la présence d’impuretés radioactives pour

lesquelles le système n’est pas étalonné. Elle permet également de valider une comparaison lorsqu’une

solution étalon de radionucléide est mesurée pour la première fois. Si le résultat de la participation

d’un laboratoire au SIR, dans le cadre d’une comparaison clé, a été déterminé à l’aide d’une méthode

de mesure primaire et s’il est cohérent, le BIPM se charge de déterminer le degré d’équivalence du

Page 41: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

38

laboratoire pour la mesure d’activité du radionucléide concerné. Il complète ensuite la base de données

des valeurs de référence des comparaisons clés (Ratel, 2007).

Le BIPM projette d’étendre le SIR aux radionucléides émetteurs de rayonnement bêta ainsi

qu’aux radionucléides émetteurs gamma de très courte période comme le F-18 ou le C-11 par exemple

(Ratel, 2007). Des groupes de travail ont été créés par le CCRI(II) pour chacun des deux projets. Ainsi

de nouvelles méthodes de mesure par scintillation liquide ont été développées pour l’extension du SIR

aux émetteurs bêtas (Kossert, 2006 ; Rodriguez Barquero et Los Arcos, 2007 ; Cassette et Phuc Do,

2007). De même, une nouvelle installation a été développée pour la mesure des radionucléides

émetteurs de rayonnement gamma de courte période. Elle est établie autour d’un cristal puits Na(I)Tl,

pièce maîtresse d’un système portable qui permet de mesurer l’activité de radionucléides sur site

(Michotte, 2012).

1.3.2 LA MÉTROLOGIE DES RAYONNEMENTS IONISANTS AU NIVEAU EUROPÉEN

1.3.2.1 Organisation d’EURAMET

Comme le CIPM, l’organisation régionale européenne EURAMET s’appuie sur des comités

techniques. Au nombre de douze, les comités techniques sont répartis par domaine d’unité du système

international (métrologie en acoustique et vibrationnelle, en électricité et magnétisme, en

rayonnements ionisants, en chimie, …) et incluent également un comité spécifique au contrôle des

systèmes qualité et un comité pour les domaines interdisciplinaires. Ces comités techniques

rassemblent des experts européens du domaine métrologique.

1.3.2.2 Le comité technique d’EURAMET pour les rayonnements ionisants

Le comité technique pour les rayonnements ionisants (Technical Committee for Ionising

radiation (TC-IR)) est chargé de proposer et décider de l’organisation de comparaisons clés en

complément de celles lancées par le CIPM et le BIPM. Il organise également des comparaisons

supplémentaires pour répondre aux besoins spécifiques des instituts de métrologie. Le comité discute

également des sujets d’étude collaboratifs proposés par les pays membres dans le cadre d’EURAMET.

Les membres du comité sont également sollicités pour évaluer les CMCs soumis par les laboratoires

de métrologie dans le cadre intra et interrégional. Enfin, le comité contribue à l’élaboration des

thématiques pour les appels à projet EMRP au travers notamment de la définition de feuilles de route

(roadmaps) qui définissent les grands axes de recherche répondant aux besoins sociétaux des années à

venir. Trois « roadmaps » ont été présentées en janvier 2013 pour orienter les axes de recherche de la

métrologie européenne dans le domaine des rayonnements ionisants jusqu’en 2020.

1.3.3 LA METROLOGIE FRANÇAISE POUR LES RAYONNEMENTS IONISANTS

1.3.3.1 Un peu d’histoire

Le Laboratoire National Henri Becquerel (LNHB), est implanté au Commissariat à l’Énergie

Atomique et aux énergies alternatives (CEA). Il est l’un des trois laboratoires nationaux fédérés par le

LNE. Il est reconnu au niveau national et international comme le laboratoire de métrologie français

pour la réalisation des références dans le domaine des rayonnements ionisants depuis 1971 (désigné

alors par le Bureau National de Métrologie (BNM)). Nommé à l’époque SMR (Section de Mesure des

Radioéléments), il fut fondé en 1949 par le Professeur Boris Grinberg dans l’environnement du

Page 42: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

39

premier réacteur français Zoé, au fort de Châtillon. C’est en juin 1955 que le SMR rejoint le site de

Saclay du Commissariat à l’Energie Atomique. Il s’était déjà affirmé en métrologie par une

participation aux premières comparaisons internationales dans les années 50 puis par la fourniture

d’étalons de radioactivité à partir de 1960.

1.3.3.2 Le LNHB, service au sein du Commissariat à l’Energie Atomique et aux énergies

alternatives

Appartenant à la division de chimie dans les années 60, le LNHB est maintenant un service au

sein du Département Métrologie, Instrumentation et Information (DM2I) dans le cadre du Laboratoire

d'Intégration des Systèmes et des Technologies (LIST) de la Direction de la Recherche Technologique

(DRT). Les domaines d’innovation multisectoriels de la DRT recouvrent notamment la métrologie, les

technologies pour l’environnement, la santé, l’énergie et les nano et microtechnologies, ... Cette

direction a pour objectif d’identifier, de développer de nouvelles technologies, de les valoriser en

particulier par leur transfert vers les industriels intégrant ainsi la recherche amont, la recherche

appliquée et la valorisation industrielle. Ainsi, outre leurs activités de métrologie, les chercheurs du

LNHB, comme tous les chercheurs de la DRT, sont encouragés à identifier de futures technologies

prometteuses afin de les transférer aux industriels ; l’objectif global étant de renforcer la compétitivité

de l'industrie nationale. Cette stratégie favorise la création de brevets. La DRT soutient une politique

de Propriété Intellectuelle (PI) en incitant ses chercheurs à déposer des brevets, gage d'un transfert

industriel plus solide. Ce couplage fort avec le milieu industriel confère une "culture projet", dans un

souci d'Assurance Qualité, en respectant le cahier des charges imposé par les clients.

La recherche étant source d’innovation, la DRT maintient une R&D autonome afin de

régénérer ses connaissances et son savoir-faire de manière à maintenir l'expertise technique de ses

agents. A cette fin, elle soutient également les actions relatives à la Formation par la Recherche. A ce

titre, l'Habilitation à Diriger des Recherches est donc une valeur ajoutée dans l'exécution des projets de

recherche.

Le présent travail s’inscrit directement dans cette démarche. Forte de cette double culture

tournée à la fois vers le monde industriel et la recherche appliquée pour la métrologie, j’ai travaillé à la

réalisation des objectifs communs à la DRT et au LNE (1.2.2.4) : recherche et développement pour la

métrologie (développement de dispositifs expérimentaux spécifiques et d’un prototype de détecteur),

obtention d’un brevet, transfert d’activité de métrologie vers le groupe AREVA, réalisation de

prestations d’étalonnages au service des industriels pour la médecine nucléaire, expertise auprès de

sociétés savantes, de groupes de travail internationaux, de l’Agence Nationale de Sécurité du

Médicament et des industriels, formation d’étudiants et post-doctorants.

1.3.3.3 L’organisation du LNHB

Le laboratoire est divisé en trois entités : le Laboratoire de Métrologie de l’Activité (LMA), le

Laboratoire de Métrologie de la Dose (LMD) et la Cellule de Données Fondamentales (CDF). Cette

cellule travaille à l’évaluation et la diffusion des données nucléaires et atomiques. Ce travail s’effectue

en collaboration avec les laboratoires homologues internationaux dans le cadre du « Decay Data

Evaluation Project » (DDEP). Ces données sont indispensables aux calculs d’énergie déposée dans un

milieu par les rayonnements ionisants. Le LMA est chargé de la métrologie de la radioactivité. Cette

tâche consiste notamment à évaluer les radionucléides en termes d’activité et ainsi à réaliser des

Page 43: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

40

étalons primaires et secondaires d’activité de ces radionucléides et à assurer le transfert de ces

références aux utilisateurs dans divers domaines tels que la médecine nucléaire, l’industrie nucléaire,

la surveillance de l’environnement.

Le LMD est chargé de la métrologie de la dose. Cette activité consiste notamment à

déterminer les grandeurs caractérisant les transferts et dépôts d’énergie dans les milieux irradiés et

d’assurer leur transfert vers les utilisateurs dans les domaines tels que la radiothérapie, le

radiodiagnostic, la radioprotection et l’irradiation industrielle.

1.3.3.4 Les missions du LNHB en termes de métrologie

La mission principale du LNHB pour la métrologie consiste à développer et améliorer les

étalons de référence et de transfert pour les rayonnements ionisants (les principales unités dérivées du

système international concernent les grandeurs suivantes : l’activité (Bq), le flux d’émission (s-1

), le

kerma (gray), la dose absorbée (gray), et les équivalents de dose (sievert)). Le laboratoire met en

œuvre des moyens et des méthodes de référence pour ces grandeurs dans diverses gammes de valeurs

utiles. Il mène des recherches fondamentales ayant des implications métrologiques pour contribuer à

l'amélioration des définitions, des réalisations et des mises en pratique de ces unités. Ainsi, le

laboratoire fournit un effort permanent afin de maintenir les étalons qu’il réalise au meilleur niveau.

L’équivalence internationale de ses étalons ainsi que de ses méthodes de référence est assurée par la

participation du laboratoire à de nombreuses comparaisons internationales et en particulier aux

comparaisons clés. Le LNHB diffuse, via le BIPM, ses aptitudes en matière de mesure et

d’étalonnage, les CMCs (paragraphe 1.2.1.3). Elles sont rassemblées dans un tableau comportant

environ 300 entrées, réunissant les unités de mesure de dose et d’activité, renseignant pour chacune

d’entre elles, notamment, la grandeur mesurée, l’unité de mesure, la technique de mesure, les

conditions de mesure, l’incertitude de mesure accessible ….

Le LNHB a également pour mission de maintenir, développer et exploiter les moyens de

transfert et d’étalonnage pour assurer la traçabilité des étalonnages aux utilisateurs. Aussi, offre-t-il

des prestations d’étalonnage dont une grande partie est consacrée au domaine médical comme

l’étalonnage des dispositifs de contrôle des faisceaux de radiothérapie, de mammographie ou

l’étalonnage des appareils de mesure de l’activité injectée dans le cadre d’examens isotopiques. Dans

le domaine de la médecine nucléaire notamment, la qualité des prestations est cruciale ; elle se traduit

par une valeur d’incertitude type relative requise sur la dose de rayonnement délivrée au volume cible,

très faible (3,5 % à 5 %). Le laboratoire est également le laboratoire de référence pour la dosimétrie

des photons et des particules chargées.

1.3.3.5 Transfert de technologie

Une partie de mes activités de 1999 à 2011 a consisté à la réalisation de prestations

d’étalonnages d’activimètres pour les services de médecine nucléaire. Les activimètres sont des

chambres d’ionisation associées à leur électronique. Ces détecteurs sont utilisés notamment pour la

mesure d’activité de produits radiopharmaceutiques juste avant l’injection au patient pour des examens

de scintigraphie par exemple. Jusqu’en 2004, le LNHB se rendait sur site pour réaliser ces

étalonnages. En 2005, j’ai encadré un étudiant dans le cadre de son stage d’Institut Universitaire de

Technologie (IUT) pour le développement d’un logiciel de mesure d’activité de produits

radiopharmaceutiques. Le logiciel a été cédé sous licence à la société CERCA/LEA du groupe

Page 44: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

41

AREVA dans le cadre du transfert de la technologie de prestation d’étalonnage d’activimètre sur site

hospitalier. Ce transfert, dont j’avais la responsabilité scientifique, a consisté également à la formation

des personnels de la société CERCA/LEA au LNHB puis sur deux sites hospitaliers (le centre Frédéric

Joliot Curie à Orsay et l’hôpital européen Georges Pompidou). En 2007, la société CERCA/LEA a été

accréditée par le Comité Français d’Accréditation (COFRAC) pour cette activité qu’elle exerce

aujourd’hui. Depuis, dans le cadre de l’accord de licence, le LNHB réalise les prestations

d’étalonnages des activimètres neufs fournis par les constructeurs et la société CERCA/LEA réalise

les prestations sur site exclusivement.

1.3.3.6 La garantie d’accréditation du LNHB

Afin de faire reconnaître sa compétence et ses performances en matière de réalisation

d’étalons et d’étalonnages d’instruments ainsi qu’en matière de traçabilité au niveau international, le

LNHB est accrédité par le COFRAC. Cette accréditation est fondamentale pour le laboratoire afin de

répondre aux exigences de ses clients concernant l’assurance de la qualité et de la fiabilité de ses

étalonnages. Elle permet également de certifier au BIPM, qu’un système qualité a été strictement

appliqué dans le respect des normes internationales et que le laboratoire dispose de la compétence

nécessaire à l’exercice de son activité métrologique en tant que laboratoire désigné pour la métrologie

des rayonnements ionisants. Cette reconnaissance est essentielle à l’engagement du laboratoire pris

lors de la signature du MRA (voir paragraphe 1.2.1.3).

Aussi, les prestations proposées par le LNHB et répertoriées dans les CMCs du laboratoire

sont accréditées par le COFRAC. Elles sont notamment garanties conformes au référentiel NF EN

ISO/CEI 17025 sous le contrôle du COFRAC. Le référentiel ISO/CEI 17025 est une norme édictée

par l’Organisation Internationale de Normalisation (ISO) et par la Commission Electrotechnique

Internationale (CEI) en 2005 qui spécifie les exigences de qualité et de compétence propres aux

laboratoires d'essais et d’analyses. Le COFRAC est reconnu au niveau international par l’organisme

mondial pour la reconnaissance de l’accréditation des laboratoires et des organismes d’inspection

(ILAC). Ainsi, l’accréditation COFRAC du laboratoire est reconnue dans le monde pourvu que la

prestation concernée soit référencée dans le champ de l’accréditation ; cette reconnaissance est

renforcée par la signature de l’accord MRA du CIPM. Elle est surveillée annuellement et renouvelée

tous les 5 ans au moyen d’audits externes réalisés par le COFRAC.

1.3.3.7 Le laboratoire de métrologie de l’activité du LNHB

Le laboratoire de métrologie de l’activité maintient et développe des méthodes de mesures

primaires et secondaires d’activité et participe à des comparaisons internationales d’activités afin

d’assurer la fiabilité, la traçabilité et la précision de ses étalons. Les références primaires d’activité

sont constituées d’instruments et de méthodes de mesure spécifiques à chaque radionucléide, que ce

soit selon son état (liquide, solide ou gazeux) ou selon ses données nucléaires (émetteurs -,

émetteurs purs ou émetteurs . Parmi les principales méthodes primaires de mesure d’activité,

citons les méthodes de mesure par coïncidence qui permettent de mesurer la plupart des radionucléides

émetteurs - et -, la méthode utilisant un scintillateur cristal puits NaI(Tl), méthode quasiment

primaire pour la mesure de radionucléide émetteurs -et à schéma de désintégration complexe

(pour lesquels le rendement de détection est proche de l’unité), la méthode de mesure à angle solide

défini pour les mesures de radionucléides émetteurs et enfin la scintillation liquide pour les mesures

d’activité de radionucléides émetteurs et certains émetteurs . Plusieurs méthodes peuvent être

Page 45: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

42

mises en œuvre pour la mesure d’activité d’un même radionucléide pour assurer la redondance

métrologique et la robustesse des résultats. Les techniques de mesures d’activité secondaires sont

réalisées à l’aide de différents détecteurs choisis en fonction du radionucléide à mesurer (scintillation

liquide, spectrométrie x et gamma à l’aide de détecteurs germanium haute pureté et silicium, cristal

puits NaI(Tl) et les chambres d’ionisation à puits). La diversité de ces techniques nécessite la

préparation de sources radioactives spécifiques, stables dont la réalisation est assurée au sein du

laboratoire.

D’une façon générale, les actions engagées au LNHB sont orientées vers l’évaluation de

données de base, le développement de nouvelles méthodes de mesure et la recherche de nouveaux

étalons afin de répondre aux besoins croissants en aval et de préparer la métrologie de l’avenir. Afin

de répondre notamment aux enjeux sociétaux actuels, le laboratoire s’est engagé dans la réalisation

d’étalons de référence pour l’environnement, la mesure de spectres (à l’aide de détecteurs

cryogéniques et à semi-conducteurs) et l’étude de la réponse de détecteurs (caractérisation de

détecteurs semi-conducteurs sur la ligne consacrée à la métrologie du synchrotron Soleil, étude de

scintillateurs liquides, études des chambres d’ionisation, …). Mes activités de recherche se sont

inscrites dans cette dernière thématique, à savoir, l’étude de la réponse de détecteurs de rayonnements

tels les scintillateurs liquides et les chambres d’ionisation à puits pressurisées.

Page 46: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

43

2 MESURES PRIMAIRES ET ETUDES PAR SCINTILLATION LIQUIDE

2.1 BREF HISTORIQUE SUR LA DÉTECTION DES RAYONNEMENTS IONISANTS

L’histoire de la détection des rayonnements est étroitement liée à la découverte des

rayonnements ionisants, elle est commune aux chambres d’ionisation et aux scintillateurs liquides.

Tout a commencé avec la découverte du rayonnement x détecté à l’aide d’un écran thermoluminescent

en 1895 par le physicien allemand Wilhelm Conrad Röntgen suivie par la découverte de la

radioactivité en 1896 par le français Henri Becquerel (lors de ses travaux sur la phosphorescence

provoquée par l’uranium et ses composés impressionnant des plaques photographiques). Les travaux

de Becquerel ont initié la thématique de recherche de Marie Curie en 1897. Elle choisit de consacrer sa

thèse à l’étude des rayonnements émis par l’uranium (Curie, 1903). Elle s'attache alors à quantifier les

capacités ionisantes des sels d'uranium, dans un atelier rudimentaire mis à sa disposition par le

directeur de l'École municipale de physique et de chimie industrielles. La même année, Joseph John

Thomson découvre l’électron. En décembre Marie Curie élabore un protocole d'expérience utilisant,

comme banc de mesure, l'électromètre piézoélectrique élaboré par son mari Pierre Curie et son beau-

frère Jacques Curie. Elle mesure alors l'effet des rayonnements sur l'ionisation de l'air. Ainsi fut

conçue en 1898 la première chambre d’ionisation associée à un électromètre, pour la mesure

d’activité. Les travaux de J. J. Thomson avec la découverte de l’électron en collaboration avec W. C.

Röntgen ont permis la compréhension du fonctionnement du détecteur (Röntgen, Stokes et Thomson,

1899).

Ces travaux furent le point de départ du développement d’une grande variété de systèmes de

détection des rayonnements ionisants. Aux chambres d’ionisation de conception très diverses suivirent

les détecteurs à scintillation. Un premier détecteur à scintillation, le spinthariscope fut mis au point par

William Crookes en 1903. Il permettait l’observation visuelle des scintillations créées par l’interaction

d’un rayonnement ionisant avec une couche de sulfure de zinc recouvrant un écran. En 1911 fut

développée la chambre à brouillard par C. T. R. Wilson, matérialisant la trajectoire des particules,

permettant non seulement de les détecter mais également de les différencier selon leur nature et leur

énergie. Avec le développement des tubes photomultiplicateurs à la fin de la Seconde Guerre mondiale

(convertisseurs de lumière en signal électrique) de nombreux matériaux scintillants ont été étudiés.

Ainsi, les deux principaux types de détecteurs à scintillation ayant vu le jour entre 1948 et 1950 sont

les scintillateurs organiques (mélange d’un solvant avec un soluté comprenant des molécules

scintillantes formant des matériaux liquides ou solides) (Kallman, 1950 ; Reynolds et al., 1950) et les

scintillateurs inorganiques (principalement des halogénure d’alcalins dopés par une impureté,

matériaux solides). Par la suite, l’étude des ionisations dans les semi-conducteurs a conduit au

développement des diodes silicium dans les années 60 puis à partir des années 70 à l’apparition des

premiers détecteurs germanium de haute pureté.

2.2 INTRODUCTION GÉNÉRALE SUR LA SCINTILLATION LIQUIDE

Ce sous-chapitre a pour objet de présenter les travaux que j’ai réalisés pour améliorer les

modèles physiques utilisés lors de la mesure primaire d’activité par scintillation liquide. Il débute par

une description des scintillateurs liquides et de leurs propriétés, puis décrit les techniques de

Page 47: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

44

scintillation liquide utilisées en métrologie de la radioactivité et enfin présente les principaux axes de

recherche actuels.

2.2.1 PRINCIPE DE FONCTIONNEMENT DES SCINTILLATEURS LIQUIDES

Les techniques de détection par scintillation liquide furent introduites dans les années 50. Le

principe de fonctionnement d’un scintillateur consiste à détecter des photons lumineux, émis par les

molécules scintillantes, consécutivement à leur excitation provoquée par l’interaction avec une

particule ionisante. Dans le cas des scintillateurs liquides, les molécules fluorescentes sont mélangées

à un solvant. Ce dernier leur transmet l’énergie d’excitation induite par le dépôt d’énergie de la

particule ionisante. Une aliquote de solution radioactive est introduite dans la solution scintillante pour

la mesure d’activité. Cette mesure est effectuée sur 4 stéradians ce qui représente l’avantage principal

de ce type de détecteur. Il est alors possible de mesurer l’activité des radionucléides émettant des

rayonnements de très basse énergie. L’inconvénient majeur néanmoins réside dans le très faible

rendement énergétique et la non-linéarité de l’émission lumineuse des particules ionisantes de très

basse énergie (énergie inférieure à 10 keV). Ce type de détecteur est particulièrement bien adapté pour

la mesure d’activité de radionucléides émetteurs de rayonnement bêta. Il est également utilisé pour la

mesure d’activité de radionucléides émetteurs de rayonnement alpha et pour ceux se désintégrant par

capture électronique.

L'utilisation de cette technique a été largement répandue dans l'industrie (utilisation de

traceurs, hydrogéologie, etc...), dans la recherche médicale, biologique et pharmaceutique (utilisation

de molécules marquées par des radio-isotopes), dans la radioprotection (surveillance de la

contamination) et dans les techniques de datation au 14

C. La technique de mesure par scintillation

liquide est également utilisée en métrologie de la radioactivité.

En métrologie, seules deux procédures de mesure de référence par scintillation liquide sont

utilisées pour l’étalonnage en activité des radionucléides émetteurs bêta moins et se désintégrant par

capture électronique. Il s’agit de la méthode dite du Rapport des Coïncidences Triples sur Doubles

(méthode RCTD) et la méthode nommée CIEMAT/NIST. Il convient ici de préciser ce qu’est une

procédure de mesure de référence ainsi qu’une procédure de mesure primaire comme définies dans le

Vocabulaire International de Métrologie (VIM).

2.2.2 VOCABULAIRE INTERNATIONAL DE MÉTROLOGIE

Le Vocabulaire International de Métrologie (VIM) (2012) et le GUM (1993) (Guide to the

Expression of Uncertainty in Measurement), guide pour l’expression de l’incertitude de mesure,

uniquement mentionné ici par souci d’exhaustivité, sont des documents de référence pour la

communauté internationale des métrologues. Le VIM a été rédigé par le comité commun pour les

guides en métrologie, comité présidé par le directeur du BIPM et formé en 1997. La troisième édition

du VIM a été éditée en 2012 (VIM, 2012) et peut être téléchargée à partir du site internet du BIPM.

Parmi les nombreux termes définis dans ce document, les termes de « procédure de mesure de

référence », « procédure de mesure primaire » et « procédure de mesure secondaire » sont des termes

usuels dans la communauté des métrologues. Néanmoins, il est important de rappeler leur définition

précise.

Page 48: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

45

Procédure de mesure : description détaillée d'un mesurage conformément à un ou plusieurs

principes de mesure et à une méthode de mesure donnée, fondée sur un modèle de mesure et incluant

tout calcul destiné à obtenir un résultat de mesure.

Procédure de mesure de référence : procédure de mesure considérée comme fournissant des

résultats de mesure adaptés à leur usage prévu pour l'évaluation de la justesse de valeurs mesurées

obtenues à partir d'autres procédures de mesure pour des grandeurs de la même nature, pour un

étalonnage ou pour la caractérisation de matériaux de référence.

Procédure de mesure primaire : procédure de mesure de référence utilisée pour obtenir un

résultat de mesure sans relation avec un étalon d'une grandeur de même nature.

2.2.3 DESCRIPTION GÉNÉRALE DES MÉTHODES DE RÉFÉRENCE

Les deux procédures de mesure de référence, la méthode RCTD et la méthode CIEMAT/NIST

mettent en œuvre des scintillateurs liquides. La méthode RCTD a été initiée par le laboratoire primaire

national de métrologie polonais puis développée en collaboration avec le laboratoire primaire national

français de métrologie, le LNHB. La méthode CIEMAT/NIST a, elle, été initiée par le laboratoire

primaire national de métrologie espagnol, le CIEMAT, puis développée en collaboration avec l’institut

national de métrologie américain, le NIST. La différence fondamentale entre ces deux techniques

réside dans le fait que la méthode CIEMAT/NIST nécessite un étalon externe de 3H pour la mesure

d’activité des radionucléides émetteurs de rayonnement bêta moins, contrairement à la méthode RCTD

qui est une procédure de mesure primaire (aucun étalon n’est nécessaire). Toutes deux calculent le

rendement de scintillation à partir des propriétés statistiques de l’émission lumineuse et des

phénomènes physiques intervenant dans les scintillateurs liquides. Ces techniques sont très précises

pour la mesure d’activité des radionucléides se désintégrant par émission d’un rayonnement bêta

moins de forte énergie (90

Y, 32

P, 89

Sr, 204

Tl), car le rendement de détection est proche de l’unité. En

revanche pour les radionucléides émettant un rayonnement bêta moins de basse énergie comme 3H ou

241Pu, l’incertitude-type relative de mesure d’activité avoisine les 1 % à 2 %. Cette incertitude est

significative de la difficulté rencontrée pour la modélisation des phénomènes physiques intervenant

dans les scintillateurs liquides pour les électrons de basse énergie. Il s’agit de déterminer le rendement

de détection des photoélectrons émis par la photocathode à partir du dépôt d’énergie dans le

scintillateur par la particule primaire. Or, pour les électrons de basse énergie, une partie de l’énergie

déposée est absorbée par le milieu et ne contribue pas à l’émission de lumière. Il en résulte une non-

linéarité de la réponse du détecteur.

C’est ici l’un des principaux axes de recherche développés par les laboratoires de métrologie

afin d’améliorer la précision des mesures d’activité pour les radionucléides émettant un rayonnement

bêta de basse énergie et également d’augmenter la maîtrise de la technique de mesure. Adaptées à la

mesure de l’activité des radionucléides émetteurs bêta, ces techniques ont été étendues à la mesure des

radionucléides se désintégrant par capture électronique comme le 55

Fe avec une émission de

rayonnement de basse énergie puis de plus forte énergie comme de 139

Ce ou le 54

Mn. Un autre axe de

recherche développé depuis les années 2000 concerne l’étude de la diffusion des photons dans la

cellule de détection notamment pour les radionucléides se désintégrant par capture électronique et

émettant des photons gamma. La difficulté supplémentaire pour ces radionucléides, dans le cadre de

ces techniques de mesure, réside dans la prise en compte de toutes les voies de réarrangements

atomiques et des phénomènes de diffusion et rétrodiffusion dans le scintillateur et son environnent.

Page 49: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

46

Chaque radionucléide, étant pourvu d’un schéma de désintégration propre, nécessite une étude

spécifique pour la mesure de son activité par scintillation liquide. Ainsi chaque étude contribue à

l’amélioration constante des modèles utilisés dans les deux techniques de mesure, la méthode RCTD

et la méthode CIEMAT/NIST. Aussi, la littérature cite différents programmes développés depuis les

années 1980 jusqu’à aujourd’hui, pour chacune de ces techniques. Les dernières versions mentionnées

par la bibliographie sont le programme TDCRB-2 pour la méthode RCTD (Broda, 2007) et le

programme MICELLE2 pour la méthode CIEMAT/NIST (Kossert et Carles, 2010).

Ces techniques sont très bien décrites dans le Handbook of Radioactivity Analysis

(L’Annunziata, 2011). Afin de ne pas surcharger la lecture du document, elles vont être décrites

brièvement. Pour de plus amples détails le lecteur pourra également se référer aux articles de fond de

Broda (Broda, 2003 et Broda et al., 2007) pour la méthode RCTD et aux publications de Coursey et

al., (1985), pour la méthode CIEMAT /NIST.

2.3 DESCRIPTION DES SCINTILLATEURS LIQUIDES

2.3.1 COMPOSITION DES SCINTILLATEURS LIQUIDES

Le scintillateur liquide couplé à un photomultiplicateur (convertisseur de lumière en signal

électrique) est un détecteur de rayonnement ionisant : il émet de la lumière suite au dépôt d’énergie du

rayonnement ionisant ayant interagi avec ses composants. Il est essentiellement composé d’un solvant

et d’un soluté primaire dans lequel sont dissoutes des molécules organiques scintillantes. D’autres

composés sont parfois ajoutés comme par exemple des solutés secondaires ou des surfactants. Les

solutés secondaires sont introduits pour décaler la longueur d’onde de la lumière émise afin qu’elle

soit adaptée de manière optimale à la sensibilité spectrale des photomultiplicateurs. Les surfactants

sont ajoutés afin d’améliorer la miscibilité au scintillateur organique d’une solution aqueuse

radioactive à mesurer.

Les principaux solvants aromatiques utilisés actuellement (moins toxiques que le benzène ou

le toluène) sont par exemple : le Di-IsopropylNaphtalène (DIN), le xylène, ou le PhenylXylylEthane

(PXE) utilisé dans l’expérience Borexino (Back, et al., 2008). Les principaux solutés secondaires sont

par exemple : le 5-diphényloxazole (PPO), ou le 2-(4-ter-butylphényl)-5-(4-biphénylyl)-1,3,4-

oxadiazole (butyl-PBD).

Les surfactants (souvent des détergents ou des tensioactifs) permettent d’homogénéiser la

solution active dans le scintillateur et d’améliorer le transfert, aux molécules de solvant de l’énergie

déposée par le rayonnement ionisant. Le surfactant forme une microémulsion (dispersion de

microgouttelettes aqueuses, nommées micelles inverses de taille submicronique) et ainsi stabilise et

homogénéise la phase aqueuse dans la phase organique. Un exemple de surfactant très utilisé est le

Triton X-100 (iso-octyl phénoxy-polyéthoxyéthanol). Une alternative au surfactant est l’utilisation

d’un extractant. Il s’agit alors d’extraire le radionucléide à mesurer de la phase aqueuse vers une phase

organique compatible avec le scintillateur liquide. Ce dernier comporte un soluté contenant des

molécules extractantes. Un exemple de scintillateur liquide extractant est l’URAEXTM

, scintillateur

liquide qui extrait l’uranium.

Page 50: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

47

2.3.2 PRINCIPE GÉNÉRAL D’ÉMISSION DE LUMIÈRE DES SCINTILLATEURS LIQUIDES

Lors de la mesure d’activité par scintillation liquide, le radionucléide est en solution. Il a été

dissout dans de l’acide en phase aqueuse par exemple et mélangé au scintillateur (quelques

milligrammes à quelques grammes de solution radioactive pour 10 mL de scintillateur). Les particules

ionisantes perdent leur énergie par excitation et ionisation du solvant. La majorité de cette énergie est

convertie en chaleur et une faible partie excite les électrons des liaisons des composés aromatiques

du solvant vers des états singulets ou triplets. L’énergie d’excitation migre dans le solvant de

molécules en molécules par transfert d’énergie suivant des processus intramoléculaires non radiatifs

(résonance quantique (Förster, 1948) ; migration de l’énergie au travers d’excimères (Birks et Conte,

1968)). Lorsque le solvant transfère son énergie d’excitation aux molécules de soluté primaire

(processus non radiatif), ce dernier se désexcite par un processus intramoléculaire qui conduit

principalement à l’émission de fluorescence. La fluorescence est l’émission de photons lumineux de

désexcitation de l’état singulet S1 de la molécule de soluté. Ce sont ces photons lumineux qui sont

détectés par le photomultiplicateur. Toutefois, il existe d’autres modes de désexcitation de l’état S1, de

faible probabilité, comme le transfert de l’énergie d’excitation aux états triplets (l’état T1 par

exemple). La désexcitation de ces états triplets contribue à la phosphorescence. Les constantes de

temps associées sont alors beaucoup plus longues que celles de la fluorescence. Par ailleurs, deux

molécules excitées dans un des états triplets peuvent conduire à un état d'excitation S1 pour l’une des

deux molécules. Cette molécule se désexcite en émettant des photons de même longueur d'onde que

ceux de la fluorescence prompte. Cette fluorescence est appelée fluorescence retardée ; elle est moins

probable que la fluorescence prompte et sa durée est de l'ordre de quelques minutes.

Dans certains cas, comme déjà mentionné plus haut, un solvant secondaire est ajouté au

scintillateur pour décaler la longueur d’onde de la lumière émise afin qu’elle soit située dans la zone

de sensibilité spectrale maximale des photomultiplicateurs. Le transfert d’énergie vers ce solvant

secondaire se fait alors essentiellement par un processus radiatif d’absorption et de réémission de

lumière (Hayes et al., 1956).

2.3.3 DIMINUTION DU RENDEMENT LUMINEUX DES SCINTILLATEURS LIQUIDES

(QUENCHING)

Le terme couramment utilisé pour définir l'atténuation de la lumière est le terme anglais :

quenching, signifiant l’action de cacher. On appelle donc quenching tout processus atténuant le

rendement d'émission de lumière des scintillateurs. Les principaux types de quenching sont le

quenching chimique, le quenching de couleur et le quenching d'ionisation.

2.3.3.1 Quenching chimique

Le quenching chimique résulte de la présence ou de la création d'espèces chimiques

susceptibles de capter l'énergie d'excitation des molécules de solvant avant qu'elles ne puissent

conduire à l'émission de lumière. Les espèces les plus actives comportent des sites capteurs d’électrons

(hydrocarbures halogénés, acides organiques, amines, alcènes aliphatiques, oxygène dissous, …).

2.3.3.2 Quenching de couleur

Ce type de quenching est provoqué principalement par les composés colorés. Il correspond à

une absorption des photons lumineux émis par le scintillateur. La présence de composés colorés

Page 51: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

48

diminue ainsi le rendement de scintillation. Le quenching de couleur peut également conduire à une

anisotropie de l’émission lumineuse et ce phénomène peut biaiser les mesures d’activité lorsque le

comptage est déterminé à partir de coïncidences entre photomultiplicateurs.

2.3.3.3 Quenching d’ionisation

Ce processus de quenching est interne au scintillateur liquide. Il est provoqué par la présence

d’une forte concentration de molécules excitées et ionisées consécutives au dépôt d’énergie local

élevé, créé par les rayonnements ionisants (électrons ou particules alpha). Ce processus est responsable

de la non-linéarité de la réponse des scintillateurs organiques en fonction de l’énergie déposée par la

particule dans le milieu. Qualitativement, le quenching d'ionisation s'explique de la façon suivante :

plus la densité locale d'excitation et d'ionisation du solvant est élevée, plus l'énergie déposée sera

dissipée localement avant de servir à exciter une molécule fluorescente du milieu. Les mécanismes

réactionnels mis en jeu lors de ce processus ne sont pas bien connus. La présence d’une forte densité

de molécules de solvant excitées peut induire la création de molécules super-excitées ayant une forte

probabilité d’ionisation (Carles et al., 2004) ou augmenter la probabilité de désexcitation non

radiative.

De nombreux auteurs ont proposé différentes formules semi-empiriques pour modéliser la

non-linéarité de la réponse des scintillateurs en fonction de l'énergie déposée par la particule (Birks,

1951, Chou, 1952 ; Voltz, 1965 ; Wright, 1953). La non-linéarité de l’émission lumineuse augmentant

avec le TEL (transfert d’énergie linéique de la particule), ces différentes formulations sont exprimées

en fonction de la perte d’énergie linéique des électrons. Le modèle le plus usité pour décrire le

quenching d’ionisation est celui de Birks. Il représente le nombre moyen de photons émis par le

scintillateur en fonction de la perte d’énergie de la particule le long de sa trajectoire :

𝐿(𝐸) = 𝜂0 ∗ ∫𝑑𝐸

1+𝑘𝐵𝑑𝐸

𝑑𝑥

𝐸

0= 𝜂0 ∗ 𝐸 ∗ 𝑄(𝐸), (2.1)

où :

0 est le nombre moyen de photons de fluorescence émis par unité d’énergie en keV-1

,

E représente le dépôt d’énergie en keV,

dE/dx est la perte d’énergie linéique (en MeV.cm-1

) de la particule incidente et

kB est le paramètre de quenching d’ionisation, selon Birks exprimé, en cm.MeV-1

; il dépend du type

du scintillateur utilisé,

avec Q(E) la fonction de quenching d’ionisation, grandeur sans unité.

Le calcul de cette fonction nécessite la connaissance de la valeur du paramètre kB, la

composition et la densité du scintillateur liquide étudié. Elle dépend également de la formulation de la

perte d’énergie linéique de la particule incidente.

La perte d’énergie des électrons par unité de longueur parcourue :

La formule de la perte d’énergie linéique pour les électrons ainsi que l’énergie moyenne

d’excitation (en particulier pour ce qui concerne les milieux composés de différents éléments), se

Page 52: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

49

calculent à l’aide des équations décrites dans le rapport de l’ICRU n° 37 (ICRU, 1984). La formulation

du pouvoir d’arrêt par collision (Rohrlich et Carlson, 1953) présentée dans le rapport de l’ICRU n° 37

est une variante de la théorie de Bethe-Bloch développée par Møller (Møller, 1932) pour les électrons :

dE

dx

r m c

u

Z

A

T

IF

c

e

2 11

2

2

0

2

2

2

. . . .. . . ln ln ( ) , (2.2)

où 2 2

02 . . .r m c

u

e 0,153 536 MeV.cm2

/g, (2.3)

T

m c0

2.,

(2.4)

F

( ) ( ). ( ).ln

1 1

82 1 22

2

, (2.5)

22 2

2 21

( . )

( . )

m c

T m c

o

o

. (2.6)

représente le coefficient de Sternheimer (Sternheimer et Peierls 1971) ;

T l'énergie cinétique de l'électron en keV ;

I le potentiel d'ionisation moléculaire en keV ;

Z le numéro atomique ;

A le nombre de masse et

la masse volumique du matériau traversé.

Le potentiel d’ionisation moléculaire moyen pour les milieux composés de molécules est

calculé à l’aide de la relation suivante (Seltzer et Berger, 1982) :

A

Z

IA

Zw

Ii

i

i

i

i

mol

ln

)ln( , (2.7)

où Z

Aw

Z

Ai

i

i

i

, (2.8)

avec wi représentant la fraction massique, Z le numéro atomique et A le nombre de masse des atomes

constituant le milieu.

Page 53: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

50

Le calcul de la perte d’énergie radiative est complexe à calculer et est présenté dans le rapport

de l’ICRU n° 37 (ICRU, 1984) en fonction du type d’interaction électron-noyau et électron-électron. Il

a été repris par Los Arcos et Ortiz (1997) dans le cadre du développement d’un programme permettant

de calculer le quenching d’ionisation en fonction de différentes valeurs de kB. Aussi ce calcul ne sera

pas repris ici. Néanmoins, pour les électrons de 60 keV, le rapport de la perte d’énergie radiative due

au bremsstrahlung à la perte d’énergie par collision est de l’ordre de 5 10—4

dans les scintillateurs

liquides. Par conséquent, le bremsstrahlung est extrêmement faible pour les électrons de faible énergie

(énergie inférieure à 10 keV), et la perte d’énergie linéique par collision est prépondérante. La formule

de Rohrlich et Carlson (2.2) est bien connue pour les électrons d’énergie supérieure à 10 keV. En

dessous de 10 keV l’incertitude augmente jusqu’à 10 % pour les électrons de 1 keV pour le toluène

(ICRU, 1984). En ce qui concerne les énergies plus faibles, une interpolation linéaire vers l’origine est

souvent utilisée car le pouvoir d’arrêt est très difficile à déterminer pour les électrons de très faible

énergie (voir paragraphe 2.8.2) (Péron, 1995 ; Bignell et al., 2010a ; Cassette et al., 2010).

2.4 LA MÉTHODE RCTD

D’un point de vue historique, cette technique associe les travaux de Schwerdtel (1966) et ceux

de Kolarov et al. (1970) réalisés au LNHB. En effet, Schwerdtel a mis au point un système à trois

photomultiplicateurs comprenant deux sorties différentes de coïncidences doubles et les travaux de

Kolarov présentent une méthode de calcul du rendement de détection par scintillation liquide pour

deux photomultiplicateurs en coïncidence. Puis, c’est finalement en Pologne que le système RCTD,

appliqué à l’étalonnage en activité de radionucléides émetteurs de rayonnement bêta pur, a été

développé (Pochwalski et al., 1988). Le calcul du rendement de détection a ensuite été repris par

Broda et al. (1988). C’est en 1990 que le LNHB se dote de cette méthode de mesure primaire,

développée en collaboration avec le laboratoire polonais (Vatin, 1991 ; Cassette et Vatin 1992).

Jusqu’en 2004, le laboratoire primaire d’Afrique du Sud (Simpson et Meyer, 1992), la France et la

Pologne sont les seuls laboratoires exploitant cette technique de mesure primaire d’activité par

scintillation liquide. Depuis, cette technique a connu un véritable essor (Razdolescu et al., 2002 ;

Zimmerman et al., 2002 ; Hwang et al., 2004 ; Arenillas, 2006 ; Ivan et al., 2008 ; Qin et al., 2008 ;

Johansson et al., 2010 ; Nähle et al., 2010 ; Sochorová et al., 2012 ; Gudelis et al., 2012 ; Wu et al.,

2012 ; Sato et al., 2012). Cette expansion de la technique RCTD a été favorisée par la diffusion d’un

module électronique de gestion des coïncidences, le module MAC 3 développé au LNHB par

Bouchard (Bouchard et Cassette, 2000) puis par le développement industriel d’un passeur

d’échantillon automatique le « Hidex 300SL » commercialisé par la société Hidex depuis 2009. Cet

appareillage a été validé par le laboratoire primaire allemand, la PTB, pour la mesure d’activité de

solutions de 3H,

55Fe,

36Cl,

90Sr/

90Y (Wanke et al., 2012).

2.4.1 LE DISPOSITIF EXPÉRIMENTAL :

Le dispositif expérimental RCTD est composé de trois photomultiplicateurs, disposés à 120°

les uns des autres, autour d’une cellule optique recevant le flacon de scintillation liquide à mesurer

(contenance de 8 mL ou 20 mL). Les faces internes de la cellule sont recouvertes d’un matériau

réfléchissant (téflon ou peinture réfléchissante d’oxyde de titane) afin d’augmenter la détection des

photons lumineux. La cellule et les photomultiplicateurs sont inclus dans une enceinte étanche à la

lumière extérieure. Le signal de sortie de la première dynode est en général traité par un discriminateur

à fraction constante d’amplitude pour limiter les fluctuations temporelles et amplifié par un module

Page 54: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

51

électronique rapide, puis dirigé vers le module de coïncidences MAC 3. Le module MAC 3 gère à la

fois le discriminateur, les coïncidences simples, doubles et triples ainsi que la gestion du temps mort et

la mesure du temps actif. Le temps mort est reconductible et en général réglé sur une cinquantaine de

microsecondes afin de s’affranchir des post impulsions. Cette installation est représentée

schématiquement sur la figure n° 2.1 et en photographie sur la figure n° 2.2.

Figure n° 2.1 : Présentation schématique de l’installation RCTD (Qin et al., 2008).

Figure n° 2.2 : Présentation d’un des systèmes RCTD développés au LNHB. Celui-ci associe

également un détecteur germanium (Bobin et Bouchard, 2006).

Page 55: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

52

2.4.2 DESCRIPTION DE LA MÉTHODE RCTD :

2.4.2.1 Principe général de la méthode RCTD

Cette méthode est fondée sur le calcul du Rapport de la mesure du comptage des Coïncidences

Triples à celle du comptage des Coïncidences Doubles (RCTD), d’une part, et du calcul du rapport des

rendements de détection de ces coïncidences triples et doubles, d’autre part. La valeur RCTD est

utilisée comme un indicateur du rendement de détection. En effet, si les comptages des coïncidences

doubles, ND, et triples, NT, sont respectivement :

𝑁𝐷 = 𝐴. 𝜀𝐷 (2.9)

et

𝑁𝑇 = 𝐴. 𝜀𝑇, (2.10)

où A représente l’activité de l’échantillon mesuré, 𝜀𝐷 le rendement de détection des coïncidences

doubles et 𝜀𝑇 le rendement de détection des coïncidences triples.

Le rapport des coïncidences triples aux coïncidences doubles (RCTD), peut s’exprimer selon :

𝑅𝐶𝑇𝐷 =𝑁𝑇

𝑁𝐷=

𝜀𝑇

𝜀𝐷. (2.11)

Il s’agit ensuite de calculer les rendements de détection intégrant notamment un modèle statistique de

l’émission lumineuse dans le détecteur pour déterminer l’activité de l’échantillon. Le calcul complet

du rendement de détection est très bien décrit dans l’article publié par Broda et al. (2007). Nous ne

reprendrons ici que quelques points fondamentaux.

2.4.2.2 Les radionucléides émetteurs de rayonnement bêta pur

2.4.2.2.1 Présentation du paramètre libre

Le modèle du calcul du rendement de détection est fondé sur la description statistique des

phénomènes physiques intervenant au cours du processus de scintillation. Ce modèle de calcul a été

établi par Gibson et Gale (1966 et 1968) et Malonda et Toraño (1982) puis repris par la suite dans la

modélisation des deux techniques de référence, la méthode RCTD (Broda et al., 2007) et la méthode

CIEMAT/NIST (Carles et Malonda, 2001). Ce modèle est exprimé par la relation suivante :

EEQ L

m )(q

h

, (2.12)

où :

�� représente le nombre moyen de photoélectrons, L, le facteur de conversion de l’énergie déposée

par la particule en photons, , le rendement de détection du photomultiplicateur, q, le rendement

quantique de la photocathode, , un facteur de rendement lié à la sensibilité spectrale de la

photocathode à l’énergie des photons de fluorescence du scintillateur et h , l’énergie moyenne des

photons lumineux.

Page 56: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

53

En rapprochant ce modèle de celui proposé par Birks équation (2.1), le nombre moyen de photons de

fluorescence, 0 (cf formule 2.1),s’exprime par la relation suivante :

L

0

h

, (2.13)

où L le coefficient de conversion de l’énergie est différent de L(E), nombre moyen de photons

lumineux émis en respectant les nomenclatures de la littérature (Broda, 2003 ; Broda et al., 2007).

Le paramètre libre est alors posé comme suit :

L

q

h. (2.14)

Tous ces paramètres ne sont pas accessibles individuellement mais le paramètre libre est

déterminé expérimentalement. En effet, il dépend de la fonction de quenching d’ionisation Q(E), de

l’énergie déposée par la particule au sein du scintillateur et du nombre moyen de photoélectrons émis

par la première dynode comme suit :

m

EQ E )( . (2.15)

En conséquence les rendements de détection sont exprimés en fonction de ce paramètre libre,

soit D() pour le rendement des coïncidences doubles et T() pour les coïncidences triples.

2.4.2.2.2 Présentation de la méthode de calcul du rendement de détection

Dans le cas d’un radionucléide émetteur de rayonnement bêta pur, le rendement de détection

dépend de la probabilité de détection des photons lumineux et du spectre bêta continu émis par le

radionucléide. Le rendement de détection s’exprime alors suivant la relation suivante :

𝜀(𝜆) = ∫ 𝑆(𝐸)𝑃(𝐸, 𝜆)𝑑𝐸𝐸𝑚𝑎𝑥

0, (2.16)

où Emax est l’énergie maximale du spectre bêta, S(E) est le spectre bêta normalisé en fonction de

l’énergie de l’électron, P(E, la probabilité de détection des photons lumineux et le paramètre

libre.

Le rendement de détection est directement dépendant du spectre bêta. Le calcul du spectre bêta est

connu pour les transitions permises mais ce n’est pas le cas pour les transitions interdites pour

lesquelles les calculs sont complexes et difficiles. Le mode de calcul des spectres ne sera pas détaillé

ici. Le lecteur pourra se référer au document de Behrens (Behrens et Jänecke, 1969). Le programme de

calcul de spectres bêta utilisé actuellement au LNHB est celui développé par Mougeot et al. (2010).

En supposant que l’émission de lumière suive une loi de Poisson, puis en considérant la

probabilité de non-détection des photoélectrons (Gibson et Gale, 1968), dans le cas d’un seul

photomultiplicateur, la probabilité de détection des photoélectrons se réduit à (Malonda et Coursey,

1988) :

Page 57: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

54

𝑃(𝐸, 𝜆) = 1 − 𝑒−��, dans un système avec un seul photomultiplicateur (2.17)

Elle devient :

𝑃(𝐸, 𝜆) = 1 − 𝑒−𝑚

3

, dans un système comprenant trois photomultiplicateurs. (2.18)

Ces relations nécessitent un réglage spécifique des photomultiplicateurs avec un seuil suffisamment

bas pour détecter le photoélectron.

En établissant les sommes logiques des détections simples, doubles et triples (Broda et al., 2007) il

vient alors :

𝜀𝑇

𝜀𝐷=

∫ 𝑆(𝐸)[1−𝑒−

𝑄(𝐸)𝐸3𝜆 ]

3𝐸𝑚𝑎𝑥

0𝑑𝐸

∫ 𝑆(𝐸)𝐸𝑚𝑎𝑥

0 [3(1−𝑒−

𝑄(𝐸)𝐸3𝜆 )

2

−2(1−𝑒−

𝑄(𝐸)𝐸3𝜆 )

3

]𝑑𝐸

, (2.19)

où S(E) représente le spectre bêta du radionucléide, Q(E) le quenching d’ionisation, E l’énergie

initiale de l’électron émis, Emax, l’énergie maximale du spectre bêta et le paramètre libre (aussi

appelé « figure of merit »).

Cette relation suppose que les rendements quantiques de détection de chacun des trois

photomultiplicateurs sont identiques. Cela a été vérifié en appliquant une tension de focalisation

supérieure à 760 V (entre la photocathode et la première dynode des photomultiplicateurs) sur

l’installation de l’Institut de Métrologie National des États-Unis, le NIST (National Institute of United

States) (photomultiplicateur type Burle 8850) (Zimmerman et al., 2004a). L’auteur précise que pour

les tensions plus faibles ce n’est plus le cas. En effet, une des techniques utilisées pour déterminer la

valeur du paramètre kB consiste à défocaliser sur la première dynode des photomultiplicateurs afin de

diminuer le rapport des coïncidences triples aux doubles. On peut remarquer ici que l’asymétrie de la

réponse des photomultiplicateurs avait été décrite dès 1988 par Malonda et Coursey. Pour déterminer

le rapport RCTD en prenant en compte l’asymétrie des rendements quantiques des

photomultiplicateurs, on décline les sommes logiques pour chacun des photomultiplicateurs et l’on

obtient ainsi trois rapports RCTD selon les trois coïncidences doubles (AB, BC, CA). On obtient

ainsi :

𝜀𝑇

𝜀𝐴𝐵=

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐴 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐵 )∗(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐶 )

𝐸𝑚𝑎𝑥0

𝑑𝐸

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐴 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐵 )𝐸𝑚𝑎𝑥

0𝑑𝐸

; (2.20)

𝜀𝑇

𝜀𝐵𝐶=

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐴 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐵 )∗(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐶 )

𝐸𝑚𝑎𝑥0

𝑑𝐸

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐵 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐶 )𝐸𝑚𝑎𝑥

0𝑑𝐸

; (2.21)

Page 58: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

55

𝜀𝑇

𝜀𝐴𝐶=

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐴 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐵 )∗(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐶 )

𝐸𝑚𝑎𝑥0

𝑑𝐸

∫ 𝑆(𝐸)(1−𝑒−

𝑄(𝐸)𝐸3𝜆𝐴 )∗(1−𝑒

−𝑄(𝐸)𝐸

3𝜆𝐶 )𝐸𝑚𝑎𝑥

0𝑑𝐸

. (2.22)

Broda considère que les rendements quantiques de détection de chacun des trois photomultiplicateurs

doivent être considérés comme différents et applique les formules (2.20), (2.21) et (2.22) de manière

générale (Broda, 2003 ; Broda et al., 2007).

2.4.2.2.3 Résolution du principe général de la méthode RCTD

Pour chaque valeur attribuée au paramètre kB, en supposant le spectre bêta connu, et en

introduisant la valeur expérimentale du rapport des coïncidences triples aux doubles (T/AB par

exemple), le système d’équations (2.20, 2.21 et 2.22) peut être résolu en appliquant un algorithme de

minimisation multidimensionnelle. L’algorithme simplex Downhill SIMPLEX (Nelder et Mead, 1992)

est le plus couramment utilisé. La fonction minimisée est la suivante :

Δ = (𝜀𝑇

𝜀𝐴𝐵−

𝑇

𝐴𝐵)

2+ (

𝜀𝑇

𝜀𝐵𝐶−

𝑇

𝐵𝐶)

2+ (

𝜀𝑇

𝜀𝐴𝐶−

𝑇

𝐴𝐶)

2 , (2.23)

où T est le rendement calculé des coïncidences triples, AB, BC et AC sont les rendements calculés des

coïncidences doubles AB, BC et AC respectivement et T, AB, BC et AC sont les comptages des

coïncidences triples et doubles AB, BC et AC respectivement.

Les paramètres libres Csont obtenus de telle sorte que le rapport calculé des

rendements des coïncidences triples aux doubles s’égalise avec le rapport expérimental des comptages

triples aux doubles (RCTD). Les valeurs des paramètres libres obtenus permettent alors de déterminer

les rendements de coïncidences doubles puis la valeur de l’activité du radionucléide à partir de la

mesure du comptage des coïncidences doubles considérées (Broda et al., 2007 ; Kossert et Schrader

2004).

2.4.2.2.4 Détermination du paramètre kB du quenching d’ionisation

La fonction Q(E) définie dans le paragraphe 2.3.3.3 décrit le rendement de scintillation par la

formule semiempirique de Birks (1971). Elle rend compte du quenching d’ionisation et s’exprime

suivant la relation suivante déduite de la relation (2.1):

𝑄(𝐸) = 1

𝐸∫

𝑑𝐸

1+𝑘𝐵𝑑𝐸

𝑑𝑥

𝐸𝑚𝑎𝑥

0 , (2.24)

où Q(E) représente le quenching d’ionisation avec E l’énergie initiale de l’électron émis, Emax

l’énergie maximale du spectre bêta et kB le paramètre de quenching d’ionisation.

La fonction Q(E) doit être déterminée pour le calcul des rendements des coïncidences triples et

doubles. Le pouvoir d’arrêt est calculé principalement à l’aide de la formule (2.2), voir paragraphe

(2.3.3.3). Il reste alors le paramètre kB à déterminer. D’après sa définition, la valeur du paramètre kB

est spécifique à chaque scintillateur. Ce paramètre doit être indépendant des conditions de quenching,

Page 59: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

56

qu’elles soient chimiques ou de couleur (2.3.3.3). Cela a été confirmé par Cassette et al. (2000) lors de

la mesure d’activité en 3H,

14C et

63Ni à l’aide de la méthode RCTD. Il peut être déterminé

expérimentalement par la méthode RCTD en diminuant le rendement de détection.

Quatre méthodes différentes permettent de diminuer le rapport RCTD. La première consiste à

diminuer la tension de focalisation des photoélectrons située entre la photocathode et la première

dynode (la plage de tension est typiquement située entre 600 V et 800 V pour les photomultiplicateurs

de type Burle 8850), la deuxième à placer des filtres de transmission lumineuse décroissante (filtres

gris généralement composés de polypropylène) entre le flacon et les fenêtres d’entrée des

photomultiplicateurs. La troisième repose sur l’introduction dans le flacon de scintillation liquide de

quantités croissantes d’agent chimique atténuant le signal, comme le tétrachlorure de carbone ou le

nitrométhane, utilisant ainsi le phénomène appelé ‘quenching’. Enfin, la dernière méthode consiste à

éloigner progressivement les photomultiplicateurs de la source à mesurer (Hwang et al., 2004).

Quel que soit le protocole, l’expérimentation permet d’obtenir le comptage des coïncidences

doubles en fonction des différentes valeurs des rapports RCTD. Le rendement des coïncidences

doubles est calculé pour différentes valeurs du paramètre kB sur une plage de valeurs extrêmes de ce

paramètre. Ainsi l’activité (rapport du comptage des coïncidences doubles au rendement calculé de ces

coïncidences) est représentée en fonction de chaque valeur du rapport RCTD. Or pour un paramètre kB

donné, indépendant des conditions de quenching utilisées, l’activité doit être constante quel que soit le

rapport RCTD. C’est ce dernier critère, pratique et empirique, qui permet de choisir la valeur du

paramètre kB. Aussi la valeur de kB choisie correspond à la pente la plus faible parmi les courbes

représentées sur la figure de l’activité en fonction du rapport RCTD (voir figure n° 2.3).

Figure n° 2.3 : Présentation de la méthode pour déterminer la valeur du paramètre kB, la diminution du

rapport RCTD (TDCR en anglais pour Triple to Double Coincidence Ratio) étant obtenue par

défocalisation (Mo et al., 2010).

On peut regretter ici l’absence d’incertitudes sur les points de la figure n° 2.3 (notamment les

incertitudes de comptage de l’ordre de 0,3 %). La prise en compte de ces incertitudes permettrait

d’évaluer l’incertitude sur le paramètre kB. En effet, en considérant le graphe sur la figure n° 2.3,

l’incertitude de la valeur du paramètre kB varie jusqu’à 20 %. La prise en compte de cette incertitude

conduirait à une incertitude sur la valeur d’activité en 3H de 2,7 % (Cassette et al., 2010).

Page 60: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

57

La méthode RCTD est une méthode de mesure primaire d’activité. Elle a l’inconvénient d’être

très sensible au quenching d’ionisation pour les électrons de basse énergie (inférieure à 10 keV). Un

des axes de recherche afin d’améliorer les mesures d’activité et l’incertitude associée consiste à

déterminer de manière directe le quenching d’ionisation.

2.4.2.2.5 Étude de la réponse des scintillateurs liquides aux électrons de basse énergie (Thèse)

L’étude de la réponse des scintillateurs liquides aux électrons de basse énergie a justement fait

l’objet du sujet de ma thèse, réalisée au LNHB sous la direction de Philippe Cassette. L’objectif

consistait à mettre au point un dispositif expérimental qui permettrait une mesure directe du quenching

d’ionisation. Une meilleure connaissance de la fonction de quenching d’ionisation permet de diminuer

les incertitudes sur la mesure de radionucléides émetteurs bêta moins de basse énergie comme 3H ou

63Ni par exemple.

L’idée consistait à créer des électrons mono-énergétiques à l’intérieur du scintillateur liquide

par effet Compton à l’aide d’une source externe de rayonnement gamma et de déceler les événements

pertinents grâce à la chaîne de mesure appropriée. Celle-ci devait être constituée d’un

photomultiplicateur couplé optiquement à la cuve contenant le scintillateur pour détecter les photons

lumineux émis et d’un détecteur germanium disposé selon un axe normal à celui du

photomultiplicateur pour déterminer l’énergie des photons Compton diffusés. La mise en coïncidences

des deux détecteurs permettait d’étudier la réponse du scintillateur liquide aux électrons Compton.

