14
RADIOCARBON, Vol 46, Nr 3, 2004, p 1211–1224 © 2004 by the Arizona Board of Regents on behalf of the University of Arizona 1211 RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE HUON PENINSULA, PAPUA NEW GUINEA G S Burr 1 • Chrystie Galang 1 • F W Taylor 2 • Christina Gallup 3 • R Lawrence Edwards 4 Kirsten Cutler 4 • Bill Quirk 5 ABSTRACT. This paper presents radiocarbon results from a single Goniastrea favulus coral from Papua New Guinea which lived continuously between 13.0 and 13.1 kyr BP. The specimen was collected from a drill core on the Huon Peninsula and has been independently dated with 230 Th. A site-specific reservoir correction has been applied to the results, and coral growth bands were used to calibrate individual growth years. Alternating density bands, which are the result of seasonal growth vari- ations, were subsampled to provide 2 integrated 6-month 14 C measurements per year. This allows for 20 independent mea- surements to be averaged for each decadal value of the 14 C calibration, making these results the highest resolution data set available for this brief time range. The finestructure of the data set exhibits 14 C oscillations with frequencies on the order of 4 to 10 yr, similar to those observed in modern coral 14 C records. INTRODUCTION Radiocarbon dates may be calibrated using a variety of natural archives. The IntCal98 calibration combines tree rings, corals, and marine varved sediments (Stuiver et al. 1998), and the same combi- nation is applied in the present IntCal04 calibration (Reimer et al., this issue). Tree rings provide the most robust results, with potentially annual temporal resolution, but they are limited to trees which can be wiggle-matched to known years. Corals, dated with U/Th, were first utilized by Bard et al. (1990, 1993, 1996) to extend the tree-ring limit of the 14 C calibration. One potential advantage of corals is that the skeletons of some species preserve subannual chemical variations related to seawa- ter chemistry, and have relatively thick and continuous growth bands. Certain of these species can also live for hundreds of years. These features of coral archives have been widely exploited over the past 2 decades to produce a wealth of climate data from oxygen isotopic and trace element analyses (Druffel 1997; Gagan et al. 2000). However, there has only been 1 example of a single long-lived coral applied to the 14 C calibration. This is the Diploastrea heliopora analyzed as part of the IntCal98 effort. The Diploastrea was collected from Vanuatu and preserved a 14 C record spanning more than 400 yr during the Younger Dryas (Burr et al. 1998). Two reasons why more corals of this type are not available are the rare geologic conditions required for their preservation and the logis- tical difficulties which must be overcome to collect them. The Diploastrea sample grew in a tecton- ically active region off the coast of Espiritu Santo Island in Vanuatu. This site is located along a plate boundary that has experienced rapid and variable uplift since the time the coral lived there (Taylor et al. 1987; Cabioch et al. 2003). The amount and direction of tectonic uplift in Vanuatu matched the concurrent rapid sea-level rise during this period, leaving the coral in a position where it could be retrieved by drilling. As there is no existing technology which can locate large buried coral heads, it was also fortuitous that the position of the drill rig during the Vanuatu field campaign happened to be located over this particular coral. Such fortunate circumstances have not often been repeated at other sites and such samples remain rare. 1 University of Arizona, NSF-Arizona AMS Laboratory, Tucson, Arizona 85721, USA. 2 Institute for Geophysics, The University of Texas at Austin, 4412 Spicewood Springs Road, Bld. 600, Austin, Texas 78759- 8500, USA. 3 University of Minnesota Duluth Geological Sciences, Room 229 HHD175, 10 University Drive, Duluth, Minnesota 55812, USA 4 Minnesota Isotope Laboratory, Department of Geology and Geophysics, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA. 5 University Medical Center, University of Arizona, Tucson, Arizona 85721, USA.

RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

RADIOCARBON, Vol 46, Nr 3, 2004, p 1211–1224 © 2004 by the Arizona Board of Regents on behalf of the University of Arizona

1211

RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE HUON PENINSULA, PAPUA NEW GUINEA

G S Burr1 • Chrystie Galang1 • F W Taylor2 • Christina Gallup3 • R Lawrence Edwards4 • Kirsten Cutler4 • Bill Quirk5

ABSTRACT. This paper presents radiocarbon results from a single Goniastrea favulus coral from Papua New Guinea whichlived continuously between 13.0 and 13.1 kyr BP. The specimen was collected from a drill core on the Huon Peninsula andhas been independently dated with 230Th. A site-specific reservoir correction has been applied to the results, and coral growthbands were used to calibrate individual growth years. Alternating density bands, which are the result of seasonal growth vari-ations, were subsampled to provide 2 integrated 6-month 14C measurements per year. This allows for 20 independent mea-surements to be averaged for each decadal value of the 14C calibration, making these results the highest resolution data setavailable for this brief time range. The finestructure of the data set exhibits 14C oscillations with frequencies on the order of4 to 10 yr, similar to those observed in modern coral 14C records.

INTRODUCTION

Radiocarbon dates may be calibrated using a variety of natural archives. The IntCal98 calibrationcombines tree rings, corals, and marine varved sediments (Stuiver et al. 1998), and the same combi-nation is applied in the present IntCal04 calibration (Reimer et al., this issue). Tree rings provide themost robust results, with potentially annual temporal resolution, but they are limited to trees whichcan be wiggle-matched to known years. Corals, dated with U/Th, were first utilized by Bard et al.(1990, 1993, 1996) to extend the tree-ring limit of the 14C calibration. One potential advantage ofcorals is that the skeletons of some species preserve subannual chemical variations related to seawa-ter chemistry, and have relatively thick and continuous growth bands. Certain of these species canalso live for hundreds of years. These features of coral archives have been widely exploited over thepast 2 decades to produce a wealth of climate data from oxygen isotopic and trace element analyses(Druffel 1997; Gagan et al. 2000). However, there has only been 1 example of a single long-livedcoral applied to the 14C calibration. This is the Diploastrea heliopora analyzed as part of theIntCal98 effort. The Diploastrea was collected from Vanuatu and preserved a 14C record spanningmore than 400 yr during the Younger Dryas (Burr et al. 1998). Two reasons why more corals of thistype are not available are the rare geologic conditions required for their preservation and the logis-tical difficulties which must be overcome to collect them. The Diploastrea sample grew in a tecton-ically active region off the coast of Espiritu Santo Island in Vanuatu. This site is located along a plateboundary that has experienced rapid and variable uplift since the time the coral lived there (Tayloret al. 1987; Cabioch et al. 2003). The amount and direction of tectonic uplift in Vanuatu matched theconcurrent rapid sea-level rise during this period, leaving the coral in a position where it could beretrieved by drilling. As there is no existing technology which can locate large buried coral heads, itwas also fortuitous that the position of the drill rig during the Vanuatu field campaign happened tobe located over this particular coral. Such fortunate circumstances have not often been repeated atother sites and such samples remain rare.

1University of Arizona, NSF-Arizona AMS Laboratory, Tucson, Arizona 85721, USA.2Institute for Geophysics, The University of Texas at Austin, 4412 Spicewood Springs Road, Bld. 600, Austin, Texas 78759-8500, USA.

3University of Minnesota Duluth Geological Sciences, Room 229 HHD175, 10 University Drive, Duluth, Minnesota 55812,USA

4Minnesota Isotope Laboratory, Department of Geology and Geophysics, University of Minnesota, 310 Pillsbury Drive SE,Minneapolis, Minnesota 55455, USA.

5University Medical Center, University of Arizona, Tucson, Arizona 85721, USA.

Page 2: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1212 G S Burr et al.

We report here on another such coral, which lived for about a century between 13.0 and 13.1 kyr BP.This coral is a Goniastrea favulus and was collected during a drilling campaign in 1996. The drillingtook place on an uplifted Holocene terrace located on the Huon Peninsula in Papua New Guinea(Figure 1). The drill was positioned a few meters from the present shoreline, near Kwambu Village,and the sample was encountered at about 40 m depth. The tectonic setting of the Huon Peninsula issimilar to Vanuatu, experiencing continual and rapid uplift throughout the Holocene (Chappell andPolach 1991), and the reef was able to keep up with the approximately 100 m of sea-level rise whichoccurred during the last 13 kyr (Cutler et al. 2003).

METHODS

A 1.5-inch-diameter core was drilled perpendicular to the vertical growth axis of the Goniastreafavulus. This was cut in half lengthwise with a diamond saw and then cut again to into a 5-mm slab.The slab was X-rayed to identify individual growth bands (Figure 2). The X-ray image reveals sub-annual high- and low-density bands. Each pair of high- and low-density bands accounts for 1 yr ofgrowth. An advantage of using this species of coral is that it produces very well-defined densitybands as is evident in Figure 2. Two samples were taken for each year of growth—a low-densitysubsample and a high-density subsample. The sampling was carefully conducted so as to collect theentire light or dark band as viewed in the X-ray image. This was done to obtain an integral 14C mea-surement for the approximately 6-month growth period and thus average higher frequency 14C vari-ations, which are known to occur in corals (Brown et al. 1993; Moore et al. 1997; Guilderson et al.1998).

Each sample was dissolved in acid to produce CO2, and the gas was subsequently reduced to graph-ite for accelerator mass spectrometry (AMS) analysis. All of the samples were subjected to theselective dissolution technique described by Burr et al. (1992). A piece of the core was analyzedusing X-ray powder diffraction to ensure that it was free of secondary calcite. Multiple measure-ments of corals in excess of 100 kyr were used to determine the blank and blank uncertainty. A dis-cussion of the background calculation is given in Donahue et al. (1990).

Figure 1 Location of drill site used to collect the sample

Page 3: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1213

Figure 2 X-ray image of the Goniastrea favulus sample. Notethe alternating light and dark density bands. The core isapproximately 1.5 inches in diameter.

Page 4: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1214 G S Burr et al.

RESULTS AND DISCUSSION

All of the results presented here are given as fraction modern carbon (F) values, reservoir-correctedfraction modern carbon (FRC) values, and reservoir-corrected 14C ages and 14C values. F is definedby the equation

F = (14C/13C)S / (14C/13C)STD ,

where (14C/13C)S is the sample ratio normalized to δ13C = –25‰ and (14C/13C)STD is the calculatedstandard ratio at 1950, determined from measurements of NBS oxalic acid standards, also normalizedto δ13C = –25‰ (Donahue et al. 1990). Uncorrected F values must be reservoir-corrected with a site-specific reservoir-correction factor to calculate 14C ages that reflect the atmospheric 14C content(equivalent to tree-ring dates). The reservoir-corrected fraction modern carbon FRC is defined here as

FRC ≡ FeRC/τ ,

where RC is the site-specific reservoir correction in years and τ is the Libby mean life (8033 yr). Forthe Huon Peninsula, RC is equal to 407 ± 52 yr (2 σ) (Edwards et al. 1993). This value was chosenbecause these samples came from the same site studied by Edwards et al. (1993). The uncertainty inthe reservoir correction is propagated into the total uncertainty of each measurement (uncorrected Fvalue) to yield the uncertainty in FRC, according to the equation (Burr et al. 1998):

.

The σs represent the uncertainties in FRC, F, and RC.

∆14C values were computed from FRC values using the relation

∆14C = (FRC eλt–1) 1000‰ ,

where t is the age BP of the sample in calendar years.

The total uncertainty in ∆14C is σ∆ and includes errors in FRC and in the 230Th ages (t), according tothe expression

.

Table 1 gives the results of the 230Th measurements. Three independent measurements were madeat the Minnesota Isotope Laboratory and all of them are internally consistent. Table 2 lists the bian-nual 14C results for each growth year and assigns a corresponding calendar age to these, accordingto the 230Th results. These data are summarized as 5-yr weighted averages in Table 3.

Table 1 230Th results.

Sample238U(ppb)

232Th(pg/g)

230Th/238U(activity)

δ234Um(‰)

230Th age BP(kyr) before 1950

δ234Ui(‰)

PNG-96-41.27-88a

aThere are 88 yr of growth preserved. Layer #88 is the uppermost dark/light band couplet.