Ensuite, il s’agissait d’analyser les spectres obtenus. Cette étude a été réalisée sur la base des

fonctions propres fondées sur le photoélectron unique du photomultiplicateur comme décrit par l’étude

de Gibson et Gale (1966 et 1968). A partir de l’analyse des courbes de réponse du nombre moyen de

photoélectrons en fonction de l’énergie initiale des électrons Compton, nous nous sommes aperçus que

nos résultats étaient biaisés par la présence de diffusions multiples. La présence d’électrons Compton

issus de diffusion Compton doubles diminuait le nombre moyen de photoélectrons apparents pour une

énergie initiale donnée de l’électron Compton « primaire ».

Afin de répondre à cette nouvelle problématique, j’avais développé un programme de calcul

Monte-Carlo de ces diffusions multiples afin de corriger les courbes de réponse du scintillateur (les

codes Monte-Carlo de l’interaction rayonnement matière que nous connaissons actuellement comme

PENELOPE ou MCNP, n’étaient pas encore diffusés et le code GEANT n’était pas adapté aux basses

énergies). Une fois les courbes corrigées, j’ai pu exploiter les résultats à l’aide de la fonction de Birks

et déterminer la valeur du paramètre de quenching d’ionisation (formule 2.1) pour différents

scintillateurs liquides. Les résultats ont été présentés sous la forme de valeurs du paramètre kB au sens

de la formule de Birks.

La valeur obtenue pour l’Ultima Gold® notamment est de (0,011 ± 0,002) cm/MeV. Cette

valeur a été obtenue en utilisant la formule de Rohrlich et Carlson (ICRU, 1984) avec une

extrapolation linéaire vers l’origine pour les électrons d’énergie inférieure à 100 eV (voir paragraphe

2.8.2). D’autres scintillateurs ont été étudiés, l’Insta Gel®, le pico Fluor et l’Ultima Gold® AB. Cette

valeur du paramètre de quenching d’ionisation pour l’Ultima Gold® a été reprise par la suite par

nombre de collaborateurs étrangers de même que la méthode employée pour le calcul du pouvoir

d’arrêt des électrons (Malonda et Carles, 1999, Carles et al., 2006, Broda et al., 2007 ; Frelin et al.,

2008).

Page 61: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

58

Sachant que dans la méthode RCTD (2.4.2.2.4), l’adjonction d’agent ‘quenchant’ devait être

indépendant du quenching d’ionisation, j’avais complété l’étude par des mesures avec différentes

concentrations de CCl4 et proposé une approche théorique décrite dans ma thèse. Á la fin de ma thèse,

j’ai intégré l’équipe de Philippe Cassette. Il m’a formée sur la méthode RCTD et j’ai réalisé des

mesures primaires d’activité pour quelques radionucléides dont 3H et

63Ni (Terlikowska et al., 1998).

Puis j’ai travaillé en collaboration avec l’équipe du R. Broda de l’Institut de l’énergie atomique

polonais POLATOM pour le développement de la mesure primaire d’un radionucléide se désintégrant

par capture électronique, 139

Ce.

2.4.2.3 Les radionucléides se désintégrant par capture électronique

2.4.2.3.1 Calcul du rendement de détection

La méthode RCTD est étendue à la mesure des radionucléides se désintégrant par capture

électronique comme 55

Fe (Simpson et Meyer, 1991 ; Cassette et al., 1998 ; Ratel, 2007 ; Razdolescu et

al., 2008 ; Simpson et al., 2010) ou 139

Ce (Broda et al., 1998) par exemple. Toutes les voies de

réarrangement atomique doivent être prises en compte pour le calcul du rendement de détection. C’est

ici l’une des difficultés rencontrées pour la mesure des radionucléides se désintégrant par capture

électronique. Le nombre de voies à prendre en compte et les types de réarrangement possibles

(émission de photons x, d’électrons Auger, d’électrons de conversion,…) peuvent vite devenir très

conséquents en particulier pour les atomes lourds. Qui plus est, pour les radionucléides émettant

également des photons de plus forte énergie (supérieure à 100 keV), il faut également prendre en

compte les photons issus des diffusions multiples dans le scintillateur et dans son environnement ainsi

que les photons de fluorescence émis par les matériaux constitutifs du dispositif expérimental. Pour les

photons d’énergie supérieure à 500 keV, l’effet Čerenkov doit également être évalué.

Le calcul du rendement de détection inclut ainsi toutes les voies de réarrangement atomique,

de diffusion et de fluorescence possibles en fonction de la nature du radionucléide à mesurer. La

méthode statistique d’émission de lumière décrite au paragraphe précédent (2.3.2) est appliquée aux

photons lumineux émis suite au dépôt d’énergie de chaque particule électronique. Á moins qu’il ne

s’échappe du milieu, chaque photon interagissant avec le détecteur conduit à une émission

électronique. L’histoire de chacun d’entre eux doit être suivie afin de déterminer s’il s’échappe ou non

du milieu détecteur et, s’il interagit, son mode d’interaction (Photoélectrique, Compton, Rayleigh,

Création de paire) va déterminer le type de particule secondaire créée. Ici également chaque particule

créée doit être suivie jusqu’au dépôt total d’énergie par les électrons secondaires. En général, ces

suivis complexes sont réalisés à l’aide de codes Monte-Carlo. Aussi le rendement de détection

s’exprime selon la formulation générale suivante :

𝜀(𝜆) = ∑ 𝐼(𝐸𝑗)𝑃(𝐸𝑗 , 𝜆)𝑘𝑗=1 , (2.25)

où I(Ej) correspond à la probabilité d’émission d’électrons d’énergie Ej et P(Ej,)à la probabilité de

détection des photoélectrons correspondants, pour chaque processus j(incluant les réarrangements

atomiques, le suivi de chaque photon émis et de chaque particule créée jusqu’à leur absorption dans

le milieu).

Les méthodes de calcul des réarrangements atomiques sont décrites dans la littérature

(Broda et al., 1998 ; Broda et al., 2007 ; Malonda et al., 1999 et 2006 ; Carles et Malonda, 2006 ;

Kossert et Carles, 2008). Le calcul du rendement est ainsi directement dépendant des données

Page 62: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

59

nucléaires et atomiques. C’est un paramètre dont il faut tenir compte, notamment dans le bilan des

incertitudes, lorsqu’une inadéquation est observée entre le modèle utilisé et les résultats

expérimentaux.

Une difficulté spécifique à la méthode RCTD pour la mesure des radionucléides se

désintégrant par capture électronique (et pour les émetteurs de photons) s’ajoute. Elle est due à la

forme de la courbe représentant le rendement du comptage en fonction du rapport RCTD pour laquelle

plusieurs valeurs de rendement correspondent à une même valeur du rapport des coïncidences triples à

doubles (voir figure n° 2.4).

Cet effet est dû au caractère monoénergétique des émissions électroniques

contrairement aux spectres bêta. Il faut alors déterminer la valeur du rendement qui permet le mieux de

rendre compte des résultats expérimentaux. Des exemples de courbes de rendement en fonction du

rapport des coïncidences triples à doubles sont présentés dans la figure n° 2.4 issue de l’article de

Broda (Broda, 2003) notamment pour 139

Ce, 55

Fe et 54

Mn.

Figure n° 2.4 : Présentation du rendement des coïncidences doubles de l’installation RCTD en

fonction du rapport des coïncidences triples à doubles RCTD pour différents radionucléides

(Broda, 2003).

On observe dans la figure n° 2.4 que les courbes de rendement des radionucléides se

désintégrant uniquement par émission bêta moins (3H,

14C,

89Sr) sont continues et croissantes en

fonction du rapport RCTD (à une valeur du rapport RCTD correspond une seule valeur de rendement

des coïncidences doubles). En revanche, pour les radionucléides se désintégrant notamment par

capture électronique et émetteurs de photons (x et gamma), d’électrons Auger et de conversion, la

forme de la courbe est plus complexe et, à une valeur du rapport RCTD, peuvent correspondre

plusieurs valeurs de rendement de coïncidences doubles). Cet effet est d’autant plus prononcé que le

spectre d’émission est discret ce qui est le cas notamment lorsqu’il existe une émission de photon

gamma (comme pour 139

Ce et 54

Mn par exemple). La difficulté réside dans le choix du rendement de

détection à effectuer parmi deux ou trois valeurs possibles selon le radionucléide mesuré.

La solution consiste à confronter les données expérimentales des coïncidences doubles en

fonction des différents rapports RCTD aux courbes calculées. Cette méthodologie permet de

Page 63: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

60

déterminer le rendement de détection de l’installation mais également de vérifier la qualité du modèle

appliqué (Amiot et al., 2012a). Lorsque le modèle est approprié, la méthode classique RCTD

(paragraphe 2.4.2.1) peut être appliquée et l’activité calculée.

2.4.2.3.2 Développement de mesures d’activité à l’aide de la méthode RCTD appliquée au 139

Ce

La mesure primaire d’activité d’une solution de 139

Ce à l’aide de la méthode RCTD a été

réalisée dans le cadre d’une collaboration entre le laboratoire POLATOM de l’institut de l’énergie

atomique polonais et le LNHB. L’objectif de ces travaux était de réaliser une solution étalon de 139

Ce à

l’aide de la méthode RCTD. Cette étude a nécessité une modification du modèle de calcul du rapport

des rendements des coïncidences triples à doubles initialement programmé pour les radionucléides

émetteurs bêta moins. J’ai participé à ce travail de développement de la mesure primaire de la solution

de 139

Ce en collaboration avec R. Broda.

En 1997, la méthode de mesure RCTD (adaptée dans sa version initiale aux radionucléides

émetteurs de rayonnement bêta moins), ne permettait pas de mesurer précisément l’activité des

radionucléides se désintégrant par capture électronique suivie d’émission de photons de réarrangement

de plus de 10 keV. En effet, cette méthode utilise un programme de calcul du rendement de détection

qui ne tient compte ni des réarrangements électroniques ni des diffusions multiples des photons émis

(Broda et al., 1988 ; Vatin, 1991).

Se désintégrant par capture électronique, 139

Ce émet également des photons d’énergie d’une

valeur de 165,86 keV avec une intensité d’émission de 79,9 % suivi de rayonnements x lors du

réarrangement électronique ainsi que des électrons (électrons Auger, électrons de conversion, …).

Outre les photons de 165,86 keV, l’énergie du rayonnement xK émis est supérieure à 30 keV. Á ces

énergies, la probabilité d’interaction des photons par effet Compton n’est plus négligeable et implique

alors le traitement des diffusions dans le scintillateur. Aussi, nous avons développé une nouvelle

version du programme de calcul de rendement RCTD afin de prendre en compte les diffusions des

photons émis par 139

Ce. Dans ce programme, le pouvoir d’arrêt des électrons pour la composition

établie par Günther (Günther, 1996) est calculé à partir de la formule de Rohrlich et Carlson (ICRU,

1984).

R. Broda et moi avons utilisé notre propre version du programme permettant de calculer les

rendements de détection des coïncidences et ainsi l’activité de la solution de 139

Ce. Les deux

programmes avaient en commun les données nucléaires, toutes les voies de réarrangements atomiques

(46 voies de réarrangements atomiques comprenant notamment les divers rayonnements x et les

électrons de conversion, électrons Auger, …), la fonction du pouvoir d’arrêt des électrons et la

procédure de gestion des diffusions multiples. Les programmes appliquaient deux hypothèses

réévaluées par la suite. La première hypothèse consiste à supposer que les rendements des trois

photomultiplicateurs sont identiques. La deuxième consiste à considérer que la probabilité de détection

des photoélectrons suit une loi de Poisson.

Les courbes de rendement des coïncidences doubles calculées en fonction de différentes

valeurs du rapport RCTD sont présentées dans la figure n° 2.5 avec et sans la prise en compte des

diffusions Compton multiples. Afin de vérifier la qualité du modèle, le rapport RCTD a été diminué

expérimentalement en diminuant la tension de focalisation des photomultiplicateurs (points circulaires

présentés dans la figure n° 2.5).

Page 64: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

61

Figure n° 2.5 : Représentation de la comparaison des résultats expérimentaux pour les coïncidences

doubles en fonction du rapport RCTD aux résultats obtenus à partir du calcul du modèle physique (K1

correspond au rapport des coïncidences triples à doubles). La courbe (a) correspond au calcul du

modèle incluant les diffusions Compton multiples ; la courbe (b) correspond au modèle ignorant

l’interaction des photons diffusés avec le scintillateur.

La figure n° 2.5 met en évidence que le modèle incluant les diffusions Compton multiples

(courbe a) est en accord avec les résultats expérimentaux contrairement au modèle sans leur prise en

compte (courbe b).

Par ailleurs, R. Broda, propose, au cours de ce travail, une alternative pour déterminer le

rendement de détection des coïncidences doubles. Il s’agit de calculer le rendement de détection des

coïncidences doubles en fonction du rapport des coïncidences triples aux coïncidences doubles élevées

au cube, nommé K3. La courbe de rendement des coïncidences doubles en fonction du rapport K3 étant

monotone, cela permet de déterminer directement le rendement de détection des coïncidences doubles

et ainsi de calculer l’activité.

Nous avons mesuré les activités des sources de 139

Ce (réalisées dans le cadre de cette étude

avec le scintillateur Ultima Gold®), dans les installations RCTD de chacun des deux laboratoires

(polonais et français). Le quenching d’ionisation a été calculé pour chaque énergie des électrons créés

par toutes les voies, qu’elles soient directes (électrons Auger, électrons de conversion) ou indirectes

(suite à une interaction photoélectrique ou Compton). Ainsi la non-linéarité du scintillateur liquide a

été prise en compte en particulier pour les basses énergies. La valeur du paramètre kB obtenue est

0,0052 cm/MeV pour l’Ultima Gold®.

Les résultats de mesure d’activité obtenus étant compatibles entre eux et avec d’autres

techniques de mesures primaires et secondaires, la méthode utilisée a été validée (Broda et al., 1998).

Toutefois, le programme utilisé ne prenait en compte que les diffusions Compton doubles et non les

diffusions Compton multiples ni les effets de fluorescence x des matériaux de la chambre de mesure et

du scintillateur liquide lui-même (l’Ultima Gold® contient du phosphore qui peut fluorescer en

émettant des xK et des xL). Aujourd’hui, les codes de simulation de l’interaction rayonnement-matière

prennent tous ces phénomènes en compte. Cette expérimentation pourrait être reprise en intégrant les

codes de simulation Monte-Carlo dans le modèle. Il se pourrait alors que la valeur du paramètre kB

soit différente de celle obtenue. Il serait intéressant de vérifier cette hypothèse.

Page 65: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

62

2.4.2.3.3 Mesures de coefficients d’absorption de scintillateurs liquides

Lors de l’étude sur la mesure primaire du 139

Ce par la méthode RCTD, nous nous sommes

interrogés sur la valeur des coefficients d’absorption du scintillateur pour les photons xK et xL du 139

Ce.

Ils avaient été calculés à l’aide des tables publiées par le National Institute of Standards and

Technology (NIST) (Berger et Hubbell, 1987) avec la composition du scintillateur liquide déterminée

par le laboratoire homologue allemand (PTB) (Günther, 1996). La mesure directe de ces coefficients

nécessite l’utilisation d’un rayonnement photonique monoénergétique. Le rayonnement synchrotron

du LURE délivrait ce type de rayonnement sur certaines de ses lignes de lumière. J’ai donc soumis un

dossier de proposition d’expérience au conseil scientifique du LURE pour les lignes de lumières SB3

de l’anneau de stockage Super-Aco, D15A et DW31B de l’anneau de stockage DCI afin de disposer de

temps de faisceau. Le projet ayant été accepté, les expérimentations ont été réalisées sur plusieurs

campagnes de mesures durant trois ans de 1997 à 1999.

La première phase du projet a consisté à développer et réaliser des dispositifs expérimentaux

spécifiques à cette expérience et adaptés à l’environnement technique de chacune des lignes de

lumière.

Les mesures de coefficients d’absorption ont été réalisées pour les scintillateurs commerciaux

Ultima-Gold® et Insta Gel® et également pour le toluène. Ce dernier solvant organique a été choisi

car sa composition étant parfaitement connue, les résultats expérimentaux pouvaient aisément être

comparés avec ceux obtenus en utilisant des tables publiées par le NIST (Berger et Hubbell, 1987). La

composition précise des scintillateurs liquides commerciaux est un secret industriel. Or, la

connaissance de leur composition est nécessaire au calcul du rendement de détection de radionucléides

se désintégrant par capture électronique pour les mesures absolues d’activité par scintillation liquide

comme pour le 139

Ce par exemple. Cette expérimentation permettait de mesurer directement les

coefficients d’absorption des scintillateurs étudiés pour des photons incidents d’énergie comprise entre

5 keV et 23 keV (les compositions atomiques de ces scintillateurs liquides ont été communiquées

depuis (Cassette et al., 2006a)).

Les coefficients d’absorption ont été déterminés à partir du rapport de la mesure du flux

transmis à travers une cuve de mesure avec et sans scintillateur suivant la loi de Beer-Lambert. La

mesure du rapport des flux (avec et sans scintillateur dans la cellule de mesure) est réalisée à partir des

pics d’absorption totale des spectres d’acquisition des photons transmis détectés, à l’aide d’un

détecteur Si(Li). Le dispositif expérimental a été placé face au faisceau sur la ligne SB3 (domaine

énergétique des photons de 5 keV à 10 keV) et à 90° par rapport au faisceau sur la ligne D15A afin de

réduire le flux incident à l’aide d’un dispositif de diffusion (domaine énergétique des photons de

8 keV à 23 keV). Le dispositif expérimental installé entre le faisceau de rayonnement synchrotron

collimaté et le détecteur silicium est présenté dans la figure n° 2.6.

Page 66: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

63

Figure n° 2.6 : Présentation des cuves contenant le scintillateur liquide ainsi que le système de

diffusion cohérente placé face au rayonnement synchrotron.

Les résultats obtenus ont mis en évidence un excellent accord entre les mesures réalisées sur la

ligne SB3 et la ligne D15A. La continuité des courbes des coefficients d’absorption en fonction de

l’énergie a été assurée en rassemblant les résultats obtenus sur les deux lignes de lumière sur toute la

plage énergétique de 5 keV à 23 keV et également sur le domaine énergétique commun où les résultats

étaient compatibles. Les coefficients d’absorption expérimentaux du toluène étaient, de plus, en parfait

accord avec ceux calculés à partir des tables du NIST (Berger et Hubbell, 1987).

Les résultats obtenus ont permis de confirmer les coefficients d’absorption du toluène (par

rapport aux coefficients calculés à l’aide des tables du NIST) et de déterminer ceux des scintillateurs

liquides commerciaux Ultima Gold® et Insta Gel® pour les photons d’énergie comprise entre 8 keV et

23 keV avec une incertitude type relative de 2 %. Ce travail a fait l’objet d’une publication (Amiot-

Péron et al., 2000). Des mesures analogues ont été réalisées en 2006 sur la plage énergétique de

5,5 keV à 12 keV (Cassette et al., 2006a) en utilisant une source de rayonnement photonique

monoénergétique à l’aide d’un tube à rayons x associé à un cristal monochromateur installé au LNHB

(Bonnelle et al., 2004). Elles ont confirmé les résultats obtenus par l’étude de Amiot-Péron et al..

2.4.2.3.4 Programmes de calcul de rendement utilisés actuellement

Actuellement, les programmes de calcul du rapport des rendements de détection RCTD incluent

systématiquement des calculs Monte-Carlo des probabilités d’interaction des photons avec le

scintillateur liquide pour les radionucléides émetteurs de photons (x et/ou gamma d’énergie supérieure

à 10 keV). Certains utilisent des codes de simulation Monte-Carlo comme PENELOPE (Hwang et al.,

2004) ou GEANT4 (Bignell et al., 2010a et b ; Thiam et al., 2012). Ainsi, l’activité primaire des

radionucléides se désintégrant par capture électronique et émettant des photons de basse et haute

énergie peut être mesurée par la méthode RCTD ou par la méthode CIEMAT/NIST de manière plus

précise à l’aide des codes de calcul Monte-Carlo (Broda et al., 2007) (Thiam et al., 2010).

Parmi les programmes de calcul du rendement de détection appliqués à la méthode RCTD,

certains sont développés en interne (Laureano-Perez et al., 2010, Nähle et al., 2010), d’autres sont

largement diffusés comme les programmes suivants : les programmes TDCRB-1 ; TDCRB-02B ;

TDCRB-02P et TDCREC (Lee et al., 2004; Zimmerman et al., 2004a ; Zimmerman et al., 2010 ;

Sochorová et al., 2012 ; Sato et al., 2012) diffusés par Broda, et les programmes TDCR07 et TDCR11

(Collé et al., 2008 ; Mo et al., 2010) diffusés par Cassette. De manière générale, les incertitudes types

Page 67: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

64

relatives sur la mesure d’activité par la méthode RCTD pour les radionucléides émetteurs bêta pur de

haute énergie (supérieure à 100 keV) et se désintégrant par capture électronique pure sont comprises

entre 0,2 % et 1 % (L’Annunziata, 2011). Elles sont plus élevées pour les radionucléides émetteurs

bêta pur de basse énergie comme 3H (les incertitudes types relatives sont alors de l’ordre de 1 %).

2.5 LA MÉTHODE CIEMAT/NIST

C’est en 1978 qu’Augustín Grau Malonda fut le précurseur de cette méthode alors qu’il

développait un modèle applicable pour chaque compteur à scintillation liquide commercial, pour tout

type de scintillateur liquide et tout radionucléide. Les premières applications de la méthode pour la

mesure d’activité de radionucléides émetteurs bêta moins a été décrite par Malonda et García-Toraño

(1982) pour les radionucléides 14

C, 99

Tc, 185

W, 36

Cl, 89

Sr et 32

P. Elles s’appuient sur un programme

développé par les mêmes auteurs dès 1981, dont une mise à jour a été publiée en 1985 (García-Toraño

et Malonda, 1985). Mais c’est en 1986 que la méthode est nommée méthode CIEMAT/NIST dans le

cadre d’une collaboration entre les chercheurs du CIEMAT et Bert Coursey du laboratoire primaire

des États-Unis, le NIST, (Coursey et al., 1985). L’utilisation de solutions étalons caractérisées par le

NIST et l’acquisition du savoir-faire du NIST pour la préparation des échantillons ont permis de

réduire les incertitudes sur la mesure d’activité de manière significative. La méthode CIEMAT/NIST

est alors définie comme étant une méthode de référence pour la mesure d’activité de radionucléides

dans le cadre de cette collaboration.

2.5.1 LE DISPOSITIF EXPÉRIMENTAL :

La méthode CIEMAT/NIST s’appuie sur des données expérimentales et des calculs théoriques

dépendant notamment du schéma de désintégration de chacun des radionucléides étudiés. Cette

méthode est adaptée aux compteurs à scintillation liquide mettant en œuvre deux photomultiplicateurs

en coïncidence. Ces compteurs sont en général des passeurs d’échantillons automatisés (voir figure n°

2.7).

Figure n° 2.7 : Exemple de compteur à scintillation liquide (les échantillons radioactifs sont mélangés

au scintillateur liquide conditionné dans des flacons de volume 20 mL).

Certains compteurs sont équipés d’une source radioactive qui, lorsqu’elle est positionnée à proximité

de l’échantillon contenant le mélange de scintillateur liquide avec la solution active, permet de

Page 68: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

65

mesurer un indice de quenching. Les compteurs exempts de source radioactive externe calculent

l’indice de quenching à l’aide de l’analyse du spectre du radionucléide par rapport à une courbe de

quenching établie auparavant ou à l’aide de l’ajout d’une quantité connue du même radionucléide.

Dans le cas des compteurs équipés d’une source externe, l’indice de quenching correspond à la

mesure de la lumière émise par le scintillateur, consécutive à la perte d’énergie des électrons créés par

effet Compton par la source externe dans le scintillateur. Ce paramètre est nommé TSIE, ESRC,

SQPE, H# ... en fonction du type de compteur à scintillation liquide. Lors de la réalisation d’une

courbe de correction de quenching, une quantité connue de solution radioactive est répartie dans

plusieurs échantillons, avec une quantité croissante d’agent ‘quenchant’. L’indice de quenching est

déterminé à partir de la mesure de chaque échantillon avec une source externe. Une courbe de

correction de quenching peut ainsi être établie représentant le taux de comptage de l’échantillon en

fonction du paramètre de quenching.

Les mesures expérimentales de la méthode CIEMAT/NIST consistent à déterminer la courbe

de correction de quenching pour le radionucléide traceur et pour le radionucléide à mesurer. Pour le

radionucléide traceur, plusieurs échantillons, contenant une quantité connue de solution radioactive

étalon ainsi qu’une quantité croissante d’agent quenchant, sont préparés. Le radionucléide étalon

utilisé comme traceur est généralement le 3H. Ces échantillons sont mesurés avec et sans la source

externe. Les mesures permettent ainsi de tracer la courbe représentant le rendement de détection du

traceur en fonction de l’indice de quenching.

Ensuite, il s’agit de déterminer la courbe du taux de comptage du radionucléide à mesurer en

fonction de l’indice de quenching. Cela est réalisé à partir de la solution du radionucléide à mesurer

distribuée dans plusieurs échantillons contenant le scintillateur auquel est ajoutée une quantité connue

et croissante d’agent quenchant. Les quantités et la nature de l’agent quenchant ajoutées ainsi que

celles du scintillateur liquide doivent être les mêmes pour les échantillons contenant le radionucléide

traceur et le radionucléide à mesurer. De manière générale, les conditions chimiques des échantillons

servant de traceur et celles des échantillons du radionucléide à mesurer doivent être les plus proches

possible. L’indice de quenching est déterminé à partir des mesures des échantillons du radionucléide

étudié réalisées avec et sans la source externe du compteur. Les mesures permettent ainsi de tracer la

courbe représentant le rendement de détection du radionucléide à mesurer en fonction de l’indice de

quenching.

Les mesures expérimentales étant effectuées, la méthode CIEMAT/NIST consiste également à

calculer les courbes de rendement du radionucléide traceur et du radionucléide à mesurer en fonction

des différentes valeurs du paramètre libre, (pour un paramètre de quenching d’ionisation donné kB).

2.5.2 CALCUL DES RENDEMENTS DE DÉTECTION DU TRACEUR ET DU RADIONUCLÉIDE À

MESURER

2.5.2.1 Pour les radionucléides émetteurs de rayonnement bêta pur

Le principe de la méthode du calcul de ces courbes de rendement en fonction du paramètre

libre est très semblable à celui présenté pour le calcul de rendement du scintillateur pour la méthode

RCTD. La différence entre les deux méthodes réside essentiellement dans le nombre de

photomultiplicateurs (trois pour la méthode RCTD et deux pour la méthode CIEMAT/NIST). Ainsi, le

rendement de détection pour la méthode CIEMAT/NIST (deux photomultiplicateurs en coïncidences

Page 69: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

66

considérés comme identiques), pour les radionucléides se désintégrant par émission bêta pur, est

calculé en fonction de différentes valeurs du paramètre libre(Carles et Malonda, 2001) par

l’expression :

𝜖𝐷 = ∫ 𝑆(𝐸) [1 − 𝑒−𝑄(𝐸)𝐸

2𝜆 ]2

𝐸𝑚𝑎𝑥

0𝑑𝐸 , (2.26)

où Q(E) représente le quenching d’ionisation (défini plus haut) avec E l’énergie initiale de l’électron

émis, Emax, l’énergie maximale du spectre bêta, kB le paramètre de quenching d’ionisation et le

paramètre libre.

La première étape de la méthode CIEMAT/NIST consiste à calculer le rendement de

détection des coïncidences doubles pour 3H en fonction du paramètre libre (pour un paramètre de

quenching d’ionisation donné). Puis le taux de comptage des coïncidences doubles est mesuré pour

tous les échantillons réalisés (scintillateur contenant le traceur et des quantités croissantes d’agent

quenchant) en fonction du paramètre de quenching. Connaissant l’activité des étalons du traceur, le

rendement expérimental des coïncidences doubles s’exprime en fonction de l’indice de quenching.

Cette courbe est ensuite combinée à la courbe calculée du rendement en fonction du paramètre libre. Il

en résulte une courbe des valeurs du paramètre libre en fonction de l’indice de quenching.

De même, le rendement de détection des coïncidences doubles pour le radionucléide à

mesurer est calculé en fonction du paramètre libre (pour la même valeur de kB que celle utilisée pour 3H). Puis le taux de comptage des coïncidences doubles est mesuré pour tous les échantillons réalisés

(du scintillateur contenant le radionucléide à mesurer et parfois des quantités croissantes d’agent

‘quenchant’) en fonction du paramètre de quenching. En considérant que la courbe du paramètre libre

en fonction de l’indice de quenching du traceur est applicable au radionucléide à mesurer, on

détermine le rendement de détection du radionucléide calculé en fonction du paramètre de quenching.

Ensuite, à l’aide de cette dernière courbe et du taux de comptage du radionucléide à mesurer en

fonction de l’indice de quenching, pour un paramètre de quenching donné, on obtient le comptage

expérimental ainsi que le rendement de détection correspondant. Ainsi, l’activité du radionucléide peut

être calculée. Ce processus est présenté sous la forme d’un diagramme dans la figure n° 2.8.

Page 70: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

67

Figure n° 2.8 : Diagramme de la méthode CIEMAT/NIST pour le calcul du rendement de détection en

fonction du paramètre de quenching afin de déterminer l’activité du radionucléide (Malonda et García-

Toraño, 1982).

Une variante consiste à exprimer, au travers du paramètre libre, le rendement calculé

du radionucléide en fonction du rendement calculé du traceur. Afin de faciliter les calculs, cette courbe

peut être ajustée par un polynôme (par exemple voir : Grau Malonda, Corcho Alvarado et al., 2011).

Puis en reportant l’indice de quenching obtenu pour un comptage donné du radionucléide sur la courbe

du rendement du traceur en fonction de l’indice du quenching, on obtient le rendement du traceur et

ainsi le rendement du radionucléide. L’activité est ensuite déterminée comme le rapport du taux de

comptage des coïncidences doubles du radionucléide à mesurer au rendement de détection calculé des

coïncidences doubles.

Cette méthode utilise le quenching chimique pour déterminer le paramètre libre. Malonda, le

fondateur de cette technique précise que cette méthode n’est applicable que pour une même

installation et un même scintillateur liquide avec un même agent quenchant. Les courbes de quenching

du traceur ne sont pas universelles (Malonda, 1999).

2.5.2.2 Programmes utilisés pour le calcul de rendement pour les radionucléides émetteurs bêta

moins

Le premier programme de calcul du rendement de détection des radionucléides se désintégrant

par émission bêta pure a été publié en 1981, le programme EFFY (Malonda et Garcia-Toraño, 1982).

De nombreux programmes ont été publiés par la suite (la liste n’est pas exhaustive) : BETA (Malonda

et García-Toraño, 1985), BETA3, CALIBRA, … (Malonda, 1999), EFFY4 (Kossert et Schrader,

2004) et MICELLE2 (Kossert et Carles, 2010).

2.5.2.3 Pour les radionucléides se désintégrant par capture électronique pure

La méthode CIEMAT/NIST peut également être appliquée pour la mesure d’activité des

radionucléides se désintégrant par capture électronique pure. Dès 1982, Malonda applique la méthode

de calcul du rendement de détection par scintillation liquide aux radionucléides se désintégrant par

Page 71: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

68

capture électronique (Malonda et García-Toraño, 1982). Le principe ue calcul est le même que pour la

méthode RCTD, toutes les voies de réarrangements atomiques doivent être prises en compte. En 1983,

Malonda et García-Toraño publient leurs travaux utilisant des calculs de type Monte-Carlo pour le

calcul de l’interaction du rayonnement x issu de réarrangements électroniques du type KLM. Les

calculs sont présentés pour différents types de scintillateurs liquides conditionnés dans des flacons de

différents diamètres avec différents volumes de scintillateurs (programme de calcul du rendement

nommé EMI) (Malonda et García-Toraño, 1989). En 1999, Malonda et al., (1999) présentent le

modèle KL1L2L3 qui permet ainsi d’inclure les voies de réarrangements électroniques de type ,

(modèle appliqué dans le programme de calcul du rendement nommé EMI2).

Entre 1988 et 2012, de nombreuses améliorations du modèle ont été réalisées (Malonda et al.,

2005 ; Kossert et Carles, 2006 ; 2008 et 2010). Günther propose une procédure simplifiée en utilisant

des polynômes précalculés par les laboratoires de métrologie pour le calcul des courbes de rendement

du radionucléide en fonction du rendement du traceur (Günther et al., 1998). Il démontre également

que l’incertitude de mesure d’activité de radionucléides se désintégrant par capture électronique est

réduite si l’on utilise 54

Mn comme traceur au lieu de 3H. Par exemple l’incertitude sur la mesure de

55Fe est de 0,44 % en utilisant

54Mn alors qu’elle est de 1,67 % en utilisant

3H comme traceur de

même, pour 65

Zn elle est réduite à 0,44 % au lieu de 0,93 % avec 3H. Cette observation a été confirmée

par Kossert et Carles (2006) puis par Ratel (2008). Ils ajoutent que l’utilisation du 54

Mn comme

traceur améliore la précision pour la mesure de 55

Fe.

La méthode CIEMAT/NIST peut également être appliquée aux radionucléides se désintégrant

avec des schémas complexes (Günther 1994 ; Schönfeld et al., 1994 ; Zimmerman et al., 2001a ;

Schötzig et al., 2001 ; Johansson et al., 2003).

Aujourd’hui, plus d’une cinquantaine de radionucléides ont été étalonnés à l’aide de cette

méthode. Ils sont présentés dans le Handbook of Radioactivity and Analysis avec leurs références

associées jusqu’en 2010 (L’Annunziata, 2011).

2.5.2.4 Programmes de calcul de la méthode CIEMAT/NIST utilisés actuellement

MICELLE2 constitue la dernière évolution du programme de calcul de rendement permettant

le calcul de rendement de radionucléides se désintégrant par capture électronique pure ou encore avec

des schémas de désintégration plus complexes. Ce nouveau programme inclut un modèle de

réarrangement atomique stochastique (par exemple, un nombre aléatoire est généré afin de déterminer

à partir de quel niveau un électron est capturé : K, L1, L2 ou L3). Il inclut notamment une simulation

de la perte d’énergie des électrons dans les micelles inverses (Kossert et Carles, 2010). Ce programme

a été utilisé pour le calcul de rendement de détection par la méthode CIEMAT/NIST pour les

radionucléides suivants : 55

Fe, 125

I, 109

Cd, 65

Zn, 139

Ce, 64

Cu, 54

Mn et 88

Y. Il est précisé que la valeur du

rendement dépend du paramètre de quenching d’ionisation mais également, pour certains

radionucléides, des paramètres de schéma pris en compte. Notons ici que l’effet Čerenkov n’est pas

considéré. Or il est présent pour 64

Cu, 54

Mn et 88

Y ; il est dû à l’interaction Compton des photons

incidents avec les matériaux du système source détecteur créant des électrons Compton d’énergie

supérieure à l’énergie seuil de l’effet Čerenkov des différents matériaux : verre du flacon de mesure,

verre des fenêtres d’entrée des photocathodes, (Thiam et al., 2012 ; L’Annunziata, 2011).

Page 72: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

69

2.6 AVANTAGES ET INCONVÉNIENTS DE CHACUNE DES MÉTHODES

La méthode CIEMAT/NIST permet de mesurer l’activité de radionucléides émetteurs bêta

moins avec des incertitudes de l’ordre de quelques pour mille, ce qui est très satisfaisant. Voici

quelques exemples d’incertitudes types obtenues avec la méthode CIEMAT/NIST : 63

Ni 0,6 % (Collé

et al., 2008) ; 177

Lu 0,3 % et 186

Re 0,3 % (Schötzig et al., 2001) ; 153

Sm 0,2 % (Schötzig et al., 1999) ;

64Cu 1,4 % (Amiot et al., 2012a) ;

177Lu 0,4 % (Kossert et al., 2012). En revanche pour certains

radionucléides se désintégrant par capture électronique des écarts de plus de 2 % ont été observés

notamment pour le 125

I (L’Annunziata, 2011). L’inconvénient majeur de la méthode CIEMAT/NIST

est qu’elle dépend d’un étalon et notamment de 3H. Or l’activité de ce radionucléide est difficile à

mesurer. Néanmoins, la force de la méthode CIEMAT/NIST reste sa simplicité de mise en œuvre avec

des compteurs classiques passeurs d’échantillon ainsi que l’expérience acquise (notamment pour le

choix de la valeur du paramètre kB) durant les trente dernières années.

La méthode RCTD est, contrairement à la méthode CIEMAT/NIST, une procédure de mesure

primaire. En effet, elle ne nécessite pas l’utilisation d’un étalon de radioactivité. Elle permet

notamment de réaliser des solutions de référence de 3H. Voici quelques exemples d’incertitudes types

obtenues avec la méthode RCTD : 3H 0,8 % et

204Tl 1 % (Razdolescu et Cassette 2004) ;

63Ni 0,3 %

(Collé et al., 2008) ; 14

C 0,3 % (Qin et al., 2008) ; 32

P 0,5 % (Jaubert et Cassette 2004) ; 63

Ni 0,6 %

(Thiam et al., 2012), 89

Sr 0,4% et 90

Y 0,3 % (Simpson et Van Wyngaardt 2006) ; 99

Tc 0,3 %

(Laureano-Perez et al., 2010) ; 139

Ce 0,6 %, (Broda et al., 1998) ; 64

Cu 0,8 % (Amiot et al., 2012a) ; 177

Lu 0,3 % (Kossert et al., 2012).

La mesure d’activité par scintillation liquide est très précise pour les radionucléides émetteurs

de rayonnement bêta pur de haute énergie. En effet, la probabilité de détection est très importante et le

rendement de détection est proche de l’unité. En revanche, la mesure d’activité est plus délicate pour

les radionucléides émetteurs de rayonnement de basse énergie car en dessous d’une vingtaine de keV,

la réponse du scintillateur n’est plus linéaire. Cette non-linéarité est due au quenching d’ionisation

dont les paramètres sont dépendants du type de scintillateur utilisé et difficiles à déterminer.

Les deux méthodes utilisant les mêmes modèles, ces difficultés sont communes. Néanmoins la

méthode RCTD est très sensible aux variations du paramètre kB du quenching d’ionisation en

particulier pour la mesure de 3H,

63Ni et de

241Pu (Broda, 2007 ; Kossert et al., 2011a ; Corcho

Alvarado et al., 2011 ; Van Wyngaardt et al., 2012). En ce qui concerne le dernier radionucléide de la

série une difficulté supplémentaire réside dans la méconnaissance du spectre bêta pour lequel la

transition n’est pas permise. Un écart de l’ordre de 7 % a été observé entre les mesures par la méthode

RCTD et la méthode CIEMAT/NIST sans qu’il ait pu être expliqué (Collé, 2009). En revanche, dans

le cas de radionucléides se désintégrant par capture électronique de basse énergie (comme 55

Fe), la

méthode RCTD est quasi indépendante du quenching d’ionisation et les mesures d’activité sont

obtenues avec des incertitudes inférieures au pour cent (Broda et al., 2007).

La méthode CIEMAT/NIST est moins sensible aux valeurs du paramètre kB pour les

émetteurs bêta de basse énergie mais l’incertitude dépend fortement de l’incertitude de mesure du

traceur. En revanche pour les radionucléides émetteurs bêta de forte énergie, l’activité calculée est

quasiment indépendante du traceur et l’incertitude obtenue est très faible (0,1 % pour 90

Y). En ce qui

concerne les radionucléides se désintégrant par capture électronique, comme 55

Fe et 54

Mn, les

Page 73: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

70

incertitudes de mesures sont plus élevées (elles excèdent le pour cent) et la méthode CIEMAT/NIST

est très sensible au paramètre kB du quenching d’ionisation.

Pour conclure, les deux techniques sont complémentaires et de plus en plus de laboratoires de

métrologie (une quinzaine) les possèdent aujourd’hui afin de corroborer leurs résultats.

Des moyens expérimentaux sont mis en œuvre pour déterminer le paramètre de quenching

d’ionisation. Cependant, le calcul de sa valeur dépend également du pouvoir d’arrêt des électrons dont

la formulation algébrique est très mal connue pour les électrons d’énergie inférieure à 1 keV.

2.7 QUELQUES EXEMPLES D’INTERCOMPARAISON

Les instituts nationaux de métrologie publient leurs CMCs (Calibration and Measurements

Capabilities, voir paragraphe 1.2.1.3) au travers du site du BIPM. Les revendications en matière

d’étalonnage des laboratoires sont confortées par leur participation aux comparaisons internationales et

les comparaisons clés. Aussi participent-il aussi souvent que possible à ces comparaisons. En ce qui

concerne les mesures par scintillation liquide, nous avons vu que l’activité des radionucléides peut être

déterminée avec des incertitudes inférieures à 1 % pour un grand nombre de radionucléides.

Dans le cas du 3H (émetteur de rayonnement bêta d’énergie maximale 18 keV), les incertitudes

sur l’activité massique présentées par les laboratoires primaires sont de l’ordre de 1 % voire même

inférieures. Une comparaison internationale de ce radionucléide a été organisée par le NPL, laboratoire

primaire anglais, en 1998 (Makepeace et al., 1998) dans le cadre d’un groupe de travail international

(figure n° 2.9).

Page 74: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

71

Figure n° 2.9 : Comparaison internationale de mesure d’activité massique du 3H

(Makepeace et al., 1998).

Parmi les résultats collectés, seul un laboratoire présente des incertitudes sur la mesure

d’activité massique de l’ordre de 2 %. Les autres laboratoires ont des incertitudes de l’ordre de 1 %

voire quelques pour mille. Or, on observe une grande variabilité des résultats avec un écart maximal

de 2,7 % pour la méthode RCTD (pour le niveau d’activité massique le plus élevé). La méthode de

mesure par compteur à gaz proportionnel présente également un écart important de 2,8 %. Aussi,

l’auteur de l’article conclut en précisant que des investigations sont nécessaires afin de comprendre la

raison de ces écarts. Plusieurs pistes ont été envisagées : le paramètre de quenching d’ionisation, le

pouvoir d’arrêt des électrons, le modèle statistique de détection de la lumière émise qu’il conviendrait

d’explorer. Une nouvelle comparaison internationale de 3H a été organisée depuis et se trouve en cours

de publication.

Une comparaison clé internationale a été organisée par le BIPM pour 241

Pu. Comme 3H,

241Pu

est un émetteur de rayonnement bêta moins de faible énergie (énergie maximale 20 keV). Il émet

également des rayonnements alpha et gamma mais avec des intensités extrêmement faibles (dont la

contribution en scintillation liquide est négligeable par rapport à l’émission bêta). Participant à cette

comparaison, le laboratoire primaire d’Afrique du Sud a déjà publié ses résultats ainsi qu’un premier

tableau des résultats de la comparaison internationale (Van Wyngaardt, 2012), voir figure n° 2.10.

Page 75: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

72

Figure n° 2.10 : Comparaison internationale de mesure d’activité massique pour une solution de 241

Pu

(van Wyngaardt, 2012 ; Michotte et Johansson, 2012).

On observe des écarts de plus de 4 % (en excluant la valeur à 86 kBq/g) parmi les résultats de

mesure d’activité massique. Certaines mesures ne sont pas compatibles entre elles et ces écarts ne sont

pas liés à une méthode particulière (« not method dependent ». Les auteurs mettent en évidence que

l’une des difficultés rencontrées lors de la mesure des radionucléides émetteurs bêta moins concerne le

spectre d’émission bêta. La forme du spectre pour les radionucléides se désintégrant par émission bêta

moins, consécutive à une transition première interdite non unique, comme celle du 241

Pu, n’est en fait

pas bien connue (voir paragraphe 2.4.2.2).

L’incidence de la forme du spectre bêta est importante sur la détermination du rendement de

détection et par conséquent sur la mesure d’activité massique. Aussi, le bilan d’incertitude présenté sur

la mesure d’activité massique comprend une incertitude due à la méconnaissance du facteur de forme

du spectre bêta. Elle est évaluée à 1,1 % pour le résultat présenté par les auteurs.

Les auteurs présentent également le travail réalisé au LNHB pour la mesure expérimentale du

spectre bêta et le facteur de forme qui en est déduit (Loidl et al., 2010). L’utilisation de ce facteur de

forme remonte la valeur d’activité massique du NMISA d’environ 7 %. Parmi les autres sources

d’incertitude les plus élevées, on retrouve celle due au paramètre de quenching d’ionisation évaluée à

0,53 % et celle due au pouvoir d’arrêt des électrons pour les électrons d’énergie inférieure à 0,4 keV

évaluée à 0,37 %. Ce sont ici les trois plus importantes sources d’incertitudes sur la mesure d’activité

massique du 241

Pu. Les derniers résultats obtenus par Mougeot et al. (2012) pour le calcul de spectre

bêta, en prenant en compte l’effet d’échange des électrons, est en très bon accord avec les spectres

expérimentaux de 241

Pu obtenus par Loidl. Le rapport de la comparaison internationale publiée par le

BIPM conclut également sur une dispersion relative des résultats de 4 %. De même, il y est précisé

que les mesures récentes du spectre de 241

Pu (Loidl et al., 2010) permettront probablement d’améliorer

la précision des étalons de 241

Pu mesurés par scintillation liquide (Michotte et Johansson, 2012).

Ces avancées sur le calcul des spectres bêta aux transitions non permises vont se traduire

vraisemblablement par une notable amélioration de la précision sur la mesure d’activité par

scintillation liquide des radionucléides comme 241

Pu, 63

Ni et 90

Y.

Page 76: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

73

Concernant les radionucléides se désintégrant par capture électronique, le Comité Consultatif

des Rayonnements Ionisants section II (CCRI(II)) a chargé le BIPM d’organiser une comparaison

internationale pour la mesure de 55

Fe (Ratel, 2008). Cette comparaison a été motivée par la forte

dispersion des résultats obtenus lors de la comparaison internationale organisée dans le cadre Euromet

en 1998 (Cassette et al., 1998). En effet, la comparaison de 1998 avait mis en évidence une dispersion

des résultats de mesure d’activité massique de l’ordre de 5,7 %. Les résultats de la nouvelle

comparaison sont présentés dans la figure n° 2.11.

Figure n° 2.11 : Présentation des résultats de la comparaison internationale de 55

Fe (Ratel, 2008)

Les écarts les plus importants sont observés pour les laboratoires utilisant la technique de

mesure CIEMAT/NIST (10 % d’écart maximal sur l’activité massique avec le 3H comme traceur et 1,6

% d’écart maximal entre les laboratoires avec 54

Mn comme traceur). L’auteur précise que les résultats

obtenus par la méthode CIEMAT/NIST en utilisant 54

Mn comme traceur sont plus précis que ceux

utilisant 3H mais ne modifie pas la valeur d’activité massique (Ratel, 2008 ; Günther, 1998). Il ajoute

qu’il revient aux laboratoires de revoir leur méthode pour expliquer les écarts observés leur de

l’utilisation du 3H comme traceur (Voir paragraphe 2.5.2.2). Les résultats de mesures réalisées à l’aide

de la méthode TDCR sont moins dispersés et présentent un écart maximal de 0,8 %. Pour conclure sur

cette comparaison internationale, la méthode CIEMAT/NIST nécessite quelques investigations afin de

comprendre les écarts entre les laboratoires. La méthode CIEMAT/NIST utilisant les courbes de

quenching pour un scintillateur donné, il reste très important de s’assurer que les conditions chimiques

des échantillons soient les plus proches possible entre le radionucléide à mesurer et le traceur.

Les résultats de ces comparaisons (celles présentées dans ce mémoire ne sont pas exhaustives)

démontrent qu’il est nécessaire de maîtriser les paramètres qui influent sur le calcul du rendement de

détection. Aussi, le quenching d’ionisation, le pouvoir d’arrêt des électrons, la statistique de collection

de la lumière, la connaissance des spectres bêta pour les transitions non permises font partie des sujets

Page 77: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

74

de recherche étudiés pour améliorer les mesures d’activité massique en scintillation liquide et leurs

incertitudes.

2.8 LES AXES DE RECHERCHE ACTUELS EN SCINTILLATION LIQUIDE

2.8.1 INTRODUCTION

Nous avons vu que les incertitudes sur les mesures d’activité par scintillation liquide sont en

général inférieures au pour cent pour la plupart des radionucléides émetteurs bêta moins en particulier,

et les radionucléides se désintégrant par capture électronique. Néanmoins, lors des comparaisons

internationales apparaissent des écarts supérieurs au pour cent, en particulier pour 3H et

55Fe. Ces

désaccords entre les résultats de mesures obtenues à l’aide des méthodes de référence en scintillation

liquide conduisent les chercheurs à améliorer leurs modèles.

Un des axes évident de recherche concerne le quenching d’ionisation dont la formulation

utilisée est celle de Birks. Dans cette formule semiempirique, deux paramètres sont peu connus : le

pouvoir d’arrêt pour les électrons d’énergie inférieure à 1 keV et le paramètre kB. De plus, les

radionucléides étant dissous dans des solutions aqueuses et les scintillateurs étant des solutions

organiques, le radionucléide est situé dans des micelles inverses de très petites tailles, réparties au

mieux uniformément dans le scintillateur. Aussi, une partie de l’énergie est déposée dans ces micelles

inverses avant que les électrons n’interagissent avec le scintillateur liquide. Ce phénomène nécessite

des investigations.

Par ailleurs, l’émission lumineuse n’est pas toujours isotrope notamment pour les faibles

énergies, contrairement aux hypothèses retenues dans les programmes de calcul de rendement. En

effet, les flacons de scintillation liquide en verre réfléchissent les photons lumineux et lorsque le

nombre de photons émis est faible, l’isotropie s’en trouve dégradée. Ceci devrait être pris en compte.

Enfin, les codes de simulation Monte-Carlo sont utilisés, notamment pour suivre l’interaction des

photons émis par certains radionucléides dans le scintillateur. Ils peuvent être également utilisés pour

la simulation de la collection optique des photons lumineux. Cette nouvelle voie de recherche est

également explorée.

2.8.2 LA PERTE D’ENERGIE DES ÉLECTRONS DE BASSE ÉNERGIE PAR UNITÉ DE

LONGUEUR PARCOURUE

La perte d’énergie linéique des électrons est utilisée dans la formule de Birks pour le calcul du

quenching d’ionisation (formule (2.1)). Elle conduit à la non-linéarité de la réponse des scintillateurs

liquides. Par conséquent, un calcul précis du rendement du scintillateur nécessite de connaître

parfaitement le pouvoir d’arrêt des électrons. Or ce n’est pas le cas. En effet, la formule de la perte

d’énergie linéique de Rohrlich et Carlson (ICRU, 1984), représentée dans ce document par la formule

(2.2), n’est plus applicable pour les électrons d’énergie inférieure à 100 eV. L’incertitude sur sa valeur

pour les électrons d’énergie 1 keV est de l’ordre de 10 %. Ne pouvant proposer de formulation

générale du pouvoir d’arrêt, ce rapport présente les études de la perte d’énergie linéique pour les

électrons d'énergie inférieure à 100 eV, dans l'eau (Kutcher et Green, 1976 ; Ashley, 1982a), dans le

polyéthylène (Ashley et al., 1982b).

En scintillation liquide, dans la méconnaissance d’une formulation adaptée pour les électrons

d’énergie inférieure à 100 eV, divers modèles de calcul d’extrapolation sont utilisés. Parmi ces

Page 78: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

75

modèles, le plus simple est l’extrapolation linéaire vers zéro de la formule (2.2) pour les électrons

d’énergie inférieure à 100 eV (Péron, 1995 ; Cassette et al., 2010 ; Bignell et al., 2010a). Ce calcul

nécessite la connaissance précise de la composition atomique du scintillateur liquide.

Au CIEMAT, laboratoire primaire espagnol, de nombreuses investigations ont été engagées de

1999 à 2004 pour déterminer le pouvoir d’arrêt des électrons de basse énergie. Malonda et Carles

(Malonda et Carles, 1999) proposent des valeurs tabulées du quenching d’ionisation pour le toluène.

Dans ce travail, le calcul du pourvoir d’arrêt est décomposé en fonction de la plage énergétique de

l’électron : une interpolation linéaire est appliquée de 0 à 20 eV (en supposant le pouvoir d’arrêt nul

pour les électrons d’énergie nulle), de 20 eV à 1 keV, des données expérimentales normalisées sont

utilisées ; enfin, au-delà de 1 keV, c’est la formulation de Rohrlich et Carlson (ICRU, 1984) qui est

utilisée avec les données pour le toluène.

En 2000, les mêmes auteurs généralisent cette procédure et proposent des valeurs tabulées du

quenching d’ionisation (pour différentes valeurs de kB sur la plage 0,001 — 0,020 g.MeV—1.

cm—2

)

adaptées aux scintillateurs liquides Insta-Gel® Plus et Ultima Gold® (Malonda et Carles, 2000). En

2002 Malonda collabore avec le département de fusion et des particules élémentaires du CIEMAT. De

cette collaboration naît une nouvelle méthode de calcul du pouvoir d’arrêt des électrons d’énergie

comprise entre 0,007 keV et 10 keV pour l’eau dans un premier temps (Garcia et Malonda, 2002) puis

pour le toluène (Garcia et al., 2004). Cette méthode est fondée sur les calculs de section efficace de

diffusion des électrons réalisés par Garcia (Garcia et Manero, 1997 ; Manero et al., 2002 ; Blanco et

Garcia, 2003). Elle utilise une formule semiempirique prenant en compte les valeurs expérimentales

des sections efficaces de diffusion inélastique des électrons dans le toluène (l’énergie moyenne

d’excitation étant déterminée expérimentalement).

Puis, en 2004, l’équipe s’associe à la PTB, laboratoire primaire allemand. Les deux équipes

appliquent les différentes formulations du pouvoir d’arrêt déterminées précédemment à la mesure

d’activité d’une solution étalon de 55

Fe par la méthode CIEMAT/NIST (en y incluant de nouvelles

formulations purement empiriques) (Carles et al., 2004). D’excellents résultats sont obtenus en

appliquant cette nouvelle expression du pouvoir d’arrêt à la formule de Chou (Chou, 1952). Toutefois

les auteurs concèdent le fait que ces résultats nécessitent de plus amples investigations afin de

déterminer une signification physique à la formulation semi-empirique qu’ils utilisent. Plus tard, en

2010, une nouvelle approche empirique des basses énergies est à nouveau proposée pour compléter la

formule (2.2) pour les électrons d’énergie comprise entre 0 keV et 1 keV (Kossert et Carles, 2010).

Malgré toutes ces études, certains auteurs utilisent toujours l’extrapolation linéaire pour les

électrons d’énergie inférieure à 100 eV (Cassette et al., 2010 ; Bignell et al., 2010a). D’ailleurs peu

d’auteurs précisent le pouvoir d’arrêt utilisé pour les électrons de basse énergie. Généralement, seule

la formule de Bethe-Bloch (Siegbahn, 1965), ou celle de Rohrlich et Carlson (ICRU, 1984) est

évoquée. Or la valeur du pouvoir d’arrêt a une incidence directe sur la valeur du paramètre kB de

quenching d’ionisation. C’est pourquoi, il est difficile de comparer rigoureusement les valeurs de kB.

Jusqu’en 2010, les investigations sur la perte d’énergie linéique des électrons intéressaient

surtout les scientifiques travaillant avec les scintillateurs. Aujourd’hui, les recherches sur l’effet

biologique des rayonnements ionisants, notamment sur l’ADN, relancent l’étude du pouvoir d’arrêt

pour les électrons de basse énergie (Plante et Cucinotta, 2009 ; Francis et al., 2011). Tan et Xia

(2012) de l’université de Shandong en Chine, proposent une nouvelle méthode de calcul du pouvoir

Page 79: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

76

d’arrêt adaptée pour dix scintillateurs liquides (comprenant notamment différents types d’Ultima

Gold®, de l’Insta-Gel® et du Hionic Fluor®). Le calcul est fondé sur le modèle de la fonction de

réponse diélectrique (Ashley et al., 1978). Les compositions atomiques des scintillateurs liquides ont

été fournies par les constructeurs. Les valeurs obtenues du pouvoir d’arrêt pour ces scintillateurs sont

tabulées pour des électrons d’énergie comprise entre 20 eV et 20 keV.

Il serait intéressant de tester ces valeurs pour le calcul des rendements de détection des

méthodes de référence pour la mesure d’activité par scintillation liquide, à savoir la méthode

CIEMAT/NIST et la méthode RCTD (pour la mesure d’activité du 3H notamment). Cette étude

permettrait de déterminer l’impact de cette nouvelle formulation du pouvoir d’arrêt sur la valeur du

paramètre kB de la formule de Birks (2.1).

2.8.3 ÉTUDE DU QUENCHING D’IONISATION

2.8.3.1 Les valeurs de kB au sens de la formule de Birks

Nous avons vu que l’évaluation du quenching d’ionisation est important pour les deux

méthodes de mesure d’activité par scintillation liquide, la méthode RCTD et la méthode

CIEMAT/NIST. Outre le calcul du pouvoir d’arrêt des électrons qui présente des difficultés, la

détermination expérimentale de la valeur du paramètre kB du quenching d’ionisation est également

difficile à obtenir. Quoi qu’il en soit, de nombreux auteurs présentent les valeurs de kB qu’ils ont

obtenues dans le cadre de leurs travaux. Ces valeurs ne sont pas toujours comparables pour un même

scintillateur car, nous l’avons vu, elles dépendent des formules appliquées pour le calcul du pouvoir

d’arrêt des électrons. Néanmoins, il est intéressant de recueillir les valeurs présentées dans la

littérature pour un même scintillateur, à savoir le plus utilisé : l’Ultima Gold®.

Dans le cadre de l’étude de la mesure primaire du 139

Ce présentée dans le paragraphe 2.4.2.3.2,

Broda avait obtenu une valeur du paramètre kB égale à 0,0054 cm/MeV par défocalisation sur la

première dynode des photomultiplicateurs (Broda et al., 1998). Quelques années plus tard, le même

auteur mesure de 3H et

63Ni et propose une autre valeur du paramètre kB égale à (0,0116 ± 0,0007)

cm/MeV pour le même scintillateur (Broda et al., 2002). Cette valeur avait également été obtenue par

défocalisation.

Cette différence importante de la valeur de kB entre 1998 et 2002 pourrait peut-être

s’expliquer par une description incomplète du modèle physique lors des travaux sur le 139

Ce. En effet,

les diffusions des photons du 139

Ce avec l’environnement du flacon de mesure n’avaient pas été

modélisées. La valeur du paramètre kB aurait peut être compensé cette insuffisance du modèle.

D’ailleurs Broda en fait la supposition lors de ses travaux en 2002 au cours desquels il étudie la

variation du paramètre kB en fonction de la composition du scintillateur liquide. Il précise que le

paramètre kB joue le rôle d’une variable ajustable dans la méthode RCTD. Aussi chaque imperfection

du modèle physique employé peut interférer avec la valeur du paramètre kB (Broda et al., 2002).

En 2003, il détermine une autre valeur du paramètre kB de 0,012 cm/MeV, compatible avec

celle obtenue en 2002. Puis, en 2012, il obtient à nouveau une valeur très différente égale à 0,0075

cm/MeV lors de la mesure du 85

Sr. Cette valeur est obtenue par quenching chimique en utilisant la

formulation du pouvoir d’arrêt de Los Arcos et Ortiz (1997) (Broda, 2012). Ici, le nouveau modèle du

pouvoir d’arrêt des électrons pourrait expliquer cette nouvelle valeur du paramètre kB.

Page 80: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

77

De même, le laboratoire de métrologie australien publie deux valeurs de kB différentes pour

l’Ultima Gold® à deux ans d’intervalle : 0,011 cm/MeV et 0,014 cm/MeV lors de la mesure du 3H

(Qin et al., 2008 et Mo et al., 2010). Le laboratoire métrologie français, le LNHB a également publié

des valeurs de kB différentes pour l’Ultima Gold®. Tous ces résultats sont rassemblés dans le tableau

n° 2.1.

Méthode RCTD kB / en

cm/MeV

Méthode de

diminution du

RCTD

Formulation du

pouvoir d’arrêt

Radio-

nucléide

mesuré

Référence

Pologne

(NCNRRC) 0,0054 Défocalisation ICRU, 1984

139Ce

Broda et al.,

1998

Pologne

(NCNRRC) 0,0116 Défocalisation Bethe-Bloch

3H et

63Ni Broda, 2002

Pologne

(NCNRRC) 0,012 Défocalisation Bethe-Bloch

3H et

63Ni Broda, 2003

Pologne

(NCNRRC) 0,0075

Quenching

chimique Los Arco et Ortiz 1997

85Sr

Broda et al.,

2012

Australie

(ANSTO) 0,011 Défocalisation -

3H Qin et al., 2008

Australie

(ANSTO) 0,014 Défocalisation -

3H Mo et al., 2010

France (LNHB) 0,012 Défocalisation ICRU, 1984 63

Ni Thiam et al.,

2012

France (LNHB) 0,010 Défocalisation ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) 64

Cu Amiot al., 2012a

France (LNHB) 0,010

Méthode

d’étalonnage

par traceur

Compton

ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) 3H

Cassette et al.,

2010

France (LNHB) 0,0137 Défocalisation Bethe-Bloch 3H

Broda et al.,

2002

France (LNHB) 0,011 Méthode

directe ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) - Péron, 1995

Allemagne (PTB) 0,0075 Défocalisation Los Arcos et Ortiz, 1997 3H

Nähle et al.,

2010

République

Tchèque (CMI) 0,012

Augmentation

distance Non précisée

45Ca et

204Tl

Sochorová et al.,

2012

États-Unis

(NIST) 0,012 Filtres gris Calculs du NIST

99Tc

Laureano-Perez

et al., 2010

Japon (AIST) 0,0126 Filtres gris - 3H Sato et al., 2012

Page 81: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

78

Roumanie (IFIN) 0,012 Filtres gris ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) 3H

Razdolescu et

Cassette, 2004

Argentine (LMR) 0,018 Défocalisation ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) 3H

Arenillas et

Cassette, 2006

Corée du Sud

(KRISS) 0,009

Quenching

chimique Bethe-Bloch

3H Lee et al., 2004

Corée du Sud

(KRISS) 0,013 Défocalisation Bethe-Bloch

3H Lee et al., 2004

Australie

(ANSTO) 0,014 Défocalisation ICRU, 1984 (extrapolation

linéaire 0 à 100 eV) 3H Mo et al., 2010

Tableau n° 2.1 : Valeurs du paramètre kB obtenues pour l’Ultima Gold® avec différents

radionucléides dans divers laboratoires de métrologie des rayonnements ionisants. Différents

programmes sont utilisés et leur variabilité pourrait avoir une influence sur le calcul du paramètre kB.

La liste des valeurs des paramètres kB assemblées dans le tableau n° 1 n’est pas exhaustive.

On observe une variation du paramètre kB pour un même scintillateur et une même méthode de

mesure variant de plus de 50 %. Ces écarts considérables de valeurs du paramètre kB sont révélateurs

de toute la difficulté de la détermination de ce paramètre. Cette valeur dépend directement de la

formulation du pouvoir d’arrêt. Or les laboratoires n’utilisent pas tous les mêmes formulations quand

ils la précisent (en particulier pour les électrons d’énergie inférieure à 1 keV).

Par conséquent, les valeurs publiées dans la littérature sont rarement comparables. Elles pourraient,

comme le précise Broda, traduire les insuffisances de la description du mécanisme d’interaction retenu

pour le modèle physique employé qui compenserait, pour obtenir la bonne valeur de l’activité, en

modifiant assez fortement la valeur du paramètre kB (Broda et al., 2002) mentionné par ailleurs.

Par ailleurs, en 2000 Cassette observe que la valeur du p aramètre kB est indépendante du

type de méthode utilisée pour diminuer le rapport RCTD (Cassette et al., 2000). Or, lors de la mesure

du 3H et du

14C, Lee obtient des résultats différents sur la valeur du paramètre kB en fonction du

protocole utilisé pour diminuer le rapport RCTD (quenching chimique ou défocalisation) (Lee et al.,

2004). De même Collé et al., observent des valeurs de kB différentes en fonction du protocole utilisé

pour diminuer le rapport RCTD (défocalisation et filtres gris) (Collé et al., 2008).

Par conséquent il apparaît très important de poursuivre les investigations sur la nature du

protocole utilisé lors de la détermination du paramètre kB (défocalisation, quenching chimique, filtres

gris ou changement de géométrie).

En ce qui concerne la méthode CIEMAT/NIST, on observe également des valeurs de kB qui

diffèrent au sein d’un même laboratoire pour l’Ultima Gold®. En effet, Kossert et al., (2009)

appliquent une valeur de kB égale à 0,011 cm/MeV pour la mesure du 41

Ca avec la formulation du

pouvoir d’arrêt de Rohrlich et Carlson (ICRU, 1984) puis une autre valeur de kB égale à 0,0075

cm/MeV pour la mesure du 90

Y avec la formulation du pouvoir d’arrêt de Los Arcos et Ortiz (1997)

(Kossert et Schrader, 2004). Ceci confirme complètement l’assertion faite précédemment de la grande

influence que revêt le choix du protocole utilisé lors des mesures.

Page 82: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

79

D’aucuns pourraient supposer que cette différence entre les valeurs du paramètre kB est due à

la formulation du pouvoir d’arrêt des électrons, cependant lors des mesures d’activité du 55

Fe, 65

Zn, 109

Cd, et 139

Ce, Kossert et Carles (2010) déterminent une valeur de kB égale à 0,075 cm/MeV en

utilisant la formule de Rohrlich et Carlson (ICRU 1984).

Carles avait déjà mentionné la possible influence du choix de la formulation du pouvoir d’arrêt

des électrons sur la valeur du paramètre kB pour la méthode CIEMAT/NIST (Carles et Malonda,

2001 ; Carles et al., 2004). Néanmoins le pouvoir d’arrêt des électrons n’explique pas toujours les

écarts observés entre les différentes valeurs du paramètre kB. Carles et Malonda (2001) avaient certes

proposé une méthode permettant de déterminer le paramètre kB à l’aide des compteurs à coïncidences

doubles. Cependant, en pratique, les expérimentateurs utilisent les valeurs de kB fournies par la

littérature lors des mesures par la méthode CIEMAT/NIST (Alvarado et al., 2011 ; Capogni et al.,

2012).

Nonobstant la difficulté de caractérisation du paramètre kB, il est indispensable de s’assurer

que soient identiques les conditions chimiques des échantillons préparés avec le traceur et le

radionucléide à mesurer (même scintillateur, d’un même lot si possible, mêmes quantités de solution

active, d’agent quenchant, même nature de solution aqueuse, d’agent quenchant, même type de flacon.

Comparaison des méthodes CIEMAT/NIST et RCTD en termes de kB :

Le paramètre kB devant être une caractéristique du scintillateur, quelle que soit la méthode de

mesure RCTD ou CIEMAT/NIST, sa valeur doit être identique aux incertitudes près. Cela est

effectivement observé par Broda et al., (2012) lors de la mesure du 85

Sr par les deux techniques de

mesure pour lesquelles ils obtiennent une valeur de 0,0075 cm/MeV. De même, Amiot et al., (2012a)

obtiennent une même valeur de kB de 0,010 cm/MeV lors de la mesure du 64

Cu par les deux méthodes.

Kossert et al., (2011b) utilisent une même valeur de kB de 0,0075 cm/MeV lors de la mesure du 113m

Cd également par les deux méthodes (en utilisant la formule de Los Arcos et Ortiz (1997)).

Néanmoins, il est parfois difficile de comparer les valeurs du paramètre kB au sein d’un même

laboratoire pour les deux techniques. En effet, lors de la mesure du 177

Lu, Kossert et al., (2012)

emploient la formulation de Los Arcos et Ortiz (1997) pour la méthode CIEMAT/NIST et la

formulation de Rohrlich et Carlson (ICRU, 1984) pour la méthode RCTD.

La méthode RCTD est sensible à la valeur du paramètre kB pour les radionucléides émetteurs

bêta pur de basse énergie, en particulier pour 3H. En effet, une valeur de kB connue à 20 % près peut

induire un biais de 2,5 % sur la mesure d’activité du 3H (Cassette et al., 2010). Pourtant les mesures

d’activité du 3H sont généralement communiquées avec une incertitude de l’ordre de 1 %. Or, les

résultats de mesures des différents laboratoires de métrologie présentent des incompatibilités lors des

comparaisons internationales que ce soit pour les radionucléides émetteurs bêta moins pur ou se

désintégrant par capture électronique (paragraphe 2.7). La méthode CIEMAT/NIST, elle, qui est peu

sensible au paramètre kB pour les émetteurs bêta moins pur, le devient pour les radionucléides se

désintégrant par capture électronique. En effet, lors du calcul du rendement de détection du traceur et

du radionucléide le calcul de la formule semiempirique de Birks est réalisé deux fois. Ce double calcul

du rendement de détection induit un effet compensatoire qui expliquerait cette quasi insensibilité de la

méthode au paramètre de quenching d’ionisation pour le calcul d’activité de radionucléides émetteurs

bêta moins. Cet effet est mis en évidence lors de la mesure d’activité du 241

Pu pour les deux méthodes

CIEMAT/NIST et RCTD (Kossert et al., 2011a).

Page 83: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

80

Outre les différentes méthodes de calcul intégrées aux programmes d’évaluation du rendement

(prise en compte des différences d’efficacité quantique des photomultiplicateurs, de la statistique

d’émission des photons, de toutes les voies de réarrangement atomique possibles…), la grande

variabilité de la valeur du paramètre kB met en évidence la méconnaissance actuelle des phénomènes

physiques et chimiques ayant lieu au sein du scintillateur lors des mesures d’activité des

radionucléides.

Il apparaît nécessaire de poursuivre les investigations. La formulation du pouvoir d’arrêt des

électrons, la nature du protocole choisi pour la diminution du rendement de détection RCTD, la mise

en œuvre d’une méthodologie simple pour déterminer le paramètre kB à l’aide de la méthode

CIEMAT/NIST (pour les radionucléides se désintégrant par capture électronique) et la mise en œuvre

de méthodes de mesure directe du quenching d’ionisation sont autant de sujets de recherche permettant

d’améliorer les connaissances sur le quenching d’ionisation afin d’améliorer l’exactitude des mesures.

2.8.3.2 Développement de méthodes de mesure du paramètre kB

Le quenching d’ionisation est encore aujourd’hui un paramètre mal maîtrisé dans l’approche

méthodologique des deux techniques de mesure de référence par scintillation liquide. Pour la méthode

RCTD, un biais de 20 % sur la valeur du paramètre kB a une incidence de 1 % à 3 % sur la mesure

d’activité du 3H et de quelques pour mille sur la mesure du

63Ni. Pour la méthode CIEMAT/NIST, le

biais engendré par la méconnaissance du paramètre kB est du même ordre de grandeur mais cette fois

pour les radionucléides se désintégrant par capture électronique. Les méthodes employées pour

déterminer le paramètre kB actuelles ne sont pas suffisamment précises et la poursuite des

développements de méthodes directes de mesure de ce paramètre s’avère essentielle.

2.8.3.2.1 Etude de la réponse de scintillateurs liquides aux électrons de basse énergie

En 1992, une nouvelle technique de mesure a été conçue par Vatin et Cassette afin d’étudier le

quenching d’ionisation dans les scintillateurs liquides pour les électrons de basse énergie et, en

particulier, de déterminer la valeur du paramètre kB. Cette étude a fait l’objet de ma thèse soutenue en

1995 (Péron, 1995) et décrite précédemment. Afin de confirmer cette étude et d’accéder à des

électrons de plus haute énergie, j’ai décidé d’utiliser le rayonnement synchrotron du LURE et, en

particulier, la ligne DW31B permettant de créer par effet photoélectrique des électrons d’énergie allant

jusqu’à 50 keV.

2.8.3.2.2 Utilisation du rayonnement synchrotron

Le rayonnement synchrotron, rayonnement photonique monoénergétique en sortie de ligne de

lumière (comprenant un cristal monochromateur) peut également être mis à profit pour compléter les

études du rendement de scintillateurs liquides. La démarche scientifique a été similaire à celle exposée

précédemment pour la mesure des coefficients d’absorption décrite au paragraphe 2.4.2.3.3. J’ai

soumis un dossier de proposition d’expérience au conseil scientifique du LURE pour les lignes de

lumières SB3 de l’anneau de stockage Super-Aco, D15A et DW31B de l’anneau de stockage DCI pour

pouvoir disposer de temps de faisceau. Le projet ayant été accepté, les expérimentations ont été

réalisées sur plusieurs campagnes de mesures durant trois ans de 1997 à 1999.

La première phase du projet a consisté à développer et réaliser des dispositifs expérimentaux

spécifiques à chaque expérience et adaptés à l’environnement technique de chacune des lignes de

Page 84: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

81

lumière (figure n° 2.12). La deuxième phase a porté sur la mesure du rendement d’un scintillateur

liquide commercial couramment utilisé lors des mesures primaires d’activité par scintillation liquide :

l’Ultima Gold®. L’objectif était de déterminer la réponse du scintillateur pur puis soumis à un

quenching chimique sur une gamme d’énergie des électrons de quelques keV à 50 keV. Cette étude

permettait d’améliorer le modèle physique utilisé dans le programme de calcul de la méthode RCTD et

ainsi de diminuer l’incertitude sur la mesure d’activité primaire.

Le principe de l’étude du rendement de scintillateur consistait à créer des électrons au sein du

scintillateur par effet photoélectrique. Les courbes de rendement ont été mesurées pour le scintillateur

Ultima Gold® pur puis quenché successivement avec 1,5 %, 5 % et 10 % d’eau et ensuite de HCl. Les

cuves de mesures couplées au photomultiplicateur sont présentées dans la figure n° 2.12. Le

scintillateur liquide était introduit dans la cuve de mesure à l’aide d’une pompe péristaltique.

Figure n° 2.12 : Présentation des cuves de mesure pour l’étude du rendement lumineux de

scintillateurs liquides à l’aide du rayonnement synchrotron.

Les courbes présentant le nombre moyen de photoélectrons en fonction de l’énergie initiale de

l’électron ont été interprétées à l’aide de la formule de Birks. Les résultats obtenus ont conduit à des

valeurs du paramètre kB supérieures d’environ 30 % à celles publiées dans la littérature. Différentes

hypothèses ont été émises pour expliquer cet écart. Afin d’améliorer l’interprétation des résultats

expérimentaux trois actions étaient prévues. La première consistait à changer le lot d’Ultima Gold®

utilisé (des variations de rendement de scintillateur entre lots avaient déjà été observées) afin de

vérifier la reproductibilité des mesures, la deuxième à corriger les spectres obtenus de la contribution

des diffusions multiples des photons incidents dans le scintillateur et son environnement (effet

Compton, effet Rayleigh suivi d’effet Compton, ...). Enfin, la troisième prévoyait de déterminer les

photons de fluorescence de l’aluminium et du collimateur en plomb, excités par le rayonnement

incident (des divers autres matériaux à proximité du scintillateur). En effet, une fraction des photons

de fluorescence rétrodiffusés interagit dans le scintillateur et contribue au nombre moyen de photons

lumineux émis en réponse par le scintillateur.

La simulation de l’interaction du faisceau incident avec le dispositif expérimental et son

environnement, réalisée à l’aide d’un code Monte-Carlo, aurait pu alors permettre de corriger les

spectres de photoélectrons. Cependant ces expériences et travaux complémentaires n’ont pas pu être

Page 85: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

82

poursuivis. Une réorganisation interne du laboratoire m’a contrainte à arrêter le projet au profit d’une

autre thématique développée dans le chapitre 3.

2.8.3.2.3 Utilisation d’une source externe sur une installation RCTD

En 2008, Do et Cassette ont mis en œuvre une source de rayonnement gamma externe (source

de 241

Am collimatée) sur une installation RCTD, placée à angle droit d’un détecteur germanium HP

(Do et Cassette, 2008). Cette source est utilisée afin de créer des électrons Compton au sein du

scintillateur liquide (même principe que celui décrit au paragraphe 2.8.3.2.1). Les coïncidences triples

et doubles ne sont enregistrées que si elles sont en coïncidence avec le photon Compton diffusé détecté

par la voie germanium HP. Un temps mort cumulatif est déclenché sur la voie scintillation liquide

pour chaque impulsion afin de protéger le système des impulsions retardées comme la

phosphorescence par exemple. L’énergie de l’électron Compton est déduite de la loi de conservation

de l’énergie de l’effet Compton via le photon Compton diffusé détecté par la voie germanium

étalonnée en énergie.

La réponse du scintillateur est étudiée pour les électrons d’énergie comprise entre 3,3 keV et

8,9 keV. En utilisant le rapport des coïncidences triples sur doubles expérimental pour chaque photon

diffusé et en appliquant la méthode de calcul présentée au paragraphe 2.4.2, on détermine directement

le nombre moyen de photoélectrons détectés pour une énergie donnée de l’électron Compton. On peut

également ajuster la formule de Birks (2.1) au nombre moyen de photoélectrons détectés en fonction

de l’énergie initiale des électrons Compton et déterminer une valeur du paramètre kB. Cette valeur de

kB pourra ensuite être réutilisée pour la mesure du radionucléide avec la méthode RCTD classique.

Cette méthode a été appliquée pour la mesure du 3H et une valeur du paramètre kB de 0,01 cm/MeV a

été obtenue pour l’Ultima Gold® (Cassette et al., 2010). Une variante de cette méthode a été

développée par Bignell et al., (2013), afin de déterminer le rendement de détection sans utilisation

d’un modèle statistique ou de quenching d’ionisation (la méthode « ZoMBieS »).

Actuellement d’autres méthodologies sont en cours de développement au LNHB pour étudier

le rendement des scintillateurs liquides. Une nouvelle instrumentation utilisant un tube à rayons x pour

créer des électrons par effet photoélectrique dans le scintillateur est placée sur une installation RCTD

(Halter et al., 2013).

2.8.4 ETUDE DE L’ISOTROPIE DE L’EMISSION LUMINEUSE

Dans le cadre des techniques de mesures par scintillation liquide TDCR et CIEMAT/NIST,

l’incertitude sur la mesure d’activité d’un échantillon dépend de la qualité du modèle et de

l’installation de mesure. L’un des principaux objectifs lors de la conception d’une installation de

mesure par scintillation liquide est d’obtenir le rendement de détection le plus élevé possible et par

conséquent d’optimiser la collection de la lumière émise par le scintillateur. Il a été démontré que

30 % de la lumière émise par un scintillateur produite au sein d’un flacon de scintillation liquide en

verre contenant 20 mL de scintillateur est perdue suite aux réflexions de la lumière ayant lieu dans le

flacon lui-même (Nähle et al., 2009). Aussi l’agencement et les matériaux utilisés autour du flacon de

scintillation, le couplage optique avec les photomultiplicateurs (réflecteurs, géométrie de la chambre

de mesure, …) doivent être optimisés. Nähle et al., (2009) ont étudié le rendement lumineux de

différents types de flacons et notamment l’effet du ménisque. Ce travail présente une nouvelle

méthode pour mettre en évidence le rendement lumineux des flacons étudiés. Il confirme

Page 86: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

83

l’augmentation du rendement lumineux en utilisant des flacons en verre dont la surface externe a été

entourée de ruban adhésif, ou dépolie par abrasion avec du sable ou à l’aide d’une solution chimique,

et des flacons en polyéthylène. Ce sont ces derniers qui présentent le meilleur rendement lumineux. En

effet, dans ce type de flacon, le taux de réflexion de la lumière scintillante réfléchie et réfractée dans le

flacon est beaucoup plus faible.

La réflexion des photons lumineux au sein du flacon est un paramètre important notamment en

ce qui concerne la statistique appliquée pour modéliser l’émission des photons lumineux. Lorsque le

nombre de photons lumineux émis est faible, l’isotropie de l’émission lumineuse est dégradée par les

réflexions. Kossert (2010) présente un modèle de calcul de l’anisotropie de l’émission lumineuse dans

la chambre optique de mesure appliqué au calcul du rendement de détection de radionucléides

émetteurs bêta par effet Čerenkov pour la méthode RCTD. Bobin et al., (2010a et 2012a) et Thiam et

al., (2010) utilisent le code de simulation Monte-Carlo GEANT4 appliqué à la technique de mesure

RCTD pour la simulation de l’interaction rayonnement-matière et de la collection des photons

lumineux intégrant l’anisotropie de l’émission lumineuse.

Au cours de ce travail, les auteurs observent que le modèle statistique de probabilité de

comptage des coïncidences doubles et triples utilisé dans les méthodes RCTD et CIEMAT/NIST n’est

plus applicable pour les dépôts d’énergie inférieure à 20 keV. Ils précisent que le modèle standard

n’est applicable à ces énergies que si l’origine de l’émission lumineuse est située le long de l’axe

central du flacon de scintillation et non uniformément répartie dans tout le volume. Ce phénomène est

décrit comme une dépendance stochastique des probabilités de détection des trois photomultiplicateurs

due aux phénomènes de réflexions et réfractions multiples subies par les photons lumineux aux

interfaces verre/air et air/photocathode. Cet effet de dépendance est réduit en utilisant des flacons à

surface dépolie (la lumière est diffusée et les réflexions sont diminuées). De même, cet effet diminue

lorsque le dépôt d’énergie dans le scintillateur augmente car le nombre de photons émis, puis détectés,

est plus important.

Il résulte de l’anisotropie de l’émission de lumière (pour les faibles dépôts d’énergie) une

distribution de probabilité différente de celle de la loi de Poisson. Broda avait déjà observé que la

statistique d’émission de photoélectrons était mieux décrite par une loi de Pólya pour les mesure du 3H

et du 55

Fe (Broda et al., 2007). Thiam et al. (2012) ont mesuré du 63

Ni en utilisant le modèle à l’aide

de GEANT4 appliqué à la méthode RCTD (TDCR-GEANT4) et le modèle de la méthode RCTD

classique. L’écart obtenu de 0,5 % entre la méthode RCTD classique et la méthode TDCR-GEANT4

est réduit à 0,1 % lorsque la surface du flacon de mesure est recouverte d’un film transparent diffusif.

Les auteurs poursuivent leurs recherches notamment en modélisant un flacon à surface dépolie dans le

code de calcul. Par ailleurs, ces mêmes auteurs présentent également, dans ce travail, une dépendance

stochastique entre les probabilités de détection des photomultiplicateurs en fonction du temps de

résolution de coïncidence.

2.8.5 DÉVELOPPEMENT DU SIGNAL NUMÉRIQUE

Des avancées technologiques et numériques des dix dernières années, ont émergé de nouveaux

circuits logiques pouvant être programmés. Ces réseaux logiques reconfigurables dans un circuit

intégré sont nommés carte FPGA. En instrumentation nucléaire, il est alors possible de programmer

les fonctions des modules électroniques sur ces cartes. Ainsi les fonctionnalités des modules

électroniques sont avantageusement remplacées par un algorithme implanté dans un circuit FPGA dont

Page 87: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

84

l’encombrement est également très réduit. Le signal analogique est numérisé au plus proche du

détecteur. Ces cartes FPGA commerciales sont généralement utilisées dans le cadre d’un traitement du

signal hors ligne. Les instituts nationaux de métrologie adoptent progressivement cette mutation

technologique pour le traitement du signal de leurs installations de mesures nucléaires ce qui assure

leur pérennité. Ces développements sont également appliqués à la méthode RCTD et permettent

notamment d’ajouter de nouvelles fonctionnalités comme le temps de résolution (Keightley et Park,

2007 ; Bobin et al., 2010b et 2012b ; Steele et al., 2009).

2.8.6 L’UTILISATION DES CODES MONTE-CARLO POUR LA SIMULATION DES MÉTHODES

RCTD ET CIEMAT/NIST

L’utilisation des calculs Monte-Carlo devient incontournable que ce soit pour suivre toutes les

voies de réarrangements atomiques (Kossert et al., 2012 ; Bignell et al., 2010 a et b), pour simuler les

interactions des photons avec le flacon et son environnement (photons émis par les radionucléides se

désintégrant par capture électronique ou émetteurs bêta gamma) (Cassette et al., 2006b) ou encore

pour simuler la collection de la lumière pour la méthode RCTD (Bobin et al. 2012a ; Thiam et al.,

2012), et également pour la méthode CIEMAT/NIST (Hurtado et al., 2004).

Cette pratique se généralisant, la communauté scientifique des laboratoires de métrologie des

rayonnements ionisants travaillant en scintillation liquide a décidé d’organiser une comparaison

internationale des résultats de calcul de codes Monte-Carlo à partir d’un modèle de dispositif

expérimental commun pour des photons de 835 keV (Cassette et al., 2006b). Plusieurs codes ont été

utilisés lors de cette comparaison (PENELOPE, GEANT3, MCNP, MCNPX et EGS-NRC-MP). Ce

travail met en évidence un bon accord pour la probabilité d’absorption des photons de 835 keV dans

une géométrie composée uniquement du scintillateur. En revanche, lorsque l’environnement du flacon

est pris en considération, une dispersion de 8 % est observée sur les probabilités d’absorption

calculées. L’auteur précise que la contribution de ces dispersions sur l’incertitude du rendement de

détection du 54

Mn (calculées pour l’émission des photons de 835 keV), se situe aux environs de 1 %.

La modélisation de l’environnement est importante car les photons émis par 54

Mn, 125

I, ou 139

Ce par

exemple, peuvent interagir avec les matériaux de la chambre de mesure (protection de

plomb, matériaux assurant l’étanchéité à la lumière comme l’acier par exemple, peinture réflectrice au

titane, fenêtres bialkali des photomultiplicateurs, …) et créer des photons de fluorescence qui,

rétrodiffusés, peuvent interagir avec le scintillateur et y déposer de l’énergie.

Il est à noter ici que, dans un cas réel, l’effet Čerenkov devrait également être pris en compte.

Certes, la contribution est faible : de l’ordre de 1 % du rendement de scintillation dû aux photons de

835 keV. Cet effet est produit, soit directement lorsqu’on est en présence d’électrons de haute énergie

(comme le 90

Y par exemple), soit indirectement par effet Compton pour les photons de haute énergie

(énergie au moins supérieure à 500 keV pour une interaction dans de l’eau ou dans un scintillateur).

Emettant des photons lumineux, l’effet Čerenkov influe sur les mesures de coïncidences doubles et

triples et ainsi sur la mesure d’activité. Cet effet n’est pas pris en compte dans la plupart des codes de

simulation de l’interaction rayonnement-matière car il met en jeu des photons lumineux. Seul le code

GEANT le prend en compte. Un modèle de calcul par la méthode RCTD fondé sur l’utilisation de

GEANT4, prenant en compte l’anisotropie de la collection des photons lumineux et l’effet Čerenkov a

été développé par Thiam et al. (2012). Actuellement, il n’existe pas encore de modèle de calcul

prenant en compte l’effet Čerenkov pour la méthode CIEMAT/NIST dont l’importance n’est pas

Page 88: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

85

négligeable (de l’ordre du pour cent) pour les radionucléides émetteurs de rayonnement gamma de

haute énergie comme le 54

Mn, par exemple.

2.8.7 ÉTUDE DES MICELLES DANS LES SCINTILLATEURS LIQUIDES

Les radionucléides étant généralement dissous dans des solutions aqueuses et les scintillateurs

étant des solutions organiques, le radionucléide se trouve dans une solution aqueuse sous forme de

micelles inverses de très petites tailles, réparties dans le scintillateur. Une partie de l’énergie est donc

déposée dans ces micelles inverses avant que les électrons n’interagissent avec le scintillateur liquide.

Cette répartition n’est pas toujours uniforme. Des surfactants sont introduits dans les scintillateurs

liquides commerciaux afin de diminuer la taille des micelles inverses jusqu’à une dizaine de

nanomètres et homogénéiser la source scintillante. Néanmoins, la perte d’énergie des électrons

diminuant fortement avec la distance parcourue, l’énergie déposée par la particule dans une micelle

inverse sera de l’ordre de 12,4 eV pour un électron de 1 keV ou 2,3 eV pour un électron de 10 keV,

soit 0,023 % de son énergie (calcul effectué avec la formule de Rohrlich et Carlson (ICRU, 1984)).

Cette perte d’énergie ne conduit pas à l’émission de lumière et on est en présence d’un quenching

intrinsèque du scintillateur.

Ce phénomène n’est pas pris en compte dans les modèles de calcul de rendement de

scintillation de la méthode RCTD. En ce qui concerne la méthode CIEMAT/NIST, cette approche a

été initiée par Kossert et Carles (2010). Les auteurs ont, en effet développé un programme qui prend

en compte la perte d’énergie de la particule initiale dans les micelles inverses.

Cette physique sub-micrométrique requiert des investigations plus approfondies. L’énergie

initiale des électrons devrait donc être corrigée de ce dépôt d’énergie dans les micelles inverses avant

leur interaction avec le scintillateur liquide. La première difficulté pour effectuer cette correction

consiste en la détermination de la taille des micelles. En effet, cette dernière dépend de nombreux

facteurs (nature du scintillateur, influence de la composition chimique de la solution aqueuse

contenant le radionucléide sur le surfactant, …) difficiles à caractériser. Des travaux ont été engagés

sur cette thématique par Bergeron au NIST (laboratoire de métrologie des rayonnements ionisants des

États-Unis), afin de déterminer l’influence de la taille des micelles inverses sur la mesure d’activité par

scintillation liquide (Bergeron et al., 2012). L’auteur n’observe aucun effet significatif sur le

rendement de détection pour les micelles de taille comprise entre 4 et 8 nm pour les scintillateurs

liquides étudiées. Il n’exclut pas néanmoins que la taille des micelles puisse être plus élevée pour

certains scintillateurs et par conséquent, dans ces cas particuliers, puisse avoir un effet significatif sur

le rendement de détection par scintillation liquide.

2.9 CONCLUSION

Les phénomènes physiques et physico-chimiques intervenant dans les scintillateurs sont

complexes. Seules des approches expérimentales permettent d’évaluer l’influence de divers

paramètres, comme le quenching d’ionisation, sur le calcul du rendement de détection. Mais nous

l’avons vu précédemment, bien souvent elles se contredisent encore aujourd’hui. Les programmes

développés par les différents laboratoires évoluent en permanence, la physique est décrite de manière

de plus en plus complète. Cependant, si l’on exclut les formulations générales présentées, la physique

prise en compte est plus ou moins détaillée. Elle diffère selon le détail des émissions de réarrangement

électronique pris en compte pour les radionucléides se désintégrant par capture électronique. Elle

Page 89: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

86

diffère également selon les facteurs de forme des spectres bêta utilisés pour les radionucléides se

désintégrant par émission présentant des transitions interdites, selon la formulation du pouvoir

d’arrêt des électrons,… En outre, il est difficile, voire impossible, pour les auteurs de décrire toutes les

particularités de la physique employée en un article. Par conséquent, les origines des écarts observés

lors des inter-comparaisons sont extrêmement difficiles à découvrir. Seules des études systématiques

et reproductibles en prenant en compte un calcul d’incertitude précis et faisant varier un seul paramètre

à la fois permettrait, peut-être, de vérifier la sensibilité et le comportement des modèles des deux

méthodes de référence en fonction des différents types de quenching, facteurs de formes utilisés,... Les

développements expérimentaux mettant en œuvre une source externe pour créer des électrons

monoénergétiques au sein du scintillateur permettront certainement également d’améliorer les modèles

de calcul de rendement du scintillateur et leur comportement en fonction des différents quenching.

Le développement de codes Monte-Carlo pour la simulation de l’interaction rayonnement-

matière du système source-détecteur permet notamment de gérer les diffusions multiples et leur

utilisation devient incontournable dans les modèles appliqués dans les méthodes de référence en

particulier pour les radionucléides émetteurs de photons. Le code Monte-Carlo GEANT4 présente

l’avantage de pouvoir également modéliser les photons lumineux et ainsi de mettre en évidence

l’anisotropie de l’émission lumineuse lors de l’émission d’un faible nombre de photons lumineux.

Enfin, le développement du traitement numérique du signal en ligne assure la pérennité de la

méthode de référence RCTD.

2.10 PERSPECTIVES

Des études systématiques des paramètres intervenant dans le calcul du rendement de

détections pour chacune des deux méthodes de référence doivent être menées en suivant des règles

méthodologiques strictes. Elles doivent être détaillées et leur reproductibilité vérifiée. Une première

étude pourrait consister à étudier l’influence de la formulation du pouvoir d’arrêt des électrons sur la

valeur du paramètre kB et plus généralement sur la valeur d’activité pour 3H et voire pour

241Pu (pour

les deux méthodes de référence). Cette étude pourrait être réalisée avec l’Ultima Gold® (la

composition atomique fournie par lefabriquant) en utilisant la formulation de Rohrlich et Carlson avec

une extrapolation linéaire à partir des électrons d’énergie 100 eV jusqu’à l’origine, puis la formulation

de Ortiz et Los Arcos et enfin les résultats obtenus plus récemment par Tan et Xia (Tan et Xia, 2012)

pour une valeur de kB et une composition du scintillateur commune.

Par ailleurs, il est également très important de vérifier l’indépendance des différents modes de

diminution du rendement de détection en fonction du paramètre kB (obtention de la même valeur de

kB par quenching chimique, géométrique, en utilisant des filtres gris de nuance différentes et par

défocalisation). Des études systématiques pourraient être mises en œuvre avec les deux méthodes de

référence pour la mesure de radionucléides de basse énergie en ne faisant varier qu’un seul paramètre

à la fois. Il s’agirait de mesurer leur activité en utilisant la même valeur de kB et en faisant varier

successivement les conditions de quenching : couleur, chimique, géométrique et défocalisation et

d’étudier la variation du paramètre libre. Appliquées à la méthode RCTD, ces expérimentations

pourraient être, en parallèle, modélisées avec le code de simulation Monte Carlo GEANT4 par

exemple pour la mesure du 3H. Ce code permettant de modéliser la collection des photons lumineux, il

serait alors possible de modéliser les filtres de couleur (filtres gris) et de comparer les résultats de la

simulation avec l’expérience. La modélisation de la diminution du rendement réalisée par

Page 90: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

87

défocalisation pourrait également être simulée en modifiant le rendement quantique des photocathodes

dans le modèle.

De même, il serait intéressant de mesurer l’activité de différents radionucléides (émetteurs ,

puis radionucléides se désintégrant par capture électronique, ...) sur des appareils différents, pour

chacune des deux méthodes de référence, en utilisant les mêmes programmes de calcul de rendement

(adaptés à chacune des méthodes) et les mêmes échantillons radioactifs. Il s’agirait ensuite de

comparer les valeurs d’activités déterminées, associées aux valeurs de kB et en fonction des

paramètres libres utilisés. Les diverses installations ayant des rendements de détection différents, ces

études permettraient de vérifier si seul le paramètre libre varie.

Par ailleurs, la physique des modèles de calcul de rendement pourrait être complétée en

intégrant l’effet Čerenkov. Peu gênant pour les émetteur bêta d’énergie supérieure à 200 keV car le

rendement de détection est proche de l’unité, cet effet peut influer sur le calcul du rendement de

détection des radionucléides se désintégrant par capture électronique et émettant des photons de haute

énergie (énergie supérieure à 200 keV). Cet effet génère des photons lumineux produits lors de

l’interaction des électrons Compton d’énergie supérieure à 200 keV avec le scintillateur liquide

(l’indice de réfraction des scintillateurs liquide est de l’ordre de 1,5 environ). Pour la mesure du 54

Mn

par exemple, la contribution de l’effet Čerenkov au calcul du rendement pourrait atteindre le pour cent.

Enfin, la formule de Birks n’est pas la seule formulation possible pour modéliser la réponse

des scintillateurs (voir paragraphe 2.3.3.3). Elle est adoptée actuellement par la communauté

scientifique. Néanmoins les outils de simulation comme les codes Monte Carlo (en particulier le code

GEANT qui permet de simuler les photons lumineux ainsi que l’effet Čerenkov en plus de

l’interaction rayonnement-matière) associés à de nouveaux dispositifs expérimentaux (Halter et al.,

2013 et Cassette, 2008) pourraient, peut-être, remettre en cause cette représentation de la réponse des

scintillateurs. Une première évolution de la formule de Birks consiste à intégrer l’expression définie

par Birks à partir de l’énergie moyenne d’excitation des molécules de solvant et non à partir de zéro.

En effet, en fin de parcours, lorsque l’électron est thermalisé, il n’a plus assez d’énergie pour exciter le

solvant et ne contribue plus à l’émission lumineuse. L’énergie moyenne nécessaire pour exciter le

solvant est de l’ordre de quelques dizaines d’électrons volts. En supposant une énergie-seuil de 85 eV

pour le toluène (Fuchs et Laustriat, 1970), l’ajustement des valeurs calculées par l’intermédiaire de la

formule de Birks intégrée à partir de cette énergie sur les résultats expérimentaux obtenus lors de ma

thèse (pour un scintillateur à base de toluène) est meilleur ; cependant pour l’heure les incertitudes ne

permettent pas de trancher définitivement. La valeur du paramètre kB varie alors de l’ordre de 8 %

suivant que l’hypothèse d’une énergie seuil de 85 eV est retenue ou que l’intégration est effectuée sans

seuil. L’introduction de cette énergie-seuil a un effet sur la réponse du scintillateur liquide pour les très

faibles nombres moyens de photoélectrons (inférieurs à 1 photoélectron). Seules des expériences

complémentaires comme celles utilisant la méthode RCTD couplée à une source externe et rendant

possible la mesure de très faibles nombres moyens de photoélectrons, permettrait d’étudier cette

hypothèse.

Page 91: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

88

3 LA MÉDECINE NUCLÉAIRE

3.1 INTRODUCTION

La médecine nucléaire est une spécialité médicale mettant en œuvre les rayonnements

ionisants à visée diagnostique essentiellement ; elle présente également une composante thérapeutique

en pleine évolution. Les rayonnements ionisants utilisés sont produits par des radionucléides,

conditionnés généralement en solutions aseptisées, pour permettre leur administration au patient (par

voie intraveineuse, souscutanée, par inhalation ou par voie orale). Des molécules vectrices spécifiques

sont marquées par le radionucléide à des fins de diagnostic ou de thérapie (90 % des actes de médecine

nucléaire sont consacrés au diagnostic et seuls 10 % à la thérapie interne). Ces molécules marquées

sont appelées radiopharmaceutiques. Le couple molécule-traceur radioactif est issu de recherches

scientifiques permettant d’assurer sa stabilité et de favoriser la concentration du radionucléide sur le

tissu, la glande ou l’organe ciblés. Le produit radiopharmaceutique est un médicament qui, lorsqu’il

est incorporé, permet, par imagerie médicale, une exploration biochimique, cellulaire, moléculaire des

maladies, ou d’étudier la fonctionnalité d’un organe. Les technologies d’imagerie isotopique

appliquées à la médecine nucléaire sont la Tomographie par Émission Mono Photonique (TEMP) et la

Tomographie par Émission de Positons (TEP). Elles visent le diagnostic, le pronostic et le suivi

thérapeutique d'un grand nombre de pathologies. Les applications thérapeutiques de la médecine

nucléaire concernent principalement le traitement des cancers dans un but curatif ou palliatif. Le

produit radiopharmaceutique administré irradiant spécifiquement certains organes ou tissus, il induit

l’apoptose des cellules ciblées et ainsi, la destruction de la tumeur. Le traitement mettant en œuvre des

radiotraceurs est désigné par le terme de radiothérapie interne vectorisée (RIV).

La médecine nucléaire a démontré son efficacité incontestable en oncologie, application

principale. Elle contribue également à toutes les spécialités médicales comme la cardiologie dans une

large mesure puis l'endocrinologie, l’hématologie, la gastro-entérologie, la pneumologie, la neurologie

et l’urologie .

3.2 HISTORIQUE DE LA MEDECINE NUCLEAIRE

L’histoire de la médecine nucléaire est intimement liée, à ses débuts, à celle de la radiologie et

de la radiothérapie. En effet, l’application médicale des rayonnements ionisants a été initiée lorsque

Röntgen réalisa, le 22 décembre 1895, la première radiographie de la main de sa femme découvrant

ses os et révélant également sa bague. Cette découverte démontra que le rayonnement x était absorbé

différemment en fonction de la densité des tissus traversés. Les multiples possibilités d'emploi de ce

rayonnement, en médecine et ailleurs, ne tardèrent pas à être entrevues. Cependant, leurs effets nocifs

ont également été observés. En avril 1896, Daniel décrivit une grave réaction cutanée apparue après

une longue exposition aux rayons x. En parallèle, Henri Becquerel découvrit la radioactivité en 1896 et

Pierre et Marie Curie isolèrent le radium et le polonium en 1898. Par curiosité scientifique, Pierre

Curie place pendant une dizaine d’heures une source de radium directement en contact avec la peau de

son bras. Sa plaie mettra quatre mois à guérir. Les médecins français Henri Alexandre Danlos et

Eugène Bloch utilisent alors du radium dès 1901 pour traiter des affections tuberculeuses cutanées. Et

l’américain Graham Bell suggère en 1903 de placer des sources radioactives sur les tumeurs. C’est le

début de la curiethérapie.

Page 92: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

89

Le chimiste hongrois Georges Hevesy fut le pionnier de la médecine nucléaire par l’utilisation

des radionucléides comme traceurs radioactifs dans les organismes vivants. Sous la direction d’E.

Rutherford à Manchester il conçut, en 1910, la technique de traceur radioactif lors de ses études sur le

radium-D (210

Pb). Il a reçu le prix Nobel de chimie en 1943 pour ses travaux sur l’usage des isotopes

comme traceurs dans l'étude des processus chimiques. La découverte du radium par Pierre et Marie

Curie a également suscité l’intérêt d’industriels et ainsi fut créée la société « Standard Chemical

Company ». Afin de trouver de nouveaux débouchés pour la commercialisation du radium, cette

entreprise a investi dans la recherche des effets biologiques de l’administration interne du radium.

C’est ainsi que son directeur, le Dr. Frederic Proescher injecta du radium à une trentaine de patients

souffrant d’arthrose et publia les résultats observés en 1913 et 1914. La découverte des radionucléides

artificiels, en 1934, par Irène et Frédéric Joliot-Curie ouvrit un vaste champ d’analyse à la médecine

nucléaire et précipita par la suite la chute de l’industrie du radium.

L’invention du cyclotron par Ernest O. Lawrence en 1929 permit de bombarder différents

matériaux et ainsi de découvrir de nombreux nouveaux isotopes radioactifs. Ainsi, à l’université de

Berkeley, berceau de la médecine nucléaire actuelle, Glenn Seaborg et John J. Livingood découvrirent,

grâce au cyclotron, le 59

Fe, et le 99m

Tc avec Emilio Ségrè et Carlo Perrier en 1937, puis le 131

I et le 60

Co en 1938. La découverte du 131

I a largement participé à l’essor de la médecine nucléaire pour la

thérapie interne et le diagnostic des pathologies thyroïdiennes. Le projet Manhattan fut à l’origine de

la production d’iode radioactif en grande quantité. Ainsi l’utilisation de l’131

I s’est développée et en

1946 Leonidas Marinelli et Eleanor Oshry démontrent qu’il est possible de faire disparaître l’ensemble

des métastases d’un patient atteint d’un cancer de la thyroïde en le traitant avec de l’131

I, incorporé

sous forme de NaI.

Puis le développement des photomultiplicateurs pour la détection des photons lumineux émis

par les scintillateurs, notamment le cristal d’iodure de sodium activé au thallium (NaI(Tl)), dans les

années 50 ouvre pour la médecine nucléaire de nouvelles perspectives vers l’imagerie médicale pour le

diagnostic. Benedict Cassen invente le détecteur à scintillation, premier scanner permettant de

visualiser la distribution de l’131

I au sein de la glande thyroïde. En 1953, Gordon Brownell et H.H.

Sweet développent le premier système de détection permettant le comptage en coïncidences des

photons issus de l’annihilation de positrons. Ils sont considérés aujourd’hui comme les inventeurs de

la TEP. La première gamma-caméra fut développée par Hal Anger en 1957. Elle permettait de

visualiser la distribution des radionucléides émetteurs gamma en une seule fois et non point par point

comme le scanner de Cassen. La technique est appelée communément scintigraphie.

Ces découvertes et développements sont les points de départ d’une technologie du diagnostic

médical de plus en plus performante. La gamma-scintigraphie s’est développée dans les années 1960

et jusqu’en 1972, année de la découverte de la tomographie assistée par ordinateur par Godfrey

Hounsfield et Allan Cormak. L’algorithme de reconstitution d’images tridimensionnelles obtenues en

faisant tourner l’appareil autour du patient a donné accès à la distribution volumique du traceur dans

l’organe. Cette nouvelle technique est nommée tomoscintigraphie ou TEMP. Deux ans plus tard, la

TEP fut développée par les américains T. Budinger de l’université de Berkeley, M. Phelps et M. Ter-

Pogossian de l’université de Washington (Phelps et al., 1975).

Ces techniques d’imagerie isotopique, impliquant l’incorporation d’un traceur radioactif,

permettent de visualiser l’activité du métabolisme des cellules en trois dimensions. La TEP,

Page 93: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

90

notamment, est devenue un outil de diagnostic incontournable en oncologie. L’injection de la

molécule marquée au 18

F, le fluorodésoxyglucose (FDG) permet de diagnostiquer la présence de

cellules tumorales et/ou de métastases et également de procéder au suivi d’un programme

thérapeutique. Ce traceur est très proche chimiquement du glucose et va donc aller se fixer sur les

tissus possédant un métabolisme élevé, notamment le cœur, le cerveau et les cellules tumorales. La

TEP est ainsi également utilisée en recherche biomédicale, par exemple en imagerie cérébrale où elle

permet de révéler les régions actives du cerveau de manière analogue à ce qui se fait avec l'imagerie

par résonance magnétique fonctionnelle (IRM).

La TEMP et la TEP sont des techniques d’imagerie moléculaire par opposition aux techniques

d'imagerie dite anatomique comme celles basées sur les rayons x (radiologie ou CT-scan) qui réalisent

des images de l'anatomie. Ce n’est qu’à partir des années 2000 que ces deux pratiques ont été réunies.

Ces installations sont nommées TEP/TDM couplant un système TEP à un scanner à rayons x :

TomoDensitoMétrie (TDM) (PET-Scan en anglais) ou TEMP/TDM pour les émetteurs gamma. Ces

machines sont dorénavant le standard de référence. Les services cliniques investissent dans ces

machines multimodalité TEP/TDM et TEM/TDM développées par les grands constructeurs comme

Philips, Siemens et General Electric. Le succès de ces machines hybrides réside dans la superposition

d’une image fonctionnelle à une image structurelle. De nouvelles installations sont en cours de

développement pour associer à la technologie TEP, la technologie d’imagerie par résonnance

magnétique (IRM). Les images IRM présentent l’avantage par rapport à celles obtenues par TDM d’un

bien meilleur contraste pour les tissus mous (cerveau, foie). En outre l’IRM est une technique non

irradiante. Cette association trouve des applications pour le diagnostic précoce, non invasif et fiable de

tumeurs cérébrales bien sûr, mais également dans le cadre de maladies comme celle d’Alzheimer par

exemple.

En parallèle, les techniques de détection ne cessent d’évoluer. Le cristal NaI(Tl) disposant

notamment d’une résolution médiocre est progressivement remplacé par des détecteurs plus

performants comme les scintillateurs BGO (germanate de bismuth) ou LSO (orthosilicate de

lutécium).

Aussi, la TEP et la TEMP bénéficient-elles aujourd’hui de nouveaux détecteurs semi-

conducteurs composés ternaires CdZnTe, appelés communément détecteurs CZT. Ces derniers

permettent un temps d’acquisition plus court rendant l’examen plus confortable pour le patient et

moins irradiant. Ces détecteurs offrent également une meilleure résolution qui permet notamment en

cardiologie d’effectuer des examens « doubles isotopes ».

Outre l’évolution technologique de l’imagerie, le diagnostic isotopique a connu un véritable

essor depuis l’invention du cyclotron et des réacteurs nucléaires pour la fabrication de radionucléides.

L’invention du générateur 99

Mo/99m

Tc a grandement favorisé l’utilisation du 99m

Tc, en permettant aux

services de médecine nucléaire d’accéder facilement à ce radionucléide de très courte période. Depuis

les années soixante, il est devenu le radionucléide le plus utilisé en médecine nucléaire. En effet, en

plus de sa courte période, il présente l’avantage d’émettre un rayonnement gamma d’énergie de 140

keV optimale pour l’imagerie. Á lui seul il intervient dans 60 % des prescriptions médicales.

En revanche, l’application de la radiothérapie métabolique ou radiothérapie interne vectorisée

(RIV) a longtemps été limitée à la pathologie thyroïdienne. Aujourd’hui encore, 96 % des traitements

Page 94: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

91

réalisés en France sont consacrés aux cancers thyroïdiens. Les 4 % restants sont réalisés en

radiothérapie sélective par l’incorporation de radionucléides émetteurs bêta moins (90

Y, 169

Er, …) et

alpha (226

Ra, ...). Néanmoins, depuis les années 2000, la RIV est en plein développement. Ce

développement est étroitement associé à l’émergence de nouveaux radionucléides comme 177

Lu, et 188

Re en France, 67

Cu, 226

Ra, 211

At ou 166

Ho dans le monde.

3.3 LES EXAMENS ISOTOPIQUES

Les examens isotopiques permettent d’étudier les processus physiopathologiques donnant

ainsi des informations uniques sur le fonctionnement normal ou pathologique de l’organisme et ainsi

aident au diagnostic des maladies.

3.3.1 LES EXAMENS ISOTOPIQUES UTILISANT LES ÉMETTEURS GAMMA

L’examen isotopique utilisant des émetteurs gamma est couramment nommé scintigraphie.

C’est une technique d’imagerie médicale qui consiste, le plus souvent, à injecter au patient un

radionucléide émetteur de rayonnement photonique (un médicament radiopharmaceutique) par voie

intraveineuse. La molécule vectrice du produit radiopharmaceutique est choisie pour se localiser de

façon sélective sur une structure particulière de l'organisme (un organe, un secteur liquidien, une

lésion). Une fois le produit radiopharmaceutique métabolisé dans le corps du patient, les photons émis

par le radionucléide sont détectés à l’aide d’une gamma-caméra. Cette dernière est composée d’un

détecteur à scintillation (Na(I)Tl) ou d’un détecteur à semi-conducteur et d’une collimation spatiale

(collimateur à trous parallèles permettant la sélection des photons incidents perpendiculaires à sa

surface afin de limiter la détection des photons issus de diffusions). Les photons lumineux sont

détectés par des photomultiplicateurs. Des algorithmes spécifiques sont utilisés pour reconstruire

l’image planaire de projection représentant la distribution du produit radiopharmaceutique dans

l’organe cible ou le corps entier. La TEMP dite aussi SPECT en anglais (Single photon emission

computed tomography) est une scintigraphie au cours de laquelle la gamma-camera tourne autour du

patient (figure n° 3.1).

Figure n° 3.1 : Photographie d’une installation TEMP.

Page 95: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

92

Dans le cadre d’un examen tomographique, un algorithme de reconstruction en trois

dimensions permet de visualiser la distribution volumique du produit radiopharmaceutique dans

l’organe cible sous forme d’images en trois dimensions (figure n° 3.2).

Figure n° 3.2 : Présentation d’une image myocardique TEMP obtenue par injection de 201

Tl.

Il existe de nombreux radiopharmaceutiques adaptés aux explorations de divers tissus et

organes comme les explorations cardiaques, pulmonaires, osseuses, cérébrales, biliaires, hépatiques,

rénales, endocriniennes, lymphatiques ou ganglionnaires, tumorales (voir tableau n° 3.1 ci-dessous).

Tableau n° 3.1 : Indications des traceurs utilisés pour l'imagerie isotopique à l'aide d'une gamma-

caméra (Source Clés CEA n° 34).

Les possibilités de la scintigraphie sont nombreuses et elle est utilisée dans un but diagnostic

mais parfois également thérapeutique. Par exemple, quelques minutes après son injection dans le corps

du patient, 131

I, émetteur gamma et bêta, va se loger directement sur les cellules de la thyroïde. La

résolution spatiale de l'image ainsi obtenue est comprise entre 8 mm et 15 mm en imagerie clinique.

Page 96: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

93

3.3.2 LES EXAMENS ISOTOPIQUES UTILISANT DES ÉMETTEURS BÊTA+ : LA TEP

La tomographie par émission de positons, mieux connue sous son acronyme de TEP, PET

Scan en anglais (Positron Emission Tomography), est une technique qui relève de la scintigraphie. En

effet, elle consiste également à injecter au patient par voie intraveineuse un radiopharmaceutique,

cependant, le radionucléide est un émetteur de positons. Les détecteurs (scintillateurs LSO ou BGO)

sont distribués en couronne autour de la table d’examen où est placé le patient (figure n° 3.3). Ils

détectent en coïncidence les photons d’annihilation de 511 keV chacun émis à 180° l’un de l’autre, ce

qui permet d’identifier la ligne sur laquelle l’interaction a eu lieu.

Figure n° 3.3 : Exemple d’une installation TEP.

Comme pour la tomoscintigraphie, un algorithme de reconstruction des images permet de

visualiser la répartition volumique du traceur sous la forme d'une image en trois dimensions. Cette

technique offre une meilleure sensibilité et résolution spatiale que la TEMP (la résolution spatiale de

l'image ainsi obtenue est comprise entre 4 mm et 7 mm en imagerie clinique).

Le principal produit radiopharmaceutique utilisé est le 18

F-FDG (fluorodésoxyglucose marqué

au fluor 18). Le fluorodésoxyglucose est un sucre semblable au glucose, source énergétique essentielle

aux cellules de l’organisme. Le 18

F-FDG va se fixer préférentiellement sur les tissus possédant un

métabolisme élevé, notamment le cœur, le cerveau et les cellules tumorales (figure n° 3.4). Ces

dernières présentent un hypermétabolisme glucidique et une surexpression des transporteurs de

glucose. Aussi, cet examen permet de diagnostiquer la nature maligne ou bénigne d’une anomalie

détectée au préalable par une radiographie ou une échographie pour de nombreux organes (poumons,

seins, ORL, œsophage, estomac, pancréas, colon, utérus, ovaires, testicules) et pour les lymphomes. Il

permet également de diagnostiquer l’étendue de l’anomalie et éventuellement la présence de

métastases. Cette technique est également très utile pour le suivi de l’efficacité d’une thérapie et la

détection de récidives. De nombreux dérivés fluorés sont utilisés aujourd’hui comme par exemple 18

F-

DOPA et 18

F-Choline (traceurs métaboliques), 18

F-Misonidazole (traceur de l’hypoxie).

Figure n° 3.4 : Exemple d’une image tridimensionnelle obtenue par TEP après injection de 18

F-FDG.

Page 97: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

94

La TEP est également utilisée dans d’autres domaines de la médecine nucléaire, comme la

neurologie (le radionucléide utilisé est alors de l’15

O ou du 11

C) ou en cardiologie (le radionucléide

utilisé peut également être de l’15

O, mais aussi le 13

N, le 68

Ga ou encore le 82

Ru).

3.3.3 LES MACHINES HYBRIDES

La plupart des caméras TEP commercialisées actuellement sont couplées à un

tomodensitomètre à x (système TEP/TDM), ce qui permet de superposer l'image moléculaire (image

TEP) à sa localisation anatomique précise dans le corps (image TDM). Certaines cameras TEMP sont

également associées à la TDM. Grâce aux dispositifs radiologiques présents dans les appareils

d'imagerie nucléaire, la localisation des foyers pathologiques est grandement facilitée et la correction

d’atténuation ainsi réalisée permet d'obtenir des images de meilleure qualité et quantifiables au

bénéfice du diagnostic (Hapdey et al., 2009).

Le parc d'imagerie français est représenté par environ 450 caméras TEMP (dont 150

TEMP/TDM) et 105 TEP (tous TEP/TDM) pour environ 220 services de médecine nucléaire. Notons

que la France est un pays particulièrement bien doté concernant son parc de médecine nucléaire d'un

point de vue quantitatif et qualitatif comparativement aux autres pays européens (à titre de

comparaison, on dénombre environ 1200 scanners x et 500 IRM) (SFMN, 2012).

De nouvelles machines TEP associent l’Imagerie par Résonnance Magnétique (IRM) pour

donner naissance à la TEP-IRM. L’IRM présente l’avantage par rapport au TDM de fournir des

images pour les tissus mous comme le cerveau. Les applications cliniques sont actuellement centrées

sur les maladies comme la maladie d’Alzheimer, l’épilepsie et incluent bien sûr les tumeurs cérébrales

(Kuhn, 2012). Le CERMEP à Lyon va se doter en 2013 de la première installation TEP-IRM 3 Tesla

dans le cadre d’un projet nommé LILI (Lyon Integrated Life Imaging).

3.4 LA RADIOTHERAPIE INTERNE EN MÉDECINE NUCLÉAIRE

3.4.1 LE PRINCIPE DE LA RADIOTHÉRAPIE INTERNE VECTORISÉE (RIV)

La radiothérapie métabolique ou radiothérapie interne vectorisée repose sur l’administration

au patient d’un médicament radiopharmaceutique dont le rayonnement délivre une dose importante à

un organe cible dans un objectif soit curatif soit palliatif et parfois antalgique. Le médicament

radiopharmaceutique est marqué par un radionucléide émetteur d’un rayonnement - ou ,

rayonnement fortement ionisant. Il se concentre de manière sélective dans le tissu cible et l’irradie

directement in situ, induisant l’apoptose des cellules endommagées. La mise en œuvre de radiations

dont la portée est limitée mais très irradiantes sur leur trajet, permet de délivrer des doses élevées aux

lésions ciblées en épargnant les tissus sains environnants. Ces deux caractéristiques dépendent bien

évidemment de la sélectivité de la vectorisation et ce traitement peut être administré par voie orale ou

par injection.