2166.2 ± 2.9 123.4 ± 5.5 0.12892 ± 0.00037 142.8 ± 1.7 12,985 ± 45 148.2 ± 1.7replicate analysis 12,996 ± 129

PNG-96-41.27-11 1383.5 ± 1.8 9.0 ± 2.4 0.13015 ± 0.00035 143.0 ± 1.6 13,115 ± 43 148.4 ± 1.7

Average date of the core top: 13,011 ± 30 (2 σ)

σFRCe RC( ) τ⁄( )

2σF( )2 F τ⁄( ) e RC( ) τ⁄( )[ ]2

σRC( )2+

12---

=

σ∆ 1000eλt FRCλ( )2σt2 σFRC

2+[ ]

12---

=

Page 5: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1215

Tabl

e 2

Cal

ibra

ted

14C

resu

lts—

bian

nual

dat

a.La

b #

AA

-Sa

mpl

e ID

δ13C

230 T

h ag

e±2

σF

±1 σ

F RC

±1 σ

14C

age

BP

±2 σ

AA

5272

7PN

G 9

6 41

.27

11D

0.2

13,0

88.5

30.0

0.24

410.

0019

0.25

680.

0022

10,9

2113

5A

A52

728

PNG

96

41.2

7 11

L–0

.813

,088

.030

.00.

2385

0.00

140.

2509

0.00

1711

,107

108

AA

5272

9PN

G 9

6 41

.27

12D

–0.1

13,0

87.5

30.0

0.23

810.

0016

0.25

050.

0019

11,1

2112

0A

A52

730

PNG

96

41.2

7 12

L0.

113

,087

.030

.00.

2352

0.00

130.

2474

0.00

1611

,219

103

AA

5273

1PN

G 9

6 41

.27

13D

–0.1

13,0

86.5

30.0

0.23

800.

0018

0.25

040.

0021

11,1

2413

2A

A52

732

PNG

96

41.2

7 13

L–0

.613

,086

.030

.00.

2403

0.00

190.

2528

0.00

2211

,047

137

AA

5273

3PN

G 9

6 41

.27

14D

0.3

13,0

85.5

30.0

0.23

750.

0023

0.24

980.

0026

11,1

4116

4A

A52

734

PNG

96

41.2

7 14

L–0

.113

,085

.030

.00.

2411

0.00

140.

2536

0.00

1711

,020

107

AA

5273

5PN

G 9

6 41

.27

15D

0.1

13,0

84.5

30.0

0.23

830.

0018

0.25

070.

0021

11,1

1413

2A

A52

736

PNG

96

41.2

7 15

L0.

813

,084

.030

.00.

2415

0.00

250.

2541

0.00

2811

,007

174

AA

5273

7PN

G 9

6 41

.27

16D

–0.2

13,0

83.5

30.0

0.24

010.

0034

0.25

260.

0037

11,0

5423

3A

A52

738

PNG

96

41.2

7 16

L0.

613

,083

.030

.00.

2392

0.00

150.

2516

0.00

1811

,084

113

AA

5273

9PN

G 9

6 41

.27

17D

0.3

13,0

82.5

30.0

0.23

920.

0018

0.25

160.

0021

11,0

8413

2A

A52

740

PNG

96

41.2

7 17

L0.

813

,082

.030

.00.

2385

0.00

150.

2509

0.00

1811

,107

114

AA

5274

1PN

G 9

6 41

.27

18D

0.4

13,0

81.5

30.0

0.23

760.

0017

0.24

990.

0020

11,1

3812

6A

A52

742

PNG

96

41.2

7 18

L1.

313

,081

.030

.00.

2369

0.00

220.

2492

0.00

2511

,161

158

AA

5274

3PN

G 9

6 41

.27

19D

0.5

13,0

80.5

30.0

0.24

650.

0050

0.25

930.

0053

10,8

4233

0A

A52

744

PNG

96

41.2

7 19

L0.

913

,080

.030

.00.

2429

0.00

150.

2555

0.00

1810

,961

112

AA

5274

5PN

G 9

6 41

.27

20D

0.2

13,0

79.5

30.0

0.23

870.

0014

0.25

110.

0017

11,1

0110

8A

A52

746

PNG

96

41.2

7 20

L0.

313

,079

.030

.00.

2451

0.00

160.

2578

0.00

1910

,888

117

AA

5274

7PN

G 9

6 41

.27

21D

0.3

13,0

78.5

30.0

0.24

100.

0014

0.25

350.

0017

11,0

2410

7A

A52

748

PNG

96

41.2

7 21

L0.

313

,078

.030

.00.

2418

0.00

150.

2544

0.00

1810

,997

112

AA

5274

9PN

G 9

6 41

.27

22D

0.1

13,0

77.5

30.0

0.24

020.

0014

0.25

270.

0017

11,0

5010

7A

A52

750

PNG

96

41.2

7 22

L0.

613

077.

030

.00.

2406

0.00

190.

2531

0.00

2211

,037

137

AA

5275

1PN

G 9

6 41

.27

23D

0.4

13,0

76.5

30.0

0.24

020.

0014

0.25

270.

0017

11,0

5010

7A

A52

752

PNG

96

41.2

7 23

L0.

413

,076

.030

.00.

2385

0.00

140.

2509

0.00

1711

,107

108

AA

5275

3PN

G 9

6 41

.27

24D

1.3

13,0

75.5

30.0

0.23

970.

0014

0.25

220.

0017

11,0

6710

7A

A52

754

PNG

96

41.2

7 24

L0.

513

,075

.030

.00.

2447

0.00

140.

2574

0.00

1710

,901

106

AA

5275

5PN

G 9

6 41

.27

25D

0.0

13,0

74.5

30.0

0.24

030.

0014

0.25

280.

0017

11,0

4710

7A

A52

756

PNG

96

41.2

7 25

L–0

.113

,074

.030

.00.

2447

0.00

140.

2574

0.00

1710

,901

106

AA

5275

7PN

G 9

6 41

.27

26D

0.1

13,0

73.5

30.0

0.24

460.

0016

0.25

730.

0019

10,9

0511

7

Page 6: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1216 G S Burr et al.

Tabl

e 2

Cal

ibra

ted

14C

resu

lts—

bian

nual

dat

a. (C

ontin

ued)

Lab

# A

A-

Sam

ple

IDδ13

C23

0 Th

age

±2 σ

F±1

σF R

C±1

σ14

C a

ge B

P±2

σA

A52

758

PNG

96

41.2

7 26

L0.

013

,073

.030

.00.

2415

0.00

140.

2541

0.00

1711

,007

107

AA

5275

9PN

G 9

6 41

.27

27D

0.5

13,0

72.5

30.0

0.24

510.

0017

0.25

780.

0020

10,8

8812

3A

A52

760

PNG

96

41.2

7 27

L0.

013

,072

.030

.00.

2439

0.00

150.

2566

0.00

1810

,928

112

AA

5276

1PN

G 9

6 41

.27

28D

0.0

13,0

71.5

30.0

0.25

390.

0024

0.26

710.

0027

10,6

0516

1A

A52

762

PNG

96

41.2

7 28

L0.

213

,071

.030

.00.

2451

0.00

170.

2578

0.00

2010

,888

123

AA

5276

3PN

G 9

6 41

.27

29D

0.0

13,0

70.5

30.0

0.24

210.

0019

0.25

470.

0022

10,9

8713

6A

A52

764

PNG

96

41.2

7 29

L0.

013

,070

.030

.00.

2374

0.00

160.

2497

0.00

1911

,145

120

AA

5276

5PN

G 9

6 41

.27

30D

0.5

13,0

69.5

30.0

0.23

740.

0015

0.24

970.

0018

11,1

4511

4A

A52

766

PNG

96

41.2

7 30

L0.

613

,069

.030

.00.

2387

0.00

140.

2511

0.00

1711

,101

108

AA

5276

7PN

G 9

6 41

.27

31D

0.6

13,0

68.5

30.0

0.24

240.

0014

0.25

500.

0017

10,9

7710

6A

A52

768

PNG

96

41.2

7 31

L0.

113

,068

.030

.00.

2383

0.00

140.

2507

0.00

1711

,114

108

AA

5276

9PN

G 9

6 41

.27

32D

0.2

13,0

67.5

30.0

0.24

440.

0028

0.25

710.

0031

10,9

1119

1A

A52

770

PNG

96

41.2

7 32

L–0

.313

,067

.030

.00.

2361

0.00

140.

2484

0.00

1711

,189

109

AA

5277

1PN

G 9

6 41

.27

33D

–0.2

13,0

66.5

30.0

0.23

840.

0014

0.25

080.

0017

11,1

1110

8A

A52

772

PNG

96

41.2

7 33

L–0

.313

,066

.030

.00.

2336

0.00

150.

2457

0.00

1811

,274

116

AA

5277

3PN

G 9

6 41

.27

34D

0.0

13,0

65.5

30.0

0.23

500.

0014

0.24

720.

0017

11,2

2610

9A

A52

774

PNG

96

41.2

7 34

L–0

.213

,065

.030

.00.

2385

0.00

140.

2509

0.00

1711

,107

108

AA

5277

5PN

G 9

6 41

.27

35D

0.3

13,0

64.5

30.0

0.24

000.

0017

0.25

250.

0020

11,0

5712

5A

A52

776

PNG

96

41.2

7 35

L0.

013

,064

.030

.00.

2382

0.00

170.

2506

0.00

2011

,118

126

AA

5277

7PN

G 9

6 41

.27

36D

0.5

13,0

63.5

30.0

0.23

790.

0017

0.25

030.

0020

11,1

2812

6A

A52

778

PNG

96

41.2

7 36

L0.

213

,063

.030

.00.

2363

0.00

170.

2486

0.00

2011

,182

127

AA

5277

9PN

G 9

6 41

.27

37D

0.3

13,0

62.5

30.0

0.23

660.

0014

0.24

890.

0017

11,1

7210

8A

A52

780

PNG

96

41.2

7 37

L–0

.213

,062

.030

.00.

2410

0.00

140.

2535

0.00

1711

,024

107

AA

5278

1PN

G 9

6 41

.27

38D

0.0

13,0

61.5

30.0

0.23

730.

0014

0.24

960.

0017

11,1

4810

8A

A52

782

PNG

96

41.2

7 38

L0.

213

,061

.030

.00.

2391

0.00

180.

2515

0.00

2111

,087

132

AA

5278

3PN

G 9

6 41

.27

39D

0.0

13,0

60.5

30.0

0.23

780.

0015

0.25

020.

0018

11,1

3111

4A

A52

784

PNG

96

41.2

7 39

L–0

.113

,060

.030

.00.

2370

0.00

140.

2493

0.00

1711

,158

108

AA

5278

5PN

G 9

6 41

.27

40D

0.1

13,0

59.5

30.0

0.24

200.

0015

0.25

460.

0018

10,9

9011

2A

A52

786

PNG

96

41.2

7 40

L–0

.313

,059

.030

.00.

2373

0.00

220.

2496

0.00

2511

,148

158

AA

5278

7PN

G 9

6 41

.27

41D

0.3

13,0

58.5

30.0

0.23

650.

0016

0.24

880.

0019

11,1

7512

0A

A52

788

PNG

96

41.2

7 41

L–0

.213

,058

.030

.00.

2383

0.00

140.

2507

0.00

1711

,114

108

Page 7: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1217

Tabl

e 2

Cal

ibra

ted

14C

resu

lts—

bian

nual

dat

a. (C

ontin

ued)

Lab

# A

A-

Sam

ple

IDδ13

C23

0 Th

age

±2 σ

F±1

σF R

C±1

σ14

C a

ge B

P±2

σA

A52

789

PNG

96

41.2

7 42

D0.

613

,057

.530

.00.

2514

0.00

210.

2645

0.00

2410

,684

144

AA

5279

0PN

G 9

6 41

.27

42L

–0.1

13,0

57.0

30.0

0.24

170.

0016

0.25

430.

0019

11,0

0011

8A

A52

791

PNG

96

41.2

7 43

D–0

.313

,056

.530

.00.

2372

0.00

370.

2495

0.00

4011

,151

256

AA

5279

2PN

G 9

6 41

.27

43L

–0.1

13,0

56.0

30.0

0.23

870.

0024

0.25

110.

0027

11,1

0117

0A

A52

793

PNG

96

41.2

7 44

D0.

413

,055

.530

.00.

2385

0.00

160.

2509

0.00

1911

,107

120

AA

5279

4PN

G 9

6 41

.27

44L

–0.2

13,0

55.0

30.0

0.23

870.

0023

0.25

110.