3.4.1.1 La vectorisation isotopique

Depuis 1938, 131

I, radionucléide émetteur , représente le principal radionucléide utilisé en

radiothérapie métabolique. Il est essentiellement prescrit pour le traitement des hyperthyroïdies et des

cancers de la thyroïde. Ce radionucléide étant directement métabolisé du fait de son affinité naturelle

Page 98: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

95

avec la glande thyroïde, il n’est pas nécessaire de l’associer à une molécule vectrice. Le vecteur est le

radionucléide lui-même. En revanche, lorsqu’il est utilisé pour d’autres pathologies comme par

exemple le phéochromocytome malin de l’adulte (médullo-surrénales), 131

I est associé à la molécule

vectrice méta-iodobenzylguanidine, mIBG analogue à la noradrénaline. De même pour le traitement

de l’hépatocarcinome, 131

I est associé à un acide gras, le LIPIOCIS®, solution injectable.

3.4.1.2 La vectorisation immunologique

La radiothérapie interne vectorisée est également appliquée en immunologie, il s’agit alors de

radioimmunothérapie. Le médicament radiopharmaceutique est constitué d’un radionucléide et d’une

molécule vectrice spécifique du système immunitaire : les anticorps monoclonaux, complexes

protéiques. Ces derniers se lient à des substances spécifiques appelées antigènes se trouvant sur la

surface des cellules, ils sont choisis pour un type bien déterminé de cancer. Les anticorps marqués se

fixent sur les antigènes tumoraux et irradient les cellules tumorales voisines dans un rayon de quelques

m à quelques mm pour les détruire. Certains peptides, de taille nettement inférieure à celle des

anticorps, telles les hormones ou les neurotransmetteurs, présentent l’avantage de pouvoir pénétrer

dans la cellule et d’y transporter le radionucléide.

Deux exemples de radiopharmaceutiques vectorisés par un anticorps monoclonal sont le

tositumomab marqué à l’131

I(Bexxar®) et l’ibritumomab tiuxetan marqué à l’90

Y (Zevalin®).

L’ibritumomab tiuxetan et le tositumomab sont des anticorps anti-CD 20 (molécules exprimées à la

surface des lymphocytes B matures et tumoraux). Ces médicaments radiopharmaceutiques visent le

traitement de cas spécifiques de patients atteints de lymphomes non hodgkiniens à lymphocytes B

folliculaire. Il s’agit d’un cancer du tissu lymphatique (partie du système immunitaire) qui affecte un

type de globules blancs appelés lymphocytes B, ou cellules B. Ce type de lymphome est une cible

privilégiée pour la radiothérapie internevectorisée car ils expriment des antigènes caractéristiques et

sont fortement radiosensibles. Cette radiothérapie est proposée au patient si la chimiothérapie et le

médicament rituximab ne semblent plus être efficaces.

3.4.1.3 La vectorisation peptidique

D’autres types de vecteurs sont utilisés : les peptides, éléments de base d'une protéine. Ces

derniers sont des molécules beaucoup plus petites que les anticorps monoclonaux. Le 111

In-

pentétréotide est un peptide marqué à l’111

In. Ce médicament radiopharmaceutique constitue un

traitement palliatif pour les tumeurs neuroendocrines. Ce traitement permet de stabiliser la maladie et

d’améliorer la qualité de vie du patient (Nguyen et al., 2001). Toujours en neuroendocrinologie, le

Lutate, 177

LuDOTA0-Tyr3-Octréotate, est un octopeptide, analogue marqué de l’hormone

somatostatine. Il est utilisé pour traiter les tumeurs métastatiques neuroendocrines gastro-entéro-

pancréatiques (GEP-NETs). Le Lutate détruit ces tumeurs en se fixant sélectivement sur les récepteurs

à la somatostatine, récepteurs surexprimés dans les cellules tumorales.

3.4.1.4 La vectorisation antalgique :

La radiothérapie interne vectorisée antalgique permet essentiellement de diminuer les douleurs

secondaires liées aux métastases osseuses des cancers, associée ou pas aux médicaments antalgiques

(antidouleurs parfois très puissants). Dans ce cas, cette technique peut être associée ou être utilisée

alternativement avec la radiothérapie externe (utilisation des rayons x comme thérapeutique). Trois

Page 99: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

96

substances radioactives sont actuellement utilisées et autorisées : le chlorure de 89

Sr ou le 32

P

(Métastron®) et le 153

Sm-éthylène diamine tétraméthylène diphosphonate ou Quadramet®. Ce dernier

étant également émetteur de rayonnement , il est possible de réaliser des scintigraphies. Cette

technique est particulièrement utilisée pour le tissu osseux (squelette) et son efficacité est similaire

dans les cancers du sein et ceux de la prostate. Ces deux dernières pathologies peuvent également être

traitées avec le reBone®, produit radiopharmaceutique marqué au 186

Re. L'utilisation de ces radio-

pharmaceutiques est généralement indiquée lorsque les autres traitements ont échoué.

Un émetteur alpha le 223

Ra (Alpharadin® remplacé par l’appellation Xofigo®), a également

montré son efficacité sur les métastases osseuses et sur l’augmentation de la survie. Le rayonnement

alpha présente l’avantage d’être fortement ionisant sur un parcours d’une centaine de micromètres. Il

permet ainsi d’induire des cassures dans l’ADN de la cellule tumorale sans léser les cellules

environnantes. Cet énorme avantage par rapport aux émetteurs -, ainsi que son excellente tolérance

conduiront très certainement à une utilisation privilégiée de ce radiopharmaceutique. Il a une affinité

pour le tissu osseux semblable à celle du calcium. Son faible parcours permet de traiter les cellules

cibles et d’épargner les tissus sains environnants. Le Xofigo® est également utilisé pour les cancers de

la prostate réfractaires à l’hormonothérapie.

L’effet antalgique de ces radiopharmaceutiques est très efficace, en revanche la survie est

modérée pour les métastases osseuses. En ce qui concerne les métastases ganglionnaires et

pulmonaires, le traitement est beaucoup plus efficace.

3.4.1.5 La vectorisation locorégionale

D’autres radionucléides comme 90

Y, mais aussi 169

Er et 186

Re dans une moindre mesure, sont

employés pour le traitement antalgique d’affections rhumatologiques articulaires invalidantes comme

l’arthrite inflammatoire et rhumatoïde. Ils sont administrés localement par injection intra-articulaire.

Ces radionucléides se présentent sous la forme d’une solution colloïdale. La forme colloïdale du

médicament radiopharmaceutique permet d’éviter la migration extra-articulaire du médicament. Ce

traitement est appelé synoviorthèse. Il est indiqué lorsque le traitement général est mis en échec

(Brillouet et al., 2005). Néanmoins il ne s’agit plus exactement de radiothérapie interne vectorisée

puisqu’il ne s’agit pas d’un effet curatif et qu’il n’est pas nécessaire d’associer une molécule vectrice.

Une technique de radiothérapie locale, développée dans les années 1960, est en cours d’essai

clinique pour le traitement du carcinome hépatocellulaire, c’est-à-dire du cancer du foie. Cette

technique consiste en l’administration intra-hépatique de microsphères contenant de l’90

Y à l’aide d’un

micro-cathéter inséré dans l’aine. Les microsphères de 90

Y suivent le flux sanguin de l’artère pour aller

se loger dans les vaisseaux sanguins de la tumeur. Elles sont composées de résine (SIR-Spheres®) ou

de verre (TheraSphere®), et leur diamètre est de l’ordre de 20 micromètres à 60 micromètres (Dezarn

et al., 2011). Cette technique est nommée radio-embolisation. Elle est prescrite lorsqu’aucun autre

traitement curatif n’est possible (cancer non opérable) mais également indiquée pour traiter des

métastases consécutives à un cancer primitif du sein ou colorectal.

Page 100: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

97

3.5 LA MÉDECINE NUCLÉAIRE ET LA MÉTROLOGIE

Quel que soit le radionucléide incorporé, le rayonnement ionisant qu’il émet va endommager

la cellule avec laquelle il interagit. L’effet biologique dépend de ses caractéristiques physiques

(période, émission particulaires et électromagnétiques, niveau d’activité). Les radionucléides sont

choisis avec une période aussi courte que possible en rapport avec la cinétique de fixation et de

rétention du vecteur utilisé.

3.5.1 EFFETS DES RAYONNEMENTS IONISANTS DANS LES TISSUS

Lors de leur traversée dans le corps du patient, les rayonnements ionisants entrent en collision

essentiellement avec les électrons des atomes constitutifs. Lors de cette interaction, ils sont soit déviés,

soit ils cèdent tout ou partie de leur énergie et provoquent ainsi une ionisation ou une excitation de

l’atome ou de la molécule. L’effet biologique du médicament radiopharmaceutique (moléculaire,

cellulaire, tissulaire) sera d’autant plus important que le transfert linéique d’énergie de la particule

émise par le radionucléide sera élevé. En dehors des ions lourds et par extension des neutrons, les

particules alpha sont les particules qui déposent la plus grande quantité d’énergie le long de leur

trajectoire. Leur pourvoir d’arrêt est très élevé, aussi ne pénètrent-elles que de quelques nanomètres,

voire micromètres en fonction de leur énergie initiale et de la densité du milieu qu’elles traversent.

Elles permettent un effet très ciblé, elles sont bien adaptées au traitement de métastases par exemple.

Viennent ensuite les émetteurs bêta, ces particules sont moins ionisantes que les alpha et la portée des

électrons est plus grande (leur parcours est de l’ordre de quelques centaines de micromètres à quelques

millimètres). En ce qui concerne les électrons monoénergétiques, les électrons Auger sont, en général,

émis avec une énergie très faible, ils transmettent toute leur énergie sur quelques nanomètres. Ils

peuvent également provoquer une toxicité importante au niveau de l’acide désoxyribonucléique

(ADN) en particulier lorsqu’ils sont internalisés au sein de la cellule voire au sein du noyau lui-même.

Enfin les électrons de conversion étant généralement émis avec une intensité très faible, l’utilisation

des radionucléides émetteurs bêta est privilégiée.

Ces particules fortement ionisantes et à faible parcours dans la matière sont utilisées en

thérapie interne vectorisée car elles permettent de traiter l’organe, la molécule ou la cellule ciblée en

épargnant les tissus sains ou en maintenant leur dose reçue au niveau le plus faible possible.

En ce qui concerne les photons, les émissions x, de faible énergie (inférieure à 40 keV

environ), l’ionisation aura lieu sur une plus grande distance (quelques centimètres) et principalement

par effet photo-électrique. Enfin les photons gamma émis par les radionucléides utilisés en médecine

nucléaire comme par exemple 18

F (après annihilation) ou le 99m

Tc, .., sont plus énergétiques (140 keV

à 511 keV) et par conséquent ont une probabilité d’interaction beaucoup plus faible avec la matière. Ils

interagissent principalement par effet Compton. Ils seront peu absorbés par le corps du patient ; ils

sont exploités pour l’imagerie médicale.

La toxicité est donc plus ou moins importante en fonction du radionucléide et les

rayonnements ionisants émis agissent de manière directe en ionisant ou excitant une molécule par

exemple ou indirecte par la création de radicaux libres. Les effets biologiques peuvent dans certains

cas être réparés par différents mécanismes enzymatiques de réparation de l’ADN qui agissent en

fonction de la lésion. Dans ce cas, l’effet de l’ionisation par le radionucléide est réversible. En

revanche, à forte dose, l’apoptose devient une conséquence majeure et entraîne l’apparition d’effets

déterministes. C’est d’ailleurs cette propriété qui est mise à profit en radiothérapie.

Page 101: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

98

3.5.2 NIVEAUX DE RÉFÉRENCE DIAGNOSTIQUE

En médecine nucléaire, les examens d’imagerie comme la TEMP et la TEP nécessitent

l’incorporation d’un radionucléide émetteur gamma conduisant à de très faibles doses reçues par le

patient. Les effets biologiques des faibles doses sont mal connus. Les études épidémiologiques ne

permettent pas de les caractériser ni de déterminer un seuil de dose pour les effets stochastiques.

Cependant, du fait de l’action des rayonnements ionisants sur l’ADN (coupure de brin, mutations), on

ne peut écarter un faible risque probabiliste. La radioprotection des patients vise à éviter l'apparition

des effets déterministes et à réduire à un niveau le plus faible possible le risque d’apparition d’effets

stochastiques. Aussi une directive européenne a posé, en 1986, les principes généraux de la protection

des personnes contre les dangers des rayonnements ionisants lors d'exposition à des fins médicales.

(Principe ALARA « As Low As Reasonably Achievable » Network). Cette directive a été remplacée

en 1997 par la directive 97/43/EURATOM. Cette nouvelle directive fait progressivement l’objet d’une

transcription dans le droit français au travers de la promulgation de décrets. Le décret d’application

2003-270 de la directive 97/43, émis le 24 mars 2003, rend désormais obligatoire l'application des

principes fondamentaux de justification et d’optimisation et de limitation de l’exposition des patients

pour les médecins demandant ou réalisant des examens d'imagerie utilisant les rayonnements

ionisants.

La directive 97/43 impose également l’obligation d’un contrôle qualité des dispositifs

médicaux et la création de Niveau de Référence Diagnostique (NRD). L’objectif des NRD consiste en

l’application du principe ALARA, c’est-à-dire à optimiser l’activité administrée en médecine nucléaire

pour les procédures courantes. L’obligation de créer des NRD a été transcrite le 24 octobre 2011 par

l’arrêté relatif aux NRD. En médecine nucléaire les NRD correspondent aux niveaux d’activité

administrée au patient lors d’examens courant ne devant pas être dépassés sauf lors de protocoles

médicaux particuliers. Cet arrêté impose aux responsables des services de médecine nucléaire de

réaliser des relevés d’activité administrée sur au moins 30 patients et au moins une fois par an pour les

radiopharmaceutiques les plus couramment utilisés. Ils doivent les transmettre à l’Institut de

Radioprotection et de Sureté Nucléaire (IRSN). L’IRSN est chargé de recueillir ces informations et de

mettre à jour les NRD. Les moyennes des activités administrées sont comparées aux NRD et le service

de médecine nucléaire se doit d’optimiser l’activité injectée lors des prochains examens en cas de

dépassement sans justification. Le bilan d’avril 2006 réalisé par l’IRSN a montré que les activités

administrées respectent très souvent les activités recommandées par les autorisations de mise sur le

marché (AMM) des radiopharmaceutiques marqués par les radionucléides (123

I, 18

F,..) autres que le 99m

Tc (Aubert et Talbot, 2007). En revanche, les activités administrées pour les radiopharmaceutiques

marqués au 99m

Tc sont pratiquement toujours supérieures aux valeurs recommandées par les AMM.

L’auteur précise que les services de médecine nucléaire doivent s’interroger sur les causes de ces

dépassements. Il relativise néanmoins les conséquences de ces dépassements compte tenu de la faible

radiotoxicité de ce radionucléide. A titre d’exemple, l’avis de la haute autorité de santé sur la trousse

de préparation du médicament radiopharmaceutique au 99m

Tc nommé « ECIDIS » employé pour les

scintigraphies rénales, précise que « l’exposition aux radiations ionisantes peut théoriquement induire

des cancers et/ou anomalies héréditaires. Dans le cas d’examens de médecine nucléaire à visée

diagnostique, il est généralement considéré que la fréquence de ces risques est négligeable du fait des

faibles doses de radiations délivrées ». Les niveaux d’activité à ne pas dépasser lors des pratiques

courantes définis par les NRD sont présentés dans le tableau 3.2.

Page 102: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

99

Tableau n° 3.2 : Présentation des NRD.

On remarque dans le tableau 3.2 que les activités administrées dépendent du poids du patient.

En général, l’adaptation du niveau d’activité en fonction du poids du patient est gérée au travers du

volume de solution du médicament radiopharmaceutique à injecter. Dans certains cas, des dilutions de

la solution sont nécessaires à partir du médicament radiopharmaceutique provisionnée par le service de

médecine nucléaire.

3.5.3 IMPORTANCE DE LA DOSIMÉTRIE

3.5.3.1 La réglementation

Le suivi dosimétrique du patient est obligatoire en Europe depuis la publication de la Directive

Européenne Euratom 97/43. Cette directive a été transcrite en droit français au travers de l’arrêté du 22

septembre 2006 (JORF n° 226, 2006) relatif aux informations dosimétriques devant figurer dans un

compte rendu d'acte utilisant les rayonnements ionisants. L’article premier du décret précise que le

compte rendu doit comporter notamment « Les informations utiles à l'estimation de la dose reçue par

le patient au cours de la procédure, conformément aux articles 2, 3, 4, 5 et 6 du présent arrêté, en

précisant pour chacun des paramètres l'unité utilisée».

Page 103: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

100

Dans le cadre de la thérapie externe, le médecin réalise une dosimétrie prédictive afin

d’optimiser la dose délivrée par le faisceau. Cette technique, impliquant des doses très importantes

(plusieurs grays), bénéficie d’une relation dose-effet bien établie et les doses minimales requises pour

provoquer l’apoptose des cellules tumorales sont connues. En revanche, en médecine nucléaire,

l’imagerie isotopique engage de faibles doses, et la relation dose-effet n’est pas encore établie. La

distribution de l’activité dans le corps, la quantification en termes d’activité volumique présente dans

l’organe cible lors des examens TEMP et TEP et par conséquent le calcul de la dose sont encore du

domaine de la recherche. En effet, cette démarche nécessite la détermination de nombreux paramètres

et de facteurs de correction.

En radiothérapie interne vectorisée, il est possible de délivrer localement de très fortes doses

tout en préservant au maximum les tissus sains. Mais là encore, le calcul de la dose délivrée nécessaire

à l’optimisation est du domaine de la recherche. En effet, les mécanismes de rétention de l’activité

dans l’organe cible ainsi que leur biodistribution très souvent hétérogène, parmi bien d’autres

paramètres compliquent le calcul de dose. En outre, chaque patient réagit différemment au traitement.

En effet la biodistribution et la rétention sont différentes d’un patient à l’autre, ainsi que l’énergie

déposée dans le corps et les mécanismes de réparation. Aussi le calcul de dose doit-il être

personnalisé. Par ailleurs, la dose absorbée dans les tissus sains doit également être évaluée.

Aujourd’hui, le recours à la scintigraphie quantitative est une solution permettant d’améliorer la

précision du calcul de la dose délivrée aux différents organes (quelques exemples seront présentés au

paragraphe 3.5.3.3).

La Commission Internationale pour la Protection Radiologique (CIPR) a publié et met

régulièrement à jour en fonction des avancées technologiques, des coefficients de dose exprimés en

Gy/kBq, spécifiques à de nombreux radiopharmaceutiques pour différents organes. Ils permettent de

calculer la dose par unité d’activité injectée. Ils sont calculés à partir des données de biodistribution et

de modèles anthropomorphiques standards (CIPR 53, 80, 106). Les radiopharmaceutiques étudiés

concernent les deux domaines de la médecine nucléaire, les examens isotopiques et la RIV. C’est

pourquoi le décret du 22 septembre 2006 comprend un deuxième article spécifique à la médecine

nucléaire. Il stipule notamment que pour les actes de médecine nucléaire y compris la radiothérapie

interne vectorisée, le compte rendu doit comporter « l'activité administrée et le mode

d'administration ». En effet, à l’aide des tables de coefficients de dose publiées par la CIPR et de la

valeur de l’activité administrée, la dose reçue par l’organe ou le tissu peut être déterminée et permettre

ainsi l’optimisation de l’examen ou du traitement.

3.5.3.2 Le calcul du coefficient de dose

3.5.3.2.1 Description du calcul du coefficient de dose

Le coefficient de dose est le rapport de la dose absorbée moyenne à l’activité administrée. La

dose absorbée moyenne 𝐷𝐶 par une région cible « rc » est la somme des contributions de dose à la

région cible 𝐷(𝑟𝐶 ← 𝑟𝑆) de chaque rayonnement émis par les différentes régions sources, rs, durant la

période d’intégration de dose TD (en supposant la masse de la région cible constante dans le temps).

Elle s’exprime par la relation suivante :

𝐷𝐶 = ∑ 𝐷(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷)𝑟𝑆

. (3.1)

Page 104: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

101

La dose délivrée par la région source est généralement calculée en utilisant la méthodologie

proposée par le comité du MIRD (Medical Internal Radiation Dose). Selon cette méthodologie la dose

absorbée moyenne, s’exprimant en J.kg-1

ou Gy, est définie par la relation suivante :

𝐷(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) = ��(𝑟𝑠, 𝑇𝐷). ∑ Δ𝑖𝑖 .ϕ𝑖(𝑟𝐶←𝑟𝑆 ,𝑇𝐷)

𝑚𝑟𝑐

, (3.2)

où :

��(𝑟𝑆, 𝑇𝐷) = ∫ 𝐴(𝑟𝑆, 𝑇𝐷)𝑑𝑡𝑇𝐷

𝑂 (en Bq.s) représente l’activité cumulée pendant la durée TD de

l’irradiation ;

��𝑖 (en J.Bq-1

.s-1

) est l’énergie moyenne du rayonnement i émis par le radionucléide de la région

source ;

𝑚𝑟𝐶 (en kg) est la masse de la région cible ;

𝜙𝑖(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷)(sans unité) est la fraction d’énergie absorbée par la région cible.

L’activité cumulée ��(𝑟𝑆, 𝑇𝐷) correspond au nombre total de désintégrations du radionucléide

dans la région source durant l’intervalle de temps considéré. L’énergie moyenne du rayonnement i, Δ𝑖

émis par le radionucléide correspond à l’énergie du rayonnement émis multipliée par son intensité

d’émission. Enfin la fraction absorbée ϕ𝑖(𝑟𝑐←𝑟𝑠, 𝑇𝐷) représente le rapport de l’énergie absorbée dans la

région cible sur l’énergie émise E0 par la région source.

Une nouvelle relation a été proposée en 1975 pour simplifier cette expression en introduisant

un facteur S (Snyder et al., 1975). Ce facteur correspond à la dose moyenne par unité d’activité

cumulée, il s’exprime en Gy.Bq—1

.s—1

selon la relation suivante :

𝑆(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) = ∑ Δ𝑖𝑖 .ϕ𝑖(𝑟𝐶←𝑟𝑆,𝑇𝐷)

𝑚𝑐 . (3.3)

La dose absorbée 𝐷(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) en Gy est alors réduite à l’expression :

𝐷(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) = ��(𝑟𝑆, 𝑇𝐷). 𝑆(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) . (3.4)

Le formalisme du MIRD dépend ainsi du facteur S, c’est-à-dire des données physiques du

radionucléide, de la masse de la région cible, de la fraction d’énergie absorbée par la cible et des

paramètres géométriques des régions source et des régions cible. Le facteur S peut être calculé par des

méthodes analytiques, ou des méthodes Monte-Carlo à partir de modèles anthropomorphiques

standard. Aujourd’hui les constructions anthropomorphiques réalisées à partir de Voxels (Volume X

Elements ; images numériques composées d’éléments parallélépipédiques) sont les plus précises. Il

dépend également de l’activité cumulée ��(𝑟𝑆, 𝑇𝐷) c’est-à-dire les données biologiques de

biodistribution et de biocinétique (des données de décroissance physique et biologique du

radionucléide prenant en compte l’élimination naturelle) du radiopharmaceutique.

Page 105: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

102

Considérons l’activité A(rs,t) normalisée par rapport à l’activité injectée, alors on peut définir

un coefficient d’activité cumulée ��(𝑟𝑆, 𝑇𝐷) durant le temps d’intégration TD s’exprimant en seconde tel

que :

��(𝑟𝑆, 𝑇𝐷) =1

𝐴0∫ 𝐴(𝑟𝑆, 𝑡)

𝑇𝐷

0dt, (3.5)

où A0 représente l’activité administrée en MBq.

Ainsi le coefficient de dose 𝑑(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) en mGy/MBq s’exprime par la relation suivante :

𝑑(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) = ��(𝑟𝑆, 𝑇𝐷). 𝑆(𝑟𝐶 ← 𝑟𝑆, 𝑇𝐷) . (3.6)

Le coefficient d’activité cumulée ��(𝑟𝑆, 𝑇𝐷) dépend notamment de la biocinétique du

médicament radiopharmaceutique (vitesse d’élimination du traceur, de la période physique et

biologique du produit et de la métabolisation du traceur...) et de la distribution fractionnelle du traceur

dans la région source. Il existe de nombreux modèles de calcul de biocinétique ; une des méthodes

consiste à modéliser la cinétique de rétention par une suite d’exponentielles selon une modélisation

« compartimentale ». Les calculs biocinétiques sont adaptés à chaque radiopharmaceutique, ils sont

présentés dans les différentes publications de la CIPR (CIPR 52, 53, 106). Le facteur S, quant à lui,

dépend de la précision anatomique du modèle anthropomorphique utilisé et du mode de calcul de

l’énergie absorbée par la région cible en fonction de l’énergie déposée par le radionucléide.

L’incertitude sur le coefficient de dose dépend majoritairement de la qualité du modèle

anthropomorphique pour le calcul du facteur S et des connaissances sur la biocinétique du

radiopharmaceutique. L’estimation de l’activité volumique au sein d’un organe est de l’ordre de 20 %

(CIPR 106 ; Assié et al., 2010).

3.5.3.2.2 Logiciels de calcul du coefficient de dose

Michael Stabin du Radiation Internal Dose Information Center (RIDIC) de l’institut pour la

science et l’éducation d’Oak Ridge a développé, dans les années 1980, le logiciel MIRDOSE 1 (Stabin

et al., 1999) fondé sur le formalisme du MIRD. Ce logiciel permet, à la communauté scientifique,

d’estimer le calcul de la dose dans un organe cible à partir de modèles anthropomorphiques stylisés

(incluant des adultes, des enfants d’âge différents : 1, 5, 10 et 15 ans et des femmes enceintes à

différents stades de la grossesse) pour différents médicaments radiopharmaceutiques. Le modèle

cinétique et la distribution du médicament radiopharmaceutique étudié doivent être introduits dans le

logiciel par l’utilisateur. MIRDOSE 1, (remplacé plus tard par MIRDOSE 3) logiciel disponible

depuis 1994, comporte plus de 10 modèles anthropomorphiques et une bibliothèque d’environ 200

radio-pharmaceutiques. Mis à jour en 2006, il a été renommé OLINDA/EXM (Stabin et al., 2006).

Entre temps, de nouveaux modèles anthropomorphiques très réalistes ont été développés par Segard

(2001) et seront incorporés prochainement dans OLINDA/EXM (Stabin et al., 2012).

Contrairement aux modèles standard présentés ci-dessus, un logiciel personnalisé a été

développé à l’IRSN pour le calcul de dose interne, le logiciel ŒDIPE. Son originalité réside dans sa

capacité à construire des modèles anthropomorphiques voxélisés personnalisés à partir d’images

radiologiques (scanner ou IRM) de patients. Le code associe les données du modèle

anthropomorphique personnalisé ainsi obtenu et les caractéristiques du médicament

Page 106: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

103

radiopharmaceutique incorporé, puis crée automatiquement un fichier de données exploitable par le

code Monte Carlo de transport des particules MCNPX. Le logiciel ŒDIPE permet ainsi de réaliser une

dosimétrie interne personnalisée et de modéliser l’hétérogénéité de certaines tumeurs (Chiavassa,

2005). Wilderman et Dewaraja (2007) proposent une méthode rapide pour le calcul de dose en

thérapie isotopique interne nommé DPM (Dose Planning Method) utilisant le formalisme du MIRD.

Ils présentent des résultats de calcul de dose par cette méthode pour un traitement de lymphome non

hodgkinien à l’aide de 131

I. Les écarts entre le calcul et les mesures expérimentales à l’aide de

dosimètres TLD sont de l’ordre de 4 %.

Dieudonné et al., (2010, 2011a) proposent une autre approche très complète permettant de

calculer la dose dans l’organe cible à partir de la représentation voxélisée des régions source et cible

(en trois dimensions) en un temps très rapide compatible avec les conditions cliniques. Ils utilisent un

outil logiciel nommé VoxelDose (Gardin et al., 2003) permettant de calculer le facteur S de la région

cible voxelisée qu’ils convoluent avec la cartographie d’activité cumulée des les régions sources

voxelisées. Cette cartographie d’activité cumulée est déterminée à partir de l’imagerie quantitative

TEMP/TDM du patient pour le médicament radiopharmaceutique étudié. Ces examens isotopiques

associés à la radiothérapie interne vectorisée permettent d’évaluer la biodistribution du traitement et

également d’optimiser l’activité à injecter. Toutefois cette méthode ne prend pas en compte les

hétérogénéités des densités tissulaires. Néanmoins il a été montré que, dans certains cas particuliers,

cette prise en compte n’est pas nécessaire (Dieudonné et al., 2013). Cette stratégie permet de calculer,

en routine clinique, la dose reçue par l’organe cible et les organes environnants et ainsi d’optimiser le

traitement personnalisé en RIV comme en radiothérapie locorégionale.

3.5.3.3 L’intérêt du calcul de dose

En imagerie isotopique, les doses engagées sont très faibles ; néanmoins calculer la dose

absorbée est important. La médecine nucléaire contribue à la dose efficace globale de la population. La

dose efficace est calculée à partir de la dose absorbée pondérée par un facteur prenant en compte le

type de rayonnement reçu et un facteur représentatif de la radiosensibilité de différents organes

corporels. Or ce paramètre est un indicateur du risque d’effets stochastiques sur la santé des patients

(cancers radioinduits pouvant apparaître trente ans après l’exposition, ou mutations de cellules souche

affectant l’hérédité). La dose efficace permet également de comparer le taux d’exposition de patients

ayant subi des protocoles d’examen isotopique différents, ou des protocoles de diagnostic identiques

dans hôpitaux différents voire dans des pays différents. Etant moyennées sur différents âges et sans

distinction de sexe, les études comparatives ou épidémiologiques fondées sur les doses efficaces ne

peuvent néanmoins pas être spécifiques à un patient en particulier, un genre ou une génération. En

France, la dose efficace par individu lors des expositions médicales a augmenté entre 2002 et 2007 de

0,83 mSv à 1,3 mSv. La cause principale de cette augmentation est notamment due à l’augmentation

importante d’actes de scannographie mais également à celle des examens de médecine nucléaire et en

particulier aux examens TEP/TDM (+ 26 % et + 38 % respectivement) (Etard et al., 2010).

En médecine nucléaire la dose absorbée moyenne est calculée pour un organe donné par unité

d’activité injectée (c.à.d. le coefficient de dose). Les coefficients de dose sont publiés par la

Commission Internationale pour la Protection radiologique (CIPR) pour tous les radiopharmaceutiques

utilisés en routine clinique (CIPR 52, 53, 80 et 106). Les calculs sont effectués pour de nombreux

organes pour un modèle standard d’homme adulte ainsi que pour des modèles d’enfants d’âges

différents (1, 5, 10 et 15 ans). Depuis, la CIPR a adopté deux nouveaux modèles anthropomorphiques

Page 107: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

104

voxelisés, un pour l’homme et un autre pour la femme en utilisant le logiciel ŒDIPE (CIPR 110). En

effet, la distance interorgane entre l’homme et la femme étant différente, la dose effective était sous-

estimée pour la femme dans le modèle standard précédent. De nouveaux coefficients de dose ont été

calculés à partir de ces modèles anthropomorphiques plus réalistes et spécifiques en utilisant le code

Monte-Carlo MCNP (Hadid et al., 2013). Ce travail met notamment en évidence une surestimation de

la dose efficace pour 131

I, principalement due à une erreur d’anatomie de la thyroïde de l’ancien

modèle anthropomorphique.

En radiothérapie interne vectorisée, le calcul au préalable de la dose délivrée à la tumeur

permet d’optimiser le traitement. Ce calcul est essentiel notamment pour traiter la tumeur et éviter

d’endommager les tissus sains environnants. Une des difficultés de ce calcul de dose est le suivi de la

biodistribution du médicament radiopharmaceutique utilisé à des fins curatives. En effet, le

radionucléide utilisé est en général un émetteur bêta moins pur, voire un émetteur alpha, dont le

rayonnement est entièrement absorbé au sein du patient. Il n’est pas possible de visualiser leur

distribution par scintigraphie (excepté le cas de 90

Y qui émet également deux gammas mais dont le

rayonnement de bremsstrahlung, généré par le rayonnement bêta, rend difficile la quantification de

l’image de scintigraphie). Aussi les médecins se tournent vers de nouveaux radiopharmaceutiques

ayant des isotopes émetteurs gamma aux propriétés chimiques identiques, ou marquent les mêmes

vecteurs avec un autre radionucléide émetteur gamma. Il est alors possible de suivre la biodistribution

du radionucléide émetteur bêta ou alpha utilisé pour le traitement à l’aide du traceur émetteur gamma

injecté au préalable et suivi par scintigraphie. Cette stratégie est appliquée dans le cas du traitement de

lymphomes non-hodgkiniens (voir paragraphe 3.4.2.1 traitant de la radioimmunothérapie). En effet, à

l’émetteur bêta moins pur 90

Y (90

Y-DOTATOC) est associé 111

In-DOTATOC. Une solution de 111

In-

DOTATOC est injectée au patient au préalable pour un examen de TEMP/TDM quantitatif afin

d’évaluer la biodistribution de 90

Y et d’optimiser l’activité à injecter (Assié et al., 2008). Dans le cas

du traitement du cancer du foie à l’aide de microsphères de 90

Y (voir paragraphe 3.4.2.3 traitant de la

vectorisation locorégionale), une solution de macro-agrégats d’albumine marqués au 99m

Tc est

injectée au patient au préalable (Dieudonné et al., 2011b ; Wondergem et al., 2013). Un examen

TEMP/TDM du patient permet alors, comme pour 111

In-DOTATOC, de visualiser la biodistribution du

radiopharmaceutique et d’établir une cartographie de l’activité cumulée.

Le calcul de l’activité cumulée repose ici sur la scintigraphie quantitative. Il s’agit de la

quantification des images TEP ou TEMP, associées à la TDM, pour lesquelles le taux de comptage

mesuré dans chaque voxel est converti en activité volumique exprimée en kBq/mL.

Le calcul de l’activité volumique dans l’organe cible est d’ailleurs également très important dans le

cadre du suivi du traitement du patient atteint d’un cancer. En effet, l’efficacité du traitement

(radiothérapie, chimiothérapie ou autre) est souvent évaluée à partir d’examens TEP réalisés à

intervalles réguliers. L’évaluation de la progression du traitement nécessite alors la quantification des

images en termes d’activité volumique dans le tissu ou l’organe cible. Cette quantification permet

d’évaluer le nombre de cellules malignes résiduelles car ces dernières fixent significativement plus le 18

F-FDG que le groupe des lésions bénignes. Les critères quantitatifs peuvent également parfois être

des facteurs de pronostic et pourraient alors impliquer éventuellement des conduites thérapeutiques

différentes selon l’estimation du pronostic. Cependant la quantification absolue et fiable des images de

scintigraphiques TEP ou TEMP est très complexe (Buvat, 2007). En effet, elle nécessite la maîtrise de

nombreux paramètres tels que l’atténuation du rayonnement dans le patient (l’association TEP et TDM

permet de maîtriser au mieux ce paramètre), la diffusion du rayonnement dans le patient et son

Page 108: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

105

environnement, le mouvement du patient, la résolution spatiale du tomographe (effet de volume

partiel), les coïncidences fortuites (pour la TEP), le temps mort des détecteurs, la méthode de

reconstruction de l’image, les fluctuations statistiques (Eric et al., 2012). Une étude préliminaire de

quantification d’images TEMP pour une solution de 111

In dans plusieurs fantômes indique que

l’incertitude sur l’activité volumique d’un organe est de l’ordre de 20 % (Assié et al., 2010). Cette

incertitude peut être inférieure à 10 % pour la quantification TEMP avec 99m

Tc (Zeintl et al., 2010).

3.5.4 OPTIMISATION ET PRÉCISION DE L’ACTIVITÉ ADMINISTRÉE

En imagerie isotopique comme en radiothérapie interne vectorisée le calcul de dose est

directement proportionnel à l’activité administrée. Aussi, les activités injectées doivent être strictement

respectées. Un surdosage conduira à une toxicité biologique non souhaitée et conduira à augmenter le

risque pour la santé du patient sans aucun bénéfice. Le respect strict de l’activité administrée selon les

recommandations de l’AMM du radiopharmaceutique déterminera la qualité de l’image médicale à

partir de laquelle le médecin nucléaire établira son diagnostic. Un sous-dosage, conduira à une image

de mauvaise qualité qui soit altérera la qualité du diagnostic soit nécessitera une nouvelle injection.

Dans le cadre de la radiothérapie, un sous-dosage augmentera le taux de réparation de la tumeur et

l’efficacité de la thérapie sera diminuée.

Nonobstant le fait que l’incertitude finale sur le calcul de la dose à l’organe cible soit de

l’ordre de 20 %, l’activité initiale injectée doit être la plus précise possible et ne pas être biaisée. Elle

est déterminée lors de la mesure de la solution radiopharmaceutique dans un activimètre (chambre

d’ionisation à puits pressurisée associée à un électromètre) dans le conditionnement clinique

nécessaire à l’injection, soit essentiellement une seringue. Le raccordement métrologique de ces

détecteurs permet d’assurer les radiopharmaciens et physiciens d’hôpital de la qualité de la donnée

initiale qu’est l’activité injectée au patient. Cette exactitude de la mesure d’activité conditionnera la

qualité de l’image et facilitera le diagnostic ou l’efficacité thérapeutique visée dans le cadre de la

radiothérapie interne vectorisée.

L’Agence Internationale pour l’Energie Atomique (AIEA) a publié en 2006 un rapport

technique (IAEA TRS n° 454, 2006) sur l’assurance qualité des mesures de radioactivité en médecine

nucléaire. Ce rapport a pour objectif de fournir aux utilisateurs des informations complètes concernant

la mesure de l’activité des médicaments radiopharmaceutiques ainsi que le contrôle qualité de ces

médicaments et également d’harmoniser, au niveau mondial, les pratiques dans le respect de la norme

internationale ISO/IEC 17025 (norme définie dans le paragraphe 1.3.3.6 du chapitre 1). Les

utilisateurs concernés sont essentiellement les laboratoires de mesure secondaire et les services de

médecine nucléaire. Ce rapport renseigne notamment sur la précision attendue pour la mesure

d’activité des médicaments radiopharmaceutiques. Elle est de 2 % pour un laboratoire de mesure

secondaire d’activité et de 5 % pour les services de médecine nucléaire. Ce rapport est plus exigeant

en termes d’exactitude que la norme de la Commission Electrotechnique et Internationale CEI 61145

publiée en 1992. Cette norme indique que la précision des mesures d’activité supérieures à 3,7 MBq

doit se trouver dans les limites de ± 10 % de l’activité indiquée de l’étalon. En 1997, la commission

européenne a spécifié les critères d’acceptabilité des mesures en médecine nucléaire (Radioprotection

91, 1997). Dans ce document, l’exactitude de la mesure d’activité doit rester dans la limite de 5 %

pour les radionucléides émetteurs de photons d’énergie supérieure à 100 keV et dans la limite de 10 %

pour les radionucléides émetteurs bêta et gamma de faible énergie.

Page 109: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

106

En France, la décision du 25 novembre 2008 oblige les services de médecine nucléaire à un

contrôle qualité des activimètres très réglementé. Ces détecteurs doivent être étalonnés pour les

médicaments radiopharmaceutiques utilisés dans les services de médecine nucléaire. En outre, le suivi

de la stabilité du détecteur doit être réalisé au quotidien à l’aide d’au moins deux sources de constance

de radionucléides différents (à choisir parmi les 137

Cs, 133

Ba et 57

Co). Une dérive de la mesure

d’activité d’une des sources de constance comprise entre 5 % et 10 % nécessite une remise en

conformité dès que possible ; un écart supérieur à 15 % implique un arrêt immédiat de l’installation et

l’information de l’Agence Nationale de Sécurité du Médicament et des produits de santé (ASNM). Les

étalonnages réalisés au LNHB sont effectués dans le respect du rapport n° 454 de l’AIEA (AIEA TRS

n° 454, 206), les incertitudes-types composées sur les étalonnages des activimètres qu’il réalise sont

comprises entre 1 % et 2 %. Les procédures appliquées respectent la norme ISO/IEC 17025 et le

processus qualité du LNHB est validé par l’accréditation COFRAC du laboratoire. Ce niveau

d’incertitude assuré par le LNHB permet aux services de médecine nucléaire de réaliser la mesure des

médicaments radiopharmaceutiques, inscrits au certificat d’étalonnage, avec une incertitude maximale

de 5 % dans le cadre d’une traçabilité rigoureusement établie et reliée aux étalons internationaux.

Page 110: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

107

4 MESURES D’ACTIVITÉ Á L’AIDE DE CHAMBRES

D’IONISATION PRESSURISÉES

4.1 INTRODUCTION

La chambre d’ionisation fait partie des détecteurs de rayonnements ionisants les plus anciens.

Elle présente l’avantage de sa simplicité de mise en œuvre. En effet, elle est composée d’une enceinte

(scellée ou non) contenant un gaz (air ou gaz noble en général). Une différence de potentiel est

appliquée généralement entre la paroi extérieure conductrice et une électrode interne. Le champ

électrique généré permet de collecter les électrons créés suite à l’interaction du rayonnement ionisant

avec le gaz. Les charges produites sont mesurées à l’aide d’un électromètre. Ces détecteurs présentent

de nombreux avantages. Ils sont dotés d’une très grande dynamique de mesure, très simples

d’utilisation et très stables dans le temps.

4.1.1 DIVERS TYPES DE CHAMBRE D’IONISATION ET APPLICATIONS

Les chambres d’ionisation sont utilisées dans des domaines très variés et leurs formes sont très

diverses. Les géométries principales sont les géométries cylindriques ou parfois sphériques. La mesure

des rayonnements , x, et neutroniques est possible avec une chambre d’ionisation pourvu que sa

géométrie et les constituants de ses parois soient adaptés. Instruments très stables et sensibles, elles

sont très utilisées en radioprotection sous forme de balise de surveillance de l’environnement

radiologique ou de mesure portative d’ambiance (figure n° 4.1).

Figure n° 4.1 Exemples d’appareils portatifs et fixes de mesures d’ambiance.

Leur technologie de fabrication peut aussi être adaptée pour des mesures en milieu très hostile comme

le cœur d’un réacteur nucléaire par exemple (température de 300 °C et pression de 15 MPa). Les

chambres d’ionisation à dépôt de bore et les chambres à fission équipent l’ensemble du parc

électronucléaire français ainsi que les principaux réacteurs étrangers (figure n° 4.2). Elles permettent

de contrôler l’évolution de la densité de neutrons dans le cœur du réacteur et à sa périphérie et ainsi de

réaliser des cartes de flux et d’optimiser la gestion du combustible.

Page 111: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

108

Figure n° 4.2 : exemple de chambres à fission placées au cœur du réacteur.

Un autre domaine où l’utilisation des chambres d’ionisation est très répandu est celui des

applications médicales, radiothérapie et examens isotopiques. Trois grandes catégories de chambres

d’ionisation sont utilisées : les chambres à paroi d’air, les chambres à cavité et les chambres co-

cylindriques sous pression. Les chambres d’ionisation à paroi d’air permettent de déterminer de

manière absolue une référence dosimétrique (en termes de kerma dans l’air : quantité d’énergie

transférée par le rayonnement au milieu par unité de masse du milieu ; il s’exprime en grays) des

faisceaux x de basse et moyenne énergie. Ces derniers sont utilisés notamment pour le diagnostic

médical, entre autres en mammographie, pour le traitement de cancers de la peau ou de tout autre tissu

accessible par les voies naturelles (Perichon, 2012). Les chambres d’ionisation à cavité ouverte sont

utilisées, en radiothérapie externe, pour les faisceaux x de haute énergie et les rayonnements

photoniques collimatés émis par 137

Cs ou 60

Co. Elles peuvent être utilisées en tant que dosimètre relatif

(étalonnage) ou absolu (pour la détermination du kerma dans l’air (cobalt et césium). Elles peuvent

être cylindriques ou sphériques. Elles sont souvent composées de parois en graphite renfermant de

l’air à pression atmosphérique dans un volume allant jusqu’à quelques cm3. Utilisées comme

dosimètres relatifs, elles servent à contrôler la « dose » (en termes de dose absorbée dans l’eau)

délivrée par les faisceaux x de haute énergie selon des protocoles internationaux comme celui décrit

dans le rapport AIEA TRS n° 398, (2000). Les chambres d’ionisation plates à transmission sont

composées de parois fines de graphite en général. Elles sont utilisées pour le monitorage des faisceaux

de radiothérapie. Leur rôle est essentiel pour le contrôle de la dose reçue par le patient (figures n° 4.3).

Figure n° 4.3 : Exemple de chambres d’ionisation à cavité, plate et cylindrique.

Le contrôle des faisceaux d’électrons quant à lui, est préférentiellement réalisé à l’aide de

chambres d’ionisation plates à faces parallèles possédant une face d’entrée composée d’un matériau

fin et léger pour augmenter le rendement de détection des électrons.

Toujours dans le domaine de la santé, la médecine nucléaire utilise des chambres d’ionisation

de conception très différente. En effet, ces détecteurs sont constitués de deux cylindres concentriques

renfermant un gaz sous pression. L’échantillon à mesurer est placé dans un support de source inséré

dans le puits de la chambre. Ces détecteurs sont utilisés pour mesurer l’activité de radionucléides. Les

rayonnements ionisants détectés sont des rayonnements photoniques (x et/ou γ) et/ou électroniques

Page 112: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

109

(électrons et/ou rayonnement β). Les mesures d’activité concernées portent, par exemple, sur des

solutions injectables aux patients pour la médecine nucléaire ou des sources scellées pour la

curiethérapie.

Dans le cadre de ses missions de transfert des références aux utilisateurs, le LNHB réalise les

étalonnages de ces détecteurs nommés « activimètres » (chambre d’ionisation co-cylindrique associée

à son électronique) confiés par les constructeurs avant leur diffusion dans les services de médecine

nucléaire (figure n° 4.4).

Figure n° 4.4 : Exemple d’activimètres (chambre d’ionisation co-cylindrique à puits pressurisée

associée à son électronique).

Ce chapitre présente le principe de fonctionnement de ces instruments, le contexte d’utilisation

et les sujets de recherche effectués au LNHB mettant en œuvre la simulation de leur réponse à l’aide

de codes Monte-Carlo. Je terminerai ce chapitre sur les perspectives relatives à cette technique de

mesure.

4.2 MESURE D’ACTIVITÉ Á L’AIDE D’UNE CHAMBRE D’IONISATION

PRESSURISÉE

4.2.1 PRINCIPE DE FONCTIONNEMENT

La chambre d’ionisation à puits pressurisée est utilisée pour mesurer l’activité de sources

radioactives émettant des rayonnements photoniques, électroniques et des positrons. Cet instrument de

mesure d’activité présente de nombreuses qualités : il est simple d’utilisation, très stable dans le temps

(sur plusieurs décennies), sa reproductibilité et sa linéarité sont excellentes (elle permet d’effectuer des

mesures d’activité du mégabecquerel au gigabecquerel). Ce détecteur est constitué de deux cylindres

coaxiaux servant d’électrodes. L’espace entre les deux cylindres est fermé et soudé aux extrémités, il

renferme un gaz sous pression. Ce gaz de détection est en général un gaz noble comme l’argon ou

l’azote. Parfois, il est constitué d’un mélange (par exemple argon et xénon). Le cylindre intérieur

forme un puits dans lequel est introduit un support de source. L’échantillon, solution radioactive, est

conditionné sous forme d’ampoule, de flacon ou de seringue ; ces deux dernières géométries sont les

conditionnements utilisés dans les services de médecine nucléaire lors de mesures d’activité. Il est

placé sur le support, lui-même introduit dans le puits de la chambre d’ionisation (figure n° 4.5).

Page 113: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

110

Figure n° 4.5 : Représentation schématique en coupe du principe de fonctionnement d’une chambre

d’ionisation à puits pressurisée.

La chambre étant sous pression, l’épaisseur des parois de l’enceinte doit permettre de contenir

le gaz sans risque de flambage ni d’éclatement de l’enceinte. Aussi, les parois de la chambre

d’ionisation, notamment la paroi interne, doivent être composées d’un matériau ayant des propriétés

mécaniques adaptées et aussi léger que possible tout en limitant son épaisseur. En effet, ces propriétés

jouent un rôle déterminant sur la sensibilité de la chambre : trop dense, la paroi atténue de façon

importante les rayonnements avant leur pénétration dans le volume de détection ; trop fragile, elle ne

peut pas supporter la pression du gaz. Le compromis se situe alors autour de quelques millimètres pour

1 MPa de pression.

Le rayonnement émis par la source interagit dans la source elle-même, puis dans le détecteur.

Seule une fraction du rayonnement émis atteint le volume sensible. En fonction de la géométrie et de

la masse volumique des matériaux constitutifs de la chambre, l’énergie minimale des photons

nécessaire pour interagir avec le gaz est de l’ordre d’une vingtaine de keV, et de quelques centaines de

keV pour les électrons. Pour ces derniers, c’est essentiellement le rayonnement de freinage

(bremsstrahlung) qui est détecté. En effet, une énergie supérieure à environ 1,7 MeV est nécessaire

pour que les électrons puissent interagir directement avec le gaz porteur.

Lorsque les particules émises interagissent avec le gaz, les différents modes d’interaction

(photoélectrique, Compton, Rayleigh et création de paires pour les photons, diffusion élastique et

inélastique pour les électrons et positrons) génèrent des excitations et ionisations des atomes du gaz

(les différents modes d’interaction des rayonnements photoniques, électroniques et des positrons ne

seront pas décrits dans ce rapport, le lecteur pourra se référer, par exemple, au livre rédigé par Knoll

(1989)). En absence de champ électrique, les charges créées dans le gaz se recombinent ou subissent le

phénomène d’attachement électronique. Aussi, une haute tension est appliquée sur une des deux

électrodes, l’autre étant reliée à la masse. Le champ électrique ainsi appliqué entre les deux électrodes

provoque la migration des charges. Les ions positifs migrent vers la cathode tandis que les électrons

migrent vers l’anode. La différence de potentiel appliquée est suffisamment élevée pour permettre une

collection quasi complète des charges et limiter ainsi les phénomènes de recombinaison et

d’attachement électronique. Toutefois, elle doit rester inférieure à la valeur conduisant à la création

d’avalanche électronique (environ 1000 volts). On dit que la chambre fonctionne dans le domaine de

Page 114: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

111

tension de saturation. Les charges sont collectées et le courant d’ionisation est mesuré à l’aide d’un

électromètre. Celui-ci est directement proportionnel à l’activité mesurée dont l’unité est le becquerel

(Bq).

4.2.2 MESURE DU COURANT D’IONISATION

Les courants délivrés par les chambres d’ionisation sont des courants très faibles. En effet les

valeurs de courant mesurées sont de l’ordre de 2.10—14

A pour le mouvement propre jusqu’à environ

1.10—8

A. Cette gamme est très étendue et la linéarité de l’installation de mesure va dépendre

principalement de la qualité de l’électromètre et de la qualité des isolants entrant dans la fabrication de

la chambre. Celle-ci est contrôlée à l’aide d’une source radioactive contenant un radionucléide de

période courte comme 99m

Tc ou 18

F, (de période 6,0067(10) h et 1,8288(3) h respectivement)

(Schrader, 2007). La mesure d’activité s’effectue en chambre d’ionisation soit par le suivi de la charge

d’un condensateur (valeur de la capacité de l’ordre de 100 nF), soit par la mesure de la chute de

tension aux bornes d’une résistance (valeur de la résistance de l’ordre de 1.1010

Ω à 1.1014

Ω). La

mesure du courant d’ionisation est extrêmement précise pour les courants compris entre 2.10—13

A et

1.10—9

A, plage de courant généralement utilisée ; elle est de l’ordre de quelques pour dix mille. Les

différents types d’électromètres et méthodes de mesure du courant d’ionisation sont décrits dans la

monographie rédigée par Schrader (1997 ; 2007).

Au LNHB, les deux méthodes de mesure du courant d’ionisation mentionnées ci-dessus sont

mises en œuvre selon la chambre d’ionisation utilisée. Le courant de la chambre d’ionisation de

transfert servant à l’étalonnage des activimètres (chambre nommée Normandy) pour les services de

médecine nucléaire est mesuré par chute de tension. Deux autres chambres d’ionisation (la chambre

VINTEN 671 et la chambre VACUTEC 70129) sont utilisées préférentiellement pour les mesures

d’activité de solutions étalons dans le cadre de la participation du laboratoire au SIR (paragraphe

1.3.1.2). Le courant de ces chambres d’ionisation est mesuré par intégration de charge.

Lors de la mesure par chute de tension, l’électromètre Keithley 617 est utilisé sur la position

« ampères » et deux cents relevés de mesure de courants sont effectués. Ils sont corrigés de la

décroissance du radionucléide. Le courant est la moyenne arithmétique des courants sur ces deux cents

relevés et l’incertitude correspond à l’écart-type expérimental de ces mesures. Ce dernier est ensuite

combiné avec l’incertitude sur la période du radionucléide. Au courant moyen est ensuite soustrait

celui correspondant à la mesure du mouvement propre et les incertitudes types sont combinées suivant

la loi de propagation des variances pour les variables indépendantes (GUM, 1995). La mesure par

intégration de charge est réalisée à l’aide d’un électromètre Keithley 6517. Elle consiste typiquement à

relever cinquante valeurs de charges. Chacune de ces valeurs est le résultat de l’intégration des charges

durant deux secondes. En conséquence chaque mesure de courant dure une centaine de secondes et est

nommé rampe. Par ailleurs toute valeur de charge relevée est corrigée pour la décroissance du

radionucléide. Le temps d’intégration est choisi suffisamment court par rapport à la période du

radionucléide à mesurer afin de diminuer les corrections de dévroissance. Un logiciel développé au

laboratoire calcule la pente de la droite des valeurs des charges relevées en fonction du temps par la

méthode des moindres carrés. L’incertitude sur cette pente est celle obtenue lors du calcul de la

régression linéaire ; elle est combinée avec l’incertitude sur la période du radionucléide. Une dizaine

de « rampes », telles que définies plus haut, sont mesurées et la moyenne arithmétique est calculée. A

cette moyenne est soustraite celle correspondant à la mesure du mouvement propre. L’incertitude de

mesure de chaque rampe est l’écart-type expérimental des dix mesures. L’incertitude type pondérée

Page 115: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

112

par les variances de chaque pente est également calculée. Les deux incertitudes sont comparées, elles

sont en général du même ordre de grandeur et l’incertitude type pondérée est systématiquement

inférieure à l’écart-type expérimental. L’incertitude type pondérée n’est pas utilisée par la suite. La

comparaison de sa valeur avec celle de l’écart-type expérimental sert à détecter des problèmes

d’homogénéité lors de la mesure. Enfin, l’écart-type expérimental est combiné avec l’incertitude

obtenue sur la mesure du mouvement propre et, lorsqu’un courant « massique » (courant produit par

l’échantillon divisé par la masse de solution active qu’il contient) est mesuré, l’incertitude est

également combinée avec celle de la masse de l’échantillon.

4.2.3 CONTRÔLE DE FIDÉLITÉ DE L’INSTALLATION

Le contrôle de fidélité est très important car il permet de vérifier la stabilité de la

chaîne de mesure et ainsi de garantir la fiabilité d’un étalonnage sur plusieurs années. Il est réalisé au

moyen de la mesure d’une ou plusieurs sources radioactives de longue période (plusieurs années)

appelées sources de « constance ». Les sources de constance peuvent être par exemple des sources

scellées étanches de 137

Cs, 133

Ba ou de 226

Ra (de période 30,05(8) a, 10,540(6) a et 1600(7) a

respectivement). Ce dernier radionucléide doit être à l’équilibre avec ses descendants. Une ou

plusieurs de ces sources sont mesurées systématiquement lors de toute mesure, qu’il s’agisse d’un

raccordement (étalonnage à partir d’une solution étalon traçable aux références métrologiques) de la

chambre d’ionisation ou de la détermination de l’activité d’un échantillon. Pratiquement, lors de la

mise en service d’une chambre d’ionisation, une source de constance est mesurée et une valeur initiale

du courant est choisie. Elle correspond en général au courant de mesure de la source de constance

obtenu, corrigé du mouvement propre à un instant donné appelé temps de référence. C’est à cette

valeur initiale que seront comparées toutes les mesures de la source de constance, après les avoir

corrigées de la décroissance subie par la source entre la date de mesure et la date de référence choisie

pour la mesure. Un facteur de fidélité Ff est calculé, qui correspond au rapport du courant de référence

au courant mesuré corrigé de la décroissance et s’exprime selon la relation suivante :

𝐹𝑓 =𝐼0𝑐𝑜𝑛𝑠𝑡 .𝑒

−(ln (2).(𝑡𝑟𝑒𝑓−𝑡0))

𝑇

𝐼𝑐𝑜𝑛𝑠𝑡.𝑒−

(ln (2).(𝑡𝑟𝑒𝑓−𝑡))

𝑇

=𝐼0𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟

𝐼𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟

, (4.1)

où :

I0const est le courant initial de la mesure de la source de constance corrigé du mouvement propre à la

date t0 et Iconst est le courant de la source de constance corrigé du mouvement propre, mesuré à la date

de mesure t. 𝐼0𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟 et 𝐼𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟

,sont respectivement le courant initial et le courant mesuré

ramenés à la date de référence, T la demi-vie du radionucléide.

Si la mesure initiale choisie pour le courant de la source de constance (I0const) correspond

effectivement à la mesure du courant de la source de constance corrigé du mouvement propre, le

facteur de fidélité est très proche de l’unité. Dans certains cas, la valeur initiale peut être une valeur

arbitraire, il suffit alors de contrôler la variation du rapport du courant à cette valeur initiale pour

vérifier la stabilité de la chaîne de mesure (c’est effectivement le cas pour la chambre Vinten pour

laquelle le facteur de fidélité est égal à 0,832 à environ 0,02% près). Le calcul de l’incertitude sur le

facteur de fidélité prendra en compte les incertitudes sur chacun des deux courants mesurés combinées

avec les incertitudes sur les facteurs de décroissance. Ces dernières sont calculées notamment en

fonction l’incertitude sur la période radioactive de la source de constance. Le détail de ces calculs,

Page 116: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

113

effectués en utilisant la loi de propagation des variances (GUM, 1995), n’est pas présenté dans ce

rapport.

Ainsi une carte de contrôle de fidélité peut être établie. Elle représente les valeurs des facteurs

de fidélité en fonction du temps. Au LNHB, tout courant mesuré est corrigé du mouvement propre,

multiplié par le facteur de décroissance pour le ramener à la date de référence choisie et également

multiplié par le facteur de fidélité. Ainsi lorsqu’une mesure d’activité sera effectuée, le courant mesuré

sera multiplié par la valeur du courant de la source de constance lors de l’étalonnage et divisé par la

mesure de la source de constance lors de la mesure en cours (les courants ramenés à la même date de

référence) puis multipliée par (le rapport l’activité au courant mesuré lors de l’étalonnage). Cette

méthode permet de se ramener aux conditions de mesure lors de l’étalonnage.