0026

11,1

0116

3A

A52

795

PNG

96

41.2

7 45

D0.

213

,054

.530

.00.

2411

0.00

180.

2536

0.00

2111

,020

131

AA

5279

6PN

G 9

6 41

.27

45L

0.2

13,0

54.0

30.0

0.23

810.

0019

0.25

050.

0022

11,1

2113

8A

A52

797

PNG

96

41.2

7 46

D–0

.313

,053

.530

.00.

2415

0.00

160.

2541

0.00

1911

,007

118

AA

5279

8PN

G 9

6 41

.27

46L

0.0

13,0

53.0

30.0

0.24

160.

0015

0.25

420.

0018

11,0

0411

2A

A52

799

PNG

96

41.2

7 47

D0.

613

,052

.530

.00.

2420

0.00

180.

2546

0.00

2110

,990

130

AA

5280

0PN

G 9

6 41

.27

47L

0.3

13,0

52.0

30.0

0.23

910.

0016

0.25

150.

0019

11,0

8711

9A

A52

801

PNG

96

41.2

7 48

D0.

113

,051

.530

.00.

2393

0.00

290.

2517

0.00

3211

,080

202

AA

5280

2PN

G 9

6 41

.27

48L

0.6

13,0

51.0

30.0

0.23

790.

0013

0.25

030.

0016

11,1

2810

2A

A52

803

PNG

96

41.2

7 49

D0.

113

,050

.530

.00.

2388

0.00

180.

2512

0.00

2111

,097

132

AA

5280

4PN

G 9

6 41

.27

49L

0.3

13,0

50.0

30.0

0.23

730.

0020

0.24

960.

0023

11,1

4814

5A

A52

805

PNG

96

41.2

7 50

D–0

.113

,049

.530

.00.

2379

0.00

150.

2503

0.00

1811

,128

114

AA

5280

6PN

G 9

6 41

.27

50L

0.0

13,0

49.0

30.0

0.24

250.

0046

0.25

510.

0049

10,9

7430

9A

A52

807

PNG

96

41.2

7 51

D–0

.513

,048

.530

.00.

2386

0.00

230.

2510

0.00

2611

,104

163

AA

5280

8PN

G 9

6 41

.27

51L

0.0

13,0

48.0

30.0

0.23

850.

0016

0.25

090.

0019

11,1

0712

0A

A52

809

PNG

96

41.2

7 52

D0.

413

,047

.530

.00.

2374

0.00

150.

2497

0.00

1811

,145

114

AA

5281

0PN

G 9

6 41

.27

52L

0.1

13,0

47.0

30.0

0.23

790.

0015

0.25

030.

0018

11,1

2811

4A

A52

811

PNG

96

41.2

7 53

D0.

313

,046

.530

.00.

2393

0.00

170.

2517

0.00

2011

,080

125

AA

5281

2PN

G 9

6 41

.27

53L

0.4

13,0

46.0

30.0

0.23

930.

0018

0.25

170.

0021

11,0

8013

2A

A52

813

PNG

96

41.2

7 54

D–0

.113

,045

.530

.00.

2389

0.00

150.

2513

0.00

1811

,094

113

AA

5281

4PN

G 9

6 41

.27

54L

0.5

13,0

45.0

30.0

0.23

730.

0017

0.24

960.

0020

11,1

4812

6A

A52

815

PNG

96

41.2

7 55

D0.

013

,044

.530

.00.

2371

0.00

130.

2494

0.00

1611

,155

102

AA

5281

6PN

G 9

6 41

.27

55L

0.4

13,0

44.0

30.0

0.23

910.

0017

0.25

150.

0020

11,0

8712

6A

A52

817

PNG

96

41.2

7 56

D0.

013

,043

.530

.00.

2439

0.00

300.

2566

0.00

3310

,928

204

AA

5281

8PN

G 9

6 41

.27

57L

–0.1

13,0

43.0

30.0

0.24

870.

0017

0.26

160.

0020

10,7

7112

2A

A52

819

PNG

96

41.2

7 57

D–0

.113

,042

.530

.00.

2381

0.00

180.

2505

0.00

2111

,121

132

Page 8: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1218 G S Burr et al.

Tabl

e 2

Cal

ibra

ted

14C

resu

lts—

bian

nual

dat

a. (C

ontin

ued)

Lab

# A

A-

Sam

ple

IDδ13

C23

0 Th

age

±2 σ

F±1

σF R

C±1

σ14

C a

ge B

P±2

σA

A52

820

PNG

96

41.2

7 57

L0.

413

,042

.030

.00.

2396

0.00

210.

2521

0.00

2411

,070

150

AA

5282

1PN

G 9

6 41

.27

58D

–0.5

13,0

41.5

30.0

0.23

940.

0020

0.25

180.

0023

11,0

7714

4A

A52

822

PNG

96

41.2

7 58

L0.

013

,041

.030

.00.

2386

0.00

160.

2510

0.00

1911

,104

120

AA

5282

3PN

G 9

6 41

.27

59D

–0.5

13,0

40.5

30.0

0.23

780.

0017

0.25

020.

0020

11,1

3112

6A

A52

824

PNG

96

41.2

7 59

L–0

.113

,040

.030

.00.

2385

0.00

170.

2509

0.00

2011

,107

126

AA

5282

5PN

G 9

6 41

.27

60D

–0.4

13,0

39.5

30.0

0.24

150.

0018

0.25

410.

0021

11,0

0713

1A

A52

826

PNG

96

41.2

7 60

L–0

.313

,039

.030

.00.

2389

0.00

210.

2513

0.00

2411

,094

150

AA

5282

7PN

G 9

6 41

.27

61D

–0.8

13,0

38.5

30.0

0.24

060.

0016

0.25

310.

0019

11,0

3711

9A

A52

828

PNG

96

41.2

7 61

L–0

.313

,038

.030

.00.

2351

0.00

150.

2473

0.00

1811

,223

115

AA

5282

9PN

G 9

6 41

.27

62D

–0.7

13,0

37.5

30.0

0.24

150.

0015

0.25

410.

0018

11,0

0711

3A

A52

830

PNG

96

41.2

7 62

L–0

.213

,037

.030

.00.

2375

0.00

170.

2498

0.00

2011

,141

126

AA

5283

1PN

G 9

6 41

.27

63D

–0.7

13,0

36.5

30.0

0.23

950.

0014

0.25

190.

0017

11,0

7410

7A

A52

832

PNG

96

41.2

7 63

L–0

.513

,036

.030

.00.

2372

0.00

310.

2495

0.00

3411

,151

216

AA

5283

3PN

G 9

6 41

.27

64D

–0.7

13,0

35.5

30.0

0.23

900.

0014

0.25

140.

0017

11,0

9110

8A

A52

834

PNG

96

41.2

7 64

L–0

.913

,035

.030

.00.

2406

0.00

290.

2531

0.00

3211

,037

201

AA

5283

5PN

G 9

6 41

.27

65D

–0.8

13,0

34.5

30.0

0.23

780.

0015

0.25

020.

0018

11,1

3111

4A

A52

836

PNG

96

41.2

7 65

L–0

.113

,034

.030

.00.

2435

0.00

250.

2562

0.00

2810

,941

173

AA

5283

7PN

G 9

6 41

.27

66D

–1.0

13,0

33.5

30.0

0.24

730.

0014

0.26

020.

0017

10,8

1610

5A

A52

838

PNG

96

41.2

7 66

L1.

313

,033

.030

.00.

2428

0.00

190.

2554

0.00

2210

,964

136

AA

5283

9PN

G 9

6 41

.27

67D

–1.0

13,0

32.5

30.0

0.25

350.

0023

0.26

670.

0026

10,6

1715

5A

A52

840

PNG

96

41.2

7 67

L–0

.113

,032

.030

.00.

2374

0.00

330.

2497

0.00

3611

,145

229

AA

5284

1PN

G 9

6 41

.27

68D

–0.4

13,0

31.5

30.0

0.24

490.

0018

0.25

760.

0021

10,8

9512

9A

A52

842

PNG

96

41.2

7 68

L0.

313

,031

.030

.00.

2421

0.00

210.

2547

0.00

2410

,987

149

AA

5284

3PN

G 9

6 41

.27

69D

0.5

13,0

30.5

30.0

0.24

030.

0017

0.25

280.

0020

11,0

4712

5A

A52

844

PNG

96

41.2

7 69

L0.

613

,030

.030

.00.

2404

0.00

150.

2529

0.00

1811

,044

113

AA

5284

5PN

G 9

6 41

.27

70D

1.0

13,0

29.5

30.0

0.24

180.

0019

0.25

440.

0022

10,9

9713

7A

A52

846

PNG

96

41.2

7 70

L0.

113

,029

.030

.00.

2399

0.00

140.

2524

0.00

1711

,060

107

AA

5284

7PN

G 9

6 41

.27

71D

–0.3

13,0

28.5

30.0

0.24

710.

0020

0.25

990.

0023

10,8

2314

0A

A52

848

PNG

96

41.2

7 71

L0.

113

,028

.030

.00.

2401

0.00

170.

2526

0.00

2011

,054

125

AA

5284

9PN

G 9

6 41

.27

72D

–0.9

13,0

27.5

30.0

0.23

940.

0016

0.25

180.

0019

11,0

7711

9A

A52

850

PNG

96

41.2

7 72

L0.

013

,027

.030

.00.

2391

0.00

160.

2515

0.00

1911

,087

119

AA

5285

1PN

G 9

6 41

.27

73D

–0.7

13,0

26.5

30.0

0.24

180.

0019

0.25

440.

0022

10,9

9713

7

Page 9: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1219

Tabl

e 2

Cal

ibra

ted

14C

resu

lts—

bian

nual

dat

a. (C

ontin

ued)

Lab

# A

A-

Sam

ple

IDδ13

C23

0 Th

age

±2 σ

F±1

σF R

C±1

σ14

C a

ge B

P±2

σA

A52

852

PNG

96

41.2

7 73

L–0

.513

,026

.030

.00.

2457

0.00

350.

2585

0.00

3810

,868

235

AA

5285

3PN

G 9

6 41

.27

74D

–0.4

13,0

25.5

30.0

0.25

090.

0027

0.26

390.

0030

10,7

0018

1A

A52

854

PNG

96

41.2

7 74

L–0

.513

,025

.030

.00.

2405

0.00

190.

2530

0.00

2211

,040

137

AA

5285

5PN

G 9

6 41

.27

75D

–1.2

13,0

24.5

30.0

0.24

030.

0016

0.25

280.

0019

11,0

4711

9A

A52

856

PNG

96

41.2

7 75

L–1

.413

,024

.030

.00.

2392

0.00

240.

2516

0.00

2711

,084

169

AA

5285

7PN

G 9

6 41

.27

76D

–0.6

13,0

23.5

30.0

0.24

010.

0014

0.25

260.

0017

11,0

5410

7A

A52

858

PNG

96

41.2

7 76

L–0

.113

,023

.030

.00.

2399

0.00

160.

2524

0.00

1911

,060

119

AA

5285

9PN

G 9

6 41

.27

77D

0.0

13,0

22.5

30.0

0.24

600.

0014

0.25

880.

0017

10,8

5910

5A

A52

860

PNG

96

41.2

7 77

L–0

.113

,022

.030

.00.

2392

0.00

260.

2516

0.00

2911

,084

182

AA

5286

1PN

G 9

6 41

.27

78D

–0.6

13,0

21.5

30.0

0.24

100.

0011

0.25

350.

0014

11,0

2490

AA

5286

2PN

G 9

6 41

.27

78L

–0.5

13,0

21.0

30.0

0.23

990.

0016

0.25

240.

0019

11,0

6011

9A

A52

863

PNG

96

41.2

7 79

D–0

.813

,020

.530

.00.

2411

0.00

130.

2536

0.00

1611

,020

101

AA

5286

4PN

G 9

6 41

.27

79L

0.0

13,0

20.0

30.0

0.24

380.

0013

0.25

650.

0016

10,9

3110

0A

A52

865

PNG

96

41.2

7 80

D–0

.913

,019

.530

.00.

2414

0.00

160.

2539

0.00

1911

,010

119

AA

5286

6PN

G 9

6 41

.27

80L

–0.3

13,0

19.0

30.0

0.24

060.

0018

0.25

310.