4.2.4 DÉTERMINATION DES COEFFICIENTS D’ÉTALONNAGE EXPÉRIMENTAUX

Les chambres d’ionisation sont des instruments de mesure secondaire. Elles nécessitent d’être

étalonnées. Le coefficient d’étalonnage est déterminé à partir de la mesure du courant produit par un

échantillon contenant une solution radioactive étalon. En l’absence d’impuretés radioactives, il

s’exprime en A/MBq par la relation suivante :

𝐶𝑒𝑥𝑝 =𝐼é𝑡

𝐴𝑟𝑒𝑓 (4.2)

où :

Iét en A est le courant de la mesure de l’échantillon étalon corrigé du mouvement propre à la date de

référence ;

Aref en MBq est l’activité de l’échantillon de solution radioactive étalon à la date de référence.

Au LNHB, le coefficient d’étalonnage est déterminé à partir de trois échantillons représentatifs

de la solution étalon. Les échantillons sont préparés par pesée et l’activité de référence est renseignée

en activité massique. En outre, chaque mesure de courant est multipliée par le facteur de fidélité de la

chaîne de mesure. Le facteur d’étalonnage est calculé selon la relation suivante :

𝐶𝑒𝑥𝑝 =

∑ 𝐼é𝑡𝑖𝑛𝑖=1

𝑛.𝐹é𝑡𝑓

𝐴𝑟𝑒𝑓 , (4.3)

où :

𝐼é𝑡𝑖 en A/g est le courant de la mesure de l’échantillon étalon i à la date de référence corrigé du bruit

de fond puis divisé par la masse de l’échantillon ;

n est le nombre d’échantillons mesurés ;

Aref en MBq/g est l’activité de l’échantillon de solution radioactive étalon à la date de référence ;

𝐹é𝑡𝑓, paramètre sans dimension, est le facteur de fidélité.

4.2.5 DÉTERMINATION DES FACTEURS D’ÉTALONNAGE D’ACTIVIMÈTRES

Les échantillons utilisés en médecine nucléaire sont conditionnés soit en flacon ou en

seringue. Ils sont étalonnés soit par le constructeur, soit par un radiopharmacien ou radiophysicien du

service de médecine nucléaire à partir d’étalons secondaires commerciaux, soit encore par un

laboratoire de métrologie des rayonnements ionisants. L’utilisateur n’a pas accès au courant

d’ionisation mais à des facteurs d’étalonnage, paramètres sans dimension, définis par le constructeur.

Page 117: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

114

Ces facteurs sont généralement déterminés en fonction du courant généré par une ou plusieurs sources

de constance du constructeur (source 60

Co, 57

Co ou 137

Cs le plus souvent) et de leur activité par des

relations très rarement communiquées. Lors de l’étalonnage, l’utilisateur ajuste la valeur de ce facteur

de telle sorte de l’activimètre affiche l’activité de référence.

La difficulté principale rencontrée par les services de médecine nucléaire réside dans la

diversité des conditionnements utilisés en routine clinique. Ces conditionnements peuvent varier en

fonction du fournisseur (seringues BD Plastipak® (Becton Dickinson Plastipak®), seringue B.

Braun®, … ; flacon Cis Bio®, flacons Covidien®, …). En effet, les rayonnements émis par les

produits radiopharmaceutiques marqués avec un radionucléide émetteur de photons de basse énergie

ou émetteur bêta, sont fortement atténués dans la solution elle-même puis dans le conditionnement. Si

ce dernier varie (épaisseur, densité,..), l’atténuation sera plus ou moins élevée ce qui aura une

incidence directe sur la réponse du détecteur et ainsi sur le facteur d’étalonnage. Dans ce cas, il est

nécessaire d’étalonner l’activimètre dans les différents conditionnements utilisés pour le produit

radiopharmaceutique. Les coefficients d’étalonnage de la chambre d’ionisation de transfert du LNHB

présentent, pour une solution de médicament radiopharmaceutique marqué avec 111

In, un écart de 9 %

entre un conditionnement en flacon Cis Bio® et un conditionnement en flacon Covidien®. En outre, la

posologie est renseignée en fonction du poids du patient pour la plupart des radiopharmaceutiques. Or,

le radiopharmacien prépare des seringues d’injection contenant un volume de solution du médicament

radiopharmaceutique adapté au poids du patient à partir de la solution de référence. Aussi les volumes

peuvent être différents et l’activimètre devra être étalonné pour chacun d’entre eux en particulier pour

les radionucléides émetteurs de rayonnement de basse énergie ou de rayonnement bêta.

En France, de nombreux services de médecine nucléaire souhaitent commander un activimètre

étalonné par le LNHB. Par conséquent les principaux constructeurs confient leurs activimètres neufs

au laboratoire pour leur étalonnage. Le LNHB étalonne les activimètres pour deux types de

conditionnements (en seringue et en flacon). Le conditionnement et son fournisseur sont précisés dans

le certificat d’étalonnage. Lorsque l’activimètre est déjà installé dans le service, les physiciens

médicaux font appel à la société CERCA/LEA dont l’installation de mesure d’activité est raccordée au

LNHB (paragraphe 1.3.3.5). Selon cette procédure, les services de médecine nucléaire sont assurés de

la traçabilité métrologique de leur étalonnage au niveau international.

4.2.6 MESURE D’ACTIVITÉ D’UN RADIONUCLÉIDE

4.2.6.1 Mesure d’activité en absence d’impureté

La mesure de l’activité d’un échantillon radioactif nécessite que le détecteur soit étalonné pour

le radionucléide à mesurer et dans les mêmes conditions : la masse volumique de la solution, son

volume et le type de conditionnement (ampoule, flacon ou seringue) doivent être identiques. En effet,

une variation de la masse volumique de la solution ou du type de conditionnement aura une influence

(plus ou moins importante en fonction du type de chambre d’ionisation utilisée) sur l’atténuation du

rayonnement émis par la source et ne sera plus représentatif des conditions de l’étalonnage. En

absence d’impureté et pour une mesure dans les mêmes conditions que celles de l’étalonnage,

l’activité A exprimée en MBq/g à la date de mesure se calcule par la relation suivante :

𝐴𝑟𝑒𝑓 =

∑ 𝐼𝑖𝑛𝑖=1

𝑛.𝐹𝑓

𝐶𝑒𝑥𝑝 , (4.4)

Page 118: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

115

où :

Ii en A/g est le courant de la mesure de l’échantillon étalon i à la date de référence corrigé du bruit de

fond puis divisé par la masse de l’échantillon ;

n est le nombre d’échantillons mesurés ;

Aref en MBq/g est l’activité de l’échantillon de solution radioactive étalon à la date de référence ;

Ff , paramètre sans dimension est le facteur de fidélité.

Ainsi, en remplaçant le coefficient d’étalonnage par son expression (4.3), on obtient :

𝐴 = 𝐴𝑟𝑒𝑓 .

∑ 𝐼𝑖𝑛𝑖=1

𝑛∑ 𝐼é𝑡𝑖

𝑛𝑖=1

𝑛

.𝐹𝑓

𝐹é𝑡𝑓

. (4.5)

Ainsi en remplaçant les facteurs de fidélité par leur expression à partir de (4.5) on obtient :

𝐴 = 𝐴𝑟𝑒𝑓 .

∑ 𝐼𝑖𝑛𝑖=1

𝑛

𝐼𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟

.𝐼é𝑡𝑐𝑜𝑛𝑠𝑡𝑐𝑜𝑟𝑟

∑ 𝐼é𝑡𝑖𝑛𝑖=1

𝑛

. (4.6)

On constate que l’activité mesurée est indépendante de la valeur choisie pour le courant initial de la

source de constance (formule 4.6). L’avantage de multiplier par le facteur de fidélité est de rendre

l’activité mesurée indépendante vis-à-vis de la variation de ces paramètres proportionnels au courant

entre la date d’étalonnage et la date de la mesure d’activité.

4.2.6.2 Mesure d’activité en présence d’impuretés

Supposons maintenant que la solution radioactive contienne des impuretés radioactives

émettrices de rayonnement gamma. Ces impuretés sont en général identifiées par spectrométrie à

l’aide d’un détecteur germanium de haute pureté, étalonné dans la géométrie de l’échantillon étudié.

La sélection des régions d’intérêt dans les spectres de comptage du rayonnement émis par l’échantillon

permet de déterminer le taux d’impureté c’est-à-dire le rapport de l’activité de l’impureté à celle du

radionucléide à mesurer.

Le courant total mesuré dans la chambre d’ionisation, en ampère, à la date de référence,

produit par l’échantillon correspond à la contribution de tous les radionucléides présents et s’exprime

par la relation :

𝐼𝑡𝑜𝑡 = 𝐼𝑅𝑁 + ∑ 𝐼𝑟𝑖

𝑛𝑖=1 , (4.7)

où :

IRN est le courant du radionucléide à mesurer à la date de référence ;

𝐼𝑟𝑖est le courant de l’impureté radioactive i à la date de référence.

Lorsque la chambre d’ionisation est étalonnée pour chaque radionucléide, cette relation peut s’écrire

sous la forme suivante :

𝐼𝑡𝑜𝑡 = 𝐴𝑅𝑁. 𝐶𝑅𝑁 + ∑ 𝐴𝑟𝑖. 𝐶𝑟𝑖

𝑛𝑖=1 , (4.8)

où :

ARN en MBq est l’activité à la date de référence du radionucléide à mesurer ;

𝐴𝑟𝑖 en MBq est l’activité à la date de référence du l’impureté i ;

Page 119: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

116

n est le nombre d’impuretés ;

𝐶𝑅𝑁 en A/MBq est le coefficient d’étalonnage du radionucléide à mesurer ;

𝐶𝑟𝑖 en A/MBq est le coefficient d’étalonnage pour l’impureté i.

Or le taux de l’impureté i, sans dimension, déterminé par spectrométrie gamma s’exprime par la

relation suivante :

𝜏𝑖 = 𝐴𝑟𝑖

𝐴𝑅𝑁 . (4.9)

L’activité du radionucléide à mesurer est présentée dans la formule :

𝐴𝑅𝑁 =1

1+∑ 𝜏𝑖.𝐶𝑟𝑖

𝐶𝑅𝑁

𝑛𝑖=1

.𝐼𝑡𝑜𝑡

𝐶𝑅𝑁 . (4.10)

La valeur d’activité ainsi obtenue correspond à l’activité du radionucléide à mesurer, le courant total

étant corrigé de la contribution des impuretés pour un échantillon.

L’activité peut être mesurée pour plusieurs échantillons représentatifs d’une solution étalon,

l’expression (4.10) devient :

𝐴𝑅𝑁 =1

1+∑ 𝜏𝑖.𝐶𝑟𝑖

𝐶𝑅𝑁

𝑛𝑖=1

.

∑ 𝐼𝑡𝑜𝑡𝑖𝑁𝑖=1

𝑁

𝐶𝑅𝑁 , (4.11)

où :

𝐼𝑡𝑜𝑡𝑖 est le courant total à la date de référence produit par l’échantillon i ;

N est le nombre d’échantillons.

La correction d’impuretés est nécessaire lorsque la solution radioactive à mesurer ou à

étalonner contient des radionucléides différents. C’est effectivement le cas lors de la mesure d’activité

du 201

Tl, médicament radiopharmaceutique utilisé principalement en scintigraphie cardiaque. En effet,

lors de sa production en cyclotron (selon la réaction 203

Tl(p, 3n) 201

Pb 201

Tl), il est accompagné de 200

Tl et de 202

Tl et dans une moindre mesure de 203

Pb. Ces impuretés sont présentes dans la solution de 201

Tl avec un rapport entre les activités des impuretés et celle du 201

Tl respectivement allant de

quelques pour mille à 1 %. De plus, la période du 202

Tl étant plus longue que celle du 201

Tl, sa

proportion augmente avec le temps. On ne peut donc pas compter sur l’écoulement du temps pour

s’affranchir de la présence de toutes les impuretés. Lors de la mesure d’activité ou de l’étalonnage du

détecteur en 201

Tl, il est donc nécessaire de corriger le courant total de la contribution des impuretés.

Cette correction nécessite la connaissance des facteurs d’étalonnage pour les impuretés présentes. Or il

n’est pas toujours possible d’obtenir indépendamment des solutions contenant ces impuretés

radioactives suffisamment pures et en quantité satisfaisante pour permettre un étalonnage de la

chambre d’ionisation. Il faut alors obtenir ces coefficients d’étalonnage par une autre méthode que

l’expérimentation directe. La solution consiste à déterminer, par calcul, la réponse de la chambre

d’ionisation en fonction de l’énergie initiale des photons émis. Deux méthodes sont développées pour

déterminer les coefficients d’étalonnage par calcul. Une première méthode consiste à établir une

courbe de réponse à l’aide des coefficients d’étalonnage de radionucléides émetteurs de photons

monoénergétiques. La deuxième méthode consiste à déterminer les facteurs d’étalonnage de la

Page 120: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

117

chambre d’ionisation par simulation à l’aide de code de calcul Monte-Carlo. Ces méthodes sont

décrites dans le paragraphe 4.3.

4.2.7 TRACABILITE MÉTROLOGIQUE

Les échantillons mesurés en chambre d’ionisation sont conditionnés en ampoules de verre de

type LMRI et de type BIPM. Les ampoules de type LMRI (ancien nom du LNHB) ont un volume utile

d’environ 9 mL et sont remplies par pesée avec un volume de l’ordre de 5 mL de la solution étalon (la

masse volumique de la slution radioactive est en général de l’acide chlorydrique 0,1 M de masse

volumique très proche de l’unité). Les ampoules BIPM, plus petites, ont elles un volume utile

d’environ 5 mL et sont remplies avec un volume de 3,6 mL. Au LNHB, lors de la participation du

laboratoire au SIR (paragraphe 1.3.1.2.), trois ampoules des deux types sont préparées. La composition

de la solution étalon est établie dans les conditions de stabilité thermodynamique du radionucléide

(Iroulart, 2007). La solution radioactive est, très souvent, composée d’une solution aqueuse acide

contenant le radionucléide à mesurer. Outre le radionucléide, elle contient également son isotope stable

agissant en tant qu’entraîneur afin d’éviter l’adsorption du radionucléide sur les parois des ampoules.

Lors d’une participation au SIR, l’activité de la solution étalon est déterminée par une méthode de

mesure primaire (paragraphe 1.3.3.7). Les mesures de plusieurs échantillons en chambre d’ionisation

permettent de confirmer l’homogénéité de la solution. Aussi les radionucléides émetteurs de

rayonnements gamma et bêta-gamma sont-ils systématiquement mesurés en chambre d’ionisation

avant l’envoi d’une ou deux ampoules de type BIPM, lors de la participation du laboratoire au SIR ou

à une comparaison internationale. Ces actions d’intercomparaison, sous l’égide du BIPM, constituent

la garantie de la traçabilité métrologique des instituts nationaux de métrologie au niveau international.

Une mesure d’activité à l’aide des chambres d’ionisation peut servir de méthode de référence au SIR

pourvu que la chambre ait été étalonnée par une méthode de mesure primaire pour le radionucléide

considéré. Par exemple, la mesure réalisée au LNHB en chambre d’ionisation d’une solution étalon de 111

In a été incluse dans la base de données des comparaisons clés du BIPM (Michotte et al., 2010). La

figure 4.6 présente les degrés d’équivalence (paragraphe 1.2.1.3) pour ce radionucléide obtenus dans le

cadre de ce travail par les différents laboratoires nationaux de métrologie des rayonnements.

Figure n° 4.6 : Graphe des degrés d’équivalence pour

111In établi par le BIPM (Michotte et al., 2010).

Page 121: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

118

4.3 ÉTAT DE L’ART

4.3.1 DETERMINATION EXPÉRIMENTALE DE LA COURBE DE RÉPONSE D’UNE CHAMBRE

D’IONISATION

4.3.1.1 Principe général de détermination de la courbe de réponse expérimentale d’une chambre

d’ionisation pressurisée

La détermination expérimentale de la réponse de la chambre d’ionisation au rayonnement

photonique et électronique émis par la source radioactive consiste à utiliser directement les

coefficients d’étalonnage expérimentaux. La première étape de construction de la courbe de réponse

de la chambre d’ionisation consiste à établir une première courbe à partir de radionucléides émetteurs

de photons monoénergétiques comme par exemple 99m

Tc, 51

Cr, 85

Sr, 54

Mn, 95

Nb. Cependant, ces

radionucléides sont peu nombreux et ne couvrent pas tout le domaine énergétique de 22 keV à 2 MeV,

commun à la plupart des radionucléides. D’autres radionucléides, au schéma de désintégration plus

complexe, sont donc introduits par une démarche itérative en soustrayant les contributions des

émissions photoniques les moins intenses à partir de l’interpolation de la courbe déjà établie en

multipliant par les intensités d’émission correspondantes.

La courbe de réponse globale correspond à la somme de la contribution de tous les

rayonnements photoniques et électroniques émis par la source radioactive et détectés par la chambre

d’ionisation. Elle s’exprime par la formulation suivante :

𝜀𝑇𝑂𝑇 = ∑ 𝐼𝑖. 𝜀𝛾𝑖(𝐸𝛾𝑖

)𝑖 + ∑ 𝐼𝑗 . 𝜀𝛽𝑗(𝐸𝛽𝑗

)𝑗 , (4.12)

où :

en A/MBq est la réponse de la chambre d’ionisation due à la détection des rayonnements X et

gamma et/ou bêta émis par la source radioactive ;

𝜀𝛾𝑖(𝐸𝛾𝑖

) en A/MBq est la réponse de la chambre d’ionisation due à la détection des rayonnements X

et/ou gamma d’énergie 𝐸𝛾𝑖;

𝜀𝛽𝑗(𝐸𝛽𝑗

) en A/MBq est la réponse de la chambre d’ionisation due à la détection du rayonnement bêta

d’énergie moyenne 𝐸𝛽𝑗 ;

Ii sans dimension correspond à l’intensité d’émission du rayonnement x ou gamma d’énergie 𝐸𝛾𝑖 ;

Ij sans dimension correspond à l’intensité d’émission du bêta d’énergie moyenne 𝐸𝛽𝑗 .

Le rayonnement bêta moins est détecté uniquement par l’émission de bremsstrahlung pour les

électrons d’énergie inférieure à environ 1,7 MeV, énergie dépendant de la géométrie de la chambre

d’ionisation et de la composition de ses matériaux constitutifs. Au-delà de cette énergie, une partie des

électrons peut interagir directement avec le gaz porteur de la chambre. La probabilité de cette

interaction dépend de la géométrie et des matériaux constitutifs de l’ensemble source-détecteur.

Le rayonnement de bremsstrahlung émis par le rayonnement bêta plus est également détecté par la

chambre d’ionisation. Cependant la réponse de la chambre est principalement due au dépôt d’énergie

par les deux émissions gamma à 180° l’une de l’autre, créées lors de l’annihilation du positron. Ici la

réponse du détecteur aux électrons de conversion est négligée. En effet, il n’est expérimentalement pas

possible de déterminer la réponse de la chambre d’ionisation à puits à des électrons monoénergétiques

émis dans le volume de l’échantillon. Néanmoins, la contribution des électrons de conversion à la

réponse de la chambre est en général négligeable. En ce qui concerne les électrons émis lors des

réarrangements électroniques, leur énergie est trop faible (quelques eV à une centaine de keV au

Page 122: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

119

maximum) pour qu’ils soient détectés.

Nombre d’auteurs nomment la courbe de réponse de la chambre d’ionisation, courbe de

rendement. Dans ce document la terminologie courbe de réponse sera préférée dans le sens où,

contrairement à la spectrométrie gamma où le rendement du détecteur est exprimé en pourcentage et

est sans dimension, la réponse de la chambre a une dimension qui est en général exprimée en A/MBq.

4.3.1.2 État de l’art

Durant les trente dernières années du XXième

siècle, la courbe de réponse des chambres

d’ionisation est établie à partir de radionucléides émetteurs de rayonnement monophotonique puis

complétée de manière itérative avec des radionucléides à schéma plus complexe. Dès 1969 Bensch et

Ledermann en Autriche, (Bensch et Ledermann, 1969) proposent déjà une fonction analytique pour

décrire la réponse d’une chambre d’ionisation aux photons étalonnée avec 14 radionucléides :

𝜀𝛾 = (𝑎. ��2 + 𝑏. �� + 𝑐). 1. 10−19 , (4.13)

où :

en A.s représente la réponse de la chambre d’ionisation aux photons gamma ;

a, b et c en A .s.MeV—1

sont des paramètres déterminés empiriquement ;

�� en MeV est l’énergie moyenne des photons émis par le radionucléide pondérée par l’intensité du

rayonnement émis.

Puis d’autres auteurs proposent en utilisant la même méthode, différentes fonctions

analytiques dont la formulation diffère d’une chambre à l’autre (Weiâ, 1973 ; Rytz, 1978, 1983 ;

Schrader et Weiâ, 1983, Blanchis, 1985, Dryák et Dvoøák, 1986 ; Schrader, 1997 ; Schrader, 2000).

A partir des années 2000, les fonctions analytiques sont ajustées aux coefficients d’étalonnage

à l’aide d’algorithmes en utilisant la méthode de minimisation des moindres carrés. C’est ainsi que

Švec et Schrader (2002) établissent de nouvelles courbes de réponse de chambre d’ionisation. Les

auteurs proposent la fonction analytique suivante pour le calcul de la réponse d’une chambre

d’ionisation aux photons (chambre de type Vacutec 70129) :

𝜀𝛾(𝐸) = (𝑎. 𝐸𝑏 + 𝑐. 𝐸𝑑). 𝑒𝑥𝑝[−(

𝐸

𝑒)

𝑓] , (4.14)

où :

𝜀𝛾(𝐸) en pA/MBq est la réponse de la chambre d’ionisation à des photons d’énergie initiale E ;

a, b, c, d, e et f sont des paramètres d’ajustement dont les valeurs sont renseignées dans l’article.

Les auteurs proposent également une fonction analytique pour la réponse de la chambre

d’ionisation aux radionucléides émetteurs bêta moins comme 32

P, 89

Sr, 204

Tl, 90

Sr/90

Y, 106

Ru/106

Rh et 210

Pb/210

Bi. Il s’agit d’une fonction polynomiale sur l’énergie moyenne du spectre bêta dont l’ordre

n’est pas précisé dans l’article. La fonction analytique pour décrire le rendement de la chambre

d’ionisation pour les émetteurs bêta moins est décrite par :

𝜀𝛽(𝐸) = 𝑘. 𝐸𝛽 + 𝑙. 𝐸𝛽2 + 𝑚. 𝐸𝛽

3 + ⋯, (4.15)

où :

𝜀𝛾𝛽(𝐸) en pA/MBq est la réponse de la chambre d’ionisation à l’énergie moyenne des spectres bêta

E ;

k, l, m, … sont des paramètres d’ajustement dont les valeurs ne sont pas indiquées dans l’article.

Page 123: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

120

La courbe de réponse de la chambre aux photons est décrite comme une courbe de réponse

continue présentant un pic aux basses énergies (figure n° 4.7).

Figure n° 4.7 : Courbe de réponse de la chambre d’ionisation de type Vacutec 70129 aux photons avec

(points gris) et sans écran (points noirs) (Švec et Schrader, 2002).

Les écarts obtenus entre les coefficients d’étalonnage expérimentaux et ceux calculés sont

inférieurs à 5 % pour une quinzaine de radionucléides émetteurs de photons et de 8 % pour les

radionucléides émetteurs bêta moins (Švec et Schrader, 2002). Ces écarts conviennent néanmoins pour

estimer les coefficients d’étalonnage des impuretés.

Ces auteurs appliquent en 2004 (Schrader et Švec, 2004) une méthodologie identique mais

avec des fonctions analytiques différentes sur la chambre d’ionisation utilisée au BIPM dans le cadre

du SIR, sur une chambre utilisée à l’institut de métrologie britannique, le NPL, et sur une des

chambres de l’institut de métrologie allemand, la PTB. Ils obtiennent une excellente estimation des

coefficients d’étalonnage pour de nombreux radionucléides émetteurs de photons (les écarts entre les

coefficients calculés et les coefficients expérimentaux sont inférieurs au pour cent). Néanmoins, ils

observent des écarts plus importants pour les photons de basse énergie et d’énergie comprise entre 140

keV et 170 keV (écarts de 1 % à 11 % en fonction du radionuclide). Pour ce qui concerne les

radionucléides émetteurs bêta-gamma, les écarts sont encore plus importants supérieurs à 10 %. Des

estimations plus précises des coefficients d’étalonnages calculés par cette méthode pour les phtotons

de basse énergie notamment (écarts inférieurs à 3 %), ont été obtenues pour une chambre d’ionisation

de type PTW Curiementor 3 avec une trentaine de radionucléides (Schrader et al., 2008).

Une méthodologie équivalente a été utilisée par Michotte (2000 et 2002) pour déterminer la

courbe de réponse de la chambre d’ionisation du BIPM utilisée par le SIR. Cette chambre d’ionisation

bénéficie d’un étalonnage issu des résultats des mesures d’activité de tous les laboratoires nationaux

de métrologie ayant participé au SIR pour le radionucléide étudié. Un polynôme de degré six est ajusté

par la méthode des moindres carrés à la courbe de rendement de la chambre en fonction de l’énergie

moyenne émise par chacun des radionucléides émetteurs de photons étudiés. En 2006, ce travail est

repris en collaboration avec les instituts nationaux de métrologie anglais et suisse (Cox et al., 2007 ;

Michotte et al., 2006). Un nouveau programme nommé SIRIC a été développé pour déterminer la

courbe de rendement de la chambre d’ionisation du SIR. Deux fonctions exponentielles de polynômes

de Tchebychev sont utilisées pour le calcul du rendement total de la chambre d’ionisation. Ce dernier

est exprimé comme la somme du rendement de la chambre aux photons et aux électrons en fonction de

Page 124: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

121

l’énergie des photons et des électrons respectivement. Les fonctions analytiques sont ajustées aux

résultats expérimentaux par une méthode des moindres carrés. Les résultats obtenus sont très

satisfaisants pour la plupart des radionucléides émetteurs gamma où le modèle de calcul reproduit à

0,6 % près les résultats expérimentaux (figure 4.8). En revanche en ce qui concerne les radionucléides

émetteurs bêta, des écarts jusqu’à 5 % sont observés.

Figure n° 4.8 : Rapports des réponses calculées à celles mesurées pour la chambre d’ionisation du SIR

(Cox et al., 2007).

Outre ces excellents résultats, SIRIC présente l’avantage considérable de prendre en compte

la propagation des incertitudes sur les intensités d’émission, celles de l’ajustement ainsi que celles des

résultats expérimentaux. Enfin il inclut également des corrélations consécutives aux corrections

d’impuretés. Ce programme a été appliqué avec succès sur une autre chambre d’ionisation, une des

chambres du NPL (Michotte et al., 2006). Des compléments d’information sur le SIR et le calcul de

rendements des chambres d’ionisation peuvent être consultés dans Ratel (2007).

4.3.2 DÉTERMINATION EXPÉRIMENTALE DE FACTEURS D’ÉTALONNAGE D’ACTIVIMÈTRES

Les courbes de réponse expérimentales sont étudiées principalement dans les instituts

nationaux de métrologie des rayonnements ionisants à partir de l’étalonnage des chambres d’ionisation

au niveau primaire. Dans le cadre de leur mission de transfert des étalons, ces instituts étudient

également les performances des activimètres, chambres d’ionisation industrielles utilisées dans les

services de médecine nucléaire pour les examens isotopiques ou en radiothérapie interne. A ce titre,

ces études s’intéressent plus particulièrement aux coefficients d’étalonnage d’activimètres pour

l’ensemble des radiopharmaceutiques selon leurs divers conditionnements possibles.

Page 125: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

122

4.3.2.1 Variation des facteurs d’étalonnage en fonction du conditionnement

L’institut national de métrologie des État-Unis, le National Institute of Science and

Technology (NIST), étudie principalement les activimètres commercialisés par la société américaine

Capintec. En 2000, il publie les facteurs d’étalonnage des activimètres commercialisés par Capintec de

type CRC-15R, CRC-35R et CRC-12 pour une dizaine de radionucléides conditionnés en ampoule,

flacon ou seringue (Zimmerman et Cessna, 2000 ; Zimmerman et al., 2001a et b et 2004b ; Bergeron

et al., 2010). Les auteurs ont comparé les coefficients d’étalonnage déterminés expérimentalement à

ceux délivrés par le constructeur et donnés pour une ampoule (avec un facteur de correction pour les

seringues ou flacons). Pour le 90

Y, les écarts observés s’élèvent jusqu’à 50 %. Les auteurs concluent

qu’il est, par conséquent, nécessaire de déterminer les coefficients d’étalonnage expérimentalement

dans les mêmes conditions géométriques que les mesures effectuées en routine. En 2001, Zimmerman

et al., présentent les facteurs d’étalonnage obtenus pour une solution de 18

FDG (paragraphe 3.3.2)

conditionnée en seringue, en flacon et en ampoule pour deux types d’activimètres Capintec (CRC-12

et CRC-35R). Les facteurs d’étalonnage diffèrent d’un activimètre à l’autre et d’un conditionnement à

l’autre. Les écarts obtenus par rapport au facteur d’étalonnage du constructeur peuvent atteindre 6 %

voire même 13 % avec l’activimètre dédié PETNET CRC-12 (Cessna et al., 2008). En utilisant un

même facteur d’étalonnage pour des géométries différentes ils obtiennent des écarts jusqu’à 3 % (entre

la géométrie en flacon et en ampoule). Ainsi les coefficients d’étalonnage sont différents selon le

conditionnement de la solution radioactive même pour des photons de forte énergie comme ceux émis

par le 18

F après annihilation. Ils peuvent, en outre, être différents pour une même géométrie, en

fonction du type de flacon ou du type de seringue utilisés en particulier pour les médicaments

radiopharmaceutiques émettant des x de basse énergie comme 123

I, 125

I, 111

In ou ceux émetteurs bêta

purs (Baker, 2005 ; Tyler et Woods, 2002 et 2003 ; Ceccatelli et al., 2007 ; Olsovcová 2010 ; Bochud

et al., 2011).

L’Institut Universitaire de Radiophysique Appliquée en Suisse (IRA) a publié une étude sur les

facteurs d’étalonnage de cinq activimètres de constructeurs différents (Veenstra VDC-405, AtomLab

100, Isomed 1000/2000, Capintec CRC et Capintec bêta et Centronic IG12) pour les radionucléides 57

Co, 60

Co, 99m

Tc, 131

I ainsi que pour des émetteurs bêta 32

P, 89

Sr, 153

Sm, 186

Re 90

Y et 169

Er (Valley et al.,

2003). Les auteurs concluent des mesures effectuées que les étalonnages des constructeurs sont

cohérents à 10 % près pour 32

P, 89

Sr. En revanche d’importants écarts sont observés notamment pour le 90

Y et le 169

Er. En 2010, l’IRA réalise une nouvelle étude sur trois activimètres (Veenstra VDC-405,

AtomLab 100, Isomed 1000/2000) pour la mesure de 18

F et 90

Y et 90

Sr/90

Y (Caffari et al., 2010). Les

auteurs observent un bon accord (écarts inférieurs à 3 %) entre les résultats de mesure d’activité

obtenus en utilisant les facteurs d’étalonnage du 18

F et l’activité de référence des constructeurs. Au

cours de ce travail, ils présentent également une méthodologie pour mesurer une solution de 90

Sr/90

Y

alors que l’activimètre n’est étalonné que pour une solution de 90

Y pur.

Ces expérimentations mettent en évidence plusieurs faits. L’utilisation des facteurs

d’étalonnage proposés par les constructeurs peuvent parfois conduire à une surestimation ou une sous-

estimation de l’activité et ainsi à une inadéquation entre l’activité injectée et l’activité prescrite. Le

conditionnement des solutions radioactives (en flacon, seringue, ampoule) a une influence sur la

réponse des activimètres. Aussi est-il recommandé d’étalonner les activimètres dans les diverses

géométries rencontrées en routine clinique afin d’optimiser l’activité injectée au patient.

Page 126: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

123

Par ailleurs des difficultés ont été rencontrées lors de la mesure des radionucléides émetteurs

bêta purs notamment pour le 90

Y. En effet, le parcours des électrons étant très court dans la matière,

une faible variation d’épaisseur de conditionnement de la source ou du puits interne de la chambre va

avoir une influence sur la réponse du détecteur et ainsi modifier le facteur d’étalonnage. Cette situation

a également été mise en évidence lors de comparaisons nationales de résultats de mesures d’activité

réalisées dans les services de médecine nucléaire (Woods et al., 2002 et 2003 ; Wastiel et al., 2005 ;

Schultz et al., 2008) où des écarts de mesures par rapport à la valeur de référence supérieurs à 10 % et

parfois supérieurs à 20 % sont observés. D’autres comparaisons nationales ont été effectuées pour

d’autres radiopharmaceutiques, notamment avec 131

I et 99m

Tc (Woods, 1987 ; Debertin et Schrader,

1992 ; Santry 1998 ; Joseph et al., 2003 ; Olsovcová et al., 2010 ; Kim et al., 2005 ; Oropesa et al.,

2005 ; 2008 ; 2012). En général, pour les radionucléides émetteurs de photons, les écarts entre les

mesures d’activité dans les services de médecine nucléaire et la valeur de référence sont inférieurs à

10 %. Le LNHB a également réalisé des comparaisons nationales parmi les services de médecine

nucléaire de 1994 à 2002.

4.3.2.2 Variation des facteurs d’étalonnage en fonction du volume

Parmi les paramètres qui influent sur la réponse des activimètres, la variation du volume de

remplissage dans les seringues et les flacons a également été largement étudiée. Cette influence est

particulièrement importante pour les radionucléides émetteurs bêta moins ; elle est également observée

mais dans une moindre mesure pour certains radionucléides émetteurs de photons de basse énergie.

Ceccatelli et al. (2007) observent un écart maximum de 4 % entre un remplissage à 20 % et 100 %

d’une seringue avec une solution de 99m

Tc puis de 111

In lors de l’étalonnage d’un activimètre

PETDOSE commercialisé par COMECER. Pour le 131

I, l’écart est de 2 % lors de l’étalonnage dans des

conditions identiques. En outre, les auteurs observent que ces variations dépendent également du type

de seringue utilisée. Aussi proposent-ils des facteurs de correction pour différents volumes et différents

types de seringue pour les trois radionucléides cités. Mo observe une variation de 6 % de la réponse de

l’activimètre Capintec CRC-712M en fonction du volume d’une solution de 18

FDG remplie de 0,1 mL

à 9 mL (Mo et al., 2006) conditionnée en flacon. Zimmerman et Cessna observent un écart de plus de

45 % sur la réponse des activimètres Capintec CRC-35R et CRC-12 pour une solution de 125

I

(radionucléide émettant des x de basse énergie) conditionnée en flacon pour un volume variant de 0,1

mL à 2 mL. Olsovcová et Havelka (2006) ont réalisé une étude par simulation Monte Carlo sur

l’activimètre Bqmeter (BQM Consortium) pour 125

I, 153

Sm, 99m

Tc. Ils ont obtenu un écart maximum de

1 % sur la réponse de l’activimètre pour un volume de solution de 99m

Tc conditionnée en flacon de 1

mL à 10 mL et de 15 % pour une solution de 125

I dans les mêmes conditions de mesure. Kryeziu et al.,

(2007) déterminent, par simulation Monte Carlo, un facteur de correction d’environ 5 % sur la réponse

de l’activimètre Centronic de type ISOCAL IV pour une variation de volume de 1 mL à 5 mL d’une

solution de 125

I conditionnée en ampoule.

Les écarts sont plus importants pour les radionucléides émetteurs bêta en particulier pour 90

Y.

Kryeziu obtient un écart de 12 % sur la réponse de l’activimètre en fonction du volume variant de 1

mL à 5 mL pour une solution de 90

Y conditionnée en ampoule (Kryeziu, 2006). Zimmerman et al.,

(2004b) ont étudié l’influence de la variation de volume de 3 mL à 9 mL dans une seringue remplie

avec une solution du médicament radiopharmaceutique 90

Y Zevalin® (voir paragraphe 3.4.2.2) dans

divers activimètres, trois commercialisés par Capintec, un activimètre AtomLaB® et un activimètre

Curiementor 3 commercialisé par PTW. Les écarts mesurés varient d’un activimètre à l’autre, ils sont

Page 127: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

124

respectivement 2,5 %, 1,2 % et 5,2 %. C’est donc l’activimètre Curiementor 3 le plus sensible à la

variation de volume en 90

Y. L’influence de la variation de volume sur les facteurs d’étalonnage a

également été étudiée pour les microsphères de 90

Y (paragraphe 3.4.2.3). Mo et al., (2005) obtiennent

des écarts importants entre des volumes de 1 mL et 5 mL pour une même concentration de

microsphères de 90

Y pour trois activimètres (l’activimètre Centronic T.P.A MKII, l’activimètre Vinten

671 commercialisé par NE Technology et la chambre de référence de l’ANSTO Australian Nuclear

Science and Technology Organisation). Ces écarts se répartissent entre 7 % et 8 %, en fonction de

l’activimètre étudié.

En conclusion, il apparaît que les mesures de routine, réalisées notamment dans les services de

médecine nucléaire, correspondent à des configurations si nombreuses (volume dépendant des

patients, géométries de flaconnage variant entre fournisseurs) qu’il semble impossible aux

constructeurs de fournir de manière exhaustive toutes les valeurs associées de coefficients

d’étalonnage. Or, pour qu’une mesure d’activité réponde au niveau d’incertitude préconisée par la

norme CEI 61145 65 (Commission Electrotechnique et Internationale) de 10 % et afin d’optimiser

l’activité injectée au patient, l’étalonnage doit être réalisé dans des conditions identiques à celle de la

mesure (même conditionnement et en particulier pour les émetteurs bêta, même volume). La

détermination des coefficients d’étalonnage à l’aide du code de calcul Monte Carlo permet de

répondre à ces difficultés par la modélisation des géométries spécifiquement requises par les clients à

condition que les conditionnements utilisés (flacons, seringues, ampoules …) répondent à des

tolérances de dimensionnement suffisamment strictes.

4.3.3 DETERMINATION PAR SIMULATION DE LA COURBE DE REPONSE D’UNE CHAMBRE

D’IONISATION

4.3.3.1 Principe général de détermination de la courbe de réponse d’une chambre d’ionisation à

puits pressurisée à l’aide de codes de Monte-Carlo

Une autre méthode pour déterminer la courbe de réponse des chambres d’ionisation est la

simulation de l’interaction rayonnement matière dans le système source-détecteur à l’aide de code

Monte-Carlo. La courbe réponse globale de la chambre d’ionisation à un radionucléide donné

correspond à la somme de la contribution de tous les rayonnements photoniques et électroniques émis

par le radionucléide et détectés par la chambre d’ionisation. Elle s’exprime par la formulation

suivante :

𝑅𝑇𝑂𝑇 = ∑ 𝐼𝑖.𝑅𝛾𝑖(𝐸𝛾𝑖

)𝑖 + ∑ 𝐼𝑗 . ∫ 𝑆𝑗(𝐸𝑒±).𝐸𝑚𝑎𝑥𝑗

0𝑅𝑒±(𝐸𝑒±)𝑑𝐸𝑒± + ∑ 𝐼𝑘.𝑘𝑗 𝑅𝑒−(𝐸𝑒−), (4.16)

où :

R en A/MBq est la réponse de la chambre d’ionisation due à la détection des rayonnements X et

gamma et/ou bêta et/ou des électrons de conversion émis par le radionucléide ;

𝑅𝛾𝑖(𝐸𝛾𝑖

) en A/MBq est la réponse de la chambre d’ionisation due à la détection des rayonnements X

et/ou gamma d’énergie 𝐸𝛾𝑖 ;

𝑆𝑗(𝐸𝑒±), sans dimension, est le spectre bêta normalisé d’énergie maximum 𝐸𝑚𝑎𝑥𝑗 du branchement j

du schéma de désintégration du radionucléide en fonction de l’énergie initiale 𝐸𝑒± de l’électron pour

une émission bêta moins ou du positron pour une émission bêta plus;

𝑅𝑒±(𝐸𝑒±) en A/MBq est la réponse de la chambre d’ionisation aux électrons/positrons d’énergie

initiale 𝐸𝑒± ;

𝑅𝑒−(𝐸𝑒−) en A/MBq est la réponse de la chambre d’ionisation aux électrons d’énergie initiale 𝐸𝑒− ;

Page 128: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

125

Ii ,ssans dimension, correspond à l’intensité d’émission du rayonnement x ou gamma d’énergie Ei ;

Ij , sans dimension, correspond à l’intensité d’émission du spectre bêta d’énergie maximum Emaxj ;

Ik , sans dimension, correspond à l’intensité d’émission des électrons de conversion d’énergie 𝐸𝑒−.

La réponse de la chambre d’ionisation à un rayonnement donné est déterminée à l’aide d’un code

de simulation Monte-Carlo par la formulation suivante :

𝑅(𝐸) = 𝐸𝑑.𝑒

𝑊, (4.17)

où :

R(E), en coulomb, par désintégration est la réponse de la chambre d’ionisation à la particule

d’énergie E ;

Ed, en eV, est l’énergie moyenne déposée dans le gaz porteur par la particule considérée par

désintégration ;

e, en coulomb, est la charge de l’électron ;

W, en eV, est l’énergie moyenne nécessaire pour créer une paire d’ions dans le gaz de remplissage de

la chambre.

Ainsi, il est possible de calculer la réponse de la chambre d’ionisation aux photons 𝑅𝛾𝑖(𝐸𝛾𝑖

),

aux électrons 𝑅𝑒−(𝐸𝑒−) et aux positrons 𝑅𝑒+(𝐸𝑒+).

Quel que soit le code utilisé, la procédure commune consiste à modéliser le système source-

détecteur (géométrie et matériau) puis à lancer le calcul de simulation de l’interaction rayonnement-

matière. Il s’agit ensuite de déterminer la réponse de la chambre d’ionisation en relevant la valeur du

dépôt de l’énergie par la particule considérée calculée à l’aide du code Monte-Carlo (formule 4.17).

Enfin le coefficient d’étalonnage pour un radionucléide donné peut être calculé à l’aide de la

formulation (4.16).

Soit, par exemple, une chambre d’ionisation remplie avec de l’azote. L’énergie moyenne

nécessaire pour créer une paire d’ions, W, étant de 34,8(2) eV dans ce gaz ICRU n° 31 (ICRU, 1979),

l’expression (4.17) peut également s’écrire sous la forme :

𝑅(𝐸) = 4,6. 10−3. 𝐸𝑑, (4.18)

où R(E), en pA/MBq, est la réponse de la chambre d’ionisation à la particule d’énergie E et Ed, en eV,

est l’énergie moyenne totale déposée dans le gaz de détection par la particule considérée par

désintégration.

4.3.3.2 État de l’art

4.3.3.2.1 Détermination de coefficients d’étalonnage en ampoule

Les précurseurs de l’étude de la réponse des chambres d’ionisation à puits pressurisées à l’aide de

la simulation Monte-Carlo furent Suzuki et al., (1998) de l’institut national de métrologie japonais

(National Institute of Advanced Industrial Science and Technology, AIST). Ils ont étudié la réponse de

trois chambres d’ionisation de type Centronic (IG11 A10, IG1 A20 et IG12 N20) en fonction de

l’énergie des photons à l’aide du code EGS4 (Electron Gamma Shower ; Nelson et al., 1985). Ils ont

également simulé le déplacement vertical et horizontal d’une source dans le puits de la chambre

Page 129: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

126

d’ionisation. Peu de temps après, plusieurs laboratoires de métrologie des rayonnements ionisants se

sont également investis dans l’étude de la réponse des chambres d’ionisation pressurisées à l’aide de

codes Monte-Carlo. En Suisse, par exemple, Gostely et Laedermann (2000) de l’IRA simulent la

réponse d’une chambre d’ionisation, également de type Centronic (IG11 A20), aux photons à l’aide du

code GEANT3 (GEometry ANd Tracking ; CERN 1993). Ils ajustent les coefficients d’étalonnage de

la chambre obtenus par simulation aux coefficients d’étalonnage expérimentaux et obtiennent un bon

accord en choisissant la valeur de 25 eV pour W dans l’argon (gaz de la chambre). En effet, la valeur

de W n’est pas connue précisément pour l’argon, elle varie entre 23,8 eV et 26,4 eV (ICRU n° 31,

1979). La réponse de ce type de chambre (Centronic IG11 et IG12) est également simulée avec le code

Monte-Carlo MCNP (Monte-Carlo N Particle ; Briemeister et al., 1993) et comparée à la réponse

obtenue avec le code EGS4 et aux résultats expérimentaux (Aleissa, 2002). Des écarts inférieurs à 4 %

sont observés entre les deux codes. Quant aux résultats expérimentaux, l’auteur présente un écart de

l’ordre de 6 % avec ceux obtenus par simulation. Au LNHB, ce sont les réponses d’une chambre

d’ionisation de type Vinten 671 aux photons puis d’une chambre d’ionisation de type Vacutec 70129

n° 70129 qui sont simulées à l’aide du code Monte-Carlo PENELOPE (PENetration and EnergyLOss

of Positrons and Electrons ; Salvat et al., 1999) (de Vismes et Amiot, 2003 ; Amiot 2004 ; 2012). Un

excellent accord est obtenu entre les coefficients d’étalonnage simulés et expérimentaux. En effet, les

rapports de ces coefficients sont compatibles à 0,5 % près pour 17 radionucléides dans le cas de la

chambre Vinten 671 et à 0,6 % près pour une quinzaine de radionucléides dans le cas de la chambre

Vacutec 70129. Ces résultats ont été obtenus en réalisant un ajustement de la masse volumique du gaz

afin que les résultats simulés soient compatibles avec les résultats expérimentaux. Cet ajustement est

valable pour tous les radionucléides étudiés. Les auteurs mettent en évidence la discontinuité de la

courbe de réponse du détecteur à 88 keV. Cette discontinuité est due à la rétrodiffusion des photons X

de fluorescence de la protection de plomb entourant la chambre d’ionisation. Ces travaux seront

décrits plus précisément dans le paragraphe 4.4.

4.3.3.2.2 Détermination de coefficients d’étalonnage en flacon et en seringue

A partir de 2004, deux instituts nationaux de métrologie étudient la réponse d’activimètres pour

des échantillons conditionnés en flacon et en seringue, géométries utilisées dans les services de

médecine nucléaire. L’IRA présente la simulation de la réponse d’un activimètre de type Veenstra

VDC-405 aux photons et aux électrons pour une solution radioactive conditionnée en flacon et en

seringue à l’aide du code GEANT3 (Laedermann et al., 2003). Les auteurs obtiennent notamment des

écarts inférieurs à 10 % entre les coefficients d’étalonnage expérimentaux et ceux obtenus par

simulation pour 5 radionucléides émetteurs de photons en géométrie flacon et 4 radionucléides

émetteurs bêta moins en géométrie seringue. L’institut national de métrologie de la république tchèque

(ČMI, Čzech Metrology Institut) a étudié la réponse aux photons d’une de leur chambre d’ionisation à

l’aide du code Monte-Carlo MNCP4 pour des solutions radioactives conditionnées en ampoule, en

flacon puis en seringue (Olsovcová, 2004 et 2010 ; Olsovcová et Havelka 2006). Les écarts entre les

coefficients d’étalonnage expérimentaux et ceux obtenus par simulation sont inférieurs à 2 % pour 16

radionucléides conditionnés en ampoule pour la chambre du ČMI et pour 4 radionucléides

conditionnés en flacon dans une autre chambre nommée Bqmeter. L’ajustement des résultats obtenus

par simulation aux résultats expérimentaux est réalisé sur la valeur de W de l’argon ; elle est de 25,8

eV pour la chambre ČMI et de 25,94 eV pour la chambre Bqmeter. La réponse du détecteur a

également été étudiée en fonction du volume de remplissage de la solution radioactive pour deux

géométries en ampoule et en flacon ainsi qu’en fonction du conditionnement (flacon ou seringue)

Page 130: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

127

(paragraphe 4.3.2.2). Les auteurs précisent que le conditionnement a une influence importante sur les

coefficients d’étalonnage, notamment pour les radionucléides émettant des photons de basse énergie.

En 2006, l’institut national de métrologie japonais, l’AIST, réalise une comparaison nationale de

mesure d’activité à l’aide de chambres d’ionisation pour 4 radionucléides. L’équipe utilise le code

Monte-Carlo EGS4 en faisant varier différents paramètres (épaisseur du puits interne de la chambre,

composition du gaz porteur, ..) pour tenter d’expliquer les écarts obtenus entre les différents

coefficients d’étalonnage (Sato et al., 2006) ; les résultats obtenus n’ont pas permis néanmoins

d’expliquer ces écarts. En 2007, Hino à l’AIST simule la réponse de la chambre d’ionisation du SIR,

détecteur de type Centronic IG11, à l’aide du code EGS4 (Pearce et al., 2007).

Depuis, différents laboratoires étudient la réponse des chambres d’ionisation à l’aide de la

simulation Monte-Carlo. Camps simule la réponse d’un prototype de chambre d’ionisation à l’aide du

code MNCP4 (Camps, 2006). Kryeziu étudie la réponse d’une chambre d’ionisation du type Centronic

ISOCAL IV aux photons et aux électrons dans le cadre de sa thèse de doctorat à l’aide du code

PENELOPE (Kryeziu, 2006 ; Kyeziu et al., 2007). L’ajustement des résultats simulés aux résultats

expérimentaux est réalisé à l’aide de la valeur de la pression de remplissage de la chambre d’ionisation

pour tous les radionucléides. Une pression de 1,02 MPa est choisie, la pression renseignée par le

constructeur étant de 1 MPa. Il étudie notamment la réponse du détecteur en fonction du volume de

remplissage en ampoule et en flacon. Seneviratne et al., (2007) étudient la réponse d’une chambre

d’ionisation de type Centronic T.P.A. MKII à l’aide du code Monte-Carlo GEANT4, notamment en

fonction de la nature du gaz porteur et de la nature du matériau constituant les parois de la chambre.

Simões et al., (2010) simulent la réponse de trois chambres d’ionisation commercialisées par la société

PTW du type Curiementor 2, Curiementor 3 et Curiementor 4 pour des sources radioactives

conditionnées en flacon à l’aide du code MCNPX. Ils étudient également la réponse du détecteur en

fonction du volume de gaz contenu dans la chambre d’ionisation. Ils observent une augmentation de la

réponse de la chambre avec son volume.

L’IRA a publié récemment une étude très complète sur l’influence du conditionnement de la

solution radioactive mesurée dans un activimètre de type Veenstra VDC-405 pour six radionucléides

(radionucléides émetteurs de photons principalement). Les 18 conditionnements étudiés sont répartis

en deux géométries, une géométrie en flacon et une géométrie en seringue incluant respectivement

sept types de flacons et neuf types de seringues différents, tous utilisés en médecine nucléaire. La

simulation de l’activimètre a été réalisée à l’aide du code de calcul GEANT4 (Bochud et al., 2011).

Les auteurs concluent qu’il est indispensable d’utiliser des facteurs d’étalonnage différents en fonction

du type de conditionnement en particulier pour les radionucléides émettant des photons x de basse

énergie comme 125

I, 123

I et 111

In. De même ils ont calculé l’influence du volume de remplissage sur la

réponse de l’activimètre et observent un maximum de variation de 6 % pour le radionucléide

présentant les photons de plus basse énergie, soit 125

I.

Ces études de la réponse des chambres d’ionisation ou d’activimètres effectuées à l’aide de codes

Monte-Carlo de simulation sont spécifiques à un type de chambre d’ionisation ou un activimètre

donnés (c.-à-d. de même référence constructeur). En effet, les variations de la géométrie de la

chambre, notamment du support de la source, de la chemise de protection, de l’épaisseur de la paroi

interne, puis de la nature et de la pression du gaz de détection, influent fortement sur la réponse du

détecteur. En outre, il est nécessaire de connaître précisément les dimensions géométriques et la

composition des matériaux de la chambre pour calculer les coefficients d’étalonnage par simulation.

De même, la modélisation de la source incluant la solution radioactive, son volume et le

Page 131: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

128

conditionnement (flacon, seringue…) doit être très précise. En effet, la géométrie de la source et la

composition des matériaux qui la constituent notamment son conditionnement et le volume de

solution, influent sur la réponse de la chambre d’ionisation. Cette sensibilité du système source-

détecteur à la géométrie et aux matériaux constitutifs observés à l’aide des calculs Monte-Carlo

confirment ce qui par ailleurs a été observé expérimentalement (paragraphe 4.3.2).

4.4 ÉTUDE DE LA RÉPONSE DES CHAMBRES D’IONISATION Á L’AIDE DE LA

SIMULATION MONTE CARLO

4.4.1 PRÉSENTATION DES CODES DE TRANSPORT RAYONNEMENT MATIÈRE

4.4.1.1 Le code de calcul PENELOPE

Le code Monte-Carlo PENELOPE « PENetration and Energy LOss of Positrons and Electrons

in matter » est utilisé pour calculer le dépôt d’énergie de la particule incidente dans le gaz de

remplissage de la chambre d’ionisation. Il a été développé à l’Université de Barcelone par F. Salvat et

permet de suivre les photons, les électrons et les positrons dans la matière (Salvat et al. 1999). Il

couvre une gamme d’énergie allant de 100 eV jusqu’à 1 GeV. Néanmoins les sections efficaces

d'interaction pour les énergies inférieures à 1 keV peuvent être affectées par des incertitudes

importantes, les résultats de ces énergies doivent donc être considérés comme semi-quantitatifs. Ce

code est un code de classe II, il permet non seulement de traiter les interactions des électrons par une

méthode condensée (code de classe I) mais également de façon détaillée. Le niveau de détail de la

simulation, coûteux en temps de calcul, peut être ajusté par l’utilisateur à partir des paramètres

d’entrée du code.

En ce qui concerne les photons, les sections efficaces utilisées par le code PENELOPE

proviennent de différentes sources. Ainsi, celles utilisées pour l’effet photoélectrique et pour la

production de paire sont interpolées à partir des tables extraites de la bibliothèque de données

"LIVERMORE Evaluated Photon Data Library" EPDL (Cullen et al., 1997) et du programme XCOM

(Berger et Hubbell, 1987).

Le code PENELOPE est programmé comme un ensemble de sous-programmes FORTRAN,

mis à la disposition des utilisateurs et qui effectuent l'échantillonnage aléatoire des interactions et le

suivi des particules (électrons, positrons ou photons). Le programme PENELOPE assure le transport

des particules dans la matière. Le programme PENGEOM permet le suivi automatique des particules

dans des géométries complexes comprenant des corps homogènes limités par des surfaces de second

degré. Le programme général PENMAIN peut être modifié par l’utilisateur notamment pour

l’organisation de données d’entrée ou de sortie. Il fait appel à différents fichiers d’entrée : les fichiers

contenant les données physiques des matériaux, un fichier de description de la géométrie et un fichier

de paramètres d’entrée du code et de description de la source de rayonnement. L’un des avantages de

ce code est sa mise à jour très régulière (tous les un à deux ans) qui intègre un certain nombre de

concepts physiques plus précis ou de nouvelles données expérimentales. Pour plus d’informations, le

lecteur pourra se référer au site internet de l’Agence pour l’Energie Nucléaire (Nuclear Energy

Agency, NEA) qui distribue le code : http://www.oecd-nea.org/tools/abstract/detail/nea-1525 .

Page 132: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

129

4.4.1.2 Le code de calcul GEANT 4

GEANT4 (pour GEometry ANd Tracking) (Agostinelli et al., 2003) est une plateforme

logicielle pour la simulation de l’interaction des particules avec la matière par la méthode Monte-

Carlo. C'est le successeur de la série de logiciels GEANT développés par le CERN. Développé à

l’origine pour les hautes énergies, ses applications couvrent aujourd’hui de nombreux domaines

comme l’astrophysique, la physique des accélérateurs, la physique des détecteurs de rayonnement

ionisants et la médecine.

Codé en langage C++, GEANT4 bénéficie d’une programmation orientée objet, permettant de

modifier ou d’ajouter des modules plus aisément sans perturber l’architecture principale du code. Il est

également un code de classe II. Sa structure globale est constituée de plusieurs catégories de classes

C++ dont chacune décrit des composants fondamentaux nécessaires pour la simulation comme la

géométrie du système source détecteur, l’ensemble des particules et des interactions physiques qu’elles

subissent, la création des histoires et le suivi des particules dans la matière et dans les champs

électromagnétiques, l’enregistrement des données, la visualisation du détecteur et des trajectoires des

particules, l’analyse de la simulation... Il comprend un ensemble complet de modèles physiques

décrivant le comportement des particules dans la matière sur une très large gamme d’énergies, soit de

250 eV à plusieurs PeV (1015

eV).

L’architecture d’une application utilisateur est pilotée par la classe G4RunManager. Cette

classe gère l’initialisation du programme en récupérant toutes les informations nécessaires à la

construction et au déroulement de la simulation. Elle contient notamment les déclarations des trois

classes principales à renseigner par l’utilisateur :

G4VUserDetectorConstruction contient la description des matériaux et de la géométrie ;

G4VUserPhysicList contient les longueurs parcourues correspondant aux énergies de coupure des

différents matériaux, le type de particule à simuler et la physique choisie pour la simulation. En

effet, il existe plusieurs options comme par exemple l’utilisation d’une émulation du code

PENELOPE pour la physique des basses énergies (G4EmPenelope physics,

G4EmLIVERMOREPhysics, G4EmstandardPhysics_option1 à 3) ;

G4VUserPrimaryGeneratorAction contient la description de la source de rayonnement (sa

dimension, l’énergie des particules et leur intensité, leur distribution angulaire).

D’autres sous-classes sont à renseigner. Elles permettent à l’utilisateur d’extraire et d’analyser

les informations issues de la simulation :

G4VUserRunAction permet de définir les actions en début et en fin de simulation, on y renseigne

également le temps de simulation ;

G4VUserEventAction gère les histoires des particules ;

G4VUserStackingAction gère les priorités de calcul des traces des particules ;

G4VUserTrackingAction permet d’obtenir des informations sur les traces de particules ;

G4VUserSteppingAction rend accessible les informations de processus à chaque étape du

mouvement des particules et permet de suspendre ou d’arrêter un calcul.

De nombreux logiciels peuvent être interfacés avec GEANT4. Les logiciels de visualisation

des détecteurs et des trajectoires (OpenGL, Wired, DAWN, VRML, ...) et de traitement de données

(ROOT, AIDA) sont particulièrement utiles pour corriger les erreurs et/ou faciliter l’interprétation des

Page 133: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

130

résultats de simulation. GEANT4 est un code très flexible par la variété des options et modèles

physiques proposés. La contrepartie réside dans la difficulté de prise en main du code par l’utilisateur.

Le lecteur peut se référer au manuel d’utilisation pour de plus amples informations à l’adresse

internet : https://geant4.web.cern.ch/geant4/support/userdocuments.shtml (GEANT4 User's Guide for

Application Developers, 2012). GEANT4 étant issu d’une collaboration internationale de scientifiques

et de développeurs en informatique, le développement, la maintenance et le support des utilisateurs

sont pris en charge par la collaboration internationale GEANT4 :

https://geant4.cern.ch/collaboration/index.shtml.

4.4.2 ÉTUDE DE LA RÉPONSE DES CHAMBRES D’IONISATION AUX PHOTONS

4.4.2.1 L’installation VINTEN 671

L’installation Vinten 671 correspond à une chaîne de mesure d’activité mettant en œuvre une

chambre d’ionisation de type Vinten 671 (de conception équivalente à la chambre d’ionisation

commercialisée par Centronic IG42) dont le courant est mesuré à l’aide d’un électromètre Keithley

6517 par la méthode d’intégration de charge. Cet électromètre permet également d’alimenter la

chambre d’ionisation avec une tension négative de 400 V. Un logiciel d’acquisition et de traitement

des données a été développé au LNHB sous HPVee. La chambre d’ionisation est composée de parois

et d’une électrode interne en aluminium. L’épaisseur de la paroi interne du puits et celle de l’électrode

sont indiquées par le constructeur, elles sont de 2 mm. Le gaz de détection est composé d’azote à

99,99 % et la pression indiquée sur la fiche constructeur est de 1 MPa. La stabilité de la chaîne de

mesure est contrôlée à l’aide d’une source de constance de 226

Ra lors de chaque mesure d’activité et

étalonnage. Le principe de la mesure est décrit plus haut dans le paragraphe 4.2. Cette chambre

d’ionisation est étalonnée par le LNHB pour une cinquantaine de radionucléides. C’est à partir de ces

données expérimentales que les résultats de la simulation présentés dans le paragraphe suivant seront

validés.

4.4.2.1.1 Simulation de la réponse de la chambre pour une ampoule de type LMRI (A. de

Vismes)

C’est à la fin de l’année 2000 que j’ai confié l’étude de la réponse de la chambre d’ionisation

Vinten 671 par simulation à A. de Vismes dans le cadre d’un contrat Post Doctoral. Le code

PENELOPE avait déjà été employé avec succès par Pascal Olive afin d’étudier la réponse d’un

détecteur Na(I)Tl utilisé au LNHB pour la mesure de radionucléides ayant un schéma de

désintégration complexe. L’étude de la réponse de la chambre a été effectuée à l’aide du code

PENELOPE pour des ampoules LMRI (paragraphe 4.2.7). Le choix s’est porté sur ce type d’ampoules

(et non sur les ampoules de type BIPM utilisées dans les comparaisons internationales) car les

étalonnages de la chambre étaient à l’époque plus complets dans cette géométrie.

4.4.2.1.1.1 Modélisation du système source-détecteur

La première étape du plan de travail confié à A. de Vismes fut de déterminer les dimensions

du détecteur. Les données du constructeur étant succinctes, seule la radiographie nous a permis

d’accéder aux dimensions internes de la chambre (figure n° 4.9). La radiographie a été réalisée par le

service des applications des radionucléides du département (CEA/DRT/SAR). Les dimensions

Page 134: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

131

externes de la chambre sont 40 cm de hauteur et 20 cm de diamètre. L’incertitude obtenue sur les

épaisseurs est de l’ordre d’une centaine de micromètres.

Figure n° 4.9 : Radiographie de la chambre d’ionisation Vinten 671.

Il s’agit ensuite de modéliser la chambre d’ionisation ainsi que le support de source, la source

radioactive et la protection de plomb de 5 cm entourant le détecteur. La modélisation réalisée par A. de

Vismes est présentée sur la figure n° 4.10.

Figure n° 4.10 : Modélisation de la chambre d’ionisation Vinten 671 incluant le support de source et la

solution radioactive conditionnée en ampoule.

L’étape suivante consiste à créer le fichier contenant les caractéristiques physiques des

matériaux constitutifs de la chambre d’ionisation. Les parois de la chambre d’ionisation ainsi que

l’électrode interne ont été modélisées en aluminium, le support en polyméthylméthacrylate (PMMA,

communément nommé plexiglas) et aluminium, l’ampoule en verre pur SiO2. La solution radioactive a

été modélisée par une solution d’acide chlorhydrique 0,1 M. La masse d’entraîneur ne dépassant pas

quelques microgrammes, ce dernier n’a pas été modélisé. Les supports haut et bas de la chambre sont

en bakélite. A chaque couleur de la figure n° 4.10 correspond un matériau différent. La modélisation

des sources radioactives volumiques n’était pas prévue dans le code PENELOPE, seules les sources

ponctuelles étaient programmées. Afin de modéliser une source volumique, A. de Vismes a développé

un sous-programme en FORTRAN permettant le tirage aléatoire de l’émission du rayonnement étudié

dans le volume de la solution radioactive. Cette nouvelle étape franchie, il s’agissait ensuite

d’optimiser les paramètres d’entrée. En effet, le code PENELOPE étant un code de classe II, il permet

une modélisation mixte paramétrée par l’utilisateur. Nous avons déterminé les énergies de coupure des

Page 135: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

132

photons, électrons et positrons ainsi que les paramètres de gestion de la simulation mixte permettant

d’obtenir une incertitude finale inférieure à 0,5 % avec un temps de calcul raisonnable d’environ 15

heures pour les photons et 72 heures pour les électrons.

4.4.2.1.1.2 Comparaison des coefficients d’étalonnage expérimentaux et simulés

La modélisation étant réalisée pour la géométrie du système source-détecteur ainsi que pour

les différents matériaux et les paramètres d’entrée étant définis, les coefficients d’étalonnage ont été

calculés à l’aide des expressions (4.16 et 4.18). Les données nucléaires utilisées sont celles

déterminées par Bé et al. (1999). Les coefficients d’étalonnage simulés ainsi obtenus ont été comparés

aux coefficients d’étalonnage expérimentaux pour douze radionucléides émetteurs de photons (figure

n° 4.11) en fonction de l’énergie des photons émis.

Figure n° 4.11 : Rapports des coefficients d’étalonnages obtenus par simulation aux coefficients

d’étalonnage expérimentaux pour 12 radionucléides.

Ces radionucléides ont été spécifiquement choisis dans un premier temps car leur rayonnement

est, pour plusieurs d’entre eux, monoénergétique. Toutes les énergies photoniques émises ont été

simulées à partir de 20 keV, énergie considérée comme l’énergie de coupure du détecteur. Les

radionucléides sont représentés sur la figure n° 4.11 en fonction de l’énergie photonique la plus intense

émise. La moyenne des rapports des coefficients simulés aux coefficients expérimentaux est de 0,934.

Cette valeur moyenne étant un peu basse, nous avons cherché quel paramètre pourrait être ajusté pour

la ramener près de l’unité. La pression est donnée approximativement par le constructeur. Or la

réponse de la chambre d’ionisation est, en première approximation, proportionnelle à la pression. Par

conséquent, nous avons décidé d’ajuster la valeur de la pression de telle sorte que le rapport des

coefficients soit proche de l’unité. Nous avons alors modifié, en proportion, la masse volumique du

gaz porteur dans le fichier matériau et relancé les calculs pour toutes les énergies des radionucléides

étudiées. Les résultats obtenus se sont avérés excellents et nous les avons donc complétés avec

d’autres radionucléides au schéma de désintégration un peu plus complexe (figure n° 4.12).

Page 136: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

133

Figure n° 4.12 : Rapports des coefficients d’étalonnage obtenus par simulation aux coefficients

d’étalonnage expérimentaux pour 18 radionucléides.

La nouvelle moyenne des rapports des coefficients d’étalonnage simulés aux coefficients

d’étalonnage expérimentaux obtenue pour une pression ajustée de 1,072 MPa est de 0,996 (figure

4.12). Tous les rapports sont compatibles à 0,5 %. Les incertitudes correspondent à l’incertitude-type

composée du coefficient d’étalonnage expérimental considéré (incluant les incertitudes sur la mesure

du courant, de bruit de fond, du coefficient de fidélité, de reproductibilité, …) combinée avec celle du

coefficient d’étalonnage obtenu par simulation (incluant l’incertitude sur la valeur de W de l’azote

(34,8(2)eV), l’incertitude statistique obtenue sur le calcul de l’énergie déposée et les incertitudes sur

les intensités d’émission du schéma de désintégration). Les corrélations entre les incertitudes

notamment concernant les schémas de désintégration n’ont pas été prises en compte. Ces excellents

résultats ont permis de valider la simulation Monte-Carlo pour la détermination des coefficients

d’étalonnage de radionucléides émetteurs de rayonnement photonique.

4.4.2.1.1.3 Étude de la réponse de la chambre d’ionisation en fonction de l’énergie des photons

Nous avons également calculé la réponse de la chambre d’ionisation aux photons. Elle est

présentée sur la figure 4.13.

Figure n° 4.13 : Courbe de réponse de la chaîne de mesure Vinten 671 déterminée à l’aide du code

Monte-Carlo PENELOPE.

Page 137: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

134

Cette courbe ne présente pas de pic comme celui observé à basse énergie sur les réponses des

chambres d’ionisation remplies avec de l’argon. Cela est simplement dû à la nature du gaz et en

particulier aux coefficients d’absorption massique de l’effet photoélectrique dans le gaz, mode

d’interaction photonique prépondérant dans la gamme d’énergie de 20 keV à 60 keV environ. Au-delà,

l’interaction Compton prédomine jusqu’à quelques MeV, ensuite c’est le mode d’interaction

« production de paire ».

Un des intérêts fondamentaux de la simulation Monte-Carlo est de mettre en évidence des

phénomènes physiques présents mais pas toujours observables au moyen de l’expérience. C’est ainsi

que nous avons pu observer la discontinuité de la courbe de réponse de la chambre d’ionisation à 88

keV (figure 4.14).

Figure n° 4.14 : Observation de la discontinuité de la réponse de la chambre d’ionisation à 88 keV.

Cette discontinuité est due à la rétrodiffusion des rayons x de fluorescence du plomb excité par

le rayonnement photonique d’énergie supérieure à 88 keV et traversant la paroi externe de la chambre

d’ionisation pour interagir avec le gaz de détection.

4.4.2.1.1.4 Étude de la réponse de la chambre avec insertion d’écrans autour de l’ampoule

Suite à ce travail, une autre étude a été réalisée. Elle a consisté à permettre à A. de Vismes de

réaliser des expériences additionnelles. Il s’agissait de mesurer une source radioactive de 85

Sr avec

trois écrans de cuivre de diamètres différents. Ainsi en ajoutant successivement chacun des écrans

autour de l’ampoule contenant la solution radioactive, nous faisions varier l’épaisseur du matériau

entre la source et le détecteur. Le dispositif expérimental a également été modélisé et simulé à l’aide

du code PENELOPE. Les rapports des coefficients expérimentaux obtenus avec les coefficients

simulés ont été calculés et sont présentés sur la figure 4.15.

Page 138: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

135

Figure n° 4.15 : Comparaison des résultats des mesures expérimentales réalisées avec des écrans de

cuivre avec les résultats déterminés par simulation à l’aide du code PENELOPE.

Les écrans de cuivre sont utilisés au LNHB pour absorber les photons xK (les photons xL étant

en général d’énergie trop faible pour être détectés) émis notamment par le radionucléide 109

Cd ou le 113

Sn. En effet, ces radionucléides sont souvent stabilisés par une solution plus acide que celle utilisée

classiquement composée d’acide chlorhydrique à 0,1 M. Or nous avions observé que l’acidité de la

solution pouvait avoir une influence sur la réponse de la chambre d’ionisation selon sa masse

volumique pour les rayonnements de basse énergie. Pour cette étude nous avons choisi le 85

Sr dont le

rayonnement X n’est pas détecté par la chambre d’ionisation car de trop faible énergie. Les résultats

sont présentés dans la figure 4.15. Nous avons obtenu une excellente compatibilité entre les résultats

expérimentaux et les résultats obtenus par la simulation. Ces résultats ont conforté la validité de la

méthode de simulation à l’aide du code PENELOPE.

4.4.2.1.1.5 Étude de la réponse de la chambre en fonction de la nature de la solution radioactive

Afin de compléter l’étude, nous avons simulé la réponse de la chambre d’ionisation en

fonction de la composition chimique de la solution radioactive pour le rayonnement photonique de

basse énergie (figure 4.16 et tableau 4.1).

Figure n° 4.16 : Étude par simulation de la réponse de la chambre aux photons de basse énergie en

fonction de la composition chimique de la solution radioactive.

Page 139: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

136

Tableau n° 4.1 : Valeurs numériques des résultats de simulation de la réponse de la chambre aux

photons de basse énergie en fonction de la composition chimique de la solution radioactive. Ces

résultats sont présentés relativement à ceux obtenus pour une solution d’acide chlorhydrique 0,1 M.

Cinq natures de solution ont été étudiées, l’eau, l’acide chlorhydrique à 0,1 M, 1 M puis 6 M

et l’acide nitrique 1 M. En effet, l’iode, par exemple, est mis en solution dans de l’eau alors que la

plupart des radionucléides sont mis en solution dans du HCl 0,1 M. Le 133

Ba et le 109

Cd sont parfois

mis en solution dans du HCl 1 M, et le 113

Sn dans du HCl 6 M. Enfin le 90

Y est parfois mesuré dans du

HNO3 1 M. On observe sur la figure 4.16 et le tableau 4.1 que les résultats obtenus avec l’eau et le

HCl 0,1 M et le HNO3 1 M sont compatibles à partir de 30 keV. En revanche, les résultats obtenus

avec HCl 1 M et 6 M présentent des écarts importants (environ 20 % à 30 keV) par rapport à HCl 0,1

M. A 100 keV, tous les résultats sont compatibles. On observe également que la masse volumique

n’est pas le seul paramètre à prendre en compte mais également la composition atomique de la

solution. On peut conclure que la composition chimique de la solution a une influence sur la réponse

de la chambre d’ionisation pour les radionucléides émettant un rayonnement photonique inférieur à

100 keV. Toutefois, ce phénomène est rarement observé car le rayonnement X est en général

d’intensité plus faible que le rayonnement gamma qu’il accompagne (pour les radionucléides

émetteurs de rayonnement photonique). Néanmoins nous l’avons observé pour la mesure du 133

Ba dans

la chambre d’ionisation Vacutec 70129 plus sensible que la chambre d’ionisation VINTEN 671 pour

des sources réalisées dans du HCl 0,1 M et du HCl 1 M.

Les travaux réalisés par A. de Vismes ont été publiés en 2003 (De Vismes et Amiot, 2003).

Après deux Post Doc effectués à l’Ecole de la Marine Nationale à Cherbourg puis au CEA de Saclay à

l’Orme des Merisiers dans le Service de Physique de l’État Condensé (SPEC), A. de Vismes travaille

depuis l’année 2006 dans le service de spectrométrie gamma de l’IRSN.

4.4.2.1.2 Simulation de la réponse de la chambre pour une ampoule de type BIPM (S. Dahmani)

J’ai confié cette étude à S. Dahmani en stage de Master II de physique médicale à l’université

de Toulouse en 2013. Il s’agissait d’étudier la réponse de la chambre d’ionisation Vinten 671 pour une

solution radioactive conditionnée dans une ampoule BIPM (paragraphe 4.2.7). Cette ampoule est

nommée ainsi car ce type d’ampoule est délivré par le BIPM aux instituts de métrologie pour le

conditionnement de la solution radioactive lors de la participation de leur laboratoire au SIR

(paragraphe 1.3.1.2). S. Dahmani est partie de la modélisation de la chambre et du support de source

réalisée par A. de Vismes. Elle a remplacé la modélisation de l’ampoule LMRI par celle d’une

ampoule BIPM. Les données géométriques de l’ampoule sont celles mesurées par Sibbens (1991) et la

composition du verre est décrite par Iroulart (2007). Les résultats de la simulation effectuée à l’aide de

la version 2008 du code PENELOPE (Salvat, 2008) sont présentés dans la figure n° 4.17.

Page 140: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

137

Figure n° 4.17 : Rapports des coefficients d’étalonnage simulés aux coefficients d’étalonnage

expérimentaux de la chambre d’ionisation Vinten 671 obtenus pour une ampoule de type BIPM.

Les rapports des coefficients d’étalonnage simulés aux coefficients d’étalonnage

expérimentaux sont tous compatibles à 1 %, excepté pour le rapport concernant 125

I. L’écart de ce

dernier par rapport à la moyenne de tous les rapports des radionucléides étudiés dans le cadre des

travaux précédents était de 1 % (figure 4.12) (de Vismes et Amiot, 2003). L’écart obtenu dans le cadre

de ce travail est de 2,3 % (figure 4.17).

L’augmentation de cet écart peut être due à la modélisation de l’ampoule BIPM. Aussi, afin de

déterminer l’origine de cet écart, nous avons fait varier les dimensions de l’ampoule dans la limite de

l’incertitude déterminée dans le travail de Sibbens (1991) pour 125

I. Ce radionucléide a été choisi car,

émetteur de photons de basse énergie, l’influence des variations de la géométrie de l’ampoule sur la

réponse de la chambre sera plus sensible qu’avec les autres radionucléides étudiés. L’étude a été

réalisée pour une variation de l’épaisseur de la paroi latérale de l’ampoule de 40 m et de celle du

fond de l’ampoule de 340 m. Les résultats obtenus n’ont pas révélé d’influence significative sur la

réponse de la chambre dans la limite de l’incertitude finale de 1 % sur la réponse de la chambre

d’ionisation (Tableau 4.18).

Tableau n° 4.18 : Présentation des résultats obtenus sur les coefficients d’étalonnage de la chambre

d’ionisation Vinten 671 en fonction de l’épaisseur de la paroi latérale (tableau de gauche) et en

fonction de l’épaisseur du fond de l’ampoule (tableau de droite).

La réponse de la chambre a également été étudiée en fonction de la valeur de la masse

Page 141: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

138

volumique du verre (2,32 g.cm—3

et 2,33 g.cm—3

) (Iroulart, 2007) et en fonction de sa composition

(modélisation de SiO2 pur et composition renseignée par Iroulart (2007)). Les résultats obtenus sont

présentés dans la Tableau 4.19.

Tableau n° 4.19 : Tableaux de résultats montrant l’influence de la variation de la composition du verre

de l’ampoule (tableau de gauche) et de la variation de la masse volumique du verre (tableau de droite)

sur le coefficient d’étalonnage de 125

I de la chambre d’ionisation Vinten 671.

Les résultats obtenus lors de la variation de la masse volumique du verre et de sa composition

(Tableau 4 .19) ne montrent pas d’influence significative sur les coefficients d’étalonnage pour 125

I

dans le cas de la chambre d’ionisation Vinten 671.

En revanche, les intensités d’émission des photons émis par 125

I (Bé et al., 1998) ont évolué

depuis 2003 et les nouvelles valeurs ont une influence non négligeable sur le coefficient d’étalonnage

de la chambre d’ionisation Vinten 671 (Bé et al., 2011) (tableau n° 4.3). Les valeurs de ces données

nucléaires sont présentées dans le tableau 4.2.

Tableau n° 4.2 : Résultat des évaluations de 1998 et 2011 sur les données nucléaires de 125

I (énergies

et intensités d’émission des photons xK).

Tableau n° 4.3 : Coefficients d’étalonnage obtenus par simulation de 125

I en fonction des résultats des

évaluations de 1998 et 2011 sur les données nucléaires de 125

I ainsi que du coefficient d’étalonnage

expérimental.

Les coefficients d’étalonnage de 125

I obtenus par simulation en fonction du jeu de données

nucléaires ont été comparés avec le coefficient d’étalonnage expérimental. Les écarts obtenus sont de

Page 142: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

139

2,4 % entre le coefficient d’étalonnage simulé et le coefficient d’étalonnage expérimental en utilisant

les données nucléaires de 1998 (Bé et al., 1998) et de 3,4 % en utilisant celles de 2011 (Bé et al.,

2011). L’utilisation des données nucléaires 2011 par rapport à celles de 1998 conduit à une

augmentation de l’écart entre le coefficient d’étalonnage simulé et le coefficient expérimental de 1 %.

Nous constatons que les données nucléaires ont une influence sur la réponse de la chambre

d’ionisation simulée. Aussi le jeu de données nucléaires utilisé doit-il toujours être précisé lors du

calcul des coefficients d’étalonnage par simulation Monte-Carlo.

L’écart entre le coefficient d’étalonnage de 125

I simulé avec le nouveau jeu de données

nucléaires (Bé et al., 2011) et celui obtenu par expérimentation est important (3,4 %). Or, les résultats

obtenus lors de la simulation de la chambre pour les ampoules LMRI présentait également un rapport

du coefficient d’étalonnage simulé au coefficient expérimental de 125

I un peu faible (figure n° 4.12).

Par conséquent, nous supposons que la modélisation peut être améliorée en diminuant l’épaisseur de la

paroi interne de la chambre dans la limite de son incertitude (100 m). Le coefficient d’étalonnage du 125

I pourrait également être confirmé dans l’avenir par de nouvelles mesures.

Le stage de S. Dahmani étant limité à 6 mois, ce travail fait partie des perspectives citées dans

son rapport. Elle ne souhaite pas poursuivre en thèse et suivra l’année prochaine un nouveau master II

en Génie de la Santé à Université de Jussieu à Paris, master plus en adéquation avec ses souhaits

professionnels. Les résultats de son travail sont directement exploitables pour la correction de la

contribution des impuretés contenues dans une solution radioactive à mesurer. Qui plus est, ils seront

publiés prochainement. En effet, les collègues des instituts nationaux de métrologie du Royaume-Unis,

d’Afrique du Sud et du Canada ont demandé en 2013 au LNHB de leur communiquer les résultats de

simulation de la courbe de réponse de la chambre d’ionisation Vinten 671 ainsi que des coefficients

d’étalonnage.

4.4.2.2 L’installation VACUTEC 70129

4.4.2.2.1 Simulation de la réponse de la chambre pour une ampoule de type LMRI (M. R.

Mesradi)

M. R. Mesradi a pris en charge la simulation de la réponse de la chambre d’ionisation de type

Vacutec 70129 du LNHB dans le cadre d’un contrat Postdoctoral de 2009 à 2010. Le plan de travail

est identique à celui réalisé par A. de Vismes. Cependant, il comporte une difficulté supplémentaire.

Cette dernière réside dans la nature du gaz porteur contenu dans la chambre d’ionisation. En effet,

celui-ci est composé d’un mélange d’argon et de xénon sous une pression totale indiquée par le

constructeur de 1,1 MPa. Or le pourcentage massique de chacun des deux gaz n’est pas précisé.

L’ajustement des coefficients d’étalonnage obtenus par simulation aux coefficients expérimentaux

devra donc se faire à la fois sur la valeur de la pression et sur la proportion en masse de chacun des

gaz.

La chambre d’ionisation Vacutec 70129 est plus petite en taille (26 cm de hauteur et 10 cm de

diamètre) que la chambre Vinten 671. Ses parois sont également en aluminium, toutefois l’épaisseur

de la paroi interne de la chambre est deux fois plus faible : elle n’est que de 1 mm (figure 4.20). Cette

caractéristique, associée à la présence de l’argon et du xénon, augmente nettement la sensibilité de la

chambre en comparaison de celle de la chambre Vinten 671. La chambre est entourée d’un écran de

cuivre d’une épaisseur de 3 mm afin d’absorber les xK de la protection de plomb (10 cm) entourant

Page 143: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

140

celui de cuivre. La chaîne de mesure est constituée à l’identique de celle de la chambre d’ionisation

VINTEN 671 de même que le contrôle de sa stabilité et du traitement des résultats de mesure. Elle est

étalonnée également pour une cinquantaine de radionucléides.

4.4.2.2.1.1 Modélisation du système source-détecteur

La première étape du travail consiste à modéliser le détecteur, sa géométrie et les matériaux le

constituant. Une radiographie de la chambre a été réalisée afin de confirmer les données du

constructeur (figure 4.20).

Figure n° 4.20 : Radiographie et modélisation de la chambre Vacutec n° 70129.

Les coefficients d’étalonnage ont été calculés à partir des résultats obtenus à l’aide du code

PENELOPE par les expressions 4.16 et 4.18. Les données nucléaires utilisées sont celles déterminées

par Bé et al. (1999). La valeur du paramètre W utilisée est celle donnée par Do Carmo (2008) pour un

pourcentage massique de 40 % d’argon et 60 % de xénon. Elle est de 21,63(21) eV ; elle a été

déterminée pour une pression totale du mélange de gaz de 0,1067 MPa. Il est à noter que la valeur de

W varie en fonction de la pression pour les pressions supérieures à 5 MPa (Bolotnikov et Ramsey,

1997) et également pour les pressions bien plus basses (7 kPa -133 kPa) (Parks et al., 1979). Les

auteurs de ces deux articles ont observé une diminution de la valeur W avec l’augmentation de la

pression comme présenté dans l’ICRU n° 31 (1979). En revanche, Borges et Conde (1996) n’avaient

pas pu identifier de variation de la valeur de W pour le xénon pur, avec la pression dans le domaine 38

kPa -125 kPa. Néanmoins, il existe probablement une dépendance de la valeur de W avec la pression

entre 0,1 MPa et 5 MPa. N’ayant pas de données plus précises, nous avons décidé d’appliquer la

valeur de W publiée par de Do Carmo (2008) sans ajuster les calculs sur cette donnée.

Par ailleurs, le calcul de la pression d’un mélange gazeux en fonction de la masse volumique

n’est pas immédiat. Nous avons utilisé l’expression recommandée par Rasool et al., (2010) pour les

mélanges binaires de gaz et présentée ci-après, formule 4.19. :

𝑃 = 𝜌. (𝑍1𝐹1

𝑀1+

𝑍2𝐹2

𝑀2) . 𝑅𝑇, (4.19)

où :

P, en MPa, est la pression totale ;

R, en J.K—1

.mol—1

, est la constante des gaz parfaits, de valeur 8,3144 ;

T est la température en kelvin, sa valeur est de 293,15 K ;

Page 144: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

141

F1, M1 et F2, M2 sont les proportions en masse et poids moléculaire (en g/mol) de l’argon et du

xénon respectivement ;

Z1 et Z2, sans dimension, sont les facteurs de compressibilité de l’argon et du xénon respectivement.

Leur valeur a été déterminée par un ajustement linéaire entre les valeurs tabulées présentées dans la

table de l’air liquide (1976). La valeur de Z1 est de 0,9935 et celle de Z2 est de 0,9362 ;

en g.cm—3

, est la masse volumique du gaz. Sa valeur est 0,0217 g.cm—3

.

La détermination des proportions en masse des gaz a été réalisée par une procédure itérative

d’ajustements successifs de la concentration massique des deux gaz et de la masse volumique totale du

mélange de gaz en comparant les coefficients d’étalonnage obtenus par simulation aux coefficients

d’étalonnage expérimentaux. Après de nombreux ajustements et calculs Monte-Carlo, M. R. Mesradi a

obtenu un pourcentage massique de 34 % de xénon et 66 % d’argon sous une pression totale de 0,98

MPa déterminée à l’aide de l’expression (4.19).

Ainsi la courbe de réponse de la chambre d’ionisation a pu être calculée à l’aide de la version

2008 du code PENELOPE (Salvat, 2008). Elle est présentée sur la figure 4.21.

Figure n° 4.21 : Réponse des chambres d’ionisation Vacutec 70129 et Vinten 671. Les points verts et

bleus correspondent aux résultats de simulation et les points orange et rose représentent la raie la plus

intense du radionucléide ramenée à 100 % d’émission en ayant retranché les contributions des autres

raies photoniques.

La réponse de la chambre d’ionisation Vacutec 70129 est plus élevée que celle de la chambre

Vinten 671 (figure n° 4.21). Cela est principalement due à l’énergie moyenne nécessaire pour créer

une paire d’ions plus faible que celle de la chambre d’ionisation Vinten 671 (21,63(2) pour le mélange

argon xénon contre 34,8(2) pour l’azote) pour les énergies supérieures à 100 keV. Pour les énergies

inférieures à 100 keV, les valeurs élevées de la réponse de la chambre Vacutec 70129 sont également

dues à la présence du xénon, gaz pour lequel la probabilité d’interaction photoélectrique est très

élevée. C’est d’ailleurs à l’aide de ce pic à basse énergie que l’ajustement de la proportion de xénon a

Page 145: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

142

pu être réalisé. Les points expérimentaux calculés pour la raie gamma la plus intense (sauf pour 125

I

pour lequel c’est la moyenne des réponses aux différents rayonnements x émis pondérés par les

intensités d’émission qui est retenue) sont présentés également sur la figure. Ils concordent

parfaitement avec la réponse de chacune des chambres, ce qui valide les simulations.

Lors de cette simulation, nous avons pu observer une discontinuité à 34,56 keV due aux xK de

fluorescence du xénon. Ces xK interagissent avec le gaz et augmente la réponse à partir de l’énergie

seuil d’excitation. Ce phénomène ne peut pas être mis en évidence par l’expérience à l’aide de sources

radioactives, car il n’existe pas de sources monoénergétiques dans ce domaine d’énergie. Cette

chambre étant du même type que celle étudiée par Švec et Schrader (2002), la fonction analytique

4.14 présentée au paragraphe 4.3.1.2 n’est pas adaptée pour les basses énergies. Cette constatation est

aisément observable sur la figure 4.22. La présence de cette discontinuité implique l’utilisation de

deux expressions analytiques.

Figure n° 4.22 : Présentation de la fonction analytique de Švec et Schrader (2002) sur la courbe de

réponse de la chambre Vacutec 70129.

Que ce soit pour la chambre Vinten 671 ou la chambre Vacutec 70129, les discontinuités

nécessitent deux fonctions analytiques. La fonction polynomiale présentée dans la formule (4.20)

convient pour les deux ajustements de chacune des chambres d’ionisation.

𝑅(𝐸) = 𝑎 + 𝑏. 𝐸 +𝑐

𝐸+ 𝑑. 𝐸2 +

𝑒

𝐸2 + 𝑓. 𝐸3 +𝑔

𝐸3 + ℎ. 𝐸4 +𝑖

𝐸4 + 𝑗. 𝐸5 + 𝑘/𝐸5 (4.20)

Les paramètres a, b, c, d, e, f, g, h, i, j, k n’ont aucune signification physique, ce sont des paramètres

d’ajustement.

4.4.2.2.1.2 Comparaison des coefficients d’étalonnage expérimentaux et simulés

Les rapports des coefficients déterminés par simulation aux coefficients expérimentaux ont pu

être calculés. Ils sont présentés sur la figure 4.23.

Page 146: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

143

Figure n° 4.23 : Rapports des coefficients déterminés par simulation aux coefficients expérimentaux.

Les radionucléides sont placés sur l’axe des abscisses en fonction de l’énergie du rayonnement

photonique émis le plus intense.

Les résultats obtenus sont excellents même à basse énergie. Tous les rapports des coefficients

déterminés par simulation aux coefficients expérimentaux sont compatibles à 1 % près.

Le travail réalisé par M.-R. Mesradi a été publié en 2012 (Amiot et al., 2012b). Depuis, fin

2010, M.-R. Mesradi a honoré deux autres contrats postdoctoraux au Laboratoire de Physique et

Plasmas (LPP) puis au laboratoire d’Imagerie et Modélisation en Neurobiologie et Cancérologie

(IMNC) à Orsay.

Par ailleurs, le travail de S. Dahmani en 2013 a révélé l’évolution significative des données

nucléaires pour 125

I (Bé et al., 2011). Par conséquent, le coefficient d’étalonnage simulé du 125

I a été

recalculé pour la chambre d’ionisation Vacutec 70129, le résultat obtenu est présenté dans la figure

4.24.

Page 147: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

144

Figure n° 4.24 : Rapports des coefficients d’étalonnage simulés (CSim) aux coefficients d’étalonnage

expérimentaux (Cexp) pour la chambre Vacutec 70129 avec les données nucléaires de 125

I déterminées

en 2011 (Bé et al., 2011).

Le résultat obtenu pour 125

I en utilisant les nouvelles données nucléaires déterminées par Bé et

al., (2011) révèle un meilleur accord entre le coefficient d’étalonnage déduit par simulation et le

coefficient d’étalonnage expérimental (figure 4.24) que celui obtenu avec le jeu de données nucléaires

déterminé en 1998 (Bé et al., 1998) (figure n° 4.23). Ce nouveau résultat confirme l’excellence de la

modélisation et de la simulation de la chambre d’ionisation Vacutec 70129 avec le code PENELOPE

pour les radionucléides émetteurs de rayonnement photonique. En revanche, cet excellent résultat

obtenu avec la chambre Vacutec 70129, et la faible valeur du rapport des coefficients d’étalonnage

pour 125

I obtenue avec la chambre Vinten 671 pour les ampoules LMRI et BIPM, confirme l’intérêt de

réduire l’épaisseur du puits interne de la chambre d’ionisation Vinten 671.

4.4.3 ÉTUDE DE LA RÉPONSE DES CHAMBRES D’IONISATION AUX ÉLECTRONS

4.4.3.1 Les réponses des chambres d’ionisation Vinten 671 et Vacutec 70129

Les réponses des chambres Vinten 671 et Vacutec 70129 ayant été déterminées avec succès

pour le rayonnement photonique, il convient de les déterminer également pour le rayonnement

électronique. Les réponses de ces chambres aux électrons monoénergétiques sont présentées figure n°

4.25. Elles ont été déterminées de nouveau à l’aide du code PENELOPE (Salvat, 2008).

Page 148: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

145

Figure n° 4.25 : Réponse des chambres d’ionisation Vinten 671 et Vacutec 70129 aux électrons

monoénergétiques.

La réponse de ces chambres d’ionisation aux radionucléides émetteurs de rayonnement bêta

pur est calculée par l’expression réduite (4.18) de la formule (4.16) lorsqu’une unique transition est

considérée :

𝑅𝑇𝑂𝑇 = ∫ 𝑆(𝐸𝑒−).𝐸𝑚𝑎𝑥

0𝑅𝑒−(𝐸𝑒−)𝑑𝐸𝑒−, (4.18)

où :

R en A/MBq, est la réponse de la chambre d’ionisation due à la détection des rayonnements bêta

émis par le radionucléide ;

𝑆(𝐸𝑒−), sans dimension, est le spectre bêta moins d’énergie maximum 𝐸𝑚𝑎𝑥 émis par le radionucléide

en fonction de l’énergie initiale 𝐸𝑒− de l’électron;

𝑅𝑒_(𝐸𝑒_), en A/MBq, est la réponse de la chambre d’ionisation aux électrons/positrons d’énergie

initiale 𝐸𝑒_ .

Le calcul des spectres bêta est réalisé à l’aide du programme BetaShape incluant l’effet

d’écran (Mougeot et al., 2010 et 2012). Les spectres sont présentés pour les radionucléides 204

Tl, 32

P, 89

Sr, 90

Y dans la figure 4.26.

Figure n° 4.26 : Spectres bêta moins des 204

Tl, 32

P, 89

Sr, 90

Y.

Page 149: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

146

Les coefficients d’étalonnage expérimentaux des 204

Tl, 32

P, 89

Sr et 90

Y ont été déterminés à

partir de solutions étalons dont l’activité massique a été mesurée par scintillation liquide à l’aide de la

méthode RCTD (paragraphe 2.4). Le rendement de détection déterminé par cette méthode primaire est

proche de l’unité pour les radionucléides étudiés. L’énergie maximale des spectres bêta est élevée par

rapport à celle du tritium (l’énergie maximale du 3H est 18,6 keV, celle du

204Tl est 763 keV), aussi la

non-linéarité du scintillateur a-t-elle peu d’influence sur la mesure. Les résultats des comparaisons clés

pour ces radionucléides sont en cours de rédaction par le BIPM. Seule la comparaison clé de 90

Y

(CCRII-K2-Y-90) est publiée et consultable sur le site du BIPM (Zimmerman et Ratel, 2005). Les

résultats de cette comparaison internationale sont excellents, leur dispersion est très faible (l’écart type

relatif des activités équivalentes mesurées par le BIPM est inférieur à 0,2 %). Le LNHB a participé à

cette comparaison (figure n° 4.27). L’étalonnage des chambres d’ionisation Vinten 671 et Vacutec

70129 a bénéficié de cette solution étalon.

Figure n° 4.27 : Présentation des degrés d’équivalence des instituts nationaux de métrologie des

rayonnements ionisants ayant participé à une comparaison internationale d’activité massique d’une

solution étalon de 90

Y.

Les coefficients d’étalonnage déterminés par simulation à l’aide du code PENELOPE (en

appliquant l’expression 4.18 et en utilisant les spectres bêta présentés dans la figure 4.26), peuvent être

comparés aux coefficients d’étalonnage expérimentaux. Les résultats obtenus sont présentés dans les

tableaux n° 4. 4 et 4.5.

Radionucléide Coefficient

expérimental

(A/MBq)

Coefficient simulé

PENELOPE 2008

(A/MBq)

Ecart relatif

entre les deux

coefficients

Tl-204 1,4.10-14

1,3.10-14

7 %

Sr-89 2,5.10-14

1,4.10-14

42 %

P-32 3,5.10-14

2,2.10-14

38 %

Y-90 5,1.10-14

3,6.10-13

29 %

Tableau n° 4.4 : Présentation de la comparaison des coefficients d’étalonnage simulés aux coefficients

d’étalonnage expérimentaux pour la chambre d’ionisation Vinten 671. Les incertitudes sur les

coefficients d’étalonnage simulés et expérimentaux sont de l’ordre de 2 % à k = 1.

Page 150: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

147

Radionucléide Coefficient

expérimental

(A/MBq)

Coefficient simulé

PENELOPE 2008

(A/MBq)

Ecart relatif

entre les deux

coefficients

Tl-204 8,4.10-13

8,2.10-13

3 %

Sr-89 1,0.10-12

6,9.10-13

32 %

P-32 1,8.10-12

1,3.10-12

32 %

Y-90 1,2.10-11

7,9.10-12

33 %

Tableau n° 4.5 : Présentation de la comparaison des coefficients d’étalonnage simulés aux coefficients

d’étalonnage expérimentaux pour la chambre d’ionisation Vacutec 70129. Les incertitudes sur les

coefficients d’étalonnage simulés et expérimentaux sont de l’ordre de 2 % à k = 1.

Les écarts sont très importants entre les coefficients d’étalonnage simulés et les coefficients

d’étalonnage expérimentaux pour les radionucléides émetteurs bêta sauf pour le Tl-204 pour la

chambre Vacutec. Les écarts observés pour les différents radionucléides sont assez proches pour les

deux chambres d’ionisation pourtant elles ont des géométries et des gaz de remplissage très différents.

Néanmoins, le fait que les écarts entre les deux chambres soient du même ordre de grandeur pour 32

P, 89

Sr et 90

Y peut être une coïncidence. Ces écarts peuvent provenir soit du calcul des spectres bêta, soit

de la physique du code Monte-Carlo, soit de la modélisation de la source radioactive.

4.4.3.2 Comparaison des résultats avec deux programmes différents de calcul de spectres bêta

Il existe plusieurs programmes permettant le calcul de spectres bêta : RadList, logft développé

par Burrows (1988), SpeBeta développé par Cassette (1992), Beta Spectrum développé par

Gorozenkin (2009), BetaSHape développé par Mougeot (2010) et SimpBeta développé par Michotte

(2006).

La réponse de la chambre d’ionisation Vinten 671 au 90

Y et au 204

Tl a été calculée à l’aide des

programmes BetaShape et SimpBeta. Le programme Betashape a été récemment développé au LNHB

par Mougeot (2010 ; 2012). Tous les programmes de calcul des spectres bêta provenant d’une

transition permise convergent vers les mêmes valeurs. Le spectre de 32

P se désintégrant selon une

transition permise est donc considéré par la communauté scientifique comme parfaitement connu. En

revanche, le calcul des spectres bêta des radionucléides se désintégrant selon une transition dite

« interdite » nécessite de nombreuses approximations ainsi que l’utilisation de facteurs de forme.

Aussi les résultats de calculs des différents programmes peuvent-ils être différents. Néanmoins, la

comparaison de la réponse de la chambre d’ionisation Vinten 671 pour le spectre de 90

Y calculé avec

chacun des programmes (BetaShape et SimpBeta) n’a révélé qu’un écart de 4 % ; l’écart est inférieur à

1 % pour le 204

Tl. Par conséquent, les écarts importants obtenus entre les coefficients d’étalonnage

simulés et expérimentaux pour les radionucléides se désintégrant par des transitions interdites ne

semblent pas provenir du calcul du spectre bêta.

4.4.3.3 Comparaison des résultats obtenus à l’aide des codes PENELOPE et GEANT4

La réponse de la chambre Vacutec 70129 a également été simulée à l’aide de la version 9.4 du

code GEANT4. Les calculs ont été effectués à l’aide d’un « Benchmark » spécifique aux chambres

Page 151: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

148

d’ionisation développé au LNHB par C. Thiam. Les résultats de la simulation de la réponse de la

chambre Vacutec 70129 ont été comparés entre les deux codes PENELOPE (Salvat, 2008) et

GEANT4. L’objectif était de vérifier si les écarts entre les coefficients d’étalonnage simulés et les

coefficients d’étalonnage expérimentaux étaient spécifiques au code PENELOPE. Par ailleurs, le code

GEANT4 permet d’utiliser différents modèles physiques, deux en basse énergie (Modèle physique de

PENELOPE et de LIVERMORE) et un en haute énergie (modèle GEANT standard option 1). Les

résultats des dépôts d’énergie dans le gaz de la chambre Vacutec 70129 calculés avec le code

PENELOPE et le Code GEANT4 pour les divers modèles physiques sont présentés dans les

figures 4.28 et 4.29 en fonction de l’énergie de la particule primaire pour les électrons et les photons

respectivement.

Figure n° 4.28 : Energie déposée dans le gaz de la chambre Vacutec 70129 calculée pour les électrons

en fonction de leur énergie initiale à l’aide du code PENELOPE, en bleu clair, et à l’aide du code

GEANT4 incluant en vert, le modèle PENELOPE, en bleu foncé, le modèle LIVERMORE et en

rouge, le modèle Standard.

Figure n° 4.29 : Energie déposée dans le gaz de la chambre Vacutec 70129 calculée pour les photons à

l’aide du code PENELOPE en bleu clair et à l’aide du code GEANT4 incluant en vert, le modèle

PENELOPE, en bleu foncé, le modèle LIVERMORE et en rouge, le modèle Standard.

Page 152: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

149

On observe sur les figures 4.28 et 4.29 que le modèle physique standard de GEANT4,

spécifique aux particules de haute énergie, n’est pas du tout adapté pour les particules de basse

énergie. En effet, les écarts par rapport aux résultats obtenus avec PENELOPE sont de l’ordre de 10 %

pour les photons d’énergie supérieure à 1 MeV et de l’ordre de 40 % pour les photons d’énergie de

l’ordre de 40 keV. De même, pour les électrons, les écarts par rapport aux résultats obtenus avec

PENELOPE sont de l’ordre de 6 % pour les électrons d’énergie supérieure à 1,5 MeV et de l’ordre de

40 % pour les électrons d’énergie comprise en 100 keV et 1 MeV.

En revanche, les résultats des calculs des dépôts d’énergie obtenus à l’aide des codes

PENELOPE et GEANT4 incluant la physique de PENELOPE et de LIVERMORE sont compatibles à

3 % pour les photons et également pour les électrons, excepté pour la plage énergétique 1,2 MeV à

1,4 MeV où l’on obtient des écarts de l’ordre de 8 %.

La réponse de la chambre Vacutec 70129 aux radionucléides émetteurs bêta 204

Tl, 32

P, 89

Sr, 90

Y ont également été calculés avec les deux codes PENELOPE et GEANT4. Les résultats sont

présentés dans le tableau 4.6.

Emetteurs bêta

Ecarts entre les

coefficients

simulés et

expérimentaux

pour PENELOPE

2008

Ecarts entre les

codes GEANT4

(physics list

Penelope) et

PENELOPE 2008

Ecarts entre les

codes GEANT4

(physics list

Livermore) et

PENELOPE 2008

Contribution du

bremsstrahlung à

la réponse de la

chambre Vacutec

Tl-204 3 % 0,2 % -0,2 % 100 %

Sr-89 32 % 3,2 % 2,1 % 79 %

P-32 32 % 6,3 % 3,7 % 56 %

Y-90 33 % -0,8 % 2,4 % 10 %

Tableau n° 4.6 : Comparaison des réponses de la chambre Vacutec 70129 aux radionucléides

émetteurs bêta 204

Tl, 32

P, 89

Sr, 90

Y obtenues avec le code GEANT4 selon la physique de PENELOPE et

LIVERMORE respectivement.

Les résultats sont calculés en relatif par rapport aux résultats du code PENELOPE. Les écarts entre les

coefficients d’étalonnage obtenus par simulation à l’aide du code PENELOPE et les coefficients

d’étalonnage expérimentaux sont également représentés. La dernière colonne présente la contribution

du bremsstrahlung à la réponse de la chambre Vacutec 70129 calculée à l’aide du code GEANT4

(physique basse énergie de PENELOPE). Les incertitudes sur les coefficients d’étalonnage simulé et

sur les écarts sont de l’ordre de 2 % à k = 1.

L’écart le plus élevé entre le calcul de la réponse de la chambre entre GEANT4 incluant les

modèles PENELOPE et LIVERMORE et la réponse de la chambre calculée à l’aide du code

PENELOPE, est de l’ordre de 6 % pour le 32

P (Tableau 4.6). Par conséquent, le calcul de la réponse de

la chambre d’ionisation Vacutec 70129 à l’aide du code GEANT4 ne permet pas, non plus, d’obtenir

Page 153: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

150

des coefficients d’étalonnage simulés proches des coefficients d’étalonnage expérimentaux excepté

pour le Tl-204 pour lequel les résultats sont compatibles à k = 2.

Le 204

Tl est le seul radionucléide dont les électrons sont totalement absorbés dans la source car

l’énergie maximale du spectre bêta est de 763,7 keV. Seul le bremsstrahlung est détecté dans la

chambre d’ionisation. Une expérience simple pourrait être mise en œuvre afin de vérifier si les codes

de calcul simulent le bremsstrahlung de manière absolue en accord avec l’expérience. Un écran de

cuivre absorbant les électrons des 89

Sr et 32

P pourrait être placé autour de l’échantillon d’une épaisseur

suffisant pour arrêter les électrons les plus énergétiques avant qu’ils n’atteignent le gaz de la chambre

d’ionisation. Ainsi, les écarts entre les coefficients simulés et expérimentaux devraient diminuer pour

être en accord avec les résultats expérimentaux.

4.4.3.4 Discussion

Les résultats de la simulation de la réponse des chambres d’ionisation Vinten 671 et Vacutec

70129 aux photons obtenus dans le cadre des travaux d’A. de Vismes, de S. Dahmani et de M.-R.

Mesradi sont excellents. Ils ont été obtenus à l’aide d’un ajustement sur un paramètre libre, la masse

volumique. Le seul moyen de vérifier ce paramètre serait de le mesurer physiquement. C’est un des

objectifs du projet «Réalisation et exploitation d’une chambre d’ionisation à pression variable

contrôlée » présenté au paragraphe 4.5.

Le calcul de la réponse des deux chambres aux radionucléides émetteurs de positrons permet

également de déterminer les coefficients d’étalonnage de 18

F, 11

C, et 64

Cu à 1 % près (pour ce dernier

radionucléide la contribution de l’émission bêta moins, moins intense, a été déterminée à l’aide de la

courbe expérimentale de la réponse des chambres) (Amiot, 2004, Amiot et al., 2012a et b). La

contribution de l’émission de bremsstrahlung à la réponse totale de la chambre d’ionisation due aux

positrons est inférieure à 5 %, aussi un écart de 30 % sur leur contribution ne conduit qu’à un biais

maximal de 1,5 %. Ainsi la réponse des deux chambres d’ionisation aux photons et aux positrons est

fidèlement simulée à l’aide du code PENELOPE. Ces résultats sont exploités au LNHB pour les

corrections de la contribution des impuretés dans les solutions radioactives à mesurer, impuretés

radioactives pour lesquelles les chambres ne sont pas étalonnées.

En revanche, les résultats de la simulation de la réponse des deux chambres aux radionucléides

émetteurs de rayonnement bêta présentent des écarts importants avec ceux obtenus par

expérimentation (de 30 % à 40 % pour 32

P, 89

Sr, 90

Y) excepté pour le Tl-204. Or les deux chambres

d’ionisation sont très différentes du point de vue de leur géométrie et du gaz de détection. Ces écarts

ne semblent pas provenir de la méthode de calcul des spectres bêta. En outre ils sont du même ordre de

grandeur avec le code PENELOPE et GEANT4. Par conséquent, il reste trois hypothèses : soit les

modèles physiques de l’interaction des électrons avec la matière programmés dans les deux codes ne

sont pas adaptés, soit la source, objet commun aux deux chambres d’ionisation, présente un défaut de

modélisation. Soit enfin l’ordre de grandeur des écarts communs aux deux chambres Vinten 671 et

Vacutec 70129 n’est qu’une coïncidence et il faut revoir la géométrie modélisée. En effet, il semblerait

que la modélisation de la chambre Vinten pourrait être améliorée en vue de diminuer l’écart entre le

coefficient d’étalonnage simulé avec celui obtenu expérimentalement pour le Tl-204 notamment.

Néanmoins, il faut vérifier que les modifications de la géométrie n’altèrent pas les résultats obtenus

pour les photons. Par ailleurs, les collègues Frédérique Juget de l’IRA et John Keightley du NPL

observent également des écarts de l’ordre de 30 % entre les coefficients d’étalonnage simulés avec

Page 154: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

151

GEANT4 et EGSnrc respectivement et les coefficients d’étalonnage expérimentaux pour les

radionucléides 32

P, 89

Sr et 90

Y. Ce qui vient d’être exposé résulte des échanges qui ont eu lieu, dans le

cadre du groupe de travail international « Life Science » créé au sein du comité international pour la

métrologie des radionucléides ICRM (International Committee on Radionuclide Metrology). Les

participants du groupe de travail ont confirmé que des investigations doivent être engagées sur la

validation expérimentale de l’émission absolue de bremsstrahlung, initiant ainsi un nouveau sujet de

recherche. L’interaction des électrons avec la matière doit également être investiguées

expérimentalement.

4.5 PROJET, RÉALISATION ET EXPLOITATION D’UNE CHAMBRE

D’IONISATION Á PRESSION VARIABLE CONTRÔLÉE

4.5.1 PRÉSENTATION DES OBJECTIFS DU PROJET

La simulation des coefficients d’étalonnage des chambres d’ionisation aux photons est en

parfait accord avec les résultats expérimentaux dans la limite des incertitudes. Néanmoins, les résultats

des simulations sont ajustés aux résultats expérimentaux à l’aide de la masse volumique du gaz de la

chambre étudiée. Aussi, est-il important de vérifier si ce facteur de proportionnalité utilisé correspond

à la réalité expérimentale. Ce sujet fait l’objet du projet de réalisation d’une chambre d’ionisation à

pression variable et contrôlée. Le système d’alimentation en gaz installé au LNHB permettra de

maîtriser la masse volumique du gaz à 0,15 %. Le projet consiste en la conception, la réalisation et la

simulation de l’interaction rayonnement-matière d’une nouvelle chambre d’ionisation cylindrique à

puits à pression variable contrôlée pour la mesure d’activité de radionucléides. Il est intitulé

« Conception et exploitation d’une chambre à pression variable contrôlée » et est fédéré par le LNE. Il

permet de répondre à plusieurs problématiques. Le premier sujet de recherche consiste à valider

expérimentalement la méthode de calcul des coefficients d’étalonnage d’une chambre d’ionisation par

simulation pour différentes pressions et différentes natures de gaz. Ce travail permettra ainsi de

vérifier si la pression déterminée par simulation correspond à la valeur de la pression expérimentale.

Un deuxième sujet de recherche en découle : il s’agit de déterminer de manière relative à un gaz de

référence, la valeur du paramètre W pour différentes natures et mélanges de gaz (xénon, krypton,

argon relativement à l’azote par exemple). Cette étude pourra peut-être permettre de vérifier si la

valeur de W varie en fonction de la pression sur la plage de pression entre 0,1 et 2 MPa. La chambre

innovante est également vouée, à terme, à être utilisée dans les services de médecine nucléaire. Il

s’agira donc de modéliser et de valider expérimentalement les simulations pour les nombreuses

géométries utilisées en routine clinique en fonction de la reproductibilité de fabrication des divers

conditionnements. Cette application concernera tout particulièrement les radionucléides utilisés en

thérapie interne comme 90

Y dans le traitement des lymphomes non hodgkiniens et le traitement du

cancer du foie. Enfin, si le volume actif de la chambre d’ionisation est maîtrisé, il sera peut-être alors

possible d’étudier la faisabilité d’une mesure primaire à l’aide d’une chaîne de mesure absolue de

courant. Ce projet se décline en sous-projets qui consistent, d’une part, à développer le système

d’alimentation en gaz, puis de concevoir et réaliser la nouvelle chambre d’ionisation associée au

système de régulation de gaz, d’autre part, à effectuer une simulation complète du système source-

détecteur et de la valider par des mesures expérimentales.

Page 155: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

152

4.5.2 LES PREMIÈRES ÉTAPES DU PROJET

Le projet a débuté par la conception d’un premier plan de chambre d’ionisation suivi de la

modélisation et la simulation de cette chambre en fonction de la nature de gaz. Ces simulations ont été

réalisées dans le cadre du contrat postdoctoral de M. M. R. Mesradi. Cette première étude a mis en

évidence la non-proportionnalité de la réponse de la chambre en fonction de la pression d’argon (sur la

plage entre 0,1 MPa et 1,4 MPa) pour les photons d’énergie inférieure à 200 keV. Au-delà de cette

énergie et jusqu’à 2 MeV la réponse de la chambre est proportionnelle à la pression à 2 % près. Cette

non-proportionnalité de la réponse de la chambre en fonction de la pression est également observée

pour l’azote pour une pression comprise entre 0,1 MPa et 0,8 MPa toujours pour des photons d’énergie

inférieure à 200 keV. En revanche, la réponse de la chambre est proportionnelle à la pression pour

l’azote à 2 % près sur la plage de pression de 0,8 MPa à 1,4 MPa pour tout le domaine énergétique des

photons (de 20 keV à 2 MeV). Ces résultats de simulation pourront être confirmés par l’expérience

lorsque la chambre d’ionisation et le système d’alimentation en gaz seront réalisés.

En parallèle, un cahier des charges a été rédigé pour la conception du banc d’alimentation en

gaz (Amiot, 2009) et présenté dans le cadre d’un appel d’offres. Deux sociétés ont répondu et la

société 2M Process a été choisie pour la réalisation du système. Le LMDN, laboratoire de métrologie

de la dosimétrie des neutrons de l’IRSN (laboratoire également fédéré par le LNE) souhaitait

développer un système d’alimentation de gaz en continu pour l’appliquer au projet «système de

détection µ-TPC (chambre à projection Temporelle) dédiée à la mesure de champs neutroniques ». Le

LNHB et le LMDN se sont donc rapprochés pour développer ce projet en commun dans le cadre du

contrat d’objectif du LNE (Lebreton et Amiot, 2012). Le système d’alimentation en gaz a été livré au

LNHB en mai 2012 (figure n° 4.30).

Figure n° 4.30 : Présentation du système d’alimentation en gaz pour le projet de conception et

d’exploitation d’une chambre d’ionisation à pression variable.

4.5.3 CONTRAINTES POUR LA CONCEPTION DU PROTOTYPE DE CHAMBRE D’IONISATION

(C. GOLABEK)

4.5.3.1 Caractéristiques générales

Les caractéristiques principales pour la conception de la chambre sont la géométrie et la nature

des matériaux. La géométrie de la chambre d’ionisation doit être adaptée à l’espace de travail des

services de médecine nucléaire. Elle doit également permettre une sensibilité suffisante de la chambre

Page 156: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

153

pour la mesure de l’activité de radionucléides émettant des photons de faible énergie (125

I) ou de

radionucléides émetteurs bêta moins (32

P). Les risques d’éclatement et de flambage de l’enceinte de la

chambre contenant un gaz d’une pression de 2 MPa doivent être minimisés et l’installation sécurisée.

De plus, la tolérance sur les épaisseurs des matériaux utilisés doit être suffisamment faible pour

assurer une bonne reproductibilité de fabrication et la zone d’isomesure doit être adaptée aux

échantillons à mesurer. Les matériaux doivent être de composition connue, de faible masse volumique

pour permettre la détection de 125

I, résistants, reproductibles et peu onéreux.

La géométrie de la future chambre d’ionisation a été étudiée en simulant sa réponse au moyen

du code Monte Carlo PENELOPE (Salvat et al, 2008) ainsi que du logiciel COMSOL (COMSOL,

2011). Ce travail a été confié à C. Golabek dans le cadre d’un contrat postdoctoral. Les résultats qu’il a

obtenus sont présentés dans un rapport (Golabek et Amiot, 2012). Seuls les principaux d’entre eux

seront rappelés dans ce document.

4.5.3.2 Les dimensions de l’activimètre

La chambre d’ionisation doit :

- peser au maximum 20 kg pour qu’elle puisse être déplacée facilement ;

- pouvoir être fabriquée de manière reproductible : le critère choisi est de 0,5 % pour la réponse

de la chambre pour des photons de 30 keV ;

- être d’un encombrement permettant son installation dans les enceintes blindées utilisées dans

les services de médecine nucléaire ;

- être la moins coûteuse possible (inférieure à 10 000 Euros) ;

- être suffisamment sensible pour permettre la mesure de 125

I (x de basse énergie) et 32

P

(radionucléide émetteur bêta pur) ;

- être robuste avec un porte-échantillon solide et de manipulation pratique ;

- pouvoir être caractérisée par une courbe de réponse continue ;

- présenter une courbe d’iso-sensibilité respectant la règlementation du 25 novembre 2008 pour

des seringues BD Plastipak® contenant une solution radioactive de 125

I de 1 mL à 10 mL ;

- respecter la norme ATEX ;

- être blindée pour limiter l’exposition des manipulateurs à la radioactivité et sa sensibilité au

mouvement propre ambiant.

4.5.3.3 Les dimensions de l’activimètre

Etant donné les contraintes sur l’espace de travail des enceintes blindées, deux géométries

externes sont envisageables. La première consiste à utiliser des emplacements déjà prévus pour les

activimètres et donc impose un diamètre externe maximal de 22 cm et une hauteur pouvant aller

jusqu’à 45 cm. La deuxième consiste à réaliser une chambre d’ionisation d’une hauteur plus faible de

25 cm et d’un diamètre externe éventuellement supérieur à 22 cm pour compenser la perte de détection

Page 157: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

154

des rayonnements. La chambre d’ionisation serait alors posée sur la paillasse de l’enceinte blindée.