0021

11,0

3713

1A

A52

867

PNG

96

41.2

7 81

D–0

.113

,018

.530

.00.

2431

0.00

160.

2557

0.00

1910

,954

118

AA

5286

8PN

G 9

6 41

.27

81L

–0.9

13,0

18.0

30.0

0.24

360.

0034

0.25

630.

0037

10,9

3723

0A

A52

869

PNG

96

41.2

7 82

D–0

.413

,017

.530

.00.

2469

0.00

500.

2597

0.00

5310

,829

329

AA

5287

0PN

G 9

6 41

.27

82L

0.5

13,0

17.0

30.0

0.24

410.

0017

0.25

680.

0020

10,9

2112

3A

A52

871

PNG

96

41.2

7 83

D0.

013

,016

.530

.00.

2518

0.00

570.

2649

0.00

6110

,671

367

AA

5287

2PN

G 9

6 41

.27

83L

0.1

13,0

16.0

30.0

0.24

820.

0051

0.26

110.

0054

10,7

8733

4A

A52

873

PNG

96

41.2

7 84

D–0

.513

,015

.530

.00.

2515

0.00

350.

2646

0.00

3810

,681

230

AA

5287

4PN

G 9

6 41

.27

84L

–0.3

13,0

15.0

30.0

0.23

970.

0028

0.25

220.

0031

11,0

6719

5A

A52

875

PNG

96

41.2

7 85

D0.

013

,014

.530

.00.

2486

0.00

140.

2615

0.00

1710

,774

104

AA

5287

6PN

G 9

6 41

.27

85L

–1.5

13,0

14.0

30.0

0.23

990.

0021

0.25

240.

0024

11,0

6015

0A

A52

877

PNG

96

41.2

7 86

D–2

.013

,013

.530

.00.

2403

0.00

210.

2528

0.00

2411

,047

150

AA

5287

8PN

G 9

6 41

.27

86L

–2.1

13,0

13.0

30.0

0.24

220.

0030

0.25

480.

0033

10,9

8420

6A

A52

879

PNG

96

41.2

7 87

D–2

.013

,012

.530

.00.

2316

0.00

230.

2436

0.00

2511

,343

168

AA

5288

0PN

G 9

6 41

.27

87L

–1.9

13,0

12.0

30.0

0.24

230.

0029

0.25

490.

0032

10,9

8019

9A

A52

881

PNG

96

41.2

7 88

D–1

.513

,011

.530

.00.

2348

0.00

190.

2470

0.00

2211

,233

140

AA

5288

2PN

G 9

6 41

.27

88L

–1.0

13,0

11.0

30.0

0.24

070.

0019

0.25

320.

0022

11,0

3413

7

Page 10: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1220 G S Burr et al.

Figure 3 shows the 5-yr weighted averages of the 14C dates versus 230Th ages. The trend of the datais rather flat, with some intra-decadal variability. Weighted average )14C values are plotted againstthe 230Th ages in Figure 4. This data also show intra-decadal variability with a small peak in ∆14C atabout 13,075 BP. The gross trend in ∆14C shows a modest increase with increasing age over theentire period.

Table 3 5-yr weighted average values: FRC, 14C age BP, and ∆14C.a230Th age BP ±2 σ FRC ±2 σ nb 14C age BP ±2 σ ∆14C (‰) ±2 σ13,015 30 0.2541 0.0018 10 11,031 121 222.9 21.213,020 30 0.2525 0.0018 10 10,955 82 235.2 9.713,025 30 0.2537 0.0014 10 11,009 44 227.8 6.813,030 30 0.2548 0.0028 10 11,005 76 229.0 10.613,035 30 0.2504 0.0020 10 10,958 82 237.0 14.513,040 30 0.2507 0.0014 10 11,085 51 218.4 6.813,045 30 0.2524 0.0026 10 11,069 76 221.5 11.613,050 30 0.2520 0.0014 10 11,114 38 215.5 5.813,055 30 0.2506 0.0012 10 11,066 45 223.5 5.813,060 30 0.2529 0.0024 10 11,066 83 224.2 12.613,065 30 0.2514 0.0016 10 11,117 45 217.2 5.813,070 30 0.2557 0.0026 10 11,130 64 216.0 8.813,075 30 0.2540 0.0024 10 10,949 88 244.4 11.713,080 30 0.2541 0.0014 10 11,024 44 233.5 6.813,085 30 0.2576 0.0026 10 11,075 57 226.5 6.813,090 30 0.2505 0.0038 6 11,094 58 224.3 9.7

aWeighted averages were computed with the formulae of Bevington and Robinson (1992).bn is the number of individual samples used to compute the weighted average.

Figure 3 14C age versus 230Th age: 5-yr averaged data

Page 11: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1221

Figure 5 shows a comparison of the results of this study with the earlier Diploastrea results. The 14Cage data and ∆14C values from both corals follow a single trend. Note that the site-specific reservoircorrections for these 2 sites are different by about 90 yr.

An interesting feature of these results is the finestructure which can be seen in Figure 6. Here, weplot a 5-point smoothed curve for all of the data. The smoothed curve shown in the figure showsvariability in ∆14C with a frequency on the order of 4 to 10 yr and variable amplitudes of up to 40‰.These variations are similar to those observed in modern corals whose 14C content has been shownto be related to El Niño-induced fluctuations (Brown et al. 1993; Guilderson and Schrag 1998).Such effects are also known to produce oxygen isotopic variations and these have been describedfrom modern corals in Papua New Guinea (Tudhope et al. 2001). The oxygen isotope record of theGoniastrea favulus sample studied here, and the potential for paleo-El Niño events, is the subject ofa parallel study to be discussed elsewhere.

CONCLUSIONS

This study highlights the advantages of analyzing consecutive subannual growth layers of a singlecoral, which allows annual variations in ∆14C to be identified for the better part of a century. Intra-decadal ∆14C variations between 13.0 and 13.1 kyr BP show variations which are similar to thoseobserved in living corals. The time resolution of the sampling provides for the most precise 14Cresults available for this period and the internal consistency of the results supports the quoted preci-sion for the measurements. Using individual growth bands, 5-yr average values for the 14C calibra-tion have been computed here using 10 independent measurements, and the external variance of thispopulation of points determines the precision of the calibrated age. Coral samples of the type exam-ined here are difficult to sample in practice, but their usefulness for calibration purposes warrantsfurther efforts to collect them.