Cette dernière alternative peut néanmoins conduire à une détérioration de la zone d’isomesure. Cette

supposition est à contrôler à l’aide de la simulation Monte-Carlo.

Les contraintes sur le puits interne de la chambre d’ionisation sont imposées par le diamètre

externe des échantillons utilisés dans les services de médecine nucléaire. Les flacons mesurés ont un

diamètre externe supérieur à celui des seringues pouvant aller jusqu’à 3,8 cm. En conséquence un

diamètre interne du puits de la chambre d’ionisation de 5 cm est suffisant. Compte tenu des contraintes

sur les dimensions de la chambre et afin qu’elle soit adaptée aux différents espaces de travail des

services de médecine nucléaire, nous allons étudier la réponse de chambres de hauteurs 25 cm et 40

cm pour différentes largeurs. La notation de la géométrie des chambres adoptée par la suite est la

suivante : HXLY pour une chambre de X cm de hauteur et de Y cm de largeur intercylindre du volume

gazeux (correspondant à deux fois la distance interélectrode).

4.5.3.4 Étude du blindage de la chambre

La chambre d’ionisation doit être blindée pour diminuer la valeur du mouvement propre mais

également protéger les utilisateurs du rayonnement émis par le radionucléide. L’ajout de plomb

alourdit considérablement la chambre. Comme nous souhaitons que la chambre soit transportable

aisément, nous allons l’entourer (partie cylindrique et extrémités de la chambre) d’une fine couche de

4 mm de plomb, comme en est équipé, par exemple, l’activimètre ISOMED.

Le plomb présent autour de la chambre est excité par le rayonnement des radionucléides

émettant des photons d’énergie supérieure à 88 keV. Dans ce cas, le plomb émet des photons x de

fluorescence. Certains xK de fluorescence du plomb d’énergie 88 keV interagissent dans la chambre et

participent à sa réponse. La réponse du détecteur est alors discontinue car elle présente une brusque

augmentation de quelques pour cents à partir de 88 keV. L’objectif du présent projet est de déterminer

par calcul les coefficients d’étalonnage, la courbe de réponse étant obtenue par simulation. Pour les

radionucléides comme 56

Co et 123

I qui émettent un grand nombre de photons de différentes énergies,

par exemple, il est commode d’utiliser pour le calcul du coefficient d’étalonnage une fonction

mathématique ajustée sur les valeurs obtenues par simulation. Or la discontinuité de la réponse de la

chambre d’ionisation en fonction de l’énergie des photons implique l’utilisation de deux courbes

mathématiques d’ajustement. Cette discontinuité peut être rendue négligeable par l’introduction d’un

écran de cuivre entre le plomb et la chambre d’ionisation qui absorbe les photons x de fluorescence du

plomb et ainsi simplifie l’ajustement mathématique de la courbe de réponse du détecteur. La

figure 4.31 présente la réponse de la chambre dans différentes configurations en fonction des

matériaux utilisés. Lorsqu’il y a uniquement du plomb autour de l’enceinte de la chambre, on observe

une augmentation d’environ 10 % de la réponse à partir de 88 keV. Lorsqu’un écran de cuivre d’une

épaisseur 1 mm puis 1,5 mm est placé entre la chambre et l’écran de plomb, une forte diminution de la

discontinuité est observée. L’objectif étant d’obtenir une réponse continue de la chambre, les résultats

montrent que l’ajout d’une couche de 2 mm de cuivre est nécessaire et suffisant.

Page 158: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

155

Figure n° 4.31 : Réponse de la chambre H40L4 aux photons dans la gamme d’énergie de 87 keV à

94 keV en fonction de la présence ou non d’un écran de cuivre puis en fonction de l’épaisseur de cet

écran.

4.5.3.5 Étude des contraintes sur l’épaisseur des matériaux

L’un des objectifs du projet étant de fournir aux services de médecine nucléaire des

activimètres avec les coefficients d’étalonnage déterminés par calcul, il est nécessaire que les

chambres d’ionisation produites en série le soient de manière très reproductible notamment pour ce qui

concerne leur géométrie et leurs matériaux constitutifs. La reproductibilité de la fabrication de la

chambre sera primordiale pour les matériaux qui constitueront le puits interne de la chambre. En effet,

l’épaisseur des éléments traversés par le rayonnement avant son interaction dans le gaz est un des

paramètres les plus influents sur la réponse de la chambre d’ionisation. La tolérance sur l’épaisseur de

l’aluminium (matériau du puits de la chambre) et celle du Plexiglas (matériau de la chemise de

protection) ont été étudiées. L’influence de la variation de l’épaisseur de ces éléments sur la réponse

relative de la chambre d’ionisation est représentée sur la figure 4.32. Cette figure représente l’écart

relatif de la réponse de la chambre d’ionisation H40L6 pour des photons d’énergie 30 keV et 140 keV

en fonction des variations d’épaisseur du puits (de ± 0 µm à 40 µm) par rapport à l’épaisseur nominale

de 2 mm d’aluminium. On remarque que la pente de l’écart de la réponse de la chambre en fonction de

la variation d’épaisseur est plus importante pour des photons d’énergie 30 keV que pour des photons

d’énergie 140 keV, l’absorption des photons étant plus importante à faible énergie. La tolérance sera

donc dictée par les résultats obtenus pour les photons de 30 keV. Ainsi, une variation de 20 µm de

l’épaisseur de 2 mm d’aluminium conduit à un écart relatif de la réponse du détecteur de 0,6 %. En ce

qui concerne le Plexiglas, les tolérances sont beaucoup moins contraignantes : 40 m de variation

d’épaisseur conduit à un écart relatif de seulement 0,25 %. Des tolérances de 20 m pour l’épaisseur

du puits interne de la chambre d’ionisation en aluminium et de 40 m sur celle de la chemise de

Plexiglas répondent au critère fixé. La réalisation du puits de la chambre d’ionisation dans le respect

de ces tolérances devra être discutée avec le constructeur qui sera choisi pour la fabrication de la

chambre d’ionisation.

5,2E-12

5,4E-12

5,6E-12

5,8E-12

6E-12

6,2E-12

6,4E-12

85 90 95

Rép

on

se (A

/MB

q)

Energie (keV)

Pb seul (sans Cu)

Cu seul (sans Pb)

Pb + 1 mm Cu

Pb + 1.5 mm Cu

Pb + 2 mm Cu

Page 159: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

156

Figure n° 4.32 : Etude des tolérances sur l’épaisseur de divers matériaux du puits de la chambre

d’ionisation et de la chemise de protection dans le cas d’un rayonnement photonique.

La figure 4.33 montre l’écart relatif de la réponse de la chambre d’ionisation pour des

électrons de 1,9 MeV en fonction de la variation de l’épaisseur du puits de la chambre et de celle du

Plexiglas pour deux matériaux différents. L’énergie de 1,9 MeV a été choisie pour cette étude car c’est

l’énergie moyenne de la réponse de la chambre à une solution radioactive contenant de 90

Y,

radionucléide largement utilisé en radiothérapie interne. La tolérance est beaucoup plus faible avec les

électrons qu’avec les photons étudiés précédemment car le parcours des électrons dans la matière est

très faible. Un écart sur la réponse de 0,6 % est obtenu pour une variation de 2 µm pour l’épaisseur de

puits en aluminium et de 4 µm pour celle de la chemise en Plexiglas. Ces tolérances ne pourront

probablement pas être matériellement respectées pour une fabrication en série des activimètres. Une

alternative serait de remplacer l’aluminium par un matériau plus léger afin d’augmenter les tolérances

sur la fabrication du puits interne de la chambre d’ionisation. L’aluminium pourrait être

avantageusement remplacé par un alliage de magnésium AZ91A. La masse volumique plus faible de

l’AZ91A (1,8 g/cm3 pour l’AZ91A contre 2,7 g/cm

3 pour l’aluminium pur) conduit à une tolérance

pouvant aller jusqu’à 4 µm environ. Néanmoins, cette tolérance est probablement encore trop faible

pour permettre une fabrication en série à un coût abordable. Une tolérance de 20 µm conduirait à un

écart relatif de la réponse de la chambre d’ionisation de 2,5 % pour des électrons monoénergétiques. Il

est alors nécessaire d’étudier la réponse du détecteur à un radionucléide émetteur bêta pur pour une

variation d’épaisseur de 20 m du puits en AZ91A.

Figure n° 4.33 : Étude des tolérances sur l’épaisseur de divers matériaux du puits de la chambre

d’ionisation et de la chemise de protection dans le cas d’un rayonnement électronique.

Page 160: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

157

4.5.3.6 Étude du volume actif de détection

4.5.3.6.1 Modélisation des lignes de champ électrique

Le champ électrique permettant la collection des électrons n’est pas homogène en tout point

dans les chambres d’ionisation pressurisées et les activimètres commerciaux. En effet, les lignes de

champ, normales aux électrodes et rectilignes, se courbent à l’extrémité de celles-ci. La collection des

charges n’est alors plus optimale, le volume actif de la chambre n’est pas maîtrisé. En soi, ce

phénomène n’est pas un obstacle pour réaliser des mesures relatives car les conditions d’étalonnages

peuvent aisément être reproduites. En revanche, il devient très important de maîtriser le volume actif

du détecteur lorsque l’on souhaite déterminer les paramètres qui influent sur sa réponse. C’est un des

objectifs du présent projet. En effet, le système de régulation de gaz permettra de maîtriser la pression

du gaz à l’intérieur de la chambre d’ionisation. Ainsi, une fois ces deux paramètres maîtrisés (volume

actif et pression du gaz porteur), l’étude de l’efficacité de collection des charges pourra être engagée.

La maîtrise du volume actif peut être réalisée en plaçant des isolants aux extrémités de l’électrode

collectrice pour ne collecter les électrons que dans la zone où les lignes de champ ne sont pas

déformées. Le volume actif sera alors de forme cylindrique, facilement définissable. A cause de la

diffusion longitudinale et radiale des électrons primaires créés, ceux-ci ne suivent pas parfaitement les

lignes de champ électrique, mais compte tenu de leur nombre, on peut considérer que le nombre

d’électrons primaires sortant de ce volume actif par les extrémités est compensé par ceux qui y entrent.

La valeur de la tension appliquée sur l’enceinte sera déterminée afin que le détecteur soit dans un

régime de saturation : le signal mesuré sera proportionnel au nombre d’électrons primaires créés. La

recombinaison des électrons, très élevée dans le cas des gaz électronégatifs comme le dioxygène par

exemple, sera déterminée par simulation. Le logiciel GARFIELD (Garfield, 2011) permettra de

simuler l’ionisation des molécules de gaz, le suivi de la trajectoire des électrons et de leur diffusion en

tenant compte notamment des coefficients d’attachement électronique de Townsend.

4.5.3.6.2 Détermination de la zone active

Nous cherchons à définir la zone du volume de gaz où le gradient de potentiel électrique est

dirigé selon un axe radial, les lignes de champ électrique étant alors normales à l’anode. Cette

condition est obtenue lorsque la composante Ey du champ électrique suivant l’axe vertical est nulle.

Or, cette valeur n’est jamais strictement nulle en utilisant les outils de simulation numérique

d’éléments finis. Afin d’obtenir un critère indépendant de la valeur du champ électrique, nous allons

étudier le rapport de la composante verticale Ey sur la composante radiale Er du champ électrique. La

figure 4.34 montre une coupe de l’enceinte gazeuse de la chambre H25L8. La position verticale

représente la hauteur de la chambre et la position radiale, la largeur de la chambre en coordonnées

cylindriques. Les différentes couleurs représentent les isopotentiels, de zéro (potentiel de l’anode) à

- 400 V (potentiel de l’enceinte). Les lignes blanches sur la figure représentent les différentes valeurs

de ce rapport (à savoir 10—1

, 10—2

et 10—3

) au sein de l’enceinte. Dans ce cas, le volume actif à définir

correspond au volume situé à l’intérieur de deux cylindres concentriques dont la hauteur peut être

déterminée à l’aide du rapport Ey/Er.

Page 161: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

158

Figure n° 4.34 : Coupe transversale de l’enceinte pour la chambre H25L8. La couleur représente la

valeur du potentiel électrique au sein de l’enceinte gazeuse. Les lignes blanches représentent trois

valeurs (10—1

, 10—2

et 10—3

) du rapport du champ électrique vertical au champ électrique radial.

Afin d’établir un critère pour définir le volume actif, on calcule la moyenne des valeurs pour

lesquelles le rapport Ey/Er est le plus faible. Les valeurs du rapport Ey/Er sont représentées sur la figure

4.34 pour de nombreux points de l’enceinte gazeuse (points bleus) en fonction de leur position selon

l’axe vertical de la chambre en prenant pour origine le centre géométrique de l’enceinte d’une hauteur

totale de 40 cm. On observe alors une large zone de la position verticale où le rapport Ey/Er est très

faible (inférieur à 5.10—2

). Les points rouges sur la figure représentent les valeurs moyennées de Ey/Er

le long de cet axe. Cette moyenne est constante, de l’ordre de 10—3

, pour une position verticale

comprise entre environ -14 cm et 14 cm pour cette chambre (voir figure 4.35). Ce résultat permet de

déterminer la zone active pour laquelle le champ électrique est homogène. Pour limiter le volume

spatial de collecte des électrons à cette région de l’enceinte, des isolants d’environ 2 mm seront

introduits sur l’anode à -14 cm et à + 14 cm par rapport au centre géométrique vertical de la chambre

d’ionisation.

Figure n° 4.35 : Représentation de la zone active sur l’axe vertical de la chambre d’ionisation.

Page 162: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

159

La dimension de la zone active dépend de la géométrie de la chambre d’ionisation. Afin de

mettre en évidence cette affirmation, la zone active déterminée pour différentes géométries de

chambre est présentée sur la figure 4.36. Cette figure met en évidence la proportionnalité de la zone

active en fonction de la largeur de l’enceinte gazeuse pour deux hauteurs différentes. En effet, la zone

active diminue lorsque l’espace intercylindrique augmente : lorsque la distance entre les électrodes

augmente, le caractère rectiligne des lignes de champ est altéré. On observe également que le volume

de la zone active augmente avec la hauteur de la chambre. Les zones actives déterminées se

répartissent entre 5 cm et 17 cm, et 18 cm et 33 cm pour H25L8 et H40L2 respectivement, en fonction

de la largeur intercylindrique. Les zones actives ainsi déterminées ont été prises en compte dans les

chapitres suivants pour les simulations réalisées à l’aide du code PENELOPE (voir figure n° 4.36).

Figure n° 4.36 : Hauteur des zones actives en fonction de la géométrie des chambres d’ionisation.

Figure n° 4.37 : Modélisation des chambres H25L8 et H40L2 avec PENELOPE. Les couleurs rouge et

violette correspondent au gaz ; la couleur rouge représente le volume gazeux de la zone active

déterminée avec COMSOL, la couleur violette la zone inactive (COMSOL, 2011).

Page 163: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

160

4.5.4 ÉTUDE DE LA RÉPONSE DU DÉTECTEUR

4.5.4.1 La réponse de la chambre aux photons

La chambre Normandy, utilisée actuellement au LNHB, a une sensibilité suffisamment élevée

(pour les photons et les électrons) pour permettre de faire une mesure de tous les radionucléides

utilisés dans les services de médecine nucléaire. Nous allons donc comparer la réponse des différentes

géométries possibles de chambres d’ionisation pressurisées à celle de Normandy. La figure 4.38

montre la réponse aux photons des chambres d’ionisation de différentes géométries, réponse obtenue à

l’aide du code PENELOPE, en intégrant la zone active définie avec le logiciel COMSOL. Le gaz

utilisé dans cette simulation est de l’argon sous une pression de 1 MPa. La sensibilité aux photons des

chambres d’ionisation est supérieure à celle de la chambre d’ionisation Normandy pour toutes les

géométries étudiées.

Figure n° 4.38 : Réponse aux photons de chambres d’ionisation pour différentes géométries.

La figure 4.38 apporte un certain nombre d’informations sur la réponse de la chambre

d’ionisation aux photons en fonction de la géométrie de la chambre, tous les autres paramètres étant

les mêmes par ailleurs. Pour une même largeur intercylindrique (4 cm), une chambre de hauteur

réduite aura une réponse plus faible. Par exemple, la réponse de la chambre diminue de 20 %

lorsqu’on passe de la chambre H40L4 à la chambre H25L4. Pour une chambre d’une hauteur de

40 cm, la réponse de la chambre augmente avec l’espace intercylindrique. A titre d’exemple, la

réponse de la chambre de géométrie H40L4 est 35 % plus élevée que celle de géométrie H40L2. Ceci

devrait être le cas pour toutes les hauteurs de chambre d’ionisation. Néanmoins si l’on prend en

compte la zone active sélectionnée, l’effet peut être inversé : la chambre de géométrie H25L8 présente

une réponse plus faible que la chambre de géométrie H25L4.

On cherchera à définir la géométrie permettant d’obtenir la meilleure sensibilité possible tout

en respectant les contraintes citées au paragraphe II.2. En effet, une excellente sensibilité permettra

d’abaisser le seuil de détection ainsi que le niveau d’activité des radionucléides émettant des rayons x

de basse énergie (125

I, 109

Cd). Notons par ailleurs que la réponse du détecteur peut être également

améliorée en augmentant la pression dans la limite de 2 MPa et en introduisant quelques pour cents de

xénon ou de krypton ; cependant ces gaz sont très onéreux.

Page 164: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

161

4.5.4.2 La réponse de la chambre aux électrons monoénergétiques

Les réponses aux électrons des chambres de géométries H40L2, H40L4 et H40L6 dont le puits

interne est en aluminium ainsi que celle d’une chambre de géométrie H40L4 dont le puits interne est

en alliage de magnésium AZ91A ont été étudiées. Ces courbes sont présentées dans la figure 4.39 et

comparées à celle d’une chambre d’ionisation de type Vinten 671 qui contient un puits en aluminium.

La chambre Vinten 671 utilisée pour les mesures de routine au LNHB présente une sensibilité

suffisante pour mesurer des radionucléides émetteurs β utilisés dans les services de médecine

nucléaire, pourvu que l’activité soit supérieure à 10 MBq, notamment pour 32

P. L’intérêt consiste ici à

réaliser une chambre d’ionisation qui soit au moins aussi sensible que la chambre Vinten 671. On

observe sur la figure 4.39 que la réponse aux électrons des trois chambres avec puits en aluminium et

remplies d’argon à 1 MPa est inférieure à celle de la chambre Vinten 671. Cependant, le support utilisé

pour la modélisation de ces chambres est plus absorbant que celui de la chambre Vinten 671 ; une

étude sur la géométrie du support sera réalisée ultérieurement. Par conséquent, nous allons étudier les

paramètres qui vont permettre d’augmenter la réponse de la chambre d’ionisation aux électrons. La

première solution pour augmenter cette réponse, sans augmenter la pression ni changer la nature du

gaz, consiste à diminuer l’épaisseur du puits interne en aluminium. En effet, la réponse pour la

chambre H40L4 avec une épaisseur du puits interne en aluminium de 1,5 mm, est environ 2 fois plus

élevée que pour une épaisseur de 2 mm pour des électrons monoénergétiques de 2,5 MeV (voir figure

4.39). Une autre solution est d’utiliser un alliage de masse volumique plus faible, étudié pour la

géométrie H40L4. Il s’agit d’un alliage de magnésium de type AZ91A dont la masse volumique est de

1,8 g/cm3 au lieu de 2,7 g/cm

3, masse volumique de l’alliage d’aluminium. La réponse de cette

nouvelle chambre présentée sur la figure 4.39 est 2,5 fois plus élevée que celle de la chambre

d’ionisation VINTEN 671 pour des électrons monoénergétiques de 2,5 MeV. Il apparaît donc très

avantageux d’utiliser ce type de matériau pour la réalisation de l’enceinte de la chambre. Cependant,

cet alliage est beaucoup moins utilisé dans le monde industriel. Ses propriétés mécaniques proches de

celles de l’aluminium permettraient de réaliser une telle enceinte et de supporter une pression de

2 MPa dans la géométrie choisie. Néanmoins les calculs de contraintes mécaniques réalisés devront

être confirmés par le constructeur, à la fois pour l’utilisation de cet alliage mais également en ce qui

concerne la réduction éventuelle de l’épaisseur de la paroi en aluminium du puits interne. Par ailleurs,

les contraintes de coût devront également être respectées.

Page 165: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

162

Figure n° 4.39. Réponse aux électrons de chambres d’ionisation en fonction de leur géométrie

et des matériaux de l’enceinte sous pression.

Les réponses aux électrons présentées sur la figure 4.39 sont monotones et quasi linéaires de

100 keV à 1,5 MeV puis elles prennent une forme exponentielle à partir de 1,5 MeV (cette dernière

valeur d’énergie dépend de la sensibilité de la chambre). L’explication de la forme générale de ces

courbes est la suivante : de quelques keV à 1,5 MeV, les électrons perdent toute leur énergie dans la

matrice de la source, puis dans les parois du conteneur, et enfin dans la paroi du puits. Ainsi dans cette

plage énergétique, seuls les photons de bremsstrahlung sont détectés par la chambre d’ionisation. A

partir de 1,5 MeV, quelques électrons ont suffisamment d’énergie pour pénétrer dans le gaz et interagir

directement avec ses atomes, puis l’énergie initiale augmentant, le flux d’électrons pénétrant dans le

gaz augmente. Ce phénomène se traduit par la forme exponentielle de la réponse du détecteur.

4.5.4.3 Sélection de la géométrie de la chambre d’ionisation

La zone d’isomesure a été déterminée en étudiant la réponse de la chambre d’ionisation aux

photons lorsque la source radioactive, insérée au sein du puits, est déplacée suivant l’axe vertical. La

réponse du détecteur en fonction de la position de la source de part et d’autre du centre géométrique

étant symétrique, seule la réponse de la chambre aux photons pour le déplacement de la source sur

l’axe vertical au-dessus du centre géométrique est présentée sur la figure 4.40.

Page 166: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

163

Figure 4.40 : Zone d’isomesure, calculée pour une source ponctuelle, en fonction de la géométrie de

différentes chambres d’ionisation.

D’après la figure 4.40, on remarque que la chambre de géométrie H40L2 est bien adaptée pour

l’étude de réponse de la chambre d’ionisation en fonction du volume de remplissage car elle présente

la plus grande zone d’isomesure. Néanmoins, l’espace interélectrode n’est que de 1 cm, cet espace est

étroit, et une faible fraction des photons ou des électrons interagit dans le gaz du détecteur. Lorsque cet

espace est augmenté de 1 cm (soit la géométrie H40L4), la réponse de la chambre d’ionisation

augmente d’environ 50 % pour les photons comme pour les électrons (figures 4.38 et 4.39). Or, la

configuration H40L2 conduit à une courbe de réponse inférieure (pour la même pression) à celle de la

chambre d’ionisation de type VINTEN 671, chambre pour laquelle la détection d’un radionucléide

émetteur bêta, comme 32

P, nécessite une activité supérieure à 10 MBq. Ce critère nous conduit à

rejeter cette géométrie et lui privilégier la géométrie H40L4. Ce choix implique cependant d’accepter

une zone d’isomesure réduite d’un facteur deux. La chambre H40L6 présente la réponse en fonction

de l’énergie des photons la plus élevée car l’espace inter électrode est plus important. Cependant, sa

zone d’isomesure est encore plus faible (30 % de moins que celle de la chambre H40L4 pour les

basses énergies ; figures 4.40 et 4.41).

Figure n° 4.41 : Comparaison de la zone d’isomesure des chambre H40L4 et H40L6.

Page 167: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

164

Par ailleurs, une contrainte supplémentaire doit être prise en compte. Il s’agit de la Directive

Européenne EC n° 105 (2009) qui concerne les critères de sécurité des enceintes sous pression. Les

risques concernant les enceintes sous pression sont classés en catégories délimitées par des valeurs de

référence du produit PS.V (PS étant la pression maximale de service et V le volume de l’enceinte). La

figure 4.42 présente la classification des gaz naturels contenus dans une enceinte de volume V et de

pression P.

Figure n° 4.42 : Catégories de risque pour les réservoirs de gaz sous pression.

La pression de service de la chambre d’ionisation H40L6 étant de 2 MPa et le volume de 9,2 l,

on obtient PS.V = 184 bar.l. En revanche pour la géométrie H40L4, on obtient PS.V = 103 bar.l. Au-

delà de la classe II, les contraintes de réglementation sont telles que les constructeurs augmentent leurs

prix de manière considérable (examen de qualification des personnels par un organisme notifié, …),

l’enceinte doit donc être réalisée dans le respect de la classe II. La géométrie de la chambre

d’ionisation peut être un compromis entre H40L4 et H40L6. Le produit PS.V de H40L6 étant proche

de la limite, et sa zone d’isomesure étant inférieure à celle de H40L4, nous choisissons la chambre

d’ionisation de géométrie H40L4.

4.5.5 SELECTION DE LA GÉOMETRIE DE LA CHAMBRE D’IONISATION

Ainsi, les études présentées ci-dessus ont permis la rédaction d’un cahier des charges (Amiot et

Golabek, 2012 et 2013). Un dizaine de constructeurs ont été consultés en Europe. Seuls deux d’entre

eux ont répondu favorablement. En effet, les contraintes de fabrication d’une enceinte sous pression,

avec des dimensions mécaniques strictes, puis la réalisation d’anneaux de garde ainsi que la contrainte

sur la mesure du courant de mouvement propre ont dissuadé bon nombre d’entre eux. Aussi avons-

nous dû revoir les tolérances présentées dans le paragraphe 4.5.3.1.4 et les augmenter à 100 m. En

outre, les restrictions budgétaires nous ont contraints à supprimer les isolants qui permettaient de

maîtriser le volume actif. La chambre d’ionisation sera donc de conception proche d’un activimètre

classique. Les incertitudes sur les coefficients d’étalonnage déterminés par calcul seront plus élevées

mais devraient rester inférieures à 5 %. La chambre sera livrée fin 2013 ou début 2014 par la société

Veenstra. Par ailleurs, le système d’alimentation en gaz de la chambre est fonctionnel depuis début

2013. C. Golabek a réalisé de nombreux tests (stabilité, reproductibilité, respect des consignes de

pression, incertitude sur la pression, …) afin de vérifier que le système d’alimentation en gaz livré

correspond aux exigences du cahier des charges (Golabek, 2012 ; 2013).

Page 168: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

165

4.6 ÉTUDE DE LA RÉPONSE D’ACTIVIMÈTRES EN FONCTION DU VOLUME (C.

GOLABEK)

Afin de permettre à C. Golabek de réaliser des expériences dans le cadre de son contrat, nous

avons étudié la réponse de différents activimètres en fonction du volume de remplissage d’une

seringue. Nous avons profité de la réalisation d’une campagne d’étalonnage d’activimètres au LNHB

en février 2013 pour effectuer ces mesures.

4.6.1 ÉTUDE DE LA REPONSE D’ACTIVIMÈTRES EN FONCTION DU VOLUME CONTENU

DANS UNE SERINGUE POUR LES RADIONUCLÉIDES ÉMETTEURS DE PHOTONS

4.6.1.1 Présentation du protocole

Nous avons étudié la réponse de quatre activimètres en fonction du volume de solution contenue

dans une seringue pour plusieurs médicaments radiopharmaceutiques. Les activimètres étudiés sont un

MEDI 405 (Veenstra), un CRC25R (Capintec), un Scintidose (Lemer Pax) ainsi que la réponse de la

chambre d’ionisation de transfert du LNHB, la chambre nommée Normandy. Cette étude a été réalisée

pour des solutions radiopharmaceutiques associées à quatre radionucléides émetteurs de photons : 111

In, 123

I, 99m

Tc et 18

F, conditionnées dans une seringue BD Plastipak® pouvant contenir un volume

maximum de 5 mL de solution. Les solutions radioactives ont été commandées auprès de IBA/CIS

Bio. Elles ont été reçues au laboratoire dans un conditionnement en flacon contenant 1 mL de solution

du médicament radiopharmaceutique. Une partie de la solution reçue (0,2 mL) a été conditionnée dans

une seringue pour chaque radionucléide. L’activité de la seringue a été ensuite mesurée dans chaque

activimètre pour chacun des radionucléides étudiés pour le volume de 0,2 mL ainsi que pour les

volumes suivants obtenus par addition de sérum physiologique jusqu’à un volume total de 4 mL ou 5

mL en fonction du radionucléide.

4.6.1.2 Critère sur la précision des mesures dans les activimètres

Le rapport AIEA TRS n° 454 (2006) (paragraphe 3.5.5) préconise une précision de 5 % sur la

mesure d’activité dans les services de médecine nucléaire. Il précise notamment que tout changement

de géométrie ayant un effet supérieur à 5 % sur la mesure d’activité nécessite l’utilisation d’un

nouveau facteur d’étalonnage. Ce critère a donc été repris pour l’interprétation des résultats obtenus

sur la réponse des activimètres. Néanmoins, étant centre d’étalonnage, le LNHB détermine un

coefficient d’étalonnage pour chaque volume mesuré dans la chambre de transfert Normandy.

4.6.1.3 Présentation des résultats et discussion

Les résultats que nous avons obtenus sur la mesure d’activité de chaque appareil corrigée de la

décroissance pour les différents volumes relativement à 0,2 mL pour 111

In et 123

I sont présentés dans la

figure 4.43.

Page 169: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

166

Figure n° 4.43 : Réponses de quatre activimètres en fonction du volume de remplissage d’une seringue

BD Plastipak® relativement au volume de 0,2 mL, avec une solution de 111

In, figure de gauche, et de 123

I, figure de droite.

Les volumes mesurés dans la seringue pour 111

In sont 0,2 mL, 0,4 mL, 1 mL, 2 mL, 3 mL et

5 mL. La réponse de l’activimètre CRC25R varie très peu en fonction du volume. L’écart maximal de

1,1 % est observé entre les volumes de 1 mL et 5 mL. Par conséquent, un seul coefficient d’étalonnage

suffit pour tous les volumes. De même, un seul coefficient d’étalonnage suffit pour l’activimètre Medi

405. En effet, un écart maximum de 2,5 % est observé pour les volumes compris entre 0,2 mL et 5

mL. En revanche l’activimètre Scintidose est très sensible à la variation de volume de solution. En

effet, il présente un écart maximum de 8,5 % entre 0,2 mL et 5 mL. Par conséquent, l’opérateur devra

l’étalonner pour différents volumes.

Les volumes mesurés dans la seringue pour 123

I sont 0,2 mL, 0,4 mL, 1 mL, 2 mL, 3 mL et

4 mL. L’activimètre CRC25R est à nouveau l’activimètre le moins sensible aux variations de volume.

Néanmoins, il est plus sensible aux variations de volume pour 123

I que pour 111

In car l’écart maximum

obtenu entre 0,2 mL et 5 mL est de 2,5 %. Un seul coefficient d’étalonnage sera toutefois nécessaire

pour cette plage volumique de mesure. Les activimètres MEDI 405 et Scintidose sont également plus

sensibles aux variations de volume de 123

I qu’à celles de 111

In. L’écart maximal de la réponse par

rapport au volume de 0,2 mL est de 8 % pour le MEDI 405 et de 12 % pour le Scintidose. Par

conséquent, ces deux activimètres nécessitent plusieurs étalonnages en fonction du volume de

remplissage.

Les résultats que nous avons obtenus sur la mesure d’activité de chaque appareil, corrigée de la

décroissance, pour les différents volumes relativement à 0,2 mL pour 18

F et 99m

Tc sont présentés dans

les figures 4.44.

-10,00%

-8,00%

-6,00%

-4,00%

-2,00%

0,00%

2,00%

0 1 2 3 4 5 6

Ecar

t d

e la

po

nse

re

lati

vem

en

t à

0,2

mL

Volume en mL

Réponse des activimètres en fonction du volume de 111In

MEDI 405

Scintidose

CRC25R

Normandy

-14,00%

-12,00%

-10,00%

-8,00%

-6,00%

-4,00%

-2,00%

0,00%

2,00%

0 1 2 3 4 5

Ecar

t d

es

rép

on

ses

rela

tive

me

nt

à 0

,2 m

L

Volume en mL

Réponse des activimètre en fonction du volume de 123I

MEDI 405

Scintidose

CRC25R

Normandy

Page 170: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

167

Figure n° 4.44 : Réponses relatives de quatre activimètres en fonction du volume de remplissage d’une

seringue BD Plastipak® avec une solution de 18

F, figure de gauche, et de 99m

Tc, figure de droite.

Dans la figure 4.44, les réponses de tous les activimètres varient à moins de 2 % pour 18

F

comme pour 99m

Tc sur les plages de volume mesurés. Par conséquent, un seul coefficient d’étalonnage

suffit pour étalonner ces activimètres en seringue BD Plastipak® pour un volume variant de 0,2 mL à

3 mL pour 18

F et de 0,2 mL à 5 mL pour 99m

Tc.

La sensibilité d’un activimètre à une variation de volume, dans un conditionnement en seringue

par exemple, dépendra de sa géométrie ainsi que de sa zone d’isomesure (Santos et al., 2009). Si

l’activimètre présente un puits composé d’un matériau léger et de faible épaisseur, il sera sensible aux

rayonnements photoniques de basse énergie et aux électrons. Or les deux radionucléides 123

I et 111

In

présentent des rayonnements photoniques de basse énergie xK intenses. On a pu mettre en évidence

que les activimètres MEDI 405, Scintidose et la chambre Normandy sont plus sensibles aux variations

de volume pour les photons de basse énergie que pour ceux émis par 18

F et 99m

Tc. Un seul coefficient

d’étalonnage peut être utilisé pour ces deux derniers radionucléides sur la plage de volume étudiée. En

revanche, l’activimètre CRC25R est quasiment insensible aux variations de volume (de 0,2 mL à

5 mL) dans la seringue BD Plastipak® pour tous les radionucléides étudiés. N’ayant pas les données

sur l’épaisseur du puits et la nature des matériaux dont les détecteurs sont composés et ne connaissant

pas leur zone d’iso-mesure, il n’est pas possible d’expliquer précisément leur réponse en fonction du

volume. Néanmoins, une hypothèse peut être avancée sur la composition de l’activimètre CRC25R. Sa

faible variation de réponse laisse supposer qu’il présenterait un puits interne d’épaisseur plus

importante ou serait composé d’un matériau plus dense, comme l’acier par exemple.

4.6.2 ÉTUDE DE LA RÉPONSE D’ACTIVIMÈTRES EN FONCTION DU VOLUME CONTENU

DANS UNE SERINGUE POUR LE 90

Y

4.6.2.1 Présentation du protocole

Une solution colloïdale de 90

Y dédiée à la synoviorthèse a également été commandée dans le

cadre de cette étude. Cette solution colloïdale est très inhomogène. Nous y avons introduit quelques

gouttes de solution acide HNO3 1 M afin de casser le colloïde et rendre la solution homogène. Nous

avons étudié la réponse de la chambre d’ionisation de transfert Normandy et de la chambre

d’ionisation Vinten 671 pour cette solution conditionnée dans une seringue BD Plastipak® d’une

contenance de 10 mL. Nous avons choisi ce type de seringue car ce conditionnement est notamment

utilisé dans le cadre du traitement des lymphomes non hodgkiniens avec le Zevalin®. La solution

radioactive a été commandée auprès de IBA/CIS Bio. Elle a été reçue au laboratoire dans un

-2,50%

-2,00%

-1,50%

-1,00%

-0,50%

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

0 1 2 3 4

Ecar

t d

e la

po

nse

re

lati

vem

en

t à

0,2

mL

Volume en mL

Réponse des activimètres en fonction du volume de 18F

MEDI 405

Scintidose

CRC25R

Normandy

-2,00%

-1,50%

-1,00%

-0,50%

0,00%

0,50%

1,00%

1,50%

0 1 2 3 4 5 6

Ecar

t d

e la

po

nse

re

lati

vem

en

t à

0,2

mL

Volume en mL

Reponse des activimètres en fonction du volume de 99mTc

MEDI 405

Scintidose

CRC25R

Normandy

Page 171: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

168

conditionnement en flacon contenant 1 mL de solution du médicament radiopharmaceutique. Une

partie de la solution reçue (0,2 mL) a été conditionnée dans une seringue. L’activité de la seringue a

été ensuite mesurée dans chaque activimètre pour le volume de 2,2 mL ainsi que pour les volumes plus

grands complétés avec du sérum physiologique jusqu’à un volume total de 10 mL.

4.6.2.2 Critère sur la précision des mesures dans les activimètres

Le rapport n° 454 de l’AIEA (2006) traite des médicaments radiopharmaceutiques utilisés en

médecine nucléaire en diagnostic comme en thérapie. Aussi, nous appliquerons le même critère de

précision attendue sur la mesure que dans le paragraphe 4.6.1.2, c’est-à-dire 5 %.

4.6.2.3 Présentation des résultats et discussion

Les résultats que nous avons obtenus sur la mesure d’activité de chaque appareil corrigée de la

décroissance pour les différents volumes (1 mL à 10 mL) relativement à 1 mL pour 90

Y sont présentés

dans la figure n° 4.45.

Figure n° 4.45 : Réponses relatives des chambres Normandy et Vinten 671 en fonction du volume de

remplissage d’une seringue BD Plastipak® d’une contenance de 10 mL avec une solution de 90

Y.

Les volumes mesurés dans les chambres d’ionisation Vinten 671 et Normandy de la solution

active de 90

Y conditionnée dans la seringue BD Plastipak® sont 1 mL, 3 mL, 5 mL, 7 mL, et 10 mL.

L’écart entre la mesure d’un volume de 1 mL par rapport à un volume de 10 mL est proche de 50 %.

Cette chambre d’ionisation présente donc une grande sensibilité à la variation de volume d’une

solution de 90

Y conditionnée dans une seringue sur une plage volumique de 1 à 10 mL. Aussi est-il

important d’étalonner ces chambres d’ionisation pour chaque volume introduit dans la seringue BD

Plastipak®. En effet, 90

Y est utilisé en radiothérapie pour la synoviorthèse, mais également en

radiothérapie interne vectorisée (solution non colloïdale) pour le traitement de lymphomes non

hodgkiniens (paragraphe 3.4.1). Néanmoins, les mesures avec le 90

Y sont délicates, il s’agit de bien

homogénéiser la solution dans la seringue et de ne pas perdre de la solution dans le capuchon de

l’aiguille. Aussi est-il est nécessaire de confirmer ces résultats par une nouvelle expérimentation. Cette

étude devra également être réalisée sur d’autres activimètres, notamment ceux étudiés dans le

paragraphe précédent, dont le comportement pourrait être différent.

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 2 4 6 8 10

Ecar

t d

e la

po

nse

re

lati

vee

nt

à 1

mL

Volume en mL

Réponse relative des chambres en fonction du voume de 90Y

Normandy

Vinten

Page 172: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

169

Les résultats de simulation obtenus par C. Golabek pour la modélisation de la chambre

d’ionisation ont permis de rédiger un cahier des charges pour la réalisation du détecteur. C. Golabek a

également réalisé les tests expérimentaux nécessaires à la validation du fonctionnement du système

d’alimentation en gaz de la chambre d’ionisation. Ses travaux ont fait progresser le projet et permis la

soumission d’un sujet de thèse. Ce dernier a été accepté par le CEA, néanmoins le candidat choisi ne

remplissait pas les critères très sélectifs pour l’obtention d’un financement. Le sujet sera représenté en

2014. Par ailleurs, les travaux réalisés sur l’influence du volume des solutions de médicament

radiopharmaceutique contenues dans une seringue sur la réponse des activimètres ont révélé des effets

notables et une publication de ce travail est prévue. Le contrat de C. Golabek s’est terminé au LNHB

le 30 mars 2013. Il commence un nouveau contrat postdoctoral en octobre 2013 au sein du groupe de

Mesure Nucléaire et de Modélisation (MNM) de la Direction des Sciences de la Matière (DSM) du

CEA à Saclay.

4.7 PERSPECTIVES

4.7.1 ÉTUDE DE LA RÉPONSE DES ACTIVIMÈTRES EN FONCTION DU CONDITIONNEMENT

Nous avons vu dans le dernier chapitre que la réponse des activimètres peut varier de manière

plus ou moins importante en fonction du conditionnement utilisé (la géométrie des flacons et des

seringues varient d’un fabriquant à l’autre (Bochud et al., 2011)) et également en fonction du volume,

voire même en fonction de la nature de la solution. Dans tous les cas, il est nécessaire d’étalonner

l’activimètre dans les géométries utilisées en routine clinique et notamment en flacon et en seringue.

En effet, bien souvent, les activimètres sont pré-étalonnés par les constructeurs pour une seule

géométrie parfois très différente de celles utilisées en routine clinique (Cessna et al., 2008 ;

Zimmerman et Cessna, 2000 ; Ceccatelli et al., 2007). En outre, au sein d’un même type de

conditionnement (en flacon ou en seringue), les dimensions (diamètre, épaisseur,..) peuvent varier

d’un fabricant à l’autre. Les volumes à mesurer varient également en fonction du poids du patient.

Toutes ces variations (géométries des conditionnements, volumes, ..) souvent négligeables pour les

radionucléides émettant un rayonnement photonique de forte énergie, peuvent devenir importantes

pour ceux émettant des photons de faible énergie de l’ordre de la trentaine d’électronvolts. Cependant,

il n’est pas possible de déterminer un facteur de correction universel pour un conditionnement donné

et un volume donné par rapport à un conditionnement et volume de référence. En effet, cette

correction est dépendante du type d’activimètre utilisé, de sa géométrie et des matériaux utilisés

(Zimmerman et al., 2004b). Au moins est-il possible de déterminer des facteurs de correction pour

plusieurs activimètres de même référence constructeur pourvu que leur reproductibilité de fabrication

soit excellente. De même, la reproductibilité de la fabrication des conditionnements d’un même type

doit également être maîtrisée. C’est en général le cas notamment pour les seringues réalisées par

injection de plastique dans des moules (Bochud et al., 2011). Qui plus est la longueur de l’aiguille peut

parfois avoir des conséquences importantes car dans certaines configurations de l’activimètre, elle peut

décaler la hauteur de l’échantillon. Les radionucléides critiques sont identifiés ; il s’agit

principalement de 123

I, 125

I, 111

In et des émetteurs bêta purs comme 90

Y, 32

P par exemple. Une étude

systématique des principaux types d’activimètres en fonction du conditionnement et du volume de

remplissage utilisés en routine clinique s’avère nécessaire pour les médicaments radiopharmaceutiques

marqués par ces radionucléides. En effet, les pratiques dans les services de médecine nucléaire sont

très hétéroclites. En France, la distinction entre les conditionnements flacon et seringue est respectée.

En revanche, pour ce qui concerne les volumes, les pratiques sont différentes. Certains services

Page 173: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

170

étalonnent leur activimètre pour la plupart des volumes utilisés, d’autres n’utilisent qu’un seul facteur

d’étalonnage quel que soit le volume. Aussi, une étude systématique des facteurs d’étalonnage en

fonction du type de conditionnement et/ou du volume pour chacun des types d’activimètres qu’ils

utilisent, dans le respect du rapport 454 de l’AIEA, leur permettrait de s’assurer de l’adéquation entre

la mesure d’activité et l’activité prescrite. Au cours de ces études les expérimentateurs devront

s’assurer de l’homogénéité de la solution mesurée et de la reproductibilité des mesures.

Le projet de la chambre à pression variable et contrôlée peut répondre en partie à ces

difficultés concernant la mesure d’activité en fonction du type de conditionnement, du volume et de la

matrice de la solution radioactive à mesurer. En effet, les dimensions de la chambre d’ionisation

réalisée dans le cadre de ce projet seront déterminées le plus précisément possible au cours de sa

réalisation, et la composition des matériaux sera maîtrisée (cette condition est incluse dans le cahier

des charges). Aussi, la modélisation sera-t-elle très précise et la pression maîtrisée à l’aide de

l’installation d’alimentation en gaz. Ces données connues, il s’agira ensuite de simuler la réponse de la

chambre pour les divers conditionnements, volumes et matrices utilisés en routine clinique et de les

comparer aux coefficients d’étalonnage expérimentaux. L’objectif consiste ensuite à réaliser des

chambres d’ionisation très reproductibles associées à une base de coefficients d’étalonnage adaptés

aux conditions cliniques pour les radionucléides émetteurs de photons.

4.7.2 ÉTUDE DE LA RÉPONSE DES ACTIVIMÈTRES EN FONCTION DE LA MATRICE DU

RADIOPHARMACEUTIQUE

Appelons matrice la solution dans laquelle est conditionné le radionucléide. La matrice est

composée du radionucléide et de son vecteur (molécule, colloïde ou d’un autre matériau) en

suspension dans une solution injectable de sérum physiologique. La matrice est conditionnée dans un

contenant (flacon, seringue, ampoule, gélule, …). La plupart des matrices sont composées de sérum

physiologique, solution injectable et de la molécule vectrice à laquelle est associé le radionucléide.

Cependant la matrice peut varier de manière conséquente en particulier pour les traitements

isotopiques locorégionaux. En effet, la matrice du médicament radiopharmaceutique utilisé pour la

synoviorthèse, par exemple, est constituée d’un colloïde marqué avec 90

Y en suspension dans le sérum

physiologique de taille importante (2 m) qui rend la solution très inhomogène. Le conditionnement

en seringue est difficilement reproductible. Aussi le LNHB ne fournit-il aux services de médecine

nucléaire qu’un étalonnage en flacon suivant un protocole très spécifique. La réalisation d’un

étalonnage des activimètres dans des conditions proches des conditions cliniques, notamment en

seringue, nécessite une étude. Un autre traitement isotopique locorégional requiert des investigations

pour la mesure d’activité précise du médicament radiopharmaceutique avant l’injection au patient. Il

s’agit du traitement du foie à l’aide de microsphères de 90

Y. En effet, la matrice est composée de

microsphères de résine (SIR-spheres®) ou de verre (Theraspheres®) en fonction du fabricant

contenant le radionucléide 90

Y en suspension dans une solution de sérum physiologique injectable. La

présence de ces microsphères est problématique à deux titres. D’une part elles atténuent le

rayonnement bêta et ainsi la mesure peut dépendre de leur concentration, d’autre part elles rendent la

solution très inhomogène. L’inhomogénéité se traduit par une sédimentation des microsphères après

agitation de la solution qui induit une variation de la mesure d’activité dans l’activimètre au cours du

temps (en dehors de la décroissance du radionucléide). Par ailleurs, l’étalonnage de la solution fournie

par les constructeurs n’est pas traçable au niveau international. Ce sujet de recherche est intégré au

projet européen de métrologie MetroMRT (Metrology for Molecular Radiotherapy) lancé en juin

Page 174: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

171

2012. Au sein de ce projet, le LNHB pilote le groupe de travail chargé de la réalisation de la solution

étalon, notamment pour les microsphères de 90

Y, et de son transfert aux utilisateurs.

4.7.3 ÉTUDE DE LA RÉPONSE DES CHAMBRES AUX ÉLECTRONS

L’étude de la réponse des chambres d’ionisation à l’aide de la simulation Monte-Carlo a mis

en évidence des écarts importants entre les coefficients d’étalonnage simulés et les coefficients

d’étalonnage expérimentaux pour les deux chambres d’ionisation étudiées excepté pour le Tl-204 de la

chambre Vacutec. D’autres instituts de métrologie ainsi qu’un constructeur de chambre d’ionisation

obtiennent des écarts du même ordre de grandeur pour les 32

P, 89

Sr et 90

Y (l’IRA en Suisse, le NPL en

Angleterre et la société Veenstra). Outre les problèmes de géométrie, de calcul de spectre bêta ou

d’étalonnage expérimental, les différents laboratoires émettent l’hypothèse d’une inadéquation de la

physique décrivant le bremsstrahlung, et en particulier des sections efficaces, avec la réalité

expérimentale. Aussi, il serait intéressant d’étudier expérimentalement l’émission de bremsstrahlung et

de la comparer avec les résultats de simulation obtenus à l’aide des codes de calcul Monte-Carlo de

l’interaction rayonnement matière. Une première expérience pourrait être mise en œuvre au LNHB en

mesurant les radionucléides 90

Y, 32

P et 89

Sr tout en insérant un écran pour absorber les électrons émis

afin que seul le bremsstrahlung soit mesuré dans la chambre d’ionisation. D’après les résultats obtenus

aux LNHB présentés dans le paragraphe 4.4.3.1, les coefficients d’étalonnage simulés en présence

d’écrans devraient alors être plus proches de ceux obtenus expérimentalement contrairement aux

écarts observés dans les tableaux 4.4 et 4.5. Aussi, si cette hypothèse est confirmée, il faudra

investiguer les modèles utilisés pour l’interaction des électrons avec la matière et les confronter avec

l’expérience. Le LNHB pourrait également mesurer des sources de 204

Tl, 90

Y, 32

P et 89

Sr à l’aide du

détecteur cristal puits Na(I)Tl et comparer les coefficients d’étalonnage simulés avec les coefficients

d’étalonnage expérimentaux. Ensuite, un écran pourrait être placé autour des sources afin d’absorber

tous les électrons. Ainsi, l’évolution des écarts entre les coefficients d’étalonnage simulés et

expérimentaux pourrait être étudié pour le rayonnement de bremsstrahlung seul. Une étude similaire

pourrait être réalisée avec un détecteur silicium pour mesurer le spectre de bremsstrahlung et le

comparer avec le spectre simulé. Enfin, l’utilisation d’un faisceau d’électrons permettrait d’obtenir des

électrons monoénergétiques et l’insertion d’un écran d’obtenir le spectre de bremsstrahlung qui

pourrait ensuite être mesuré à l’aide d’un détecteur silicium et comparé de manière absolue avec les

résultats de simulation. Cependant peu de laboratoires disposent de tels appareillages.

4.7.4 MODÉLISATION DE LA COLLECTION DES ÉLECTRONS DANS LE DÉTECTEUR

Cette étude pourra être réalisée dans le cadre du projet « Réalisation et exploitation d’une

chambre d’ionisation à pression variable contrôlée ». Le système d’alimentation en gaz installé au

LNHB permettra de maîtriser la masse volumique. Une fois la pression maîtrisée, et en installant une

chaîne de mesure absolue de courant, la collection des charges pourra être étudiée. Les résultats de

cette étude expérimentale pourront être comparés aux résultats de simulation de la collection des

charges réalisée à l’aide des logiciels GARFIELD et COMSOL par exemple. La construction d’une

chambre d’ionisation au volume actif maîtrisé permettra d’étudier la faisabilité d’une mesure primaire

d’activité à l’aide d’une chambre d’ionisation.

Page 175: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

172

4.7.5 ÉTUDE DE L’ENERGIE MOYENNE DE CREATION DE PAIRE ELECTRON ION, W, POUR

DIFFÉRENTES NATURES DE GAZ ET DIFFÉRENTES PRESSIONS

Le projet de réalisation et d’exploitation de la chambre à pression variable et contrôlée

permettra d’avoir accès à une installation de mesure en fonction de la pression de différents gaz sur

une gamme de pression de 0,1 à 10 MPa. Le calcul des coefficients d’étalonnage d’une chambre

d’ionisation nécessite la connaissance de la valeur de l’énergie moyenne nécessaire à la création d’une

paire d’ions, W. Cette valeur pourra être déterminée pour un gaz relativement à celle d’un gaz de

référence. En effet, la validation expérimentale de la détermination du coefficient d’étalonnage simulé

pour un gaz de référence à une pression donnée permettra d’accéder à la valeur de W du gaz étudié au

travers du rapport des coefficients d’étalonnage expérimentaux. La valeur de W est nécessaire pour

déterminer le rendement d’ionisation de nombreux détecteurs à gaz comme, par exemple, les chambres

à projection temporelle (TPC) associées au détecteur Micromegas utilisées dans le cadre des

recherches de désintégration double bêta (Irastorza, 2013). Par conséquent, les résultats des valeurs

relatives de W déterminées dans le cadre du projet (notamment pour le xénon sous pression) pourront

être utiles pour ces recherches. En outre, il sera également possible, à l’aide de ce nouveau dispositif

expérimental, de vérifier si la valeur de W varie en fonction de la pression dans la gamme de pression

de 0,1 MPa à 2 MPa.

Page 176: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

173

Conclusion générale

La métrologie de la radioactivité intervient dans de nombreux domaines, de la recherche à

l’industrie incluant l’environnement et la santé, qui apparaissent comme des constants sujets de

préoccupation pour la population mondiale ces dernières années. A cette grande variété d’applications

répond un grand nombre de radionucléides de schémas de désintégration très divers sous des formes

physiques également très variées. Cette diversité impose aux instituts de métrologie de rayonnements

ionisants de disposer d’une vaste palette d’instruments et de méthodes de mesures adaptés aux

spécificités de chaque radionucléide. Les organisations nationales et internationales expriment un

intérêt grandissant pour la qualité, la crédibilité et la traçabilité des mesures et des essais. Il est donc

important de mettre en œuvre des mesures fiables et exactes, agréées et approuvées par toutes les

autorités concernées dans le monde. Ces actions font partie des missions des instituts nationaux de

métrologie des rayonnements ionisants. Elles nécessitent notamment la maîtrise des méthodes

développées pour la réalisation des étalons primaire de radioactivité et pour leur transfert. Parmi ces

différentes méthodes, certaines (RCTD, CIMAT/NIST) sont basées sur la scintillation liquide ; elles

sont utilisées comme technique de mesure primaire pour les radionucléides émetteurs bêta purs, son

domaine d’application a été étendu aux radionucléides se désintégrant par capture électronique puis à

ceux pourvus de schémas de désintégration plus complexes. Cette technique nécessite la poursuite

d’études systématiques afin de mieux maîtriser le calcul de rendement de détection des radionucléides

émetteurs de rayonnement bêta de faible énergie tels que 3H et ainsi d’améliorer l’exactitude des

mesures tout en diminuant leur incertitude. En revanche, la scintillation liquide permet de mesurer

l’activité primaire de solutions contenant des radionucléides émetteurs bêta moins de haute énergie

avec une très bonne précision comme pour 90

Y. La traçabilité de la mesure de ce radionucléide est

assurée en amont par les comparaisons internationales coordonnées par le BIPM et en aval au travers

de la mesure avec des activimètres utilisés pour la mesure d’activité juste avant l’injection au patient à

des fins curatives ou palliatives. Aussi, l’exactitude des mesures d’activité est-elle un enjeu de santé

publique pour la radiothérapie interne vectorisée et les examens isotopiques. Elle nécessite, là encore,

la maîtrise des installations de mesure et de leur rendement de détection dans des conditions

expérimentales proches de celles utilisés en routine clinique. Or ces dernières sont si variées, que les

constructeurs ne peuvent fournir des installations étalonnées spécifiquement pour chaque

conditionnement ou chaque volume de solution de médicament radiopharmaceutique auxquels elles

sont sensibles, dans le respect des incertitudes imposées par la réglementation internationale. Aussi,

les instituts nationaux de métrologie ont un rôle à jouer en concertation avec les praticiens, les

physiciens médicaux et les radiopharmaciens afin de développer des méthodes d’étalonnage et de

mesures adaptées aux conditions cliniques. Ceci afin que la dose injectée au patient puisse être exacte,

précise et optimisée. C’est important dans le cadre des examens isotopiques dont le nombre est en

constante augmentation et essentiel en radiothérapie interne vectorisée en plein développement. La

concertation entre les physiciens d’hôpitaux d’un côté et les physiciens métrologues de l’autre est

primordiale. Le LNHB s’est engagé dans cette démarche de concertation en organisant des réunions et

discussions avec les physiciens médicaux de certains services de médecine nucléaire français. Cette

démarche se concrétise aujourd’hui notamment par le lancement en juin 2012 du projet européen

Metrology for Molecular Radiotherapy (MetroMRT) qui réunit les instituts nationaux de métrologie

français, britannique et italien ainsi que de nombreux hôpitaux et laboratoires de recherche européens.

Pour aller plus loin dans l’optimisation des doses reçues par les patients lors des expositions

médicales et pour répondre à la réglementation du 22 septembre 2006 (JORF n° 226, 2006), une des

Page 177: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

174

perspectives du futur serait la transcription et la centralisation des doses reçues en radiologie comme

en diagnostic et thérapie personnalisée isotopiques, dans le dossier médical du patient. Ainsi ces

données alimenteraient les études épidémiologiques sur les adultes comme sur les enfants et

permettraient d’améliorer nos connaissances sur les effets des faibles doses et d’optimiser les

traitements.

Page 178: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

175

Références

Agostinelli, S., J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee,

G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S.

Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G.

Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano,

A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J.G. Cadenas, I. Gonzalez, G.G. Abril,

G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu,

K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J.

Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A.

Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara,

V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K.

Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen,

T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer,

M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y.

Sawada, et al., GEANT4-a simulation toolkit, Nuclear Instruments & Methods in Physics

Research Section A :accelerators, spectrometers, detectors and associated equipment, 506, 250-

303, 2003.

AIEA, Technical Report Series n° 398 (TRS 398) Absorbed Dose Determination in External Beam

Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed

Dose to Water, 2000.

AIEA, Technical Report Series n° 454 (TRS 454), Quality Assurance for Radioactivity Meaurements in

Nuclear Medicine, 2006.

Aleissa, A.K., Energy response simulation of 4pi gamma ionization chambers using Monte Carlo

technique, Medical Physics, 29, 2840-2844, 2002.

Alvarado, J.A.C., Y. Nedjadi, and F. Bochud, Determining the activity of Pu-241 by liquid scintillation

counting, Journal of Radioanalytical and Nuclear Chemistry, 289, 375-379, 2011.

Amiot-Péron, M.N., P. StemmLer, G. Soullie, V. Greiner, P. Populus, P. Chevallier, and J.C. Protas,

Measurements of linear absorption coefficients of liquid scintillators using synchrotron radiation,

Applied Radiation and Isotopes, 52, 649-655, 2000.

Amiot, M.N., Calculation of 18F, 99mTc, 111In and 123I calibration factor using the PENELOPE

ionization chamber simulation method, Applied Radiation and Isotopes Proceedings of the 14th

International Conference on Radionuclide Metrology and its Applications, ICRM 2003, 60, 529-

533, 2004.

Amiot, M.N., Cahier des charges pour la réalisation d’un banc d’alimentation en gaz d’un détecteur.

Note Technique LNHB 09-52, 2009.

Amiot, M.N. and C. Golabek, Specifications regarding the realization of a special pressurized ionization

chamber. Note Technique LNHB 12-09, 2012.

Amiot, M.N., M.M. Bé, T. Branger, P. Cassette, M.C. Lépy, Y. Menesguen, and I. Da Silva,

Standardization of Cu-64 using an improved decay scheme, Nuclear Instruments & Methods in

Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment,

684, 97-104, 2012.

Amiot, M.N., M.R. Mesradi, V. Chisté, M. Morin, and F. Rigoulay, Comparison of experimental and

calculated calibration coefficients for a high sensitivity ionization chamber, Applied Radiation

and Isotopes, 70, 2232-2236, 2012.

Page 179: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

176

Amiot, M.N. and C. Golabek, Specifications regarding the realization of a special pressurized ionization

chamber. Note Technique LNHB 13-10, 2013.