Figure 4 ∆14C versus 230Th age: 5-yr averaged data

Page 12: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1222 G S Burr et al.

Figure 5 Comparison of Vanuatu and PNG results: (a) 14C age versus 230Th age; (b) ∆14C versus 230Th age. Diploastrea(Vanuatu) are 10-yr averages and Goniastrea (Papua New Guinea) are 5-yr averages.

a

b

Page 13: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

14C Results from a 13-kyr BP Coral from the Huon Peninsula 1223

ACKNOWLEDGMENTS

We acknowledge the support for this project from the National Science Foundation (EAR9730699and EAR0115488). We are very grateful for the enthusiastic support of the local inhabitants ofKwambu Village and of the support of the Sialum District government. We would like to thankDamien Kelleher and Eugene Wallensky of the Australian National University for their drillingexpertise. We are also indebted to Dr John Chappell for making available the drilling equipment.

REFERENCES

Figure 6 Finestructure in the Goniastrea favulus record: 5-point FFT smoothed curve

Bard E, Hamelin B, Fairbanks RG, Zindler A. 1990. Cal-ibration of the 14C time scale over the past 30,000years using mass spectrometric U-Th ages from Bar-bados corals. Nature 345:405–10.

Bard E, Arnold M, Fairbanks RG, Hamelin B. 1993.230Th-234U and 14C ages obtained by mass spectrome-try on corals. Radiocarbon 35(1):191–9.

Bard E, Hamelin B, Arnold M, Montaggioni L, CabiochG, Faure G, Rougerie F. 1996. Deglacial sea-levelrecord from Tahiti corals and the timing of globalmeltwater discharge. Nature 382:241–4

Bevington PR, Robinson DK. 1992. Data Reduction andError Analysis for the Physical Sciences. New York:McGraw-Hill, Inc. 328 p.

Brown TA, Farwell GW, Grootes PM, Schmidt FH,Stuiver M. 1993. Intra-annual variability of the radio-carbon content of corals from the Galapagos Islands.Radiocarbon 35(2):245–51.

Burr GS, Edwards RL, Donahue DJ, Druffel ERM, Tay-lor FW. 1992. Mass spectrometric 14C and U-Th mea-surements in coral. Radiocarbon 34(3):611–8.

Burr GS, Beck JW, Taylor FW, Récy J, Edwards RL, Ca-bioch G, Corrège T, Donahue DJ, O’Malley JM. 1998.A high-resolution radiocarbon calibration between11,700 and 12,400 calendar years BP derived from230Th ages of corals from Espiritu Santo Island, Van-uatu. Radiocarbon 40(3):1093–105.

Cabioch G, Banks-Cutler K, Beck JW, Burr GS, Corrège

Page 14: RADIOCARBON RESULTS FROM A 13-KYR BP CORAL FROM THE …

1224 G S Burr et al.

T, Edwards RL, Taylor FW. 2003. Continuous reefgrowth during the last 23 cal kyr BP in a tectonicallyactive zone (Vanuatu, southwest Pacific). QuaternaryScience Reviews 22:1771–86.

Chappell J, Polach H. 1991. Post-glacial sea-level risefrom a coral record at Huon Peninsula, Papua NewGuinea. Nature 349:147–9.

Cutler KA, Edwards RL, Taylor FW, Cheng H, Adkins J,Gallup CD, Cutler PM, Burr GS, Bloom AL. 2003.Rapid sea-level fall and deep-ocean temperaturechange since the last interglacial period. Earth andPlanetary Science Letters 206:253–71.

Donahue DJ, Linick TW, Jull AJT. 1990. Isotope-ratioand background corrections for accelerator mass spec-trometry radiocarbon measurements. Radiocarbon32(2):135–42.

Druffel ERM. 1997. Geochemistry of corals: proxies ofpast ocean chemistry, ocean circulation, and climate.Proceedings National Academy of Sciences 94:8354–61.

Edwards RL, Beck JW, Burr GS, Donahue DJ, ChappellJMA, Bloom AL, Druffel ERM, Taylor FW. 1993. Alarge drop in atmospheric 14C/12C and reduced meltingin the Younger Dryas, documented with 230Th ages ofcorals. Science 260:962–8.

Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM,Dunbar RB, Schrag DP. 2000. New views of tropicalpaleoclimates from corals. Quaternary Science Re-views 19:45–64.

Guilderson TP, Schrag DP, Kashgarian M, Southon J.1998. Radiocarbon variability in the western equato-rial Pacific inferred from a high-resolution coralrecord from Nauru Island. Journal of Geophysical Re-

search-Oceans 103(C11):24,641–50.Guilderson TP, Schrag DP. 1998. Abrupt shift in subsur-

face temperatures in the tropical Pacific associatedwith changes in El Niño. Science 281:240–3.

Moore MD, Schrag DP, Kashgarian M. 1997. Coral ra-diocarbon constraints on the source of the Indonesianthroughflow. Journal of Geophysical Research102(C6):12,359–65.

Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW,Blackwell PG, Buck CE, Burr GS, Cutler KB, DamonPE, Edwards RL, Fairbanks RG, Friedrich M, Guilder-son TP, Herring C, Hughen KA, Kromer B, McCor-mac G, Manning S, Bronk Ramsey C, Reimer RW,Remmele S, Southon JR, Stuiver M, Talamo S, TaylorFW, van der Plicht J, Weyhenmeyer CE. 2004.IntCal04 terrestrial radiocarbon age calibration, 0–26cal kyr BP. Radiocarbon, this issue.

Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS,Hughen KA, Kromer B, McCormac G, van der PlichtJ, Spurk M. 1998. IntCal98 radiocarbon age calibra-tion, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.

Taylor FW, Frohlich C, Lecolle J, Strecker M. 1987.Analysis of partially emerged corals and reef terracesin the central Vanuatu arc: comparison of contempo-rary coseismic and nonseismic with Quaternary verti-cal movements. Journal of Geophysical Research 92:4905–33.

Tudhope AW, Chilcott CP, McCulloch MT, Cook ER,Chappell J, Ellam RM, Lea DW, Lough JM,Shimmield GB. 2001. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cy-cle. Science 291:1511–7.