Arenillas, P., and P. Cassette, Implementation of the TDCR liquid scintillation method at CNEA-LMR,

Argentina, Applied Radiation and Isotopes, 64, 1500-1504, 2006.

Ashley, J.C., C.J. Tung, R.H. Ritchie, Inelastic interactions of electrons with polystyrene: calculations of

mean free paths, stopping powers, and CSDA ranges. IEEE Trans. Nucl. Sci., NS-25, 1566–

1570, 1978.

Ashley, J.C., Stopping Power of Liquid Water for Low-Energy Electrons, Radiation Research, 89, 25-31,

1982a.

Ashley, J.C., Energy-Losses and Inelastic Mean Free Paths of Low-Energy Electrons in Polyethylene,

Radiation Research, 90, 433-436, 1982b.

Assié, K., A. Dieudonné, I. Gardin, I. Buvat, H. Tilly, and P. Vera, Comparison between 2D and 3D

dosimetry protocols in Y-90-ibritumomab tiuxetan radioimmunotherapy of patients with non-

Hodgkin's lymphoma, Cancer Biotherapy and Radiopharmaceuticals, 23, 53-64, 2008.

Assié, K., A. Dieudonné, I. Gardin, P. Véra, I. Buvat, A Preliminary Study of Quantitative Protocols in

Indium 111 SPECT Using Computational Simulations and Phantoms. IEEE Transaction on

nuclear science, Vol. 57, n° 3, 1096-1104, 2010.

Aubert, B. and A. Talbot, Les niveaux de référence diagnostiques. ASN, revue Contrôle dossier n° 172 :

Pour une meilleure prise en compte de la radioprotection des patients dans les pratiques

médicales, 65-66, 2006.

Back, H.O., M. Balata, A. de Bari, T. Beau, A. de Bellefon, G. Bellini, J. Benziger, S. Bonetti, A.

Brigatti, C. Buck, B. Caccianiga, L. Cadonati, F. Calaprice, G. Cecchet, M. Chen, A. Di Credico,

O. Dadoun, D. D'Angelo, A. Derbin, M. Deutsch, F. Elisei, A. Etenko, F. von Feilitzsch, R.

Fernholz, R. Ford, D. Franco, B. Freudiger, C. Galbiati, F. Gatti, S. Gazzana, M.G. Giammarch,

D. Glugni, M. Goger-Neffi, A. Goretti, C. Grieb, E. de Haas, C. Hagner, W. Hampel, E. Harding,

F.X. Hartmarin, T. Hertrich, H. Hess, G. Heusser, A. Iannib, A.M. Ianni, H. de Kerret, J. Kiko,

T. Kirsteng, G. Korga, G. Korschinek, Y. Kozlov, D. Kryn, M. Laubenstein, C. Lendvai, F.

Loeser, P. Lombardi, S. Malvezzi, J. Maneira, I. Manno, D. Manuzion, G. Manuzio, F. Masetti,

A. Martemianov, U. Mazzucato, K. McCarty, E. Meroni, L. Miramonti, M.E. Monzani, P.

Musicon, L. Niedermeier, L. Oberauer, M. Obolensky, F. Ortica, M. Pallavicini, L. Papp, S.

Parmeggiano, L. Perasso, A. Pocar, R.S. Raghavan, G. Ranucci, W. Rau, A. Razeto, E. Resconi,

A. Sabelnikov, C. Salvo, R. Scardaoni, D. Schimizzi, S. Schonert, K.H. Schuhbeck, E. Seitz, H.

Simgen, T. Shutt, M. Skorokhvatov, O. Smirnov, A. Sonnenschein, A. Sotnikov, S. Sukhotin, V.

Tarasenkov, R. Tartaglia, G. Testera, and al., Study of phenylxylylethane (PXE) as scintillator

for low energy neutrino experiments, Nuclear Instruments & Methods in Physics Research

Section A :accelerators, spectrometers, detectors and associated equipment, 585, 48-60, 2008.

Baker, M., Calibration of the NPL secondary standard radionuclide calibrator for the new 10R Schott,

type 1+ vials, Applied Radiation and Isotopes, 63, 71-77, 2005.

Bé, M.M., E. Browne, V. Chechev, R. Helmer, E. Schönfeld, NUCLEIDE, Table de Radionucleides,

ISBN 2 72720200 8, and CD-ROM version 1-98, CEA/LIST/LNHB, 91191 Gif-sur-Yvette,

France, 1999.

Bé, M.-M., V. Chisté, C. Dulieu, X. Mougeot, V. Chechev, N. Kuzmenko, F. Kondev, A. Luca, M.

Galán, A.L. Nichols, A. Arinc, A. Pearce, X. Huang, B. Wang, Table of Radionuclides.

Monographie BIPM-5, Vol. 6, 2011.

Behrens, H., J., Jänecke, Numerical tables for bêta-decay and electron capture, Springer-Verlag, I/4,

Page 180: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

177

1969.

Bensch, F., and H. Ledermann, Rapid Determination of Radionuclide Activities by a Well-Type Gamma-

Ionization Chamber, Nuclear Instruments & Methods, 72, 56-60, 1969.

Berger, M.J. and J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, NBSIR 87-3597,

National Bureau of Standards (former name of NIST), Gaithersburg, MD, 1987.

Bergeron, D.E., Determination of micelle size in some commercial liquid scintillation cocktails, Applied

Radiation and Isotopes, 70, 2164-2169, 2012.

Bergeron, D.E., B.E. Zimmerman, and J.T. Cessna, Development of secondary standards for 223Ra,

Applied Radiation and Isotopes, 68, 1367-1370, 2010.

Bignell, L.J., L. Mo, D. Alexiev, and S.R. Hashemi-Nezhad, The effect of multiple gamma-ray

interactions on ionisation quenching corrections in liquid scintillants, Nuclear Instruments &

Methods in Physics Research, Section A (Accelerators, Spectrometers, Detectors and Associated

Equipment), 614, 231-236, 2010a.

Bignell, L.J., L. Mo, D. Alexiev, and S.R. Hashemi-Nezhad, Sensitivity and uncertainty analysis of the

simulation of I-123 and Mn-54 gamma and X-ray emissions in a liquid scintillation vial, Applied

Radiation and Isotopes, 68, 1495-1502, 2010b.

Bignell, L. J., L. Mo, T. Steele, Hashemi-Nezhad, S. R., The Zero Model By using Coincidence

Scintillation (ZoMBieS) Method of Absolute Radioactivity Measurement. IEEE Trans. Nucl.

Sci., PP -99, 1-8, 2013.

Birks, J. B., The efficiency of organic scintillators. Proc. Phys. Soc., A64, 874-&, 1951.

Birks, J.B., and J.C. Conte, Excimer Fluorescence. Solvent-Solute Energy Transfer, Proceedings of the

Royal Society of London Series a-Mathematical and Physical Sciences, 303, 85-&, 1968.

Birks, J.B., Organic Scintillators and Liquid Scintillation Counting, (Ed. Horrocks D.L., and Peng C.T.),

Academic Press, New-York, 1971.

Blanchis, P., Caractéristiques et utilisations d'une chambre d'ionisation au Laboratoire Primaire du

LMRI. Bulletin d’information du bureau national de métrologie 16 (59), 33-&, 1985.

Blanco, F., and G. Garcia, Screening corrections for calculation of electron scattering from polyatomic

molecules, Physics Letters A, 317, 458-462, 2003.

Bobin, C., and J. Bouchard, A 4 (LS)bêta-gamma coincidence system using a TDCR apparatus in the

bêta-channel, Applied Radiation and Isotopes, 64, 124-130, 2006.

Bobin, C., C. Thiam, J. Bouchard, and F. Jaubert, Application of a stochastic TDCR model based on

Geant4 for Cherenkov primary measurements, Applied Radiation and Isotopes, 68, 2366-2371,

2010a.

Bobin, C., J. Bouchard, and B. Censier, First results in the development of an on-line digital counting

platform dedicated to primary measurements, Applied Radiation and Isotopes, 68, 1519-1522,

2010b.

Bobin, C., C. Thiam, B. Chauvenet, and J. Bouchard, On the stochastic dependence between

photomultipliers in the TDCR method, Applied Radiation and Isotopes, 70, 770-780, 2012a.

Bobin, C., J. Bouchard, S. Pierre, and C. Thiam, Overview of a FPGA-based nuclear instrumentation

dedicated to primary activity measurements, Applied Radiation and Isotopes, 70, 2012-2017,

Page 181: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

178

2012b.

Bochud, F.O., J.P. Laedermann, S. Baechler, M. Kosinski, and C.J. Bailat, Usefulness of specific

calibration coefficients for gamma-emitting sources measured by radionuclide calibrators in

nuclear medicine, Medical Physics, 38, 4073-4080, 2011.

Bolotnikov, A., and B. Ramsey, The spectroscopic properties of high-pressure xenon, Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, 396, 360-370, 1997.

Bonnelle, C., P. Jonnard, J.M. Andre, A. Avila, D. Laporte, H. Ringuenet, M.C. Lépy, J. Plagnard, L.

Ferreux, and J.C. Protas, SOLEX: a tunable monochromatic X-ray source in the 1-20 keV energy

range for metrology, Nuclear Instruments & Methods in Physics Research Section A-

Accelerators Spectrometers Detectors and Associated Equipment, 516, 594-601, 2004.

Borges, F., and C.A.N. Conde, Experimental W-values in gaseous Xe, Kr and Ar for low energy X-rays,

Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers

Detectors and Associated Equipment, 381, 91-96, 1996.

Bouchard, J., and P. Cassette, MAC 3: an electronic module for the processing of pulses delivered by a

three photomultiplier liquid scintillation counting system, Applied Radiation and Isotopes, 52,

669-672, 2000.

Broda, R., K. Pochwalski, and T. Radoszewski, Calculation of liquid-scintillation detector efficiency,

Applied Radiation and Isotopes, 39, 159-164, 1988.

Broda, R., M.N. Péron, P. Cassette, T. Terlikowska, and D. Hainos, Standardization of Ce-139 by the

liquid scintillation counting using the triple to double coincidence ratio method, Applied

Radiation and Isotopes, 49, 1035-1040, 1998.

Broda, R., K. Maletka, T. Terlikowska, and P. Cassette, Study of the influence of the LS-cocktail

composition for the standardisation of radionuclides using the TDCR model, Applied Radiation

and Isotopes, 56, 285-289, 2002.

Broda, R., A review of the triple-to-double coincidence ratio (TDCR) method for standardizing

radionuclides, Applied Radiation and Isotopes, 58, 585-594, 2003.

Broda, R., P. Cassette, and K. Kossert, Radionuclide metrology using liquid scintillation counting,

Metrologia, 44, S36-S52, 2007.

Broda, R., T. Dziel, and A. Muklanowicz, Standardization of a Sr-85 solution by three methods, Applied

Radiation and Isotopes, 70, 2222-2226, 2012.

Briemeister, J. F., MCNP –A General Monte Carlo N-Particle Transport Code, LA-12625-M, Los

Alamos Scientific Laboratory, 1993.

Brillouet, S., X. Arrault, D. Le Guludec, O. Meyer, R. Farinotti, Les synoviorthèses radio-isotopiques :

une alternative à l’acide osmique, 2005.

Burrows, T.W., The Program RADLST, Brookhaven National Laboratory Report, BNL-NSC-52142,

1988.

Buvat, I., Quantification in emission tomography: Challenges, solutions, and performance, Nuclear

Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors

and Associated Equipment, 571, 10-13, 2007.

Caffari, Y., P. Spring, C. Bailat, Y. Nedjadi, and F. Bochud, Activity measurements of 18

F and 90

Y with

Page 182: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

179

commercial radionuclide calibrators for nuclear medicine in Switzerland, Applied Radiation and

Isotopes, 68, 1388-1391, 2010.

Camps, J., J. Paepen, Development of an ionisation chamber for the establishment of the SI unit

Becquerel. Report EUR 22609 EN. European Communities, 2006.

Capogni, M., M.L. Cozzella, P. De Felice, and A. Fazio, Comparison between two absolute methods

used for Lu-177 activity measurements and its standardization, Applied Radiation and Isotopes,

70, 2075-2080, 2012.

Carles, A.G., A.G. Malonda, Electron-capture standardization with a triple phototube system, Anales de

Fisica, Ser.B, Vol. 85, 1989.

Carles, P.G., and A.G. Malonda, Free parameter, figure of merit and ionization quench in liquid

scintillation counting, Applied Radiation and Isotopes, 54, 447-454, 2001.

Carles, G., E. Günther, G. Garcia, and A.G. Malonda, Ionization quenching in LSC, Applied Radiation

and Isotopes, 60, 447-451, 2004.

Carles, A.G., and A.G. Malonda, Computational aspects in modelling the interaction of low-energy X-

rays with liquid scintillators, Applied Radiation and Isotopes, 64, 1515-1519, 2006.

Cassette, P., SpeBêta - Programme de calcul du spectre en énergie des électrons émis par des

radionucléides émetteurs bêta, Note Technique LNHB 92-307, 1992.

Cassette, P., and R. Vatin, Experimental evaluation of TDCR models for the 3 PM liquid scintillation

counter, Nuclear Instruments & Methods in Physics Research, Section A (Accelerators,

Spectrometers, Detectors and Associated Equipment), A312, 95-99, 1992.

Cassette, P., T. Altzitzoglou, R. Broda, R. Collé, P. Dryák, P. De Felice, E. Günther, J.M.L. Arcos, G.

Ratel, B. Simpson, and F. Verrezen, Comparison of activity concentration measurement of Ni-63

and Fe-55 in the framework of the EUROMET 297 project, Applied Radiation and Isotopes, 49,

1403-1410, 1998.

Cassette, P., R. Broda, D. Hainos, and T. Terlikowska, Analysis of detection-efficiency variation

techniques for the implementation of the TDCR method in liquid scintillation counting, Applied

Radiation and Isotopes, 52, 643-648, 2000.

Cassette, P., I. Tartes, F. Maguet, J. Plagnard, M.C. Lépy, F. Jaubert, Measurement of photon absorption

coefficients of liquid scintillators in the 5 to 12 keV energy range using a monochromatic X-ray

source, LSC 2005, Advances in Liquid Scintillation Spectrometry. Radiocarbon, 125–133,

2006a.

Cassette, P., G.H. Ahn, T. Alzitzoglou, I. Aubineau-Laniece, F. Bochud, E.G. Toraño, A.G. Carles, A.G.

Malonda, K. Kossert, K.B. Lee, J.P. Laedermann, B.R.S. Simpson, W.M. van Wyngaardt, and

B.E. Zimmerman, Comparison of calculated spectra for the interaction of photons in a liquid

scintillator. Example of Mn-54 835 keV emission, Applied Radiation and Isotopes, 64, 1471-

1480, 2006b.

Cassette, P., and P. Do, The Compton source efficiency tracing method in liquid scintillation counting: A

new standardization method using a TDCR counter with a Compton spectrometer, Applied

Radiation and Isotopes, 66, 1026-1032, 2008.

Cassette, P., F. Jaubert, and I. Tartes, Study of the influence of the liquid scintillator in the Compton

efficiency tracing method, Applied Radiation and Isotopes, 68, 1510-1514, 2010.

Ceccatelli, A., M. Benassi, M. D'Andrea, P. De Felice, A. Fazio, S. Nocentini, and L. Strigari,

Page 183: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

180

Experimental determination of calibration settings of a commercially available radionuclide

calibrator for various clinical measurement geometries and radionuclides, Applied Radiation and

Isotopes, 65, 120-125, 2007.

Cessna, J.T., M.K. Schultz, T. Leslie, and N. Bores, Radionuclide calibrator measurements of 18

F in a 3

mL plastic syringe, Applied Radiation and Isotopes, 66, 988-993, 2008.

Chiavassa, S., Développement d’un outil dosimétrique personnalisé pour la radioprotection et la

radiothérapie interne vectorisée en médicine nucléaire. Thèse de doctorat, 2005.

Chou, C.N., The nature of the saturation effect of fluorescent scintillators Phys. Rev., 87, 904-&, 1952.

CIPM, Besoins nationaux et internationaux dans le domaine de la métrologie : les collaborations

internationales et le rôle du BIPM. Rapport BIPM, 1998.

CIPM, MRA: Mutual recognition of national measurement standards and of calibration and measurement

certificates issued by national metrology institutes, International Committee or Weights and

Measures, 1999.

CIPM, Reconnaissance mutuelle des étalons nationaux de mesure et des certificats d’étalonnage et de

mesurage émis par les laboratoires nationaux de métrologie. International Committee or Weights

and Measures, 2003.

CIPM, Rules of procedure for the Consultative Committees (CCs) created by the CIPM, CC working

groups and CC workshops. CIPM–D-01 Version 1.4. International Committee or Weights and

Measures, 2012.

Collé, R., Radionuclidic standardization by primary methods: An overview, Journal of Radioanalytical

and Nuclear Chemistry, 280, 265-273, 2009.

Collé, R., B.E. Zimmerman, P. Cassette, and L. Laureano-Perez, Ni-63, its half-life and standardization:

Revisited, Applied Radiation and Isotopes, 66, 60-68, 2008.

COMSOL Muliphysics, Version 4.2. http://www.comsol.com, 2011.

Coursey, B.M., A.G. Malonda, E. García-Toraño, and J.M. Los Arcos, The Standardization of Pure-Bêta-

Particle-Emitting Radionuclides, Transactions of the American Nuclear Society, 50, 13-15, 1985.

Coursey, B.M., W.B. Mann, A.G. Malonda, E. García-Toraño, J.M.L. Arcos, J.A.B. Gibson, and D.

Reher, Standardization of C-14 by 4-Pi-Bêta-Liquid Scintillation Efficiency Tracing with H-3,

Applied Radiation and Isotopes, 37, 403-408, 1986.

Cox, M.G., Michotte, C., Pearce, A.K., Measurement modelling of the International Reference System

(SIR) for gamma-emitting radionuclides, Monographie BIPM-7, 2007.

Cullen, D.E., J. H. Hubbell, L. Kissel, EPDL97: the Evaluated Photon Data Library,'97 Version. UCRL-

50400, Vol. 6, Rev. 5, NIST, 1997.

Curie, M. Recherches sur les substances radioactives. Thèse de doctorat, 1903.

de Vismes, A., and M.N. Amiot, Towards absolute activity measurements by ionisation chambers using

the PENELOPE Monte Carlo code, Applied Radiation and Isotopes, 59, 267-272, 2003.

Debertin, K., and H. Schrader, Intercomparisons for quality assurance of activity measurements with

radionuclide calibrators, Nuclear Instruments & Methods in Physics Research, Section A

(Accelerators, Spectrometers, Detectors and Associated Equipment), A312, 241-245, 1992.

Dezarn, W.A., J.T. Cessna, L.A. DeWerd, W.Z. Feng, V.L. Gates, J. Halama, A.S. Kennedy, S. Nag, M.

Page 184: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

181

Sarfaraz, V. Sehgal, R. Selwyn, M.G. Stabin, B.R. Thomadsen, L.E. Williams, and R. Salem,

Recommendations of the American Association of Physicists in Medicine on dosimetry,

imaging, and quality assurance procedures for Y-90 microsphere brachytherapy in the treatment

of hepatic malignancies, Medical Physics, 38, 4824-4845, 2011.

Dias, T.H.V.T., J. M. F. dos Santos, P. J. B. M. Rachinhas, F. P. Santos,, and a.C.A.N. Conde, Full-

energy absorption of x-ray energies near the Xe L- and K-photoionization thresholds in xenon

gas detectors: Simulation and experimental results, Journal of Applied Physics, 82, 2742-2753,

1997.

Dieudonné, A., R.F. Hobbs, W.E. Bolch, G. Sgouros, and I. Gardin, Fine-Resolution Voxel S Values for

Constructing Absorbed Dose Distributions at Variable Voxel Size, Journal of Nuclear Medicine,

51, 1600-1607, 2010.

Dieudonné, A., E. Garin, S. Laffont, Y. Rolland, R. Lebtahi, and I. Gardin, Clinical Feasibility of 3D

Dosimetry using Voxel S-Values for the Treatment of HepatoCellular Carcinoma with Yttrium

90 Microspheres, European Journal of Nuclear Medicine and Molecular Imaging, 38, S119-

S119, 2011a.

Dieudonné, A., E. Garin, S. Laffont, Y. Rolland, R. Lebtahi, D. Leguludec, and I. Gardin, Clinical

Feasibility of Fast 3-Dimensional Dosimetry of the Liver for Treatment Planning of

Hepatocellular Carcinoma with Y-90-Microspheres, Journal of Nuclear Medicine, 52, 1930-

1937, 2011b.

Dieudonné, A., R.F. Hobbs, R. Lebtahi, F. Maurel, S. Baechler, R.L. Wahl, A. Boubaker, D. Le Guludec,

G. Sgouros, and I. Gardin, Study of the Impact of Tissue Density Heterogeneities on 3-

Dimensional Abdominal Dosimetry: Comparison Between Dose Kernel Convolution and Direct

Monte Carlo Methods, Journal of Nuclear Medicine, 54, 236-243, 2013.

Directive Européenne 2009/105/EC relating to simple pressure vessels, 2009.

Do Carmo, S.J.C., Filipa I. G. M. Borges, Filipa L. R. Vinagre, and Carlos A. N. Conde, Life Member,

Experimental Study of the Values and Fano Factors of Gaseous Xenon and Ar-Xe Mixtures for

X-Rays, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 55, 2637-2642, 2008.

Dryák, P., and L. Dvořák, Measurement of the Energy Response Functions of the Uvvvr and Sir 4

Ionization Chambers, Applied Radiation and Isotopes, 37, 1071-1073, 1986.

Euramet, EURAMET procedures and review criteria for CMCs. Guide n° 8 version 1, 2008.

Euramet, Interim Evaluation of the European Metrology Research Program. Expert Panel report.

European Commission, 2012.

Etard, C., Sinno-Tellier, S., Aubert, B., Exposition de la population française aux rayonnements ionisants

liée aux actes de diagnostic médical en 2007. Rapport IRSN. Institut de Veille Sanitaire, 2010.

Francis, Z., S. Incerti, M. Karamitros, H.N. Tran and C. Villagrasa, Stopping power and ranges of

electrons, protons and alpha particles in liquid water using the Geant4-DNA package Nuclear

Instruments and Methods in Physics Research B, Volume 269, Issue 20, p. 2307-2311, 2011.

Frelin, A.M., J.M. Fontbonne, G. Ban, J. Colin, and M. Labalme, Comparative Study of Plastic

Scintillators for Dosimetric Applications, Ieee Transactions on Nuclear Science, 55, 2749-2756,

2008.

Förster, T.H., Zwischenmolekulare Energiewanderung und Fluoreszenz Ann. Physik.,ser. 6 (2), 55-75,

1948.

Page 185: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

182

Fuchs, C., and G. Laustriat, Measurement of Absolute Radioluminescence Efficiency of Liquid Benzene

and Alkylbenzene Scintillators, Revue De Physique Appliquee, 5, 617-&, 1970.

Gale, H.J., and J.A.B. Gibson, Methods of Calculating Pulse Height Height Distribution at Output of a

Scintillation Counter, Journal of Scientific Instruments, 43, 224-&, 1966.

Garcia, G., F. Blanco, A.G. Carles, and A.G. Malonda, Inelastic scattering and stopping power of low-

energy electrons (0.01-10 keV) in toluene, Applied Radiation and Isotopes, 60, 481-485, 2004.

Garcia, G., and A.G. Malonda, The influence of stopping power on the ionisation quench factor, Applied

Radiation and Isotopes, 56, 295-300, 2002.

Garcia, G., and F. Manero, Correlation of the total cross section for electron scattering by molecules with

10-22 electrons, and some molecular parameters at intermediate energies, Chemical Physics

Letters, 280, 419-422, 1997.

García-Toraño, E., and A.G. Malonda, Effy - a New Program to Compute the Counting Efficiency of

Bêta-Particles in Liquid Scintillators, Computer Physics Communications, 36, 307-312, 1985.

Gardin, I., L.G. Bouchet, K. Assie, J. Caron, A. Lisbona, L. Ferrer, W.E. Bolch, and P. Vera, Voxeldose:

A computer program for 3-D dose calculation in therapeutic nuclear medicine, Cancer

Biotherapy and Radiopharmaceuticals, 18, 109-115, 2003.

Garfield, Version 7.43, http://garfield.web.cern.ch/garfield/files/, 2011. GEANT, GEometry ANd Tracking - Detector Description and Simulation Tool, CERN, Geneva, 1993.

Gibson, J.A.B., and H.J. Gale, Absolute Standardization with Liquid Scintillation Counters, Journal of

Physics E-Scientific Instruments, 1, 99-106, 1968.

Golabek, C. and Amiot, M.N., Etude de conception d'une chambre d'ionisation à l'aide du code de

simulation Monte Carlo PENELOPE. Note Technique LNHB 12-07, 2012.

Golabek, C., Etude des performances du banc d’alimentation en gaz dédié à la chambre d’ionisation à

pression variable. Note Technique LNHB 12-27, 2012.

Golabek, C., Tests complémentaires concernant l’étude des performances du banc d’alimentation en gaz

dédié à la chambre d’ionisation à pression variable. Note Technique LNHB 13-13, 2013.

Gorozhankin, V., private communication, JINR – DNLP, 2009.

Gostely, J.-J., and J.-P. Laedermann, Simulation of the response of the IG11 4pi-gamma ionization

chamber using GEANT Monte Carlo code, Applied Radiation and Isotopes, 52, 447-453, 2000.

Gudelis, A., A. Vinciunas, P. Butkus, and M. Pranaitis, Measurements of some radionuclides using a

new TDCR system and an ultra low-level conventional LSC counter in CPST, Lithuania,

Applied Radiation and Isotopes, 70, 2204-2208, 2012.

GUM, JCGM 100:2008(F) GUM 1995 avec des corrections mineures Évaluation des données de mesure

— Guide pour l’expression de l’incertitude de mesure. Joint Committee for Guides in metrology

2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_F.pdf

Günther, E.W., Standardization of Fe-59 and I-131 by Liquid Scintillation-Counting, Nuclear

Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors

and Associated Equipment, 339, 402-407, 1994.

Page 186: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

183

Günther, E.W., Private communication, 1996.

Günther, E.W., Standardization of the EC nuclides Fe-55 and Zn-65 with the CIEMAT/NIST LSC tracer

method, Applied Radiation and Isotopes, 49, 1055-1060, 1998.

Hadid L., A. Gardumi, A. Desbrée, Evaluation of absorbed and effective dose from radiopharmaceuticals

using the ICRP 110 reference computational phantom and ICRP 103 formulation. Radiation

Protection Dosimetry, 1–19, 2013.

Halter E., C. Thiam, B. Christophe, J. Bouchard, D. Chambellan, B. Chauvenet, M. Hamel, L. Rocha, M.

Trocmé, R. Woo, Preliminary TDCR measurements using a x-ray tube at low-energies (lower

than 20 keV). LSC 2013. Advances in Liquid Scintillation Spectrometry. To be published, 2013.

Hapdey, S., I. Gardin, A. Salles, F. Rousseliere, A. Edet-Sanson, and P. Vera, Hybrid SPECT/CT:

Principle, dosimetry and quality control, Medecine Nucleaire-Imagerie Fonctionnelle et

Metabolique, 33, 285-289, 2009.

Hayes F.N., D.G. Ott and V.N. Kerr, Pulse Height Comparison of Primary. Solutes. Nucleonics, 14, 1,

42-&, 1956.

Henson A., M. Kühne and L. Erard, The European Metrology Research Program in Action. NCSLI

Measure Vol. 4, n° 4, 26-33, 2009.

Hurtado, S., M. Garcia-Leon, and R. Garcia-Tenorio, Monte Carlo simulation of the response of a

germanium detector for low-level spectrometry measurements using GEANT4, Applied

Radiation and Isotopes, 61, 139-143, 2004.

Hwang, H.Y., S.I. Kwak, H.Y. Lee, J.M. Lee, K.B. Lee, and T.S. Park, Development of 3-PM liquid

scintillation counting system with geometrical efficiency variation, Applied Radiation and

Isotopes, 60, 469-473, 2004.

ICRU, Report n° 31. Average Energy Required to Produce an Ion Pair. International Commission on

Radiation Units and Measurements., 1979.

ICRU, Report n° 37. Stopping Powers for Electrons and Positrons. International Commission on

Radiation Units and Measurements, 1984.

IEC, 61145, Calibration and usage of ionization chamber systems for assay of radionuclides Ed. 1.0 b.

1992.

Irastorza, I.G., E. Ferrer-Ribas, and T. Dafni, Micromegas in the Rare Event Searches Field, Modern

Physics Letters A, 28-&, 2013.

Iroulard, M.G., Les nouvelles ampoules de " 5 mL LNHB " et les anciennes ampoules de " 5 mL LMRI",

Note Technique LNHB 07-20, 2007.

ISO/IEC, 17025:2005 Exigences générales concernant la compétence des laboratoires d'étalonnages et

d'essais, 2005.

Ivan, C., P. Cassette, and M. Sahagia, A new TDCR-LS Counter using Channel photomultiplier tubes,

Applied Radiation and Isotopes, 66, 1006-1011, 2008.

Jaubert, F., and P. Cassette, Standardization of a P-32 solution containing pure-bêta impurities using the

TDCR method in liquid scintillation counting, Applied Radiation and Isotopes, 60, 601-606,

2004.

Johansson, L., T. Altzitzoglou, G. Sibbens, B. Denecke, and D.F.G. Reher, Six direct methods for

Page 187: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

184

standardisation of Eu-152, Nuclear Instruments & Methods in Physics Research Section A-

Accelerators Spectrometers Detectors and Associated Equipment, 508, 378-387, 2003.

Johansson, L.C., and J.P. Sephton, Validation of a new TDCR system at NPL, Applied Radiation and

Isotopes, 68, 1537-1539, 2010.

JORF n° 226. Arrêté du 22 septembre 2006 relatif aux informations dosimétriques devant figurer dans un

compte rendu d'acte utilisant les rayonnements ionisants. JORF n°226 du 29 septembre 2006

page 14449 texte n° 35, 2006.

Joseph, L., R. Anuradha, R. Nathuram, V.V. Shaha, and M.C. Abani, National intercomparisons of I-131

radioactivity measurements in nuclear medicine centres in India, Applied Radiation and Isotopes,

59, 359-362, 2003.

Kallman, H., Scintillation counting with solutions, Phys. Rev. 78, 621-622, 1950.

Keightley, J., and T.S. Park, Digital coincidence counting for radionuclide standardization, Metrologia,

44, S32-S35, 2007.

Knoll G. F., Radiation Detection and Measurement. Third edition. 2008.

http://depts.washington.edu/uwmip/Week_3/RadDetect08.pdf

Kim, G.Y., H.K. Lee, H.K. Jeong, and M.J. Woods, Comparison of radioactivity calibrators in the

measurements with radionuclide Republic of Korea, Applied Radiation and Isotopes, 63, 201-

205, 2005.

Kolarov, V., Y. Le Gallic, and R. Vatin, Absolute direct measurement of the activity of pure bêta

emitters by liquid scintillation, International Journal of Applied Radiation and Isotopes, 21, 443-

452, 1970.

Kossert, K., and H. Schrader, Activity standardization by liquid scintillation counting and half-life

measurements of Y-90, Applied Radiation and Isotopes, 60, 741-749, 2004.

Kossert, K., A new method for secondary standard measurements with the aid of liquid scintillation

counting, Applied Radiation and Isotopes, 64, 1459-1464, 2006.

Kossert, K., and A.G. Carles, The LSC efficiency for low-Z electron-capture nuclides, Applied Radiation

and Isotopes, 64, 1446-1453, 2006.

Kossert, K., and A.G. Carles, Study of a Monte Carlo rearrangement model for the activity determination

of electron-capture nuclides by means of liquid scintillation counting, Applied Radiation and

Isotopes, 66, 998-1005, 2008.

Kossert, K., G. Jorg, and C.L. von Gostomski, Activity standardization of Ca-41 by means of liquid

scintillation counting, Radiochimica Acta, 97, 1-8, 2009.

Kossert, K., Activity standardization by means of a new TDCR-Čerenkov counting technique, Applied

Radiation and Isotopes, 68, 1116-1120, 2010.

Kossert, K., and A.G. Carles, Improved method for the calculation of the counting efficiency of electron-

capture nuclides in liquid scintillation samples, Applied Radiation and Isotopes, 68, 1482-1488,

2010.

Kossert, K., O.J. Nähle, and A.G. Carles, Bêta shape-factor function and activity determination of Pu-

241, Applied Radiation and Isotopes, 69, 1246-1250, 2011a.

Kossert, K., O. Nähle, P.E. Warwick, H. Wershofen, and I.W. Croudace, Activity determination and

Page 188: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

185

nuclear decay data of Cd-113m, Applied Radiation and Isotopes, 69, 500-505, 2011b.

Kossert, K., O.J. Nähle, O. Ott, and R. Dersch, Activity determination and nuclear decay data of Lu-177,

Applied Radiation and Isotopes, 70, 2215-2221, 2012.

Kryeziu, D., Enhancement of precision and accuracy by Monte Carlo simulation of a well-type

pressurized ionization chamber used in radionuclide metrology, Ph.D. Thèse de doctorat, 2006.

Kryeziu, D., M. Tschurlovits, M. Kreuziger, and F.J. Maringer, Calculation of calibration figures and the

volume correction factors for Y-90, I-125, I-131 and Lu-177 radionuclides based on Monte Carlo

ionization chamber simulation method, Nuclear Instruments & Methods in Physics Research

Section a-Accelerators Spectrometers Detectors and Associated Equipment, 580, 250-253, 2007.

Kühn, P., TEP/IRM : l’imagerie hybride de l’avenir. Highlights 2011 : Médecine nucléaire. Forum Med

Suisse; 12(1–2): 11–12, 2012.

Kutcher, G.J., and A.E.S. Green, Model for Energy Deposition in Liquid Water, Radiation Research, 67,

408-425, 1976.

Laedermann, J.P., J.F. Valley, S. Bulling, and F.O. Bochud, Monte Carlo calculation of the sensitivity of

a commercial dose calibrator to gamma and bêta radiation, Medical Physics, 31, 1614-1622,

2004.

L'air liquide, Encyclopédie des gaz/ Gas encyclopaedia, Elsevier, Science, 1976.

L’Annunziata, M. F., Handbook of Radioactivity Analysis. Third edition. Elsevier. ISBN : 978-0-12-

384873-4, 2011.

Laureano-Perez, L., R. Collé, R. Fitzgerald, B.E. Zimmerman, and L. Cumberland, Investigation into the

standardization of Tc-99, Applied Radiation and Isotopes, 68, 1489-1494, 2010.

Lebreton, L., and M.N. Amiot, Développements de systèmes d'alimentation en gaz. Note Technique

LNHB 12-10, 2012.

Lee, K.B., J.M. Lee, T.S. Park, and H.Y. Hwang, Implementation of TDCR method in KRISS, Nuclear

Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors

and Associated Equipment, 534, 496-502, 2004.

Loidl, M., M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, and D. Lacour,

First measurement of the bêta spectrum of Pu-241 with a cryogenic detector, Applied Radiation

and Isotopes, 68, 1454-1458, 2010.

Los Arcos, J.M., and F. Ortiz, KB: a code to determine the ionization quenching function Q(E) as a

function of the kB parameter, Computer Physics Communications, 103, 83-94, 1997.

Makepeace, J., T. Altzitzoglou, P. Cassette, P. Dryák, E. Günther, F. Verrezen, R. Broda, B. Simpson,

and M. Unterweger, International comparison of measurements of the specific activity of tritiated

water, Applied Radiation and Isotopes, 49, 1411-1416, 1998.

Malonda, A.G., and E. García-Toraño, Evaluation of Counting Efficiency in Liquid Scintillation-

Counting of Pure Bêta-Ray Emitters, International Journal of Applied Radiation and Isotopes,

33, 249-253, 1982.

Malonda A.G. and E. García-Toraño, Aplicacion del método de Monte Carlo al cálculo de la

probabilidad de interaccion fotonica en tolueno. Madrid : Junta de Energia Nuclear, 1983.

Malonda, A.G., and B.M. Coursey, Calculation of Bêta-Particle Counting Efficiency for Liquid-

Page 189: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

186

Scintillation Systems with 3 Phototubes, Applied Radiation and Isotopes, 39, 1191-1196, 1988.

Malonda, A.G., Free parameter model in liquid scintillation counting. Edition CIEMAT, 1999.

Malonda, A.G., and A.G. Carles, The ionization quench factor in liquid-scintillation counting

standardizations, Applied Radiation and Isotopes, 51, 183-188, 1999.

Malonda, A.G., A.G. Carles, P.G. Carles, and G.G. Casas, EMI2, the counting efficiency for electron

capture by a KL1L2L3M model, Computer Physics Communications, 123, 114-122, 1999.

Malonda, A.G., and A.G. Carles, Standardization of electron-capture radionuclides by liquid scintillation

counting, Applied Radiation and Isotopes, 52, 657-662, 2000.

Malonda, A.G., A.G. Carles, and G. Garcia, Mean values of the LMM Auger transition in a KLM model,

Applied Radiation and Isotopes, 64, 1485-1491, 2006.

Manero, F., F. Blanco, and G. Garcia, Electron-scattering cross sections of fluoromethanes in the energy

range from 0.1 to 10 keV, Physical Review A, 66, 3, 2002.

Michotte, C., Influence of radioactive impurities on SIR measurements, Applied Radiation and Isotopes,

52, 319-323, 2000.

Michotte, C., Efficiency curve of the ionization chamber of the SIR, Applied Radiation and Isotopes, 56,

15-20, 2002.

Michotte, C., Programme SimpBêta. Private communication, 2006.

Michotte, C., A.K. Pearce, M.G. Cox, and J.J. Gostely, An approach based on the SIR measurement

model for determining the ionization chamber efficiency curves, and a study of 65

Zn and 201

Tl

photon emission intensities, Applied Radiation and Isotopes, 64, 1147-1155, 2006.

Michotte, C., G. Ratel, S. Courte, E. Verdeau, and M.N. Amiot, Activity measurements of the

radionuclide In-111 for the LNE-LNHB, France in the ongoing comparison BIPM.RI(II)-K1.In-

111, Metrologia, 47, 6-19, 2010.

Michotte, C., T.S. Park, K.B. Lee, J.M. Lee, and S.H. Lee, Comparison of Tc-99m activity

measurements at the KRISS using the new SIRTI of the BIPM, Applied Radiation and Isotopes,

70, 1820-1824, 2012.

Mo, L., B. Avci, D. James, B. Simpson, W.M. Van Wyngaardt, J.T. Cessna, and C. Baldock,

Development of activity standard for 90Y microspheres, Applied Radiation and Isotopes, 63,

193-199, 2005.

Mo, L., M.I. Reinhard, J.B. Davies, D. Alexiev, and C. Baldock, Calibration of the Capintec CRC-712M

dose calibrator for F-18, Applied Radiation and Isotopes, 64, 485-489, 2006.

Mo, L., L.J. Bignell, T. Steele, and D. Alexiev, Activity measurements of H-3 using the TDCR method

and observation of source stability, Applied Radiation and Isotopes, 68, 1540-1542, 2010.

Møller, C., Zur Theorie des Durchgangs schneller Elektronen durch Materie, Ann. Physik, 406, 5, 531-

585, 1932.

Mougeot, X., BêtaShape – Calcul de la forme des spectres bêta. Note Technique LNHB 10-33, 2010.

Mougeot, X., M.M. Bé, C. Bisch, and M. Loidl, Evidence for the exchange effect in the bêta decay of

Pu-241, Physical Review A, 86-&, 2012.

Nähle O., K. Karsten, J. Brunzendorf, Study of light emission processes for the design of liquid

Page 190: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

187

scintillation counters. LSC 2009 Advances in Liquid Scintillation Spectrometry edited by J.

Eikenberg, M. Jäggi, H. Beer, H. Baehrle. 87–95, 2009.

Nähle, O., K. Kossert, and P. Cassette, Activity standardization of H-3 with the new TDCR system at

PTB, Applied Radiation and Isotopes, 68, 1534-1536, 2010.

Nelder, J.A. and Mead, R., A Simplex Method for Function Minimization, Computer Journal, Vol. 7,

issue 4, 308-313, 1965.

Nelson W. R., H. Hirayama, D. W. O. Rogers, The EGS4 Code System, SLAC-265, 1985.

Olsovcová, V., Activity measurements with radionuclide calibrators in the Czech Republic, Applied

Radiation and Isotopes, 60, 535-538, 2004.

Olsovcová, V., and M. Havelka, Monte Carlo calculations of calibration and geometry correction factors

of a radionuclide calibrator, Applied Radiation and Isotopes, Proceedings of the 15th

International Conference on Radionuclide Metrology and its Applications, 64, 1370-1374, 2006.

Olsovcová, V., Monte Carlo simulation of activity measurement of 123

I, 111

In and 153

Sm with a

radionuclide calibrator, Applied Radiation and Isotopes 68, 1383-1387, 2010.

Olsovcová, V., A. Iwahara, P. Oropesa, L. Joseph, A. Ravindra, M. Ghafoori, H.K. Son, M. Sahagia, S.

Tastan, and B. Zimmerman, National comparison of I-131 measurement among nuclear medicine

clinics of eight countries, Applied Radiation and Isotopes, 68, 1371-1377, 2010.

Oropesa, P., A.T. Hernandez, R. Serra, and C. Varela, Comparisons of activity measurements with

radionuclide calibrators - A tool for quality assessment and improvement in nuclear medicine,

Applied Radiation and Isotopes, 63, 493-503, 2005.

Oropesa, P., M. Woods, V. Olsovcova, and J.A. dos Santos, Radionuclide calibrator comparisons and

quality improvement in nuclear medicine, Applied Radiation and Isotopes, 66, 353-361, 2008.

Oropesa, P., Y. Moreno, R.A. Serra, and A.T. Hernandez, The traceability chain of I-131 measurements

for nuclear medicine in Cuba, Applied Radiation and Isotopes, 70, 2251-2254, 2012.

Parks, J.E., G. S. Hurst, T. E. Stewart, and H. L. Weidner, Ionization of the Noble Gases by Protons:

Jesse Effects as a Function of Pressure, Journal of Chemical Physics, 57, 5467-5473, 1972.

Pearce, A.K., C. Michotte, and Y. Hino, Ionization chamber efficiency curves, Metrologia, 44, S67-S70,

2007.

Pendrill, L., Euramet : European association of National Metrology Institutes. NCSLI Measure, Vol 4, n°

4, 40-44, 2009.

Perichon, N., Etablissement des références nationales, en termes de dose absorbée, par calorimétrie dans

l’eau, pour les faisceaux de rayons X de moyenne énergie, applicables en radiothérapie. Thèse de

doctorat, 2012.

Péron, M.N., Etude de la réponse des scintillateurs liquides à des électrons monoénergétiques de basse

énergie. Thèse de doctorat, 1995.

Phelps, M.E., M.M. Terpogossian, E.J. Hoffman, N.A. Mullani, and C.S. Coble, Computerized

Transaxial Tomograph for Nuclear-Medicine Imaging, Journal of Nuclear Medicine, 16, 558-

558, 1975.

Plante, I., and F.A. Cucinotta, Cross sections for the interactions of 1 eV-100 MeV electrons in liquid

water and application to Monte Carlo simulation of HZE radiation tracks, New Journal of

Page 191: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

188

Physics, 11, 1-24, 2009.

Pochwalski, K., R. Broda, and T. Radoszewski, Standardization of pure bêta emitters by liquid-

scintillation counting, Applied Radiation and Isotopes, 39, 165-172, 1988.

Qin, M.J., L. Mo, D. Alexiev, and P. Cassette, Construction and implementation of a TDCR system at

ANSTO, Applied Radiation and Isotopes, 66, 1033-1037, 2008.

Radioprotection 91. Critères d'acceptabilité des installations de radiologie (y compris de radiothérapie) et

de médecine nucléaire. Commission Européenne, 1997.

Rasool, M., A. Hossein, M. Ali, A New Piecewise EOS for Compressibility Factor Prediction Based on

the M-factor Theory. Iran. J. Chem. Chem. Eng. 29 (2), 67-84, 2010.

Ratel, G., The Systeme International de Reference and its application in key comparisons, Metrologia,

44, S7-S16, 2007.

Ratel, G., Analysis of the results of the international comparison of activity measurements of a solution

of Fe-55, Applied Radiation and Isotopes, 66, 729-732, 2008.

Razdolescu, A.C., and P. Cassette, Standardization of tritiated water and Tl-204 by TDCR liquid

scintillation counting, Applied Radiation and Isotopes, 60, 493-497, 2004.

Razdolescu, A.C., P. Cassette, and M. Sahagia, Measurement of Fe-55 solution activity by LSC-TDCR

method, Applied Radiation and Isotopes, 66, 750-755, 2008.

Razdolescu, A.C., M. Sahagia, P. Cassette, E.L. Grigorescu, A. Luca, and C. Ivan, Standardization of Sr-

89, Applied Radiation and Isotopes, 56, 461-465, 2002.

Reynolds G.T., F.B. Harrison, G. Salvini, Liquid scintillation counters, Phys. Rev. 78, 488-&, 1950.

Rohrlich, F., and B.C. Carlson, Energy Loss of Positrons and Electrons, Physical Review, 90, 378-378,

1953.

Rodríguez Barquero, R.L. and J.M. Los Arcos, Compensation by the CIEMAT/NIST-method of long-

term effects in LSC measurements of bêta emitters. Applied Radiation and Isotopes, 61, (6),

1403-1411, 2004.

Rytz, A., International coherence of activity measurements. Environment International 1, 15-18, 1978.

Rytz, A., The international reference system for activity measurements of gamma-ray emitting nuclides,

The International Journal of Applied Radiation and Isotopes, 34, 1047-1056, 1983.

Salvat, F., Fernandez-Varea, and Sempau, J., PENELOPE-2008, A Code System for Monte Carlo

Simulation of Electron and Photon Transport, in Workshop proceedings, edited by OECD/NEA,

Barcelona, Spain, 2008.

Salvat, F., J.M. Fernandez-Varea, N. Leinfellner, J. Sempau, and A. Sanchez-Reyes, Penelope: Taking

advantage of class II simulation, Proceedings of the Fourth Specialists Meeting on Shielding

Aspects of Accelerators, Targets and Irradiation Facilities, 261-276, 1999.

Santos, J.A.M., M.F. Carrasco, J. Lencart, and A.L. Bastos, Syringe shape and positioning relative to

efficiency volume inside dose calibrators and its role in nuclear medicine quality assurance

programs, Applied Radiation and Isotopes, 67, 1104-1109, 2009.

Santry, D., The Canadian experience in performing accuracy checks on administered doses of

radiopharmaceuticals, Applied Radiation and Isotopes, 49, 1453-1458, 1998.

Page 192: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

189

Sato, Y., T. Yamada, M. Matsumoto, Y. Wakitani, T. Hasegawa, T. Yoshimura, H. Murayama, K. Oda,

T. Sato, Y. Unno, and A. Yunoki, Efficiency fitting for TDCR measurement data using

polynomial approximation and the Newton-Raphson method, Applied Radiation and Isotopes,

70, 2184-2187, 2012.

Sato, Y., A. Yunoki, Y. Hino, and T. Yamada, Response calculation for standard ionization chambers in

the APMP using EGS4 Monte Carlo code, Applied Radiation and Isotopes, 64, 1211-1214, 2006.

Schmidt, W., Euramet developing its new role in European metrology Proceeding IMEKO 1st Regional

Metrology Organisations Symposium – RMO 2008; 20th International Metrology symposium

November 12-15, Cavtat-Dubrovnik, Croatia, 2008.

Schönfeld, E., U. Schötzig, E. Günther, and H. Schrader, Standardization and Decay Data of Ge-68/Ga-

68, Applied Radiation and Isotopes, 45, 955-961, 1994.

Schötzig, U., H. Schrader, E. Schönfeld, E. Günther, and R. Klein, Standardisation and decay data of Lu-

177 and Re-188, Applied Radiation and Isotopes, 55, 89-96, 2001.

Schrader, H., and H.M. Weiss, Calibration of Radionuclide Calibrators, International Journal of Nuclear

Medicine & Biology, 10, 121-124, 1983.

Schrader, H., Activity measurements with ionization chambers, Monographie BIPM-4, 1997.

Schrader, H., Calibration and consistency of results of an ionization-chamber secondary standard

measuring system for activity, Applied Radiation and Isotopes, 52, 325-334, 2000.

Schrader, H., and A. Švec, Comparison of ionization chamber efficiencies for activity measurements,

Applied Radiation and Isotopes, 60, 369-378, 2004.

Schrader, H., Ionization chambers, Metrologia, 44, S53-S66, 2007.

Schrader, H., K. Kossert, and J. Mintcheva, Calibration of a radionuclide calibrator system as a

Bulgarian standard for activity, Applied Radiation and Isotopes, 66, 965-971, 2008.

Schultz, M.K., J.T. Cessna, T.L. Anderson, J.A. Ponto, N. Petry, R.J. Kowalsky, M.R. Palmer, U.F.

Beinlich, W. Baker, G.H. Hinkle, J.C. Hung, T. Quinton, P.A. Rice, C. Divgi, and J.P.

Norenberg, A performance evaluation of 90

Y dose-calibrator measurements in nuclear

pharmacies and clinics in the United States, Applied Radiation and Isotopes, 66, 252-260, 2008.

Schwerdtel, E., A Simple Method for an Exact Efficiency Determination in Liquid Scintillation Counting

of Low-Energy Bêta Emitters, Atomkernenergie, 11, 324-325, 1966.

Segars, W. P., Development and application of the new dynamic NURBS-based cardiac-torso (NCAT)

phantom. Thèse de doctorat, 2001.

Seltzer, S.M., and M.J. Berger, Procedure for calculating the radiation stopping power for electrons,

International Journal of Applied Radiation and Isotopes, 33, 1219-1226, 1982.

Seneviratne, M.D.S., Reinhard M.I., Baldock C., The energy response of a T.P.A. Mk-II ionization

chamber using GEANT4 Monte Carlo simulation, Physics in medicine and biology, 52, 3837–

3846, 2007.

SFMN, Le livre blanc de la médicine nucléaire. 2012. http://www.sfmn.org/index.php/livre-blanc-de-la-

medecine-nucleaire

Shurcliff, W.A., and R.C. Jones, The Trapping of Fluorescent Light Produced within Objects of High

Geometrical Symmetry, Journal of the Optical Society of America, 39, 912-916, 1949.

Page 193: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

190

Sibbens, G., A comparison of NIST/SIR-, NPL-, and CBNM 5 mL ampoules, GE/R/RN/14/91, CEC-

JRC Central Bureau for Nuclear Measurements, Belgium, 1991.

Siegbahn K. Alpha-, bêta- and gamma-ray spectroscopy. North Holland Publishing, Amsterdam, 1965.

Simões, C., M. Caldeira, and C. Oliveira, Comparative study of Curiementor ionization chambers using

Monte Carlo simulations, Applied Radiation and Isotopes, 68, 1121-1127, 2010.

Simpson, B.R.S., and B.R. Meyer, Further Investigations of the TDCR Efficiency Calculation Technique

for the Direct Determination of Activity, Nuclear Instruments & Methods in Physics Research

Section A-Accelerators Spectrometers Detectors and Associated Equipment, 312, 90-94, 1992.

Simpson, B.R.S., W.M. van Wyngaardt, and J. LubBé, Fe-55 activity measurements at the NMISA

revisited, Applied Radiation and Isotopes, 68, 1529-1533, 1991.

Snyder W. S., M. R. Ford, G.G. Warner, S.B. Watson, "S," absorbed dose per unit cumulated activity for

selected radionuclides and organs. MIRD Pamphlet No. 11, Society of Nuclear Medicine, New

York, NY, 1975.

Sochorová, J., P. Auerbach, and Z. Dutka, Activity standardisation of Ca-45 and Tl-204 using the new

TDCR system at CMI, Applied Radiation and Isotopes, 70, 2200-2203, 2012.

Stabin, M., Nuclear medicine dosimetry, Physics in Medicine and Biology, 51, R187-R202, 2006.

Stabin, M.G., M.A. Emmons, W.P. Segars, and M.J. Fernald, Realistic reference adult and paediatric

phantom series for internal and external dosimetry, Radiation Protection Dosimetry, 149, 56-59,

2012.

Stabin, M.G., M. Tagesson, S.R. Thomas, M. Ljungberg, and S.E. Strand, Radiation dosimetry in nuclear

medicine, Applied Radiation and Isotopes, 50, 73-87, 1999.

Steele, T., L. Mo, L. Bignell, M. Smith, and D. Alexiev, FASEA: A FPGA Acquisition System and

Software Event Analysis for liquid scintillation counting, Nuclear Instruments & Methods in

Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment,

609, 217-220, 2009.

Sternheimer, R.M., and R.F. Peierls, General expression for the density effect for the ionization loss of

charged particles, Physical Review B (Solid State), 3, 3681-3692, 1971.

Suzuki, H., K. Sibaike, H. Hashimoto, Y. Kawada, and Y. Hino, Analysis of 4 pi gamma ionization

chamber response using EGS4 Monte Carlo code, Applied Radiation and Isotopes, 49, 1245-

1249, 1998.

Švec, A., and H. Schrader, Fitting methods for constructing energy-dependent efficiency curves and their

application to ionization chamber measurements, Applied Radiation and Isotopes, 56, 237-243,

2002.

Tan, Z.Y., and Y.Y. Xia, Stopping power and mean free path for low-energy electrons in ten scintillators

over energy range of 20-20,000 eV, Applied Radiation and Isotopes, 70, 296-300, 2012.

Terlikowska, T., P. Cassette, M.N. Péron, R. Broda, D. Hainos, I. Tartes, and T. Kempisty, Study of the

stability of Ni-63 sources in Ultima Gold® liquid scintillation cocktail, Applied Radiation and

Isotopes, 49, 1041-1047, 1998.

Thiam, C., C. Bobin, and J. Bouchard, Simulation of Cherenkov photons emitted in photomultiplier

windows induced by Compton diffusion using the Monte Carlo code GEANT4, Applied

Radiation and Isotopes, 68, 1515-1518, 2010.

Page 194: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

191

Thiam, C., C. Bobin, B. Chauvenet, and J. Bouchard, Application of TDCR-Geant4 modeling to

standardization of Ni-63, Applied Radiation and Isotopes, 70, 2195-2199, 2012.

Tyler, D.K., and M.J. Woods, Syringe calibration factors and volume correction factors for the NPL

secondary standard radionuclide calibrator, Syringe calibration factors and volume correction

factors for the NPL secondary standard radionuclide calibrator, 2002.

Tyler, D.K., and M.J. Woods, Syringe calibration factors for the NPL Secondary Standard Radionuclide

Calibrator for selected medical radionuclides, Applied Radiation and Isotopes, 59, 367-372,

2003.

Valley, J.F., S. Bulling, M. Leresche, and C. Wastiel, Determination of the efficiency of commercially

available dose calibrators for bêta-emitters, Journal of Nuclear Medicine Technology, 31, 27-32,

2003.

van Wyngaardt, W.M., B.R.S. Simpson, M.J. van Staden, and J. LubBé, Absolute standardization of Pu-

241 by the TDCR technique and effect of the bêta spectral shape, Applied Radiation and

Isotopes, 70, 2188-2194, 2012.

Wanke, C., K. Kossert, and O.J. Nähle, Investigations on TDCR measurements with the HIDEX 300 SL

using a free parameter model, Applied Radiation and Isotopes, 70, 2176-2183, 2012.

Weiss, H.M., 4Pi-gamma Ionization Chamber Measurements, Nuclear Instruments & Methods, 112, 291-

297, 1973.

Wilderman, S.J., and Y.K. Dewaraja, Method for fast CT/SPECT-based 3D Monte Carlo absorbed dose

computations in internal emitter therapy, IEEE Transactions on Nuclear Science, 54, 146-151,

2007.

Wondergem, M., M.L.J. Smits, M. Elschot, H. de Jong, H.M. Verkooijen, M. van den Bosch, J.F.W.

Nijsen, and M. Lam, Tc-99m-Macroaggregated Albumin Poorly Predicts the Intrahepatic

Distribution of Y-90 Resin Microspheres in Hepatic Radioembolization, Journal of Nuclear

Medicine, 54, 1294-1301, 2013.

Wu, Y.L., J.C. Liang, J.C. Liu, W.J. Xiong, S.H. Yao, X.Q. Guo, X.L. Chen, Y.D. Yang, and D.Q. Yuan,

Standardization of Tritium Water by TDCR Method, Plasma Science & Technology, 14, 644-

646, 2012.

Zeintl, J., A.H. Vija, A. Yahil, J. Hornegger, and T. Kuwert, Quantitative Accuracy of Clinical Tc-99m

SPECT/CT Using Ordered-Subset Expectation Maximization with 3-Dimensional Resolution

Recovery, Attenuation, and Scatter Correction, Journal of Nuclear Medicine, 51, 921-928, 2010.

Zimmerman, B.E., and J.T. Cessna, Experimental determinations of commercial `dose calibrator' settings

for nuclides used in nuclear medicine, Applied Radiation and Isotopes, 52, 615-619, 2000.

Zimmerman, B.E., M.P. Unterweger, and J.W. Brodack, The standardization of 177

Lu by 4 liquid

scintillation spectrometry with 3H-standard efficiency tracing, Applied Radiation and Isotopes,

54, 623-631, 2001a.

Zimmerman, B.E., G.J. Kubicek, J.T. Cessna, P.S. Plascjak, and W.C. Eckelman, Radioassays and

experimental evaluation of dose calibrator settings for 18

F, Applied Radiation and Isotopes, 54,

113-122, 2001b.

Zimmerman, B.E., R. Collé, J.T. Cessna, R. Broda, and P. Cassette, Application of the triple-to-double

coincidence ratio (TDCR) method for the absolute standardization of radionuclides by liquid

scintillation counting, Abstracts of Papers of the American Chemical Society, 223, B154-B154,

Page 195: RAPPORT CEA-R-6383 – Marie-Noëlle AMIOT

192

2002.

Zimmerman, B.E., R. Collé, and J.T. Cessna, Construction and implementation of the NIST triple-to-

double coincidence ratio (TDCR) spectrometer, Applied Radiation and Isotopes, 60, 433-438,

2004a.

Zimmerman, B.E., J.T. Cessna, and M.A. Millican, Experimental determination of calibration settings

for plastic syringes containing solutions of 90

Y using commercial radionuclide calibrators,

Applied Radiation and Isotopes, 60, 511-517, 2004b.

Zimmerman B.E. and G. Ratel, Report of the CIPM Key Comparison CCRI(II)-K2.Y-90, Metrologia,

42, Tech. Suppl., 06001, 2005.

Zimmerman, B.E., T. Altzitzoglou, D. Rodrigues, R. Broda, P. Cassette, L. Mo, G. Ratel, B. Simpson,

W. van Wyngaardt, and C. Wätjen, Comparison of triple-to-double coincidence ratio (TDCR)

efficiency calculations and uncertainty assessments for Tc-99, Applied Radiation and Isotopes,

68, 1477-1481, 2010